Files
troggle-unchained/media/jslib/CaveView/js/workers/caveWorker.js
2021-04-02 19:02:10 +01:00

23174 lines
566 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory() :
typeof define === 'function' && define.amd ? define(factory) :
(factory());
}(this, (function () { 'use strict';
var environment = new Map();
function getEnvironmentValue ( item, defaultValue ) {
if ( environment.has( item ) ) {
return environment.get( item );
} else {
return defaultValue;
}
}
function replaceExtension( fileName, newExtention ) {
return fileName.split( '.' ).shift() + '.' + newExtention;
}
// polyfill padStart for IE11 - now supported for Chrome, FireFox and Edge
if ( ! String.prototype.padStart ) {
String.prototype.padStart = function padStart( targetLength, padString ) {
targetLength = targetLength >> 0; //floor if number or convert non-number to 0;
padString = String( padString || ' ' );
if (this.length > targetLength) {
return String( this );
} else {
targetLength = targetLength - this.length;
if ( targetLength > padString.length ) {
padString += padString.repeat( targetLength / padString.length ); //append to original to ensure we are longer than needed
}
return padString.slice( 0, targetLength ) + String( this );
}
};
}
if ( ! String.prototype.repeat ) {
String.prototype.repeat = function( count ) {
if ( this == null ) throw new TypeError( 'can\'t convert ' + this + ' to object' );
var str = '' + this;
count = +count;
if ( count != count ) count = 0;
if ( count < 0 ) throw new RangeError( 'repeat count must be non-negative' );
if ( count == Infinity ) throw new RangeError( 'repeat count must be less than infinity' );
count = Math.floor( count );
if ( str.length == 0 || count == 0 ) return '';
// Ensuring count is a 31-bit integer allows us to heavily optimize the
// main part. But anyway, most current (August 2014) browsers can't handle
// strings 1 << 28 chars or longer, so:
if ( str.length * count >= 1 << 28 ) throw new RangeError('repeat count must not overflow maximum string size');
var rpt = '';
for (;;) {
if ( ( count & 1) == 1 ) rpt += str;
count >>>= 1;
if ( count == 0 ) break;
str += str;
}
// Could we try:
// return Array(count + 1).join(this);
return rpt;
};
}
// EOF
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
var _Math = {
DEG2RAD: Math.PI / 180,
RAD2DEG: 180 / Math.PI,
generateUUID: function () {
// http://www.broofa.com/Tools/Math.uuid.htm
var chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'.split( '' );
var uuid = new Array( 36 );
var rnd = 0, r;
return function generateUUID() {
for ( var i = 0; i < 36; i ++ ) {
if ( i === 8 || i === 13 || i === 18 || i === 23 ) {
uuid[ i ] = '-';
} else if ( i === 14 ) {
uuid[ i ] = '4';
} else {
if ( rnd <= 0x02 ) rnd = 0x2000000 + ( Math.random() * 0x1000000 ) | 0;
r = rnd & 0xf;
rnd = rnd >> 4;
uuid[ i ] = chars[ ( i === 19 ) ? ( r & 0x3 ) | 0x8 : r ];
}
}
return uuid.join( '' );
};
}(),
clamp: function ( value, min, max ) {
return Math.max( min, Math.min( max, value ) );
},
// compute euclidian modulo of m % n
// https://en.wikipedia.org/wiki/Modulo_operation
euclideanModulo: function ( n, m ) {
return ( ( n % m ) + m ) % m;
},
// Linear mapping from range <a1, a2> to range <b1, b2>
mapLinear: function ( x, a1, a2, b1, b2 ) {
return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );
},
// https://en.wikipedia.org/wiki/Linear_interpolation
lerp: function ( x, y, t ) {
return ( 1 - t ) * x + t * y;
},
// http://en.wikipedia.org/wiki/Smoothstep
smoothstep: function ( x, min, max ) {
if ( x <= min ) return 0;
if ( x >= max ) return 1;
x = ( x - min ) / ( max - min );
return x * x * ( 3 - 2 * x );
},
smootherstep: function ( x, min, max ) {
if ( x <= min ) return 0;
if ( x >= max ) return 1;
x = ( x - min ) / ( max - min );
return x * x * x * ( x * ( x * 6 - 15 ) + 10 );
},
// Random integer from <low, high> interval
randInt: function ( low, high ) {
return low + Math.floor( Math.random() * ( high - low + 1 ) );
},
// Random float from <low, high> interval
randFloat: function ( low, high ) {
return low + Math.random() * ( high - low );
},
// Random float from <-range/2, range/2> interval
randFloatSpread: function ( range ) {
return range * ( 0.5 - Math.random() );
},
degToRad: function ( degrees ) {
return degrees * _Math.DEG2RAD;
},
radToDeg: function ( radians ) {
return radians * _Math.RAD2DEG;
},
isPowerOfTwo: function ( value ) {
return ( value & ( value - 1 ) ) === 0 && value !== 0;
},
nearestPowerOfTwo: function ( value ) {
return Math.pow( 2, Math.round( Math.log( value ) / Math.LN2 ) );
},
nextPowerOfTwo: function ( value ) {
value --;
value |= value >> 1;
value |= value >> 2;
value |= value >> 4;
value |= value >> 8;
value |= value >> 16;
value ++;
return value;
}
};
/**
* @author mrdoob / http://mrdoob.com/
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author philogb / http://blog.thejit.org/
* @author jordi_ros / http://plattsoft.com
* @author D1plo1d / http://github.com/D1plo1d
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author timknip / http://www.floorplanner.com/
* @author bhouston / http://clara.io
* @author WestLangley / http://github.com/WestLangley
*/
function Matrix4() {
this.elements = [
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
];
if ( arguments.length > 0 ) {
console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' );
}
}
Object.assign( Matrix4.prototype, {
isMatrix4: true,
set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {
var te = this.elements;
te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;
return this;
},
identity: function () {
this.set(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
},
clone: function () {
return new Matrix4().fromArray( this.elements );
},
copy: function ( m ) {
var te = this.elements;
var me = m.elements;
te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ];
te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ];
te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ];
te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ];
return this;
},
copyPosition: function ( m ) {
var te = this.elements, me = m.elements;
te[ 12 ] = me[ 12 ];
te[ 13 ] = me[ 13 ];
te[ 14 ] = me[ 14 ];
return this;
},
extractBasis: function ( xAxis, yAxis, zAxis ) {
xAxis.setFromMatrixColumn( this, 0 );
yAxis.setFromMatrixColumn( this, 1 );
zAxis.setFromMatrixColumn( this, 2 );
return this;
},
makeBasis: function ( xAxis, yAxis, zAxis ) {
this.set(
xAxis.x, yAxis.x, zAxis.x, 0,
xAxis.y, yAxis.y, zAxis.y, 0,
xAxis.z, yAxis.z, zAxis.z, 0,
0, 0, 0, 1
);
return this;
},
extractRotation: function () {
var v1 = new Vector3();
return function extractRotation( m ) {
var te = this.elements;
var me = m.elements;
var scaleX = 1 / v1.setFromMatrixColumn( m, 0 ).length();
var scaleY = 1 / v1.setFromMatrixColumn( m, 1 ).length();
var scaleZ = 1 / v1.setFromMatrixColumn( m, 2 ).length();
te[ 0 ] = me[ 0 ] * scaleX;
te[ 1 ] = me[ 1 ] * scaleX;
te[ 2 ] = me[ 2 ] * scaleX;
te[ 4 ] = me[ 4 ] * scaleY;
te[ 5 ] = me[ 5 ] * scaleY;
te[ 6 ] = me[ 6 ] * scaleY;
te[ 8 ] = me[ 8 ] * scaleZ;
te[ 9 ] = me[ 9 ] * scaleZ;
te[ 10 ] = me[ 10 ] * scaleZ;
return this;
};
}(),
makeRotationFromEuler: function ( euler ) {
if ( ! ( euler && euler.isEuler ) ) {
console.error( 'THREE.Matrix: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );
}
var te = this.elements;
var x = euler.x, y = euler.y, z = euler.z;
var a = Math.cos( x ), b = Math.sin( x );
var c = Math.cos( y ), d = Math.sin( y );
var e = Math.cos( z ), f = Math.sin( z );
if ( euler.order === 'XYZ' ) {
var ae = a * e, af = a * f, be = b * e, bf = b * f;
te[ 0 ] = c * e;
te[ 4 ] = - c * f;
te[ 8 ] = d;
te[ 1 ] = af + be * d;
te[ 5 ] = ae - bf * d;
te[ 9 ] = - b * c;
te[ 2 ] = bf - ae * d;
te[ 6 ] = be + af * d;
te[ 10 ] = a * c;
} else if ( euler.order === 'YXZ' ) {
var ce = c * e, cf = c * f, de = d * e, df = d * f;
te[ 0 ] = ce + df * b;
te[ 4 ] = de * b - cf;
te[ 8 ] = a * d;
te[ 1 ] = a * f;
te[ 5 ] = a * e;
te[ 9 ] = - b;
te[ 2 ] = cf * b - de;
te[ 6 ] = df + ce * b;
te[ 10 ] = a * c;
} else if ( euler.order === 'ZXY' ) {
var ce = c * e, cf = c * f, de = d * e, df = d * f;
te[ 0 ] = ce - df * b;
te[ 4 ] = - a * f;
te[ 8 ] = de + cf * b;
te[ 1 ] = cf + de * b;
te[ 5 ] = a * e;
te[ 9 ] = df - ce * b;
te[ 2 ] = - a * d;
te[ 6 ] = b;
te[ 10 ] = a * c;
} else if ( euler.order === 'ZYX' ) {
var ae = a * e, af = a * f, be = b * e, bf = b * f;
te[ 0 ] = c * e;
te[ 4 ] = be * d - af;
te[ 8 ] = ae * d + bf;
te[ 1 ] = c * f;
te[ 5 ] = bf * d + ae;
te[ 9 ] = af * d - be;
te[ 2 ] = - d;
te[ 6 ] = b * c;
te[ 10 ] = a * c;
} else if ( euler.order === 'YZX' ) {
var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[ 0 ] = c * e;
te[ 4 ] = bd - ac * f;
te[ 8 ] = bc * f + ad;
te[ 1 ] = f;
te[ 5 ] = a * e;
te[ 9 ] = - b * e;
te[ 2 ] = - d * e;
te[ 6 ] = ad * f + bc;
te[ 10 ] = ac - bd * f;
} else if ( euler.order === 'XZY' ) {
var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[ 0 ] = c * e;
te[ 4 ] = - f;
te[ 8 ] = d * e;
te[ 1 ] = ac * f + bd;
te[ 5 ] = a * e;
te[ 9 ] = ad * f - bc;
te[ 2 ] = bc * f - ad;
te[ 6 ] = b * e;
te[ 10 ] = bd * f + ac;
}
// last column
te[ 3 ] = 0;
te[ 7 ] = 0;
te[ 11 ] = 0;
// bottom row
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1;
return this;
},
makeRotationFromQuaternion: function ( q ) {
var te = this.elements;
var x = q._x, y = q._y, z = q._z, w = q._w;
var x2 = x + x, y2 = y + y, z2 = z + z;
var xx = x * x2, xy = x * y2, xz = x * z2;
var yy = y * y2, yz = y * z2, zz = z * z2;
var wx = w * x2, wy = w * y2, wz = w * z2;
te[ 0 ] = 1 - ( yy + zz );
te[ 4 ] = xy - wz;
te[ 8 ] = xz + wy;
te[ 1 ] = xy + wz;
te[ 5 ] = 1 - ( xx + zz );
te[ 9 ] = yz - wx;
te[ 2 ] = xz - wy;
te[ 6 ] = yz + wx;
te[ 10 ] = 1 - ( xx + yy );
// last column
te[ 3 ] = 0;
te[ 7 ] = 0;
te[ 11 ] = 0;
// bottom row
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1;
return this;
},
lookAt: function () {
var x = new Vector3();
var y = new Vector3();
var z = new Vector3();
return function lookAt( eye, target, up ) {
var te = this.elements;
z.subVectors( eye, target );
if ( z.lengthSq() === 0 ) {
// eye and target are in the same position
z.z = 1;
}
z.normalize();
x.crossVectors( up, z );
if ( x.lengthSq() === 0 ) {
// up and z are parallel
if ( Math.abs( up.z ) === 1 ) {
z.x += 0.0001;
} else {
z.z += 0.0001;
}
z.normalize();
x.crossVectors( up, z );
}
x.normalize();
y.crossVectors( z, x );
te[ 0 ] = x.x; te[ 4 ] = y.x; te[ 8 ] = z.x;
te[ 1 ] = x.y; te[ 5 ] = y.y; te[ 9 ] = z.y;
te[ 2 ] = x.z; te[ 6 ] = y.z; te[ 10 ] = z.z;
return this;
};
}(),
multiply: function ( m, n ) {
if ( n !== undefined ) {
console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' );
return this.multiplyMatrices( m, n );
}
return this.multiplyMatrices( this, m );
},
premultiply: function ( m ) {
return this.multiplyMatrices( m, this );
},
multiplyMatrices: function ( a, b ) {
var ae = a.elements;
var be = b.elements;
var te = this.elements;
var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];
var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];
te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
return this;
},
multiplyScalar: function ( s ) {
var te = this.elements;
te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;
return this;
},
applyToBufferAttribute: function () {
var v1 = new Vector3();
return function applyToBufferAttribute( attribute ) {
for ( var i = 0, l = attribute.count; i < l; i ++ ) {
v1.x = attribute.getX( i );
v1.y = attribute.getY( i );
v1.z = attribute.getZ( i );
v1.applyMatrix4( this );
attribute.setXYZ( i, v1.x, v1.y, v1.z );
}
return attribute;
};
}(),
determinant: function () {
var te = this.elements;
var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];
//TODO: make this more efficient
//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
return (
n41 * (
+ n14 * n23 * n32
- n13 * n24 * n32
- n14 * n22 * n33
+ n12 * n24 * n33
+ n13 * n22 * n34
- n12 * n23 * n34
) +
n42 * (
+ n11 * n23 * n34
- n11 * n24 * n33
+ n14 * n21 * n33
- n13 * n21 * n34
+ n13 * n24 * n31
- n14 * n23 * n31
) +
n43 * (
+ n11 * n24 * n32
- n11 * n22 * n34
- n14 * n21 * n32
+ n12 * n21 * n34
+ n14 * n22 * n31
- n12 * n24 * n31
) +
n44 * (
- n13 * n22 * n31
- n11 * n23 * n32
+ n11 * n22 * n33
+ n13 * n21 * n32
- n12 * n21 * n33
+ n12 * n23 * n31
)
);
},
transpose: function () {
var te = this.elements;
var tmp;
tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;
tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;
return this;
},
setPosition: function ( v ) {
var te = this.elements;
te[ 12 ] = v.x;
te[ 13 ] = v.y;
te[ 14 ] = v.z;
return this;
},
getInverse: function ( m, throwOnDegenerate ) {
// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
var te = this.elements,
me = m.elements,
n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ],
n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ],
n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ],
n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ],
t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
if ( det === 0 ) {
var msg = "THREE.Matrix4.getInverse(): can't invert matrix, determinant is 0";
if ( throwOnDegenerate === true ) {
throw new Error( msg );
} else {
console.warn( msg );
}
return this.identity();
}
var detInv = 1 / det;
te[ 0 ] = t11 * detInv;
te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv;
te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv;
te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv;
te[ 4 ] = t12 * detInv;
te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv;
te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv;
te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv;
te[ 8 ] = t13 * detInv;
te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv;
te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv;
te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv;
te[ 12 ] = t14 * detInv;
te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv;
te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv;
te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv;
return this;
},
scale: function ( v ) {
var te = this.elements;
var x = v.x, y = v.y, z = v.z;
te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;
return this;
},
getMaxScaleOnAxis: function () {
var te = this.elements;
var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];
var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];
return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );
},
makeTranslation: function ( x, y, z ) {
this.set(
1, 0, 0, x,
0, 1, 0, y,
0, 0, 1, z,
0, 0, 0, 1
);
return this;
},
makeRotationX: function ( theta ) {
var c = Math.cos( theta ), s = Math.sin( theta );
this.set(
1, 0, 0, 0,
0, c, - s, 0,
0, s, c, 0,
0, 0, 0, 1
);
return this;
},
makeRotationY: function ( theta ) {
var c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, 0, s, 0,
0, 1, 0, 0,
- s, 0, c, 0,
0, 0, 0, 1
);
return this;
},
makeRotationZ: function ( theta ) {
var c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, - s, 0, 0,
s, c, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
},
makeRotationAxis: function ( axis, angle ) {
// Based on http://www.gamedev.net/reference/articles/article1199.asp
var c = Math.cos( angle );
var s = Math.sin( angle );
var t = 1 - c;
var x = axis.x, y = axis.y, z = axis.z;
var tx = t * x, ty = t * y;
this.set(
tx * x + c, tx * y - s * z, tx * z + s * y, 0,
tx * y + s * z, ty * y + c, ty * z - s * x, 0,
tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
0, 0, 0, 1
);
return this;
},
makeScale: function ( x, y, z ) {
this.set(
x, 0, 0, 0,
0, y, 0, 0,
0, 0, z, 0,
0, 0, 0, 1
);
return this;
},
makeShear: function ( x, y, z ) {
this.set(
1, y, z, 0,
x, 1, z, 0,
x, y, 1, 0,
0, 0, 0, 1
);
return this;
},
compose: function ( position, quaternion, scale ) {
this.makeRotationFromQuaternion( quaternion );
this.scale( scale );
this.setPosition( position );
return this;
},
decompose: function () {
var vector = new Vector3();
var matrix = new Matrix4();
return function decompose( position, quaternion, scale ) {
var te = this.elements;
var sx = vector.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();
var sy = vector.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();
var sz = vector.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();
// if determine is negative, we need to invert one scale
var det = this.determinant();
if ( det < 0 ) sx = - sx;
position.x = te[ 12 ];
position.y = te[ 13 ];
position.z = te[ 14 ];
// scale the rotation part
matrix.copy( this );
var invSX = 1 / sx;
var invSY = 1 / sy;
var invSZ = 1 / sz;
matrix.elements[ 0 ] *= invSX;
matrix.elements[ 1 ] *= invSX;
matrix.elements[ 2 ] *= invSX;
matrix.elements[ 4 ] *= invSY;
matrix.elements[ 5 ] *= invSY;
matrix.elements[ 6 ] *= invSY;
matrix.elements[ 8 ] *= invSZ;
matrix.elements[ 9 ] *= invSZ;
matrix.elements[ 10 ] *= invSZ;
quaternion.setFromRotationMatrix( matrix );
scale.x = sx;
scale.y = sy;
scale.z = sz;
return this;
};
}(),
makePerspective: function ( left, right, top, bottom, near, far ) {
if ( far === undefined ) {
console.warn( 'THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.' );
}
var te = this.elements;
var x = 2 * near / ( right - left );
var y = 2 * near / ( top - bottom );
var a = ( right + left ) / ( right - left );
var b = ( top + bottom ) / ( top - bottom );
var c = - ( far + near ) / ( far - near );
var d = - 2 * far * near / ( far - near );
te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0;
te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0;
te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d;
te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0;
return this;
},
makeOrthographic: function ( left, right, top, bottom, near, far ) {
var te = this.elements;
var w = 1.0 / ( right - left );
var h = 1.0 / ( top - bottom );
var p = 1.0 / ( far - near );
var x = ( right + left ) * w;
var y = ( top + bottom ) * h;
var z = ( far + near ) * p;
te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x;
te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y;
te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 * p; te[ 14 ] = - z;
te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1;
return this;
},
equals: function ( matrix ) {
var te = this.elements;
var me = matrix.elements;
for ( var i = 0; i < 16; i ++ ) {
if ( te[ i ] !== me[ i ] ) return false;
}
return true;
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
for ( var i = 0; i < 16; i ++ ) {
this.elements[ i ] = array[ i + offset ];
}
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
var te = this.elements;
array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ];
array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ];
array[ offset + 8 ] = te[ 8 ];
array[ offset + 9 ] = te[ 9 ];
array[ offset + 10 ] = te[ 10 ];
array[ offset + 11 ] = te[ 11 ];
array[ offset + 12 ] = te[ 12 ];
array[ offset + 13 ] = te[ 13 ];
array[ offset + 14 ] = te[ 14 ];
array[ offset + 15 ] = te[ 15 ];
return array;
}
} );
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author WestLangley / http://github.com/WestLangley
* @author bhouston / http://clara.io
*/
function Quaternion( x, y, z, w ) {
this._x = x || 0;
this._y = y || 0;
this._z = z || 0;
this._w = ( w !== undefined ) ? w : 1;
}
Object.assign( Quaternion, {
slerp: function ( qa, qb, qm, t ) {
return qm.copy( qa ).slerp( qb, t );
},
slerpFlat: function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) {
// fuzz-free, array-based Quaternion SLERP operation
var x0 = src0[ srcOffset0 + 0 ],
y0 = src0[ srcOffset0 + 1 ],
z0 = src0[ srcOffset0 + 2 ],
w0 = src0[ srcOffset0 + 3 ],
x1 = src1[ srcOffset1 + 0 ],
y1 = src1[ srcOffset1 + 1 ],
z1 = src1[ srcOffset1 + 2 ],
w1 = src1[ srcOffset1 + 3 ];
if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) {
var s = 1 - t,
cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
dir = ( cos >= 0 ? 1 : - 1 ),
sqrSin = 1 - cos * cos;
// Skip the Slerp for tiny steps to avoid numeric problems:
if ( sqrSin > Number.EPSILON ) {
var sin = Math.sqrt( sqrSin ),
len = Math.atan2( sin, cos * dir );
s = Math.sin( s * len ) / sin;
t = Math.sin( t * len ) / sin;
}
var tDir = t * dir;
x0 = x0 * s + x1 * tDir;
y0 = y0 * s + y1 * tDir;
z0 = z0 * s + z1 * tDir;
w0 = w0 * s + w1 * tDir;
// Normalize in case we just did a lerp:
if ( s === 1 - t ) {
var f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 );
x0 *= f;
y0 *= f;
z0 *= f;
w0 *= f;
}
}
dst[ dstOffset ] = x0;
dst[ dstOffset + 1 ] = y0;
dst[ dstOffset + 2 ] = z0;
dst[ dstOffset + 3 ] = w0;
}
} );
Object.defineProperties( Quaternion.prototype, {
x: {
get: function () {
return this._x;
},
set: function ( value ) {
this._x = value;
this.onChangeCallback();
}
},
y: {
get: function () {
return this._y;
},
set: function ( value ) {
this._y = value;
this.onChangeCallback();
}
},
z: {
get: function () {
return this._z;
},
set: function ( value ) {
this._z = value;
this.onChangeCallback();
}
},
w: {
get: function () {
return this._w;
},
set: function ( value ) {
this._w = value;
this.onChangeCallback();
}
}
} );
Object.assign( Quaternion.prototype, {
set: function ( x, y, z, w ) {
this._x = x;
this._y = y;
this._z = z;
this._w = w;
this.onChangeCallback();
return this;
},
clone: function () {
return new this.constructor( this._x, this._y, this._z, this._w );
},
copy: function ( quaternion ) {
this._x = quaternion.x;
this._y = quaternion.y;
this._z = quaternion.z;
this._w = quaternion.w;
this.onChangeCallback();
return this;
},
setFromEuler: function ( euler, update ) {
if ( ! ( euler && euler.isEuler ) ) {
throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' );
}
var x = euler._x, y = euler._y, z = euler._z, order = euler.order;
// http://www.mathworks.com/matlabcentral/fileexchange/
// 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
// content/SpinCalc.m
var cos = Math.cos;
var sin = Math.sin;
var c1 = cos( x / 2 );
var c2 = cos( y / 2 );
var c3 = cos( z / 2 );
var s1 = sin( x / 2 );
var s2 = sin( y / 2 );
var s3 = sin( z / 2 );
if ( order === 'XYZ' ) {
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
} else if ( order === 'YXZ' ) {
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
} else if ( order === 'ZXY' ) {
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
} else if ( order === 'ZYX' ) {
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
} else if ( order === 'YZX' ) {
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
} else if ( order === 'XZY' ) {
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
}
if ( update !== false ) this.onChangeCallback();
return this;
},
setFromAxisAngle: function ( axis, angle ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
// assumes axis is normalized
var halfAngle = angle / 2, s = Math.sin( halfAngle );
this._x = axis.x * s;
this._y = axis.y * s;
this._z = axis.z * s;
this._w = Math.cos( halfAngle );
this.onChangeCallback();
return this;
},
setFromRotationMatrix: function ( m ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
var te = m.elements,
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],
trace = m11 + m22 + m33,
s;
if ( trace > 0 ) {
s = 0.5 / Math.sqrt( trace + 1.0 );
this._w = 0.25 / s;
this._x = ( m32 - m23 ) * s;
this._y = ( m13 - m31 ) * s;
this._z = ( m21 - m12 ) * s;
} else if ( m11 > m22 && m11 > m33 ) {
s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );
this._w = ( m32 - m23 ) / s;
this._x = 0.25 * s;
this._y = ( m12 + m21 ) / s;
this._z = ( m13 + m31 ) / s;
} else if ( m22 > m33 ) {
s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );
this._w = ( m13 - m31 ) / s;
this._x = ( m12 + m21 ) / s;
this._y = 0.25 * s;
this._z = ( m23 + m32 ) / s;
} else {
s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );
this._w = ( m21 - m12 ) / s;
this._x = ( m13 + m31 ) / s;
this._y = ( m23 + m32 ) / s;
this._z = 0.25 * s;
}
this.onChangeCallback();
return this;
},
setFromUnitVectors: function () {
// assumes direction vectors vFrom and vTo are normalized
var v1 = new Vector3();
var r;
var EPS = 0.000001;
return function setFromUnitVectors( vFrom, vTo ) {
if ( v1 === undefined ) v1 = new Vector3();
r = vFrom.dot( vTo ) + 1;
if ( r < EPS ) {
r = 0;
if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) {
v1.set( - vFrom.y, vFrom.x, 0 );
} else {
v1.set( 0, - vFrom.z, vFrom.y );
}
} else {
v1.crossVectors( vFrom, vTo );
}
this._x = v1.x;
this._y = v1.y;
this._z = v1.z;
this._w = r;
return this.normalize();
};
}(),
inverse: function () {
return this.conjugate().normalize();
},
conjugate: function () {
this._x *= - 1;
this._y *= - 1;
this._z *= - 1;
this.onChangeCallback();
return this;
},
dot: function ( v ) {
return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
},
lengthSq: function () {
return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
},
length: function () {
return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w );
},
normalize: function () {
var l = this.length();
if ( l === 0 ) {
this._x = 0;
this._y = 0;
this._z = 0;
this._w = 1;
} else {
l = 1 / l;
this._x = this._x * l;
this._y = this._y * l;
this._z = this._z * l;
this._w = this._w * l;
}
this.onChangeCallback();
return this;
},
multiply: function ( q, p ) {
if ( p !== undefined ) {
console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' );
return this.multiplyQuaternions( q, p );
}
return this.multiplyQuaternions( this, q );
},
premultiply: function ( q ) {
return this.multiplyQuaternions( q, this );
},
multiplyQuaternions: function ( a, b ) {
// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;
this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
this.onChangeCallback();
return this;
},
slerp: function ( qb, t ) {
if ( t === 0 ) return this;
if ( t === 1 ) return this.copy( qb );
var x = this._x, y = this._y, z = this._z, w = this._w;
// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
if ( cosHalfTheta < 0 ) {
this._w = - qb._w;
this._x = - qb._x;
this._y = - qb._y;
this._z = - qb._z;
cosHalfTheta = - cosHalfTheta;
} else {
this.copy( qb );
}
if ( cosHalfTheta >= 1.0 ) {
this._w = w;
this._x = x;
this._y = y;
this._z = z;
return this;
}
var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta );
if ( Math.abs( sinHalfTheta ) < 0.001 ) {
this._w = 0.5 * ( w + this._w );
this._x = 0.5 * ( x + this._x );
this._y = 0.5 * ( y + this._y );
this._z = 0.5 * ( z + this._z );
return this;
}
var halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta );
var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;
this._w = ( w * ratioA + this._w * ratioB );
this._x = ( x * ratioA + this._x * ratioB );
this._y = ( y * ratioA + this._y * ratioB );
this._z = ( z * ratioA + this._z * ratioB );
this.onChangeCallback();
return this;
},
equals: function ( quaternion ) {
return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this._x = array[ offset ];
this._y = array[ offset + 1 ];
this._z = array[ offset + 2 ];
this._w = array[ offset + 3 ];
this.onChangeCallback();
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this._x;
array[ offset + 1 ] = this._y;
array[ offset + 2 ] = this._z;
array[ offset + 3 ] = this._w;
return array;
},
onChange: function ( callback ) {
this.onChangeCallback = callback;
return this;
},
onChangeCallback: function () {}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author kile / http://kile.stravaganza.org/
* @author philogb / http://blog.thejit.org/
* @author mikael emtinger / http://gomo.se/
* @author egraether / http://egraether.com/
* @author WestLangley / http://github.com/WestLangley
*/
function Vector3( x, y, z ) {
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
}
Object.assign( Vector3.prototype, {
isVector3: true,
set: function ( x, y, z ) {
this.x = x;
this.y = y;
this.z = z;
return this;
},
setScalar: function ( scalar ) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
return this;
},
setX: function ( x ) {
this.x = x;
return this;
},
setY: function ( y ) {
this.y = y;
return this;
},
setZ: function ( z ) {
this.z = z;
return this;
},
setComponent: function ( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
},
getComponent: function ( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
default: throw new Error( 'index is out of range: ' + index );
}
},
clone: function () {
return new this.constructor( this.x, this.y, this.z );
},
copy: function ( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
return this;
},
add: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
return this.addVectors( v, w );
}
this.x += v.x;
this.y += v.y;
this.z += v.z;
return this;
},
addScalar: function ( s ) {
this.x += s;
this.y += s;
this.z += s;
return this;
},
addVectors: function ( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
return this;
},
addScaledVector: function ( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
return this;
},
sub: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
return this.subVectors( v, w );
}
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
return this;
},
subScalar: function ( s ) {
this.x -= s;
this.y -= s;
this.z -= s;
return this;
},
subVectors: function ( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
return this;
},
multiply: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' );
return this.multiplyVectors( v, w );
}
this.x *= v.x;
this.y *= v.y;
this.z *= v.z;
return this;
},
multiplyScalar: function ( scalar ) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
return this;
},
multiplyVectors: function ( a, b ) {
this.x = a.x * b.x;
this.y = a.y * b.y;
this.z = a.z * b.z;
return this;
},
applyEuler: function () {
var quaternion = new Quaternion();
return function applyEuler( euler ) {
if ( ! ( euler && euler.isEuler ) ) {
console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' );
}
return this.applyQuaternion( quaternion.setFromEuler( euler ) );
};
}(),
applyAxisAngle: function () {
var quaternion = new Quaternion();
return function applyAxisAngle( axis, angle ) {
return this.applyQuaternion( quaternion.setFromAxisAngle( axis, angle ) );
};
}(),
applyMatrix3: function ( m ) {
var x = this.x, y = this.y, z = this.z;
var e = m.elements;
this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z;
this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z;
this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z;
return this;
},
applyMatrix4: function ( m ) {
var x = this.x, y = this.y, z = this.z;
var e = m.elements;
var w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] );
this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w;
this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w;
this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w;
return this;
},
applyQuaternion: function ( q ) {
var x = this.x, y = this.y, z = this.z;
var qx = q.x, qy = q.y, qz = q.z, qw = q.w;
// calculate quat * vector
var ix = qw * x + qy * z - qz * y;
var iy = qw * y + qz * x - qx * z;
var iz = qw * z + qx * y - qy * x;
var iw = - qx * x - qy * y - qz * z;
// calculate result * inverse quat
this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy;
this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz;
this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx;
return this;
},
project: function () {
var matrix = new Matrix4();
return function project( camera ) {
matrix.multiplyMatrices( camera.projectionMatrix, matrix.getInverse( camera.matrixWorld ) );
return this.applyMatrix4( matrix );
};
}(),
unproject: function () {
var matrix = new Matrix4();
return function unproject( camera ) {
matrix.multiplyMatrices( camera.matrixWorld, matrix.getInverse( camera.projectionMatrix ) );
return this.applyMatrix4( matrix );
};
}(),
transformDirection: function ( m ) {
// input: THREE.Matrix4 affine matrix
// vector interpreted as a direction
var x = this.x, y = this.y, z = this.z;
var e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
return this.normalize();
},
divide: function ( v ) {
this.x /= v.x;
this.y /= v.y;
this.z /= v.z;
return this;
},
divideScalar: function ( scalar ) {
return this.multiplyScalar( 1 / scalar );
},
min: function ( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
this.z = Math.min( this.z, v.z );
return this;
},
max: function ( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
this.z = Math.max( this.z, v.z );
return this;
},
clamp: function ( min, max ) {
// assumes min < max, componentwise
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
this.z = Math.max( min.z, Math.min( max.z, this.z ) );
return this;
},
clampScalar: function () {
var min = new Vector3();
var max = new Vector3();
return function clampScalar( minVal, maxVal ) {
min.set( minVal, minVal, minVal );
max.set( maxVal, maxVal, maxVal );
return this.clamp( min, max );
};
}(),
clampLength: function ( min, max ) {
var length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
},
floor: function () {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
this.z = Math.floor( this.z );
return this;
},
ceil: function () {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
this.z = Math.ceil( this.z );
return this;
},
round: function () {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
this.z = Math.round( this.z );
return this;
},
roundToZero: function () {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
return this;
},
negate: function () {
this.x = - this.x;
this.y = - this.y;
this.z = - this.z;
return this;
},
dot: function ( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z;
},
// TODO lengthSquared?
lengthSq: function () {
return this.x * this.x + this.y * this.y + this.z * this.z;
},
length: function () {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );
},
lengthManhattan: function () {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );
},
normalize: function () {
return this.divideScalar( this.length() || 1 );
},
setLength: function ( length ) {
return this.normalize().multiplyScalar( length );
},
lerp: function ( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
return this;
},
lerpVectors: function ( v1, v2, alpha ) {
return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
},
cross: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' );
return this.crossVectors( v, w );
}
var x = this.x, y = this.y, z = this.z;
this.x = y * v.z - z * v.y;
this.y = z * v.x - x * v.z;
this.z = x * v.y - y * v.x;
return this;
},
crossVectors: function ( a, b ) {
var ax = a.x, ay = a.y, az = a.z;
var bx = b.x, by = b.y, bz = b.z;
this.x = ay * bz - az * by;
this.y = az * bx - ax * bz;
this.z = ax * by - ay * bx;
return this;
},
projectOnVector: function ( vector ) {
var scalar = vector.dot( this ) / vector.lengthSq();
return this.copy( vector ).multiplyScalar( scalar );
},
projectOnPlane: function () {
var v1 = new Vector3();
return function projectOnPlane( planeNormal ) {
v1.copy( this ).projectOnVector( planeNormal );
return this.sub( v1 );
};
}(),
reflect: function () {
// reflect incident vector off plane orthogonal to normal
// normal is assumed to have unit length
var v1 = new Vector3();
return function reflect( normal ) {
return this.sub( v1.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) );
};
}(),
angleTo: function ( v ) {
var theta = this.dot( v ) / ( Math.sqrt( this.lengthSq() * v.lengthSq() ) );
// clamp, to handle numerical problems
return Math.acos( _Math.clamp( theta, - 1, 1 ) );
},
distanceTo: function ( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
},
distanceToSquared: function ( v ) {
var dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z;
return dx * dx + dy * dy + dz * dz;
},
distanceToManhattan: function ( v ) {
return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z );
},
setFromSpherical: function ( s ) {
var sinPhiRadius = Math.sin( s.phi ) * s.radius;
this.x = sinPhiRadius * Math.sin( s.theta );
this.y = Math.cos( s.phi ) * s.radius;
this.z = sinPhiRadius * Math.cos( s.theta );
return this;
},
setFromCylindrical: function ( c ) {
this.x = c.radius * Math.sin( c.theta );
this.y = c.y;
this.z = c.radius * Math.cos( c.theta );
return this;
},
setFromMatrixPosition: function ( m ) {
var e = m.elements;
this.x = e[ 12 ];
this.y = e[ 13 ];
this.z = e[ 14 ];
return this;
},
setFromMatrixScale: function ( m ) {
var sx = this.setFromMatrixColumn( m, 0 ).length();
var sy = this.setFromMatrixColumn( m, 1 ).length();
var sz = this.setFromMatrixColumn( m, 2 ).length();
this.x = sx;
this.y = sy;
this.z = sz;
return this;
},
setFromMatrixColumn: function ( m, index ) {
return this.fromArray( m.elements, index * 4 );
},
equals: function ( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.x = array[ offset ];
this.y = array[ offset + 1 ];
this.z = array[ offset + 2 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
array[ offset + 2 ] = this.z;
return array;
},
fromBufferAttribute: function ( attribute, index, offset ) {
if ( offset !== undefined ) {
console.warn( 'THREE.Vector3: offset has been removed from .fromBufferAttribute().' );
}
this.x = attribute.getX( index );
this.y = attribute.getY( index );
this.z = attribute.getZ( index );
return this;
}
} );
// preset camera views
// mouse selection operation mode
// shading types
// layer tags for scene objects
var LEG_CAVE = 1;
var LEG_SPLAY = 2;
var LEG_SURFACE = 3;
// flags in legs exported by Cave models
var STATION_NORMAL = 0;
var STATION_ENTRANCE = 1;
// EOF
function Tree( name, id, root, parent ) { // root parameter only used internally
if ( root === undefined ) {
this.id = 0;
this.maxId = 0;
this.root = this;
this.parent = null;
} else {
this.root = root;
this.parent = parent;
this.id = ( id === null ) ? ++root.maxId : id;
}
this.name = name || '';
this.children = [];
}
Tree.prototype.constructor = Tree;
Tree.prototype.traverse = function ( func ) {
var children = this.children;
func ( this );
for ( var i = 0; i < children.length; i++ ) {
children[ i ].traverse( func );
}
};
Tree.prototype.traverseDepthFirst = function ( func ) {
var children = this.children;
for ( var i = 0; i < children.length; i++ ) {
children[ i ].traverseDepthFirst( func );
}
func ( this );
};
Tree.prototype.forEachChild = function ( func, recurse ) {
var children = this.children;
var child;
for ( var i = 0; i < children.length; i++ ) {
child = children[ i ];
func( child );
if ( recurse === true ) child.forEachChild( func, true );
}
};
Tree.prototype.addById = function ( name, id, parentId, properties ) {
var parentNode = this.findById( parentId );
if ( parentNode ) {
var node = new Tree( name, id, this.root, parentNode );
if ( properties !== undefined ) Object.assign( node, properties );
parentNode.children.push( node );
var root = this.root;
root.maxId = Math.max( root.maxId, id );
return node.id;
}
return null;
};
Tree.prototype.findById = function ( id ) {
if ( this.id == id ) return this;
for ( var i = 0, l = this.children.length; i < l; i++ ) {
var child = this.children[ i ];
var found = child.findById( id );
if ( found ) return found;
}
return undefined;
};
Tree.prototype.getByPath = function ( path ) {
var pathArray = path.split( '.' );
var node = this.getByPathArray( pathArray );
return pathArray.length === 0 ? node : undefined;
};
Tree.prototype.getByPathArray = function ( path ) {
var node = this;
var search = true;
while ( search && path.length > 0 ) {
search = false;
for ( var i = 0, l = node.children.length; i < l; i++ ) {
var child = node.children[ i ];
if ( child.name === path[ 0 ] ) {
node = child;
path.shift();
search = true;
break;
}
}
}
return node;
};
Tree.prototype.addPath = function ( path, properties ) {
var node;
var newNode;
// find part of path that exists already
node = this.getByPathArray( path );
if ( path.length === 0 ) return node.id;
// add remainder of path to node
while ( path.length > 0 ) {
newNode = new Tree( path.shift(), null, this.root, node );
node.children.push( newNode );
node = newNode;
}
if ( properties !== undefined ) Object.assign( node, properties );
return node.id;
};
Tree.prototype.getPath = function ( endNode ) {
var node = this;
var path = [];
if ( endNode === undefined ) endNode = this.root;
do {
path.push( node.name );
node = node.parent;
} while ( node !== endNode );
return path.reverse().join( '.' );
};
Tree.prototype.getSubtreeIds = function ( id, idSet ) {
var node = this.findById( id );
node.traverse( _getId );
function _getId( node ) {
idSet.add( node.id );
}
};
Tree.prototype.getIdByPath = function ( path ) {
var node = this.getByPathArray( path );
if ( path.length === 0 ) {
return node.id;
} else {
return undefined;
}
};
// EOF
// Survex 3d file handler
function Svx3dHandler ( fileName, dataStream, metadata ) {
this.fileName = fileName;
this.groups = [];
this.surface = [];
this.xGroups = [];
this.surveyTree = new Tree();
this.isRegion = false;
this.sourceCRS = null;
this.targetCRS = 'EPSG:3857'; // "web mercator"
this.projection = null;
this.metadata = metadata;
var source = dataStream; // file data as arrrayBuffer
var pos = 0; // file position
// read file header
readLF(); // Survex 3D Image File
var version = readLF(); // 3d version
var auxInfo = readNSLF();
readLF(); // Date
console.log( 'title: ', auxInfo[ 0 ] );
var sourceCRS = ( auxInfo[ 1 ] === undefined ) ? null : auxInfo[ 1 ]; // coordinate reference system ( proj4 format )
if ( sourceCRS !== null ) {
// work around lack of +init string support in proj4js
var matches = sourceCRS.match( /\+init=(.*)\s/);
if ( matches && matches.length === 2 ) {
switch( matches[ 1 ] ) {
case 'epsg:27700' :
sourceCRS = '+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000 +ellps=airy +datum=OSGB36 +units=m +no_defs';
break;
default:
sourceCRS = null;
console.warn( 'unsupported projection' );
}
}
}
// FIXME use NAD grid corrections OSTM15 etc ( UK Centric )
if ( sourceCRS !== null ) {
console.log( 'Reprojecting from', sourceCRS, 'to', this.targetCRS );
this.sourceCRS = sourceCRS;
this.projection = proj4( this.sourceCRS, this.targetCRS ); // eslint-disable-line no-undef
}
this.handleVx( source, pos, Number( version.charAt( 1 ) ) );
return;
function readLF () { // read until Line feed
return readNSLF()[ 0 ];
}
function readNSLF () { // read until Line feed and split by null bytes
var bytes = new Uint8Array( source, 0 );
var lfString = [];
var b;
var strings = [];
do {
b = bytes[ pos++ ];
if ( b === 0x0a || b === 0 ) {
strings.push( String.fromCharCode.apply( null, lfString ).trim() );
lfString = [];
} else {
lfString.push( b );
}
} while ( b != 0x0a );
return strings;
}
}
Svx3dHandler.prototype.constructor = Svx3dHandler;
Svx3dHandler.prototype.handleVx = function ( source, pos, version ) {
var groups = this.groups;
var xGroups = this.xGroups;
var surveyTree = this.surveyTree;
var self = this;
var cmd = [];
var legs = [];
var label = '';
var stations = new Map();
var lineEnds = new Set(); // implied line ends to fixnup xsects
var xSects = [];
var sectionId = 0;
var data = new Uint8Array( source, 0 );
var dataLength = data.length;
var lastPosition = { x: 0, y:0, z: 0 }; // value to allow approach vector for xsect coord frame
var i;
// functions
var readLabel;
// selected correct read coordinates function
var readCoordinates = ( this.projection === null ) ? __readCoordinates : __readCoordinatesProjected;
// range
var min = { x: Infinity, y: Infinity, z: Infinity };
var max = { x: -Infinity, y: -Infinity, z: -Infinity };
// init cmd handler table withh error handler for unsupported records or invalid records
function _errorHandler ( e ) { console.log ('unhandled command: ', e.toString( 16 ) ); return false; }
for ( i = 0; i < 256; i++ ) {
cmd[ i ] = _errorHandler;
}
if ( version === 8 ) {
// v8 dispatch table start
cmd[ 0x00 ] = cmd_STYLE;
cmd[ 0x01 ] = cmd_STYLE;
cmd[ 0x02 ] = cmd_STYLE;
cmd[ 0x03 ] = cmd_STYLE;
cmd[ 0x04 ] = cmd_STYLE;
cmd[ 0x0f ] = cmd_MOVE;
cmd[ 0x10 ] = cmd_DATE_NODATE;
cmd[ 0x11 ] = cmd_DATEV8_1;
cmd[ 0x12 ] = cmd_DATEV8_2;
cmd[ 0x13 ] = cmd_DATEV8_3;
cmd[ 0x1F ] = cmd_ERROR;
cmd[ 0x30 ] = cmd_XSECT16;
cmd[ 0x31 ] = cmd_XSECT16;
cmd[ 0x32 ] = cmd_XSECT32;
cmd[ 0x33 ] = cmd_XSECT32;
for ( i = 0x40; i < 0x80; i++ ) {
cmd[ i ] = cmd_LINE;
}
for ( i = 0x80; i < 0x100; i++ ) {
cmd[ i ] = cmd_LABEL;
}
// dispatch table end
readLabel = readLabelV8;
// skip v8 file wide flags after header
pos++;
} else {
// dispatch table for v7 format
for ( i = 0x01; i < 0x0f; i++ ) {
cmd[ i ] = cmd_TRIM_PLUS;
}
cmd[ 0x0f ] = cmd_MOVE;
for ( i = 0x10; i < 0x20; i++ ) {
cmd[ i ] = cmd_TRIM;
}
cmd[ 0x00 ] = cmd_STOP;
cmd[ 0x20 ] = cmd_DATE_V7;
cmd[ 0x21 ] = cmd_DATE2_V7;
cmd[ 0x23 ] = cmd_DATE3_V7;
cmd[ 0x24 ] = cmd_DATE_NODATE;
cmd[ 0x22 ] = cmd_ERROR;
cmd[ 0x30 ] = cmd_XSECT16;
cmd[ 0x31 ] = cmd_XSECT16;
cmd[ 0x32 ] = cmd_XSECT32;
cmd[ 0x33 ] = cmd_XSECT32;
for ( i = 0x40; i < 0x80; i++ ) {
cmd[ i ] = cmd_LABEL;
}
for ( i = 0x80; i < 0xc0; i++ ) {
cmd[ i ] = cmd_LINE;
}
// dispatch table end
readLabel = readLabelV7;
}
if ( version === 6 ) {
cmd[ 0x20 ] = cmd_DATE_V4;
cmd[ 0x21 ] = cmd_DATE2_V4;
}
// common record iterator
// loop though data, handling record types as required.
while ( pos < dataLength ) {
if ( ! cmd[ data[ pos ] ]( data[ pos++ ] ) ) break;
}
if ( xSects.length > 1 ) {
xGroups.push( xSects );
}
groups.push( legs );
var offsets = {
x: ( min.x + max.x ) / 2,
y: ( min.y + max.y ) / 2,
z: ( min.z + max.z ) / 2
};
surveyTree.traverse( adjustCoords );
this.offsets = offsets;
this.limits = {
min: min,
max: max
};
return;
function adjustCoords( node ) {
var coords = node.p;
if ( coords === undefined ) return;
coords.x -= offsets.x;
coords.y -= offsets.y;
coords.z -= offsets.z;
}
function readLabelV7 () {
// find length of label and read label = v3 - v7 .3d format
var len = 0;
var l;
switch ( data[ pos ] ) {
case 0xfe:
l = new DataView( source, pos );
len = l.getUint16( 0, true ) + data[ pos ];
pos += 2;
break;
case 0xff:
l = new DataView( source, pos );
len = l.getUint32( 0, true );
pos += 4;
break;
default:
len = data[ pos++ ];
}
if ( len === 0 ) return false; // no label
var db = [];
for ( var i = 0; i < len; i++ ) {
db.push( data[ pos++ ] );
}
label += String.fromCharCode.apply( null, db );
return true;
}
function readLabelV8 ( flags ) {
if ( flags & 0x20 ) return false; // no label change
var b = data[ pos++ ];
var add = 0;
var del = 0;
var l;
if ( b !== 0 ) {
// handle 4b= bit del/add codes
del = b >> 4; // left most 4 bits
add = b & 0x0f; // right most 4 bits
} else {
// handle 8 bit and 32 bit del/add codes
b = data[ pos++ ];
if ( b !== 0xff ) {
del = b;
} else {
l = new DataView( source, pos );
del = l.getUint32( 0, true );
pos += 4;
}
b = data[ pos++ ];
if ( b !== 0xff ) {
add = b;
} else {
l = new DataView( source, pos );
add = l.getUint32( 0, true );
pos += 4;
}
}
if ( add === 0 && del === 0 ) return;
if ( del ) label = label.slice( 0, -del );
if ( add ) {
var db = [];
for ( var i = 0; i < add; i++ ) {
db.push( data[ pos++ ] );
}
label += String.fromCharCode.apply( null, db );
}
return true;
}
function cmd_STOP ( /* c */ ) {
if ( label ) label = '';
return true;
}
function cmd_TRIM_PLUS ( c ) { // v7 and previous
label = label.slice( 0, -16 );
if ( label.charAt( label.length - 1 ) === '.') label = label.slice( 0, -1 ); // strip trailing '.'
var parts = label.split( '.' );
parts.splice( -( c ) );
label = parts.join( '.' );
if ( label ) label += '.';
return true;
}
function cmd_TRIM ( c ) { // v7 and previous
var trim = c - 15;
label = label.slice( 0, -trim );
return true;
}
function cmd_DATE_V4 ( /* c */ ) {
pos += 4;
return true;
}
function cmd_DATE_V7 ( /* c */ ) {
pos += 2;
return true;
}
function cmd_DATE3_V7 ( /* c */ ) {
pos += 4;
return true;
}
function cmd_DATE2_V4 ( /* c */ ) {
pos += 8;
return true;
}
function cmd_DATE2_V7 ( /* c */ ) {
pos += 3;
return true;
}
function cmd_STYLE ( /* c */ ) {
return true;
}
function cmd_DATEV8_1 ( /* c */ ) {
pos += 2;
return true;
}
function cmd_DATEV8_2 ( /* c */ ) {
pos += 3;
return true;
}
function cmd_DATEV8_3 ( /* c */ ) {
pos += 4;
return true;
}
function cmd_DATE_NODATE ( /* c */ ) {
return true;
}
function cmd_LINE ( c ) {
var flags = c & 0x3f;
if ( readLabel( flags ) ) {
// we have a new section name, add it to the survey tree
sectionId = surveyTree.addPath( label.split( '.' ) );
}
var coords = readCoordinates();
if ( flags & 0x01 ) {
legs.push( { coords: coords, type: LEG_SURFACE, survey: sectionId } );
} else if ( flags & 0x04 ) {
legs.push( { coords: coords, type: LEG_SPLAY, survey: sectionId } );
} else {
legs.push( { coords: coords, type: LEG_CAVE, survey: sectionId } );
}
lastPosition = coords;
return true;
}
function cmd_MOVE ( /* c */ ) {
// new set of line segments
if ( legs.length > 1 ) groups.push( legs );
legs = [];
// heuristic to detect line ends. lastPosition was presumably set in a line sequence therefore is at the end
// of a line, Add the current label, presumably specified in the last LINE, to a Set of lineEnds.
lineEnds.add( lastPosition.x + ':' + lastPosition.y + ':' + lastPosition.z );
var coords = readCoordinates();
legs.push( { coords: coords } );
lastPosition = coords;
return true;
}
function cmd_ERROR ( /* c */ ) {
//var l = new DataView(source, pos);
//console.log('legs : ', l.getInt32(0, true));
//console.log('length : ', l.getInt32(4, true));
//console.log('E : ', l.getInt32(8, true));
//console.log('H : ', l.getInt32(12, true));
//console.log('V : ', l.getInt32(16, true));
pos += 20;
return true;
}
function cmd_LABEL ( c ) {
var flags = c & 0x7f;
readLabel( 0 );
if ( ! ( flags & 0x0E ) || flags & 0x20 ) { // skip surface only stations
pos += 12; //skip coordinates
return true;
}
var coords = readCoordinates();
var path = label.split( '.' );
stations.set( label, coords );
surveyTree.addPath( path, { p: coords, type: ( flags & 0x04 ) ? STATION_ENTRANCE : STATION_NORMAL } );
return true;
}
function cmd_XSECT16 ( c ) {
var flags = c & 0x01;
readLabel( flags );
var l = new DataView( source, pos );
pos += 8;
return commonXSECT(
flags,
{
l: l.getInt16( 0, true ) / 100,
r: l.getInt16( 2, true ) / 100,
u: l.getInt16( 4, true ) / 100,
d: l.getInt16( 6, true ) / 100
}
);
}
function cmd_XSECT32 ( c ) {
var flags = c & 0x01;
readLabel( flags );
var l = new DataView( source, pos );
pos += 16;
return commonXSECT(
flags,
{
l: l.getInt32( 0, true ) / 100,
r: l.getInt32( 0, true ) / 100,
u: l.getInt32( 0, true ) / 100,
d: l.getInt32( 0, true ) / 100
}
);
}
function commonXSECT ( flags, lrud ) {
var position = stations.get( label );
if ( ! position ) return;
var station = label.split( '.' );
// get survey path by removing last component of station name
station.pop();
var surveyId = surveyTree.getIdByPath( station );
// FIXME to get a approach vector for the first XSECT in a run so we can add it to the display
xSects.push( { start: lastPosition, end: position, lrud: lrud, survey: surveyId } );
lastPosition = position;
// some XSECTS are not flagged as last in passage
// heuristic - the last line position before a move is an implied line end.
// cmd_MOVE saves these in the set lineEnds.
// this fixes up surveys that display incorrectly withg 'fly-back' artefacts in Aven and Loch.
var endRun = false;
if ( flags ) {
endRun = true;
} else if ( lineEnds.has( [ position.x, position.y, position.z ].toString() ) ) {
endRun = true;
// console.log( 'unterminated LRUD passage at ', label );
}
if ( endRun ) {
if ( xSects.length > 0 ) xGroups.push( xSects );
lastPosition = { x: 0, y: 0, z: 0 };
xSects = [];
}
return true;
}
// functions aliased at runtime as required
function __readCoordinatesProjected () {
var l = new DataView( source, pos );
var projectedCoords = self.projection.forward( {
x: l.getInt32( 0, true ) / 100,
y: l.getInt32( 4, true ) / 100
} );
var coords = {
x: projectedCoords.x,
y: projectedCoords.y,
z: l.getInt32( 8, true ) / 100
};
min.x = Math.min( coords.x, min.x );
min.y = Math.min( coords.y, min.y );
min.z = Math.min( coords.z, min.z );
max.x = Math.max( coords.x, max.x );
max.y = Math.max( coords.y, max.y );
max.z = Math.max( coords.z, max.z );
pos += 12;
return coords;
}
function __readCoordinates () {
var l = new DataView( source, pos );
var coords = {
x: l.getInt32( 0, true ) / 100,
y: l.getInt32( 4, true ) / 100,
z: l.getInt32( 8, true ) / 100
};
min.x = Math.min( coords.x, min.x );
min.y = Math.min( coords.y, min.y );
min.z = Math.min( coords.z, min.z );
max.x = Math.max( coords.x, max.x );
max.y = Math.max( coords.y, max.y );
max.z = Math.max( coords.z, max.z );
pos += 12;
return coords;
}
};
Svx3dHandler.prototype.getLineSegments = function () {
var lineSegments = [];
var groups = this.groups;
var offsets = this.offsets;
for ( var i = 0, l = groups.length; i < l; i++ ) {
var g = groups[ i ];
for ( var v = 0, vMax = g.length - 1; v < vMax; v++ ) {
// create vertex pairs for each line segment.
// all vertices except first and last are duplicated.
var from = g[ v ];
var to = g[ v + 1 ];
// move coordinates around origin
from.coords.x -= offsets.x;
from.coords.y -= offsets.y;
from.coords.z -= offsets.z;
var fromCoords = from.coords;
var toCoords = to.coords;
// skip repeated points ( co-located stations )
if ( fromCoords.x === toCoords.x && fromCoords.y === toCoords.y && fromCoords.z === toCoords.z ) continue;
lineSegments.push( { from: fromCoords, to: toCoords, type: to.type, survey: to.survey } );
}
// move coordinates around origin
to.coords.x -= offsets.x;
to.coords.y -= offsets.y;
to.coords.z -= offsets.z;
}
return lineSegments;
};
Svx3dHandler.prototype.getTerrainDimensions = function () {
return { lines: 0, samples: 0 };
};
Svx3dHandler.prototype.getTerrainBitmap = function () {
return false;
};
Svx3dHandler.prototype.getSurvey = function () {
return {
title: this.fileName,
surveyTree: this.surveyTree,
sourceCRS: this.sourceCRS,
targetCRS: this.targetCRS,
limits: this.limits,
offsets: this.offsets,
lineSegments: this.getLineSegments(),
crossSections: this.xGroups,
scraps: [],
hasTerrain: false,
metadata: this.metadata
};
};
// EOF
function loxHandler ( fileName, dataStream, metadata ) {
this.fileName = fileName;
this.scraps = [];
this.faults = [];
this.lineSegments = [];
this.xGroups = [];
this.surveyTree = new Tree( '', 0 );
this.isRegion = false;
this.metadata = metadata;
this.terrain = {};
this.hasTerrain = false;
var lineSegments = [];
var stations = [];
var self = this;
var surveyTree = this.surveyTree;
// assumes little endian data ATM - FIXME
var source = dataStream;
var pos = 0; // file position
var dataStart;
var f = new DataView( source, 0 );
var l = source.byteLength;
var xGroup = [];
var lastTo;
// range
var min = { x: Infinity, y: Infinity, z: Infinity };
var max = { x: -Infinity, y: -Infinity, z: -Infinity };
while ( pos < l ) readChunkHdr();
this.lineSegments = lineSegments;
// Drop data to give GC a chance ASAP
source = null;
this.limits = {
min: min,
max: max
};
var offsets = {
x: ( min.x + max.x ) / 2,
y: ( min.y + max.y ) / 2,
z: ( min.z + max.z ) / 2
};
this.offsets = offsets;
// convert to origin centered coordinates
var i, j, coords, vertices;
for ( i = 0; i < stations.length; i++ ) {
coords = stations[ i ];
coords.x -= offsets.x;
coords.y -= offsets.y;
coords.z -= offsets.z;
}
var scraps = this.scraps;
// covert scraps coordinates
for ( i = 0; i < scraps.length; i++ ) {
vertices = scraps[ i ].vertices;
for ( j = 0; j < vertices.length; j++ ) {
coords = vertices[ j ];
coords.x -= offsets.x;
coords.y -= offsets.y;
coords.z -= offsets.z;
}
}
return;
// .lox parsing functions
function readChunkHdr () {
var m_type = readUint();
var m_recSize = readUint();
var m_recCount = readUint();
var m_dataSize = readUint();
var doFunction;
// offset of data region for out of line strings/images/scrap data.
dataStart = pos + m_recSize;
switch ( m_type ) {
case 1:
doFunction = readSurvey;
break;
case 2:
doFunction = readStation;
break;
case 3:
doFunction = readShot;
break;
case 4:
doFunction = readScrap;
break;
case 5:
doFunction = readSurface;
break;
case 6:
doFunction = readSurfaceBMP;
break;
default:
console.log( 'unknown chunk header. type : ', m_type );
}
if ( doFunction !== undefined ) {
for ( var i = 0; i < m_recCount; i++ ) {
doFunction();
}
}
skipData( m_dataSize );
}
function readUint () {
var i = f.getUint32( pos, true );
pos += 4;
return i;
}
function skipData ( i ) {
pos += i;
}
function readSurvey () {
var m_id = readUint();
var namePtr = readDataPtr();
var m_parent = readUint();
var titlePtr = readDataPtr();
if ( m_parent != m_id ) {
if ( ! surveyTree.addById( readString( namePtr ), m_id, m_parent ) ) console.log( 'error constructing survey tree for', readString( titlePtr ) );
}
}
function readDataPtr () {
var m_position = readUint();
var m_size = readUint();
return { position: m_position, size: m_size };
}
function readString ( ptr ) {
// strings are null terminated. Igore last byte in string
var bytes = new Uint8Array( source, dataStart + ptr.position, ptr.size - 1 );
return String.fromCharCode.apply( null, bytes );
}
function readStation () {
var m_id = readUint();
var m_surveyId = readUint();
var namePtr = readDataPtr();
readDataPtr(); // commentPtr
var m_flags = readUint();
var coords = readCoords();
stations[ m_id ] = coords;
// add stations to surveyTree make station id negative to avoid clashes with survey id space.
// m_flags & 0x01 = surface
surveyTree.addById( readString( namePtr ), - m_id, m_surveyId, { p: coords, type: ( m_flags & 0x02 ) ? STATION_ENTRANCE : STATION_NORMAL } );
}
function readCoords () {
var f = new DataView( source, pos );
pos += 24;
coords = {
x: f.getFloat64( 0, true ),
y: f.getFloat64( 8, true ),
z: f.getFloat64( 16, true )
};
min.x = Math.min( coords.x, min.x );
min.y = Math.min( coords.y, min.y );
min.z = Math.min( coords.z, min.z );
max.x = Math.max( coords.x, max.x );
max.y = Math.max( coords.y, max.y );
max.z = Math.max( coords.z, max.z );
return coords;
}
function readShot () {
var m_from = readUint();
var m_to = readUint();
var fromLRUD = readLRUD();
var toLRUD = readLRUD();
var m_flags = readUint();
var m_sectionType = readUint();
var m_surveyId = readUint();
f.getFloat64( pos, true ); // m_threshold
var type = LEG_CAVE;
pos += 8;
if ( m_flags & 0x01 ) type = LEG_SURFACE;
if ( m_flags & 0x08 ) type = LEG_SPLAY;
var from = stations[ m_from ];
var to = stations[ m_to ];
if ( m_sectionType !== 0x00 ) {
if ( m_from !== lastTo ) {
// new set of shots
xGroup = [];
self.xGroups.push( xGroup );
xGroup.push( { start: to, end: from, lrud: fromLRUD, survey: m_surveyId } );
}
xGroup.push( { start: from, end: to, lrud: toLRUD, survey: m_surveyId } );
}
if ( from.x === to.x && from.y === to.y && from.z === to.z ) return;
lineSegments.push( { from: from, to: to, type: type, survey: m_surveyId } );
lastTo = m_to;
}
function readLRUD () {
var f = new DataView( source, pos );
pos += 32;
return {
l: f.getFloat64( 0, true ),
r: f.getFloat64( 8, true ),
u: f.getFloat64( 16, true ),
d: f.getFloat64( 24, true )
};
}
function readScrap () {
readUint(); // m_id
var m_surveyId = readUint();
var m_numPoints = readUint();
var pointsPtr = readDataPtr();
var m_num3Angles = readUint();
var facesPtr = readDataPtr();
var scrap = { vertices: [], faces: [], survey: m_surveyId };
var lastFace;
var i, offset, f;
for ( i = 0; i < m_numPoints; i++ ) {
offset = dataStart + pointsPtr.position + i * 24; // 24 = 3 * sizeof( double )
f = new DataView( source, offset );
scrap.vertices.push( {
x: f.getFloat64( 0, true ),
y: f.getFloat64( 8, true ),
z: f.getFloat64( 16, true )
} );
}
// read faces from out of line data area
for ( i = 0; i < m_num3Angles; i++ ) {
offset = dataStart + facesPtr.position + i * 12; // 12 = 3 * sizeof( uint32 )
f = new DataView( source, offset );
var face = [
f.getUint32( 0, true ),
f.getUint32( 4, true ),
f.getUint32( 8, true )
];
// check for face winding order == orientation
fix_direction: { if ( lastFace !== undefined ) {
var j;
for ( j = 0; j < 3; j++ ) { // this case triggers more often than those below.
if ( face[ j ] == lastFace[ ( j + 2 ) % 3 ] && face[ ( j + 1 ) % 3 ] == lastFace[ ( j + 3 ) % 3 ] ) {
face.reverse();
break fix_direction;
}
}
for ( j = 0; j < 3; j++ ) {
if ( face[ j ] == lastFace[ j ] && face[ ( j + 1 ) % 3 ] == lastFace[ ( j + 1 ) % 3 ] ) {
face.reverse();
break fix_direction;
}
}
for ( j = 0; j < 3; j++ ) {
if ( face[ j ] == lastFace[ ( j + 1 ) % 3 ] && face[ ( j + 1 ) % 3 ] == lastFace[ ( j + 2 ) % 3 ] ) {
face.reverse();
break fix_direction;
}
}
} }
scrap.faces.push( face );
lastFace = face;
}
self.scraps.push( scrap );
}
function readSurface () {
readUint(); // m_id
var m_width = readUint();
var m_height = readUint();
var surfacePtr = readDataPtr();
var m_calib = readCalibration();
var ab = source.slice( pos, pos + surfacePtr.size ); // required for 64b alignment
var dtm = new Float64Array( ab, 0 );
// flip y direction
var data = [];
for ( var i = 0; i < m_height; i++ ) {
var offset = ( m_height - 1 - i ) * m_width;
for ( var j = 0; j < m_width; j++ ) {
data.push( dtm[ offset + j ] );
}
}
var terrain = self.terrain;
terrain.data = data;
terrain.dimensions = {};
var dimensions = terrain.dimensions;
dimensions.samples = m_width;
dimensions.lines = m_height;
dimensions.xOrigin = m_calib[ 0 ];
dimensions.yOrigin = m_calib[ 1 ];
dimensions.xDelta = m_calib[ 2 ];
dimensions.yDelta = m_calib[ 5 ];
self.hasTerrain = true;
}
function readCalibration () {
var f = new DataView( source, pos );
var m_calib = [];
m_calib[ 0 ] = f.getFloat64( 0, true );
m_calib[ 1 ] = f.getFloat64( 8, true );
m_calib[ 2 ] = f.getFloat64( 16, true );
m_calib[ 3 ] = f.getFloat64( 24, true );
m_calib[ 4 ] = f.getFloat64( 32, true );
m_calib[ 5 ] = f.getFloat64( 40, true );
pos += 48;
return m_calib;
}
function readSurfaceBMP () {
readUint(); // m_type
readUint(); // m_surfaceId
var imagePtr = readDataPtr();
readCalibration(); // m_calib
self.terrain.bitmap = extractImage( imagePtr );
}
function extractImage ( imagePtr ) {
var imgData = new Uint8Array( source, dataStart + imagePtr.position, imagePtr.size );
var type;
var b1 = imgData[ 0 ];
var b2 = imgData[ 1 ];
if ( b1 === 0xff && b2 === 0xd8 ) {
type = 'image/jpeg';
} else if ( b1 === 0x89 && b2 === 0x50 ) {
type = 'image/png';
}
if ( ! type ) return '';
var blob = new Blob( [ imgData ], { type: type } );
var blobURL = URL.createObjectURL( blob );
return blobURL;
}
}
loxHandler.prototype.constructor = loxHandler;
loxHandler.prototype.getSurvey = function () {
return {
title: this.fileName,
surveyTree: this.surveyTree,
sourceCRS: null,
targetCRS: null,
lineSegments: this.lineSegments,
crossSections: this.xGroups,
scraps: this.scraps,
hasTerrain: this.hasTerrain,
metadata: this.metadata,
terrain: this.terrain,
limits: this.limits,
offsets: this.offsets
};
};
// EOF
/**
* @author bhouston / http://clara.io
* @author mrdoob / http://mrdoob.com/
*/
function Sphere( center, radius ) {
this.center = ( center !== undefined ) ? center : new Vector3();
this.radius = ( radius !== undefined ) ? radius : 0;
}
Object.assign( Sphere.prototype, {
set: function ( center, radius ) {
this.center.copy( center );
this.radius = radius;
return this;
},
setFromPoints: function () {
var box = new Box3();
return function setFromPoints( points, optionalCenter ) {
var center = this.center;
if ( optionalCenter !== undefined ) {
center.copy( optionalCenter );
} else {
box.setFromPoints( points ).getCenter( center );
}
var maxRadiusSq = 0;
for ( var i = 0, il = points.length; i < il; i ++ ) {
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) );
}
this.radius = Math.sqrt( maxRadiusSq );
return this;
};
}(),
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( sphere ) {
this.center.copy( sphere.center );
this.radius = sphere.radius;
return this;
},
empty: function () {
return ( this.radius <= 0 );
},
containsPoint: function ( point ) {
return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) );
},
distanceToPoint: function ( point ) {
return ( point.distanceTo( this.center ) - this.radius );
},
intersectsSphere: function ( sphere ) {
var radiusSum = this.radius + sphere.radius;
return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum );
},
intersectsBox: function ( box ) {
return box.intersectsSphere( this );
},
intersectsPlane: function ( plane ) {
// We use the following equation to compute the signed distance from
// the center of the sphere to the plane.
//
// distance = q * n - d
//
// If this distance is greater than the radius of the sphere,
// then there is no intersection.
return Math.abs( this.center.dot( plane.normal ) - plane.constant ) <= this.radius;
},
clampPoint: function ( point, optionalTarget ) {
var deltaLengthSq = this.center.distanceToSquared( point );
var result = optionalTarget || new Vector3();
result.copy( point );
if ( deltaLengthSq > ( this.radius * this.radius ) ) {
result.sub( this.center ).normalize();
result.multiplyScalar( this.radius ).add( this.center );
}
return result;
},
getBoundingBox: function ( optionalTarget ) {
var box = optionalTarget || new Box3();
box.set( this.center, this.center );
box.expandByScalar( this.radius );
return box;
},
applyMatrix4: function ( matrix ) {
this.center.applyMatrix4( matrix );
this.radius = this.radius * matrix.getMaxScaleOnAxis();
return this;
},
translate: function ( offset ) {
this.center.add( offset );
return this;
},
equals: function ( sphere ) {
return sphere.center.equals( this.center ) && ( sphere.radius === this.radius );
}
} );
/**
* @author bhouston / http://clara.io
* @author WestLangley / http://github.com/WestLangley
*/
function Box3( min, max ) {
this.min = ( min !== undefined ) ? min : new Vector3( + Infinity, + Infinity, + Infinity );
this.max = ( max !== undefined ) ? max : new Vector3( - Infinity, - Infinity, - Infinity );
}
Object.assign( Box3.prototype, {
isBox3: true,
set: function ( min, max ) {
this.min.copy( min );
this.max.copy( max );
return this;
},
setFromArray: function ( array ) {
var minX = + Infinity;
var minY = + Infinity;
var minZ = + Infinity;
var maxX = - Infinity;
var maxY = - Infinity;
var maxZ = - Infinity;
for ( var i = 0, l = array.length; i < l; i += 3 ) {
var x = array[ i ];
var y = array[ i + 1 ];
var z = array[ i + 2 ];
if ( x < minX ) minX = x;
if ( y < minY ) minY = y;
if ( z < minZ ) minZ = z;
if ( x > maxX ) maxX = x;
if ( y > maxY ) maxY = y;
if ( z > maxZ ) maxZ = z;
}
this.min.set( minX, minY, minZ );
this.max.set( maxX, maxY, maxZ );
return this;
},
setFromBufferAttribute: function ( attribute ) {
var minX = + Infinity;
var minY = + Infinity;
var minZ = + Infinity;
var maxX = - Infinity;
var maxY = - Infinity;
var maxZ = - Infinity;
for ( var i = 0, l = attribute.count; i < l; i ++ ) {
var x = attribute.getX( i );
var y = attribute.getY( i );
var z = attribute.getZ( i );
if ( x < minX ) minX = x;
if ( y < minY ) minY = y;
if ( z < minZ ) minZ = z;
if ( x > maxX ) maxX = x;
if ( y > maxY ) maxY = y;
if ( z > maxZ ) maxZ = z;
}
this.min.set( minX, minY, minZ );
this.max.set( maxX, maxY, maxZ );
return this;
},
setFromPoints: function ( points ) {
this.makeEmpty();
for ( var i = 0, il = points.length; i < il; i ++ ) {
this.expandByPoint( points[ i ] );
}
return this;
},
setFromCenterAndSize: function () {
var v1 = new Vector3();
return function setFromCenterAndSize( center, size ) {
var halfSize = v1.copy( size ).multiplyScalar( 0.5 );
this.min.copy( center ).sub( halfSize );
this.max.copy( center ).add( halfSize );
return this;
};
}(),
setFromObject: function ( object ) {
this.makeEmpty();
return this.expandByObject( object );
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( box ) {
this.min.copy( box.min );
this.max.copy( box.max );
return this;
},
makeEmpty: function () {
this.min.x = this.min.y = this.min.z = + Infinity;
this.max.x = this.max.y = this.max.z = - Infinity;
return this;
},
isEmpty: function () {
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z );
},
getCenter: function ( optionalTarget ) {
var result = optionalTarget || new Vector3();
return this.isEmpty() ? result.set( 0, 0, 0 ) : result.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
},
getSize: function ( optionalTarget ) {
var result = optionalTarget || new Vector3();
return this.isEmpty() ? result.set( 0, 0, 0 ) : result.subVectors( this.max, this.min );
},
expandByPoint: function ( point ) {
this.min.min( point );
this.max.max( point );
return this;
},
expandByVector: function ( vector ) {
this.min.sub( vector );
this.max.add( vector );
return this;
},
expandByScalar: function ( scalar ) {
this.min.addScalar( - scalar );
this.max.addScalar( scalar );
return this;
},
expandByObject: function () {
// Computes the world-axis-aligned bounding box of an object (including its children),
// accounting for both the object's, and children's, world transforms
var v1 = new Vector3();
return function expandByObject( object ) {
var scope = this;
object.updateMatrixWorld( true );
object.traverse( function ( node ) {
var i, l;
var geometry = node.geometry;
if ( geometry !== undefined ) {
if ( geometry.isGeometry ) {
var vertices = geometry.vertices;
for ( i = 0, l = vertices.length; i < l; i ++ ) {
v1.copy( vertices[ i ] );
v1.applyMatrix4( node.matrixWorld );
scope.expandByPoint( v1 );
}
} else if ( geometry.isBufferGeometry ) {
var attribute = geometry.attributes.position;
if ( attribute !== undefined ) {
for ( i = 0, l = attribute.count; i < l; i ++ ) {
v1.fromBufferAttribute( attribute, i ).applyMatrix4( node.matrixWorld );
scope.expandByPoint( v1 );
}
}
}
}
} );
return this;
};
}(),
containsPoint: function ( point ) {
return point.x < this.min.x || point.x > this.max.x ||
point.y < this.min.y || point.y > this.max.y ||
point.z < this.min.z || point.z > this.max.z ? false : true;
},
containsBox: function ( box ) {
return this.min.x <= box.min.x && box.max.x <= this.max.x &&
this.min.y <= box.min.y && box.max.y <= this.max.y &&
this.min.z <= box.min.z && box.max.z <= this.max.z;
},
getParameter: function ( point, optionalTarget ) {
// This can potentially have a divide by zero if the box
// has a size dimension of 0.
var result = optionalTarget || new Vector3();
return result.set(
( point.x - this.min.x ) / ( this.max.x - this.min.x ),
( point.y - this.min.y ) / ( this.max.y - this.min.y ),
( point.z - this.min.z ) / ( this.max.z - this.min.z )
);
},
intersectsBox: function ( box ) {
// using 6 splitting planes to rule out intersections.
return box.max.x < this.min.x || box.min.x > this.max.x ||
box.max.y < this.min.y || box.min.y > this.max.y ||
box.max.z < this.min.z || box.min.z > this.max.z ? false : true;
},
intersectsSphere: ( function () {
var closestPoint = new Vector3();
return function intersectsSphere( sphere ) {
// Find the point on the AABB closest to the sphere center.
this.clampPoint( sphere.center, closestPoint );
// If that point is inside the sphere, the AABB and sphere intersect.
return closestPoint.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );
};
} )(),
intersectsPlane: function ( plane ) {
// We compute the minimum and maximum dot product values. If those values
// are on the same side (back or front) of the plane, then there is no intersection.
var min, max;
if ( plane.normal.x > 0 ) {
min = plane.normal.x * this.min.x;
max = plane.normal.x * this.max.x;
} else {
min = plane.normal.x * this.max.x;
max = plane.normal.x * this.min.x;
}
if ( plane.normal.y > 0 ) {
min += plane.normal.y * this.min.y;
max += plane.normal.y * this.max.y;
} else {
min += plane.normal.y * this.max.y;
max += plane.normal.y * this.min.y;
}
if ( plane.normal.z > 0 ) {
min += plane.normal.z * this.min.z;
max += plane.normal.z * this.max.z;
} else {
min += plane.normal.z * this.max.z;
max += plane.normal.z * this.min.z;
}
return ( min <= plane.constant && max >= plane.constant );
},
clampPoint: function ( point, optionalTarget ) {
var result = optionalTarget || new Vector3();
return result.copy( point ).clamp( this.min, this.max );
},
distanceToPoint: function () {
var v1 = new Vector3();
return function distanceToPoint( point ) {
var clampedPoint = v1.copy( point ).clamp( this.min, this.max );
return clampedPoint.sub( point ).length();
};
}(),
getBoundingSphere: function () {
var v1 = new Vector3();
return function getBoundingSphere( optionalTarget ) {
var result = optionalTarget || new Sphere();
this.getCenter( result.center );
result.radius = this.getSize( v1 ).length() * 0.5;
return result;
};
}(),
intersect: function ( box ) {
this.min.max( box.min );
this.max.min( box.max );
// ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
if( this.isEmpty() ) this.makeEmpty();
return this;
},
union: function ( box ) {
this.min.min( box.min );
this.max.max( box.max );
return this;
},
applyMatrix4: function () {
var points = [
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3()
];
return function applyMatrix4( matrix ) {
// transform of empty box is an empty box.
if( this.isEmpty() ) return this;
// NOTE: I am using a binary pattern to specify all 2^3 combinations below
points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000
points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001
points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010
points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011
points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100
points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101
points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110
points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111
this.setFromPoints( points );
return this;
};
}(),
translate: function ( offset ) {
this.min.add( offset );
this.max.add( offset );
return this;
},
equals: function ( box ) {
return box.min.equals( this.min ) && box.max.equals( this.max );
}
} );
function RegionHandler ( filename, dataStream ) {
this.isRegion = true;
this.data = dataStream;
this.box = new Box3();
var entrances = [];
var caves = this.data.caves;
var caveName;
var min = this.box.min;
var max = this.box.max;
for ( caveName in caves ) {
var i;
var e = caves[ caveName ].entrances;
for ( i = 0; i < e.length; i++ ) {
var entrance = e[ i ];
min.min( entrance.position );
max.max( entrance.position );
entrances.push( entrance );
}
}
this.data.entrances = entrances;
this.data.surveyTree = new Tree( this.data.title );
}
RegionHandler.prototype.constructor = RegionHandler;
RegionHandler.prototype.getSurvey = function () {
return this.data;
};
RegionHandler.prototype.getLimits = function () {
return this.box;
};
// EOF
// Polyfills
if ( Number.EPSILON === undefined ) {
Number.EPSILON = Math.pow( 2, - 52 );
}
if ( Number.isInteger === undefined ) {
// Missing in IE
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger
Number.isInteger = function ( value ) {
return typeof value === 'number' && isFinite( value ) && Math.floor( value ) === value;
};
}
//
if ( Math.sign === undefined ) {
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign
Math.sign = function ( x ) {
return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x;
};
}
if ( Function.prototype.name === undefined ) {
// Missing in IE
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name
Object.defineProperty( Function.prototype, 'name', {
get: function () {
return this.toString().match( /^\s*function\s*([^\(\s]*)/ )[ 1 ];
}
} );
}
if ( Object.assign === undefined ) {
// Missing in IE
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
( function () {
Object.assign = function ( target ) {
'use strict';
if ( target === undefined || target === null ) {
throw new TypeError( 'Cannot convert undefined or null to object' );
}
var output = Object( target );
for ( var index = 1; index < arguments.length; index ++ ) {
var source = arguments[ index ];
if ( source !== undefined && source !== null ) {
for ( var nextKey in source ) {
if ( Object.prototype.hasOwnProperty.call( source, nextKey ) ) {
output[ nextKey ] = source[ nextKey ];
}
}
}
}
return output;
};
} )();
}
/**
* https://github.com/mrdoob/eventdispatcher.js/
*/
function EventDispatcher() {}
Object.assign( EventDispatcher.prototype, {
addEventListener: function ( type, listener ) {
if ( this._listeners === undefined ) this._listeners = {};
var listeners = this._listeners;
if ( listeners[ type ] === undefined ) {
listeners[ type ] = [];
}
if ( listeners[ type ].indexOf( listener ) === - 1 ) {
listeners[ type ].push( listener );
}
},
hasEventListener: function ( type, listener ) {
if ( this._listeners === undefined ) return false;
var listeners = this._listeners;
return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1;
},
removeEventListener: function ( type, listener ) {
if ( this._listeners === undefined ) return;
var listeners = this._listeners;
var listenerArray = listeners[ type ];
if ( listenerArray !== undefined ) {
var index = listenerArray.indexOf( listener );
if ( index !== - 1 ) {
listenerArray.splice( index, 1 );
}
}
},
dispatchEvent: function ( event ) {
if ( this._listeners === undefined ) return;
var listeners = this._listeners;
var listenerArray = listeners[ event.type ];
if ( listenerArray !== undefined ) {
event.target = this;
var array = listenerArray.slice( 0 );
for ( var i = 0, l = array.length; i < l; i ++ ) {
array[ i ].call( this, event );
}
}
}
} );
var PCFShadowMap = 1;
var PCFSoftShadowMap = 2;
var FrontSide = 0;
var BackSide = 1;
var DoubleSide = 2;
var FlatShading = 1;
var SmoothShading = 2;
var NoColors = 0;
var FaceColors = 1;
var VertexColors = 2;
var NoBlending = 0;
var NormalBlending = 1;
var AdditiveBlending = 2;
var SubtractiveBlending = 3;
var MultiplyBlending = 4;
var CustomBlending = 5;
var AddEquation = 100;
var SrcAlphaFactor = 204;
var OneMinusSrcAlphaFactor = 205;
var LessEqualDepth = 3;
var MultiplyOperation = 0;
var MixOperation = 1;
var AddOperation = 2;
var NoToneMapping = 0;
var LinearToneMapping = 1;
var ReinhardToneMapping = 2;
var Uncharted2ToneMapping = 3;
var CineonToneMapping = 4;
var UVMapping = 300;
var CubeReflectionMapping = 301;
var CubeRefractionMapping = 302;
var EquirectangularReflectionMapping = 303;
var EquirectangularRefractionMapping = 304;
var SphericalReflectionMapping = 305;
var CubeUVReflectionMapping = 306;
var CubeUVRefractionMapping = 307;
var RepeatWrapping = 1000;
var ClampToEdgeWrapping = 1001;
var MirroredRepeatWrapping = 1002;
var NearestFilter = 1003;
var NearestMipMapNearestFilter = 1004;
var NearestMipMapLinearFilter = 1005;
var LinearFilter = 1006;
var LinearMipMapLinearFilter = 1008;
var UnsignedByteType = 1009;
var UnsignedShortType = 1012;
var UnsignedIntType = 1014;
var FloatType = 1015;
var HalfFloatType = 1016;
var UnsignedInt248Type = 1020;
var RGBFormat = 1022;
var RGBAFormat = 1023;
var DepthFormat = 1026;
var DepthStencilFormat = 1027;
var InterpolateDiscrete = 2300;
var InterpolateLinear = 2301;
var InterpolateSmooth = 2302;
var ZeroCurvatureEnding = 2400;
var ZeroSlopeEnding = 2401;
var WrapAroundEnding = 2402;
var TrianglesDrawMode = 0;
var LinearEncoding = 3000;
var sRGBEncoding = 3001;
var GammaEncoding = 3007;
var RGBEEncoding = 3002;
var RGBM7Encoding = 3004;
var RGBM16Encoding = 3005;
var RGBDEncoding = 3006;
/**
* @author mrdoob / http://mrdoob.com/
* @author philogb / http://blog.thejit.org/
* @author egraether / http://egraether.com/
* @author zz85 / http://www.lab4games.net/zz85/blog
*/
function Vector2( x, y ) {
this.x = x || 0;
this.y = y || 0;
}
Object.defineProperties( Vector2.prototype, {
"width" : {
get: function () {
return this.x;
},
set: function ( value ) {
this.x = value;
}
},
"height" : {
get: function () {
return this.y;
},
set: function ( value ) {
this.y = value;
}
}
} );
Object.assign( Vector2.prototype, {
isVector2: true,
set: function ( x, y ) {
this.x = x;
this.y = y;
return this;
},
setScalar: function ( scalar ) {
this.x = scalar;
this.y = scalar;
return this;
},
setX: function ( x ) {
this.x = x;
return this;
},
setY: function ( y ) {
this.y = y;
return this;
},
setComponent: function ( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
},
getComponent: function ( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
default: throw new Error( 'index is out of range: ' + index );
}
},
clone: function () {
return new this.constructor( this.x, this.y );
},
copy: function ( v ) {
this.x = v.x;
this.y = v.y;
return this;
},
add: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
return this.addVectors( v, w );
}
this.x += v.x;
this.y += v.y;
return this;
},
addScalar: function ( s ) {
this.x += s;
this.y += s;
return this;
},
addVectors: function ( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
return this;
},
addScaledVector: function ( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
return this;
},
sub: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
return this.subVectors( v, w );
}
this.x -= v.x;
this.y -= v.y;
return this;
},
subScalar: function ( s ) {
this.x -= s;
this.y -= s;
return this;
},
subVectors: function ( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
return this;
},
multiply: function ( v ) {
this.x *= v.x;
this.y *= v.y;
return this;
},
multiplyScalar: function ( scalar ) {
this.x *= scalar;
this.y *= scalar;
return this;
},
divide: function ( v ) {
this.x /= v.x;
this.y /= v.y;
return this;
},
divideScalar: function ( scalar ) {
return this.multiplyScalar( 1 / scalar );
},
min: function ( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
return this;
},
max: function ( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
return this;
},
clamp: function ( min, max ) {
// assumes min < max, componentwise
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
return this;
},
clampScalar: function () {
var min = new Vector2();
var max = new Vector2();
return function clampScalar( minVal, maxVal ) {
min.set( minVal, minVal );
max.set( maxVal, maxVal );
return this.clamp( min, max );
};
}(),
clampLength: function ( min, max ) {
var length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
},
floor: function () {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
return this;
},
ceil: function () {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
return this;
},
round: function () {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
return this;
},
roundToZero: function () {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
return this;
},
negate: function () {
this.x = - this.x;
this.y = - this.y;
return this;
},
dot: function ( v ) {
return this.x * v.x + this.y * v.y;
},
lengthSq: function () {
return this.x * this.x + this.y * this.y;
},
length: function () {
return Math.sqrt( this.x * this.x + this.y * this.y );
},
lengthManhattan: function() {
return Math.abs( this.x ) + Math.abs( this.y );
},
normalize: function () {
return this.divideScalar( this.length() || 1 );
},
angle: function () {
// computes the angle in radians with respect to the positive x-axis
var angle = Math.atan2( this.y, this.x );
if ( angle < 0 ) angle += 2 * Math.PI;
return angle;
},
distanceTo: function ( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
},
distanceToSquared: function ( v ) {
var dx = this.x - v.x, dy = this.y - v.y;
return dx * dx + dy * dy;
},
distanceToManhattan: function ( v ) {
return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y );
},
setLength: function ( length ) {
return this.normalize().multiplyScalar( length );
},
lerp: function ( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
return this;
},
lerpVectors: function ( v1, v2, alpha ) {
return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
},
equals: function ( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.x = array[ offset ];
this.y = array[ offset + 1 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
return array;
},
fromBufferAttribute: function ( attribute, index, offset ) {
if ( offset !== undefined ) {
console.warn( 'THREE.Vector2: offset has been removed from .fromBufferAttribute().' );
}
this.x = attribute.getX( index );
this.y = attribute.getY( index );
return this;
},
rotateAround: function ( center, angle ) {
var c = Math.cos( angle ), s = Math.sin( angle );
var x = this.x - center.x;
var y = this.y - center.y;
this.x = x * c - y * s + center.x;
this.y = x * s + y * c + center.y;
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author szimek / https://github.com/szimek/
*/
var textureId = 0;
function Texture( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {
Object.defineProperty( this, 'id', { value: textureId ++ } );
this.uuid = _Math.generateUUID();
this.name = '';
this.image = image !== undefined ? image : Texture.DEFAULT_IMAGE;
this.mipmaps = [];
this.mapping = mapping !== undefined ? mapping : Texture.DEFAULT_MAPPING;
this.wrapS = wrapS !== undefined ? wrapS : ClampToEdgeWrapping;
this.wrapT = wrapT !== undefined ? wrapT : ClampToEdgeWrapping;
this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;
this.minFilter = minFilter !== undefined ? minFilter : LinearMipMapLinearFilter;
this.anisotropy = anisotropy !== undefined ? anisotropy : 1;
this.format = format !== undefined ? format : RGBAFormat;
this.type = type !== undefined ? type : UnsignedByteType;
this.offset = new Vector2( 0, 0 );
this.repeat = new Vector2( 1, 1 );
this.generateMipmaps = true;
this.premultiplyAlpha = false;
this.flipY = true;
this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)
// Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
//
// Also changing the encoding after already used by a Material will not automatically make the Material
// update. You need to explicitly call Material.needsUpdate to trigger it to recompile.
this.encoding = encoding !== undefined ? encoding : LinearEncoding;
this.version = 0;
this.onUpdate = null;
}
Texture.DEFAULT_IMAGE = undefined;
Texture.DEFAULT_MAPPING = UVMapping;
Object.defineProperty( Texture.prototype, "needsUpdate", {
set: function ( value ) {
if ( value === true ) this.version ++;
}
} );
Object.assign( Texture.prototype, EventDispatcher.prototype, {
constructor: Texture,
isTexture: true,
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.name = source.name;
this.image = source.image;
this.mipmaps = source.mipmaps.slice( 0 );
this.mapping = source.mapping;
this.wrapS = source.wrapS;
this.wrapT = source.wrapT;
this.magFilter = source.magFilter;
this.minFilter = source.minFilter;
this.anisotropy = source.anisotropy;
this.format = source.format;
this.type = source.type;
this.offset.copy( source.offset );
this.repeat.copy( source.repeat );
this.generateMipmaps = source.generateMipmaps;
this.premultiplyAlpha = source.premultiplyAlpha;
this.flipY = source.flipY;
this.unpackAlignment = source.unpackAlignment;
this.encoding = source.encoding;
return this;
},
toJSON: function ( meta ) {
if ( meta.textures[ this.uuid ] !== undefined ) {
return meta.textures[ this.uuid ];
}
function getDataURL( image ) {
var canvas;
if ( image.toDataURL !== undefined ) {
canvas = image;
} else {
canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );
canvas.width = image.width;
canvas.height = image.height;
canvas.getContext( '2d' ).drawImage( image, 0, 0, image.width, image.height );
}
if ( canvas.width > 2048 || canvas.height > 2048 ) {
return canvas.toDataURL( 'image/jpeg', 0.6 );
} else {
return canvas.toDataURL( 'image/png' );
}
}
var output = {
metadata: {
version: 4.5,
type: 'Texture',
generator: 'Texture.toJSON'
},
uuid: this.uuid,
name: this.name,
mapping: this.mapping,
repeat: [ this.repeat.x, this.repeat.y ],
offset: [ this.offset.x, this.offset.y ],
wrap: [ this.wrapS, this.wrapT ],
minFilter: this.minFilter,
magFilter: this.magFilter,
anisotropy: this.anisotropy,
flipY: this.flipY
};
if ( this.image !== undefined ) {
// TODO: Move to THREE.Image
var image = this.image;
if ( image.uuid === undefined ) {
image.uuid = _Math.generateUUID(); // UGH
}
if ( meta.images[ image.uuid ] === undefined ) {
meta.images[ image.uuid ] = {
uuid: image.uuid,
url: getDataURL( image )
};
}
output.image = image.uuid;
}
meta.textures[ this.uuid ] = output;
return output;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
},
transformUv: function ( uv ) {
if ( this.mapping !== UVMapping ) return;
uv.multiply( this.repeat );
uv.add( this.offset );
if ( uv.x < 0 || uv.x > 1 ) {
switch ( this.wrapS ) {
case RepeatWrapping:
uv.x = uv.x - Math.floor( uv.x );
break;
case ClampToEdgeWrapping:
uv.x = uv.x < 0 ? 0 : 1;
break;
case MirroredRepeatWrapping:
if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) {
uv.x = Math.ceil( uv.x ) - uv.x;
} else {
uv.x = uv.x - Math.floor( uv.x );
}
break;
}
}
if ( uv.y < 0 || uv.y > 1 ) {
switch ( this.wrapT ) {
case RepeatWrapping:
uv.y = uv.y - Math.floor( uv.y );
break;
case ClampToEdgeWrapping:
uv.y = uv.y < 0 ? 0 : 1;
break;
case MirroredRepeatWrapping:
if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) {
uv.y = Math.ceil( uv.y ) - uv.y;
} else {
uv.y = uv.y - Math.floor( uv.y );
}
break;
}
}
if ( this.flipY ) {
uv.y = 1 - uv.y;
}
}
} );
/**
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author philogb / http://blog.thejit.org/
* @author mikael emtinger / http://gomo.se/
* @author egraether / http://egraether.com/
* @author WestLangley / http://github.com/WestLangley
*/
function Vector4( x, y, z, w ) {
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
this.w = ( w !== undefined ) ? w : 1;
}
Object.assign( Vector4.prototype, {
isVector4: true,
set: function ( x, y, z, w ) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
},
setScalar: function ( scalar ) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
this.w = scalar;
return this;
},
setX: function ( x ) {
this.x = x;
return this;
},
setY: function ( y ) {
this.y = y;
return this;
},
setZ: function ( z ) {
this.z = z;
return this;
},
setW: function ( w ) {
this.w = w;
return this;
},
setComponent: function ( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
case 3: this.w = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
},
getComponent: function ( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
case 3: return this.w;
default: throw new Error( 'index is out of range: ' + index );
}
},
clone: function () {
return new this.constructor( this.x, this.y, this.z, this.w );
},
copy: function ( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
this.w = ( v.w !== undefined ) ? v.w : 1;
return this;
},
add: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
return this.addVectors( v, w );
}
this.x += v.x;
this.y += v.y;
this.z += v.z;
this.w += v.w;
return this;
},
addScalar: function ( s ) {
this.x += s;
this.y += s;
this.z += s;
this.w += s;
return this;
},
addVectors: function ( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
this.w = a.w + b.w;
return this;
},
addScaledVector: function ( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
this.w += v.w * s;
return this;
},
sub: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
return this.subVectors( v, w );
}
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
this.w -= v.w;
return this;
},
subScalar: function ( s ) {
this.x -= s;
this.y -= s;
this.z -= s;
this.w -= s;
return this;
},
subVectors: function ( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
this.w = a.w - b.w;
return this;
},
multiplyScalar: function ( scalar ) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
this.w *= scalar;
return this;
},
applyMatrix4: function ( m ) {
var x = this.x, y = this.y, z = this.z, w = this.w;
var e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w;
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w;
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w;
this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;
return this;
},
divideScalar: function ( scalar ) {
return this.multiplyScalar( 1 / scalar );
},
setAxisAngleFromQuaternion: function ( q ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
// q is assumed to be normalized
this.w = 2 * Math.acos( q.w );
var s = Math.sqrt( 1 - q.w * q.w );
if ( s < 0.0001 ) {
this.x = 1;
this.y = 0;
this.z = 0;
} else {
this.x = q.x / s;
this.y = q.y / s;
this.z = q.z / s;
}
return this;
},
setAxisAngleFromRotationMatrix: function ( m ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
var angle, x, y, z, // variables for result
epsilon = 0.01, // margin to allow for rounding errors
epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees
te = m.elements,
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
if ( ( Math.abs( m12 - m21 ) < epsilon ) &&
( Math.abs( m13 - m31 ) < epsilon ) &&
( Math.abs( m23 - m32 ) < epsilon ) ) {
// singularity found
// first check for identity matrix which must have +1 for all terms
// in leading diagonal and zero in other terms
if ( ( Math.abs( m12 + m21 ) < epsilon2 ) &&
( Math.abs( m13 + m31 ) < epsilon2 ) &&
( Math.abs( m23 + m32 ) < epsilon2 ) &&
( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {
// this singularity is identity matrix so angle = 0
this.set( 1, 0, 0, 0 );
return this; // zero angle, arbitrary axis
}
// otherwise this singularity is angle = 180
angle = Math.PI;
var xx = ( m11 + 1 ) / 2;
var yy = ( m22 + 1 ) / 2;
var zz = ( m33 + 1 ) / 2;
var xy = ( m12 + m21 ) / 4;
var xz = ( m13 + m31 ) / 4;
var yz = ( m23 + m32 ) / 4;
if ( ( xx > yy ) && ( xx > zz ) ) {
// m11 is the largest diagonal term
if ( xx < epsilon ) {
x = 0;
y = 0.707106781;
z = 0.707106781;
} else {
x = Math.sqrt( xx );
y = xy / x;
z = xz / x;
}
} else if ( yy > zz ) {
// m22 is the largest diagonal term
if ( yy < epsilon ) {
x = 0.707106781;
y = 0;
z = 0.707106781;
} else {
y = Math.sqrt( yy );
x = xy / y;
z = yz / y;
}
} else {
// m33 is the largest diagonal term so base result on this
if ( zz < epsilon ) {
x = 0.707106781;
y = 0.707106781;
z = 0;
} else {
z = Math.sqrt( zz );
x = xz / z;
y = yz / z;
}
}
this.set( x, y, z, angle );
return this; // return 180 deg rotation
}
// as we have reached here there are no singularities so we can handle normally
var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) +
( m13 - m31 ) * ( m13 - m31 ) +
( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize
if ( Math.abs( s ) < 0.001 ) s = 1;
// prevent divide by zero, should not happen if matrix is orthogonal and should be
// caught by singularity test above, but I've left it in just in case
this.x = ( m32 - m23 ) / s;
this.y = ( m13 - m31 ) / s;
this.z = ( m21 - m12 ) / s;
this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );
return this;
},
min: function ( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
this.z = Math.min( this.z, v.z );
this.w = Math.min( this.w, v.w );
return this;
},
max: function ( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
this.z = Math.max( this.z, v.z );
this.w = Math.max( this.w, v.w );
return this;
},
clamp: function ( min, max ) {
// assumes min < max, componentwise
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
this.z = Math.max( min.z, Math.min( max.z, this.z ) );
this.w = Math.max( min.w, Math.min( max.w, this.w ) );
return this;
},
clampScalar: function () {
var min, max;
return function clampScalar( minVal, maxVal ) {
if ( min === undefined ) {
min = new Vector4();
max = new Vector4();
}
min.set( minVal, minVal, minVal, minVal );
max.set( maxVal, maxVal, maxVal, maxVal );
return this.clamp( min, max );
};
}(),
clampLength: function ( min, max ) {
var length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
},
floor: function () {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
this.z = Math.floor( this.z );
this.w = Math.floor( this.w );
return this;
},
ceil: function () {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
this.z = Math.ceil( this.z );
this.w = Math.ceil( this.w );
return this;
},
round: function () {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
this.z = Math.round( this.z );
this.w = Math.round( this.w );
return this;
},
roundToZero: function () {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w );
return this;
},
negate: function () {
this.x = - this.x;
this.y = - this.y;
this.z = - this.z;
this.w = - this.w;
return this;
},
dot: function ( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
},
lengthSq: function () {
return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
},
length: function () {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
},
lengthManhattan: function () {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );
},
normalize: function () {
return this.divideScalar( this.length() || 1 );
},
setLength: function ( length ) {
return this.normalize().multiplyScalar( length );
},
lerp: function ( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
this.w += ( v.w - this.w ) * alpha;
return this;
},
lerpVectors: function ( v1, v2, alpha ) {
return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
},
equals: function ( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.x = array[ offset ];
this.y = array[ offset + 1 ];
this.z = array[ offset + 2 ];
this.w = array[ offset + 3 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
array[ offset + 2 ] = this.z;
array[ offset + 3 ] = this.w;
return array;
},
fromBufferAttribute: function ( attribute, index, offset ) {
if ( offset !== undefined ) {
console.warn( 'THREE.Vector4: offset has been removed from .fromBufferAttribute().' );
}
this.x = attribute.getX( index );
this.y = attribute.getY( index );
this.z = attribute.getZ( index );
this.w = attribute.getW( index );
return this;
}
} );
/**
* @author szimek / https://github.com/szimek/
* @author alteredq / http://alteredqualia.com/
* @author Marius Kintel / https://github.com/kintel
*/
/*
In options, we can specify:
* Texture parameters for an auto-generated target texture
* depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
*/
function WebGLRenderTarget( width, height, options ) {
this.uuid = _Math.generateUUID();
this.width = width;
this.height = height;
this.scissor = new Vector4( 0, 0, width, height );
this.scissorTest = false;
this.viewport = new Vector4( 0, 0, width, height );
options = options || {};
if ( options.minFilter === undefined ) options.minFilter = LinearFilter;
this.texture = new Texture( undefined, undefined, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding );
this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true;
this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;
}
Object.assign( WebGLRenderTarget.prototype, EventDispatcher.prototype, {
isWebGLRenderTarget: true,
setSize: function ( width, height ) {
if ( this.width !== width || this.height !== height ) {
this.width = width;
this.height = height;
this.dispose();
}
this.viewport.set( 0, 0, width, height );
this.scissor.set( 0, 0, width, height );
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.width = source.width;
this.height = source.height;
this.viewport.copy( source.viewport );
this.texture = source.texture.clone();
this.depthBuffer = source.depthBuffer;
this.stencilBuffer = source.stencilBuffer;
this.depthTexture = source.depthTexture;
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function CubeTexture( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {
images = images !== undefined ? images : [];
mapping = mapping !== undefined ? mapping : CubeReflectionMapping;
Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );
this.flipY = false;
}
CubeTexture.prototype = Object.create( Texture.prototype );
CubeTexture.prototype.constructor = CubeTexture;
CubeTexture.prototype.isCubeTexture = true;
Object.defineProperty( CubeTexture.prototype, 'images', {
get: function () {
return this.image;
},
set: function ( value ) {
this.image = value;
}
} );
/**
* @author tschw
*
* Uniforms of a program.
* Those form a tree structure with a special top-level container for the root,
* which you get by calling 'new WebGLUniforms( gl, program, renderer )'.
*
*
* Properties of inner nodes including the top-level container:
*
* .seq - array of nested uniforms
* .map - nested uniforms by name
*
*
* Methods of all nodes except the top-level container:
*
* .setValue( gl, value, [renderer] )
*
* uploads a uniform value(s)
* the 'renderer' parameter is needed for sampler uniforms
*
*
* Static methods of the top-level container (renderer factorizations):
*
* .upload( gl, seq, values, renderer )
*
* sets uniforms in 'seq' to 'values[id].value'
*
* .seqWithValue( seq, values ) : filteredSeq
*
* filters 'seq' entries with corresponding entry in values
*
*
* Methods of the top-level container (renderer factorizations):
*
* .setValue( gl, name, value )
*
* sets uniform with name 'name' to 'value'
*
* .set( gl, obj, prop )
*
* sets uniform from object and property with same name than uniform
*
* .setOptional( gl, obj, prop )
*
* like .set for an optional property of the object
*
*/
var emptyTexture = new Texture();
var emptyCubeTexture = new CubeTexture();
// --- Base for inner nodes (including the root) ---
function UniformContainer() {
this.seq = [];
this.map = {};
}
// --- Utilities ---
// Array Caches (provide typed arrays for temporary by size)
var arrayCacheF32 = [];
var arrayCacheI32 = [];
// Float32Array caches used for uploading Matrix uniforms
var mat4array = new Float32Array( 16 );
var mat3array = new Float32Array( 9 );
// Flattening for arrays of vectors and matrices
function flatten( array, nBlocks, blockSize ) {
var firstElem = array[ 0 ];
if ( firstElem <= 0 || firstElem > 0 ) return array;
// unoptimized: ! isNaN( firstElem )
// see http://jacksondunstan.com/articles/983
var n = nBlocks * blockSize,
r = arrayCacheF32[ n ];
if ( r === undefined ) {
r = new Float32Array( n );
arrayCacheF32[ n ] = r;
}
if ( nBlocks !== 0 ) {
firstElem.toArray( r, 0 );
for ( var i = 1, offset = 0; i !== nBlocks; ++ i ) {
offset += blockSize;
array[ i ].toArray( r, offset );
}
}
return r;
}
// Texture unit allocation
function allocTexUnits( renderer, n ) {
var r = arrayCacheI32[ n ];
if ( r === undefined ) {
r = new Int32Array( n );
arrayCacheI32[ n ] = r;
}
for ( var i = 0; i !== n; ++ i )
r[ i ] = renderer.allocTextureUnit();
return r;
}
// --- Setters ---
// Note: Defining these methods externally, because they come in a bunch
// and this way their names minify.
// Single scalar
function setValue1f( gl, v ) { gl.uniform1f( this.addr, v ); }
function setValue1i( gl, v ) { gl.uniform1i( this.addr, v ); }
// Single float vector (from flat array or THREE.VectorN)
function setValue2fv( gl, v ) {
if ( v.x === undefined ) gl.uniform2fv( this.addr, v );
else gl.uniform2f( this.addr, v.x, v.y );
}
function setValue3fv( gl, v ) {
if ( v.x !== undefined )
gl.uniform3f( this.addr, v.x, v.y, v.z );
else if ( v.r !== undefined )
gl.uniform3f( this.addr, v.r, v.g, v.b );
else
gl.uniform3fv( this.addr, v );
}
function setValue4fv( gl, v ) {
if ( v.x === undefined ) gl.uniform4fv( this.addr, v );
else gl.uniform4f( this.addr, v.x, v.y, v.z, v.w );
}
// Single matrix (from flat array or MatrixN)
function setValue2fm( gl, v ) {
gl.uniformMatrix2fv( this.addr, false, v.elements || v );
}
function setValue3fm( gl, v ) {
if ( v.elements === undefined ) {
gl.uniformMatrix3fv( this.addr, false, v );
} else {
mat3array.set( v.elements );
gl.uniformMatrix3fv( this.addr, false, mat3array );
}
}
function setValue4fm( gl, v ) {
if ( v.elements === undefined ) {
gl.uniformMatrix4fv( this.addr, false, v );
} else {
mat4array.set( v.elements );
gl.uniformMatrix4fv( this.addr, false, mat4array );
}
}
// Single texture (2D / Cube)
function setValueT1( gl, v, renderer ) {
var unit = renderer.allocTextureUnit();
gl.uniform1i( this.addr, unit );
renderer.setTexture2D( v || emptyTexture, unit );
}
function setValueT6( gl, v, renderer ) {
var unit = renderer.allocTextureUnit();
gl.uniform1i( this.addr, unit );
renderer.setTextureCube( v || emptyCubeTexture, unit );
}
// Integer / Boolean vectors or arrays thereof (always flat arrays)
function setValue2iv( gl, v ) { gl.uniform2iv( this.addr, v ); }
function setValue3iv( gl, v ) { gl.uniform3iv( this.addr, v ); }
function setValue4iv( gl, v ) { gl.uniform4iv( this.addr, v ); }
// Helper to pick the right setter for the singular case
function getSingularSetter( type ) {
switch ( type ) {
case 0x1406: return setValue1f; // FLOAT
case 0x8b50: return setValue2fv; // _VEC2
case 0x8b51: return setValue3fv; // _VEC3
case 0x8b52: return setValue4fv; // _VEC4
case 0x8b5a: return setValue2fm; // _MAT2
case 0x8b5b: return setValue3fm; // _MAT3
case 0x8b5c: return setValue4fm; // _MAT4
case 0x8b5e: case 0x8d66: return setValueT1; // SAMPLER_2D, SAMPLER_EXTERNAL_OES
case 0x8b60: return setValueT6; // SAMPLER_CUBE
case 0x1404: case 0x8b56: return setValue1i; // INT, BOOL
case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2
case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3
case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4
}
}
// Array of scalars
function setValue1fv( gl, v ) { gl.uniform1fv( this.addr, v ); }
function setValue1iv( gl, v ) { gl.uniform1iv( this.addr, v ); }
// Array of vectors (flat or from THREE classes)
function setValueV2a( gl, v ) {
gl.uniform2fv( this.addr, flatten( v, this.size, 2 ) );
}
function setValueV3a( gl, v ) {
gl.uniform3fv( this.addr, flatten( v, this.size, 3 ) );
}
function setValueV4a( gl, v ) {
gl.uniform4fv( this.addr, flatten( v, this.size, 4 ) );
}
// Array of matrices (flat or from THREE clases)
function setValueM2a( gl, v ) {
gl.uniformMatrix2fv( this.addr, false, flatten( v, this.size, 4 ) );
}
function setValueM3a( gl, v ) {
gl.uniformMatrix3fv( this.addr, false, flatten( v, this.size, 9 ) );
}
function setValueM4a( gl, v ) {
gl.uniformMatrix4fv( this.addr, false, flatten( v, this.size, 16 ) );
}
// Array of textures (2D / Cube)
function setValueT1a( gl, v, renderer ) {
var n = v.length,
units = allocTexUnits( renderer, n );
gl.uniform1iv( this.addr, units );
for ( var i = 0; i !== n; ++ i ) {
renderer.setTexture2D( v[ i ] || emptyTexture, units[ i ] );
}
}
function setValueT6a( gl, v, renderer ) {
var n = v.length,
units = allocTexUnits( renderer, n );
gl.uniform1iv( this.addr, units );
for ( var i = 0; i !== n; ++ i ) {
renderer.setTextureCube( v[ i ] || emptyCubeTexture, units[ i ] );
}
}
// Helper to pick the right setter for a pure (bottom-level) array
function getPureArraySetter( type ) {
switch ( type ) {
case 0x1406: return setValue1fv; // FLOAT
case 0x8b50: return setValueV2a; // _VEC2
case 0x8b51: return setValueV3a; // _VEC3
case 0x8b52: return setValueV4a; // _VEC4
case 0x8b5a: return setValueM2a; // _MAT2
case 0x8b5b: return setValueM3a; // _MAT3
case 0x8b5c: return setValueM4a; // _MAT4
case 0x8b5e: return setValueT1a; // SAMPLER_2D
case 0x8b60: return setValueT6a; // SAMPLER_CUBE
case 0x1404: case 0x8b56: return setValue1iv; // INT, BOOL
case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2
case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3
case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4
}
}
// --- Uniform Classes ---
function SingleUniform( id, activeInfo, addr ) {
this.id = id;
this.addr = addr;
this.setValue = getSingularSetter( activeInfo.type );
// this.path = activeInfo.name; // DEBUG
}
function PureArrayUniform( id, activeInfo, addr ) {
this.id = id;
this.addr = addr;
this.size = activeInfo.size;
this.setValue = getPureArraySetter( activeInfo.type );
// this.path = activeInfo.name; // DEBUG
}
function StructuredUniform( id ) {
this.id = id;
UniformContainer.call( this ); // mix-in
}
StructuredUniform.prototype.setValue = function ( gl, value ) {
// Note: Don't need an extra 'renderer' parameter, since samplers
// are not allowed in structured uniforms.
var seq = this.seq;
for ( var i = 0, n = seq.length; i !== n; ++ i ) {
var u = seq[ i ];
u.setValue( gl, value[ u.id ] );
}
};
// --- Top-level ---
// Parser - builds up the property tree from the path strings
var RePathPart = /([\w\d_]+)(\])?(\[|\.)?/g;
// extracts
// - the identifier (member name or array index)
// - followed by an optional right bracket (found when array index)
// - followed by an optional left bracket or dot (type of subscript)
//
// Note: These portions can be read in a non-overlapping fashion and
// allow straightforward parsing of the hierarchy that WebGL encodes
// in the uniform names.
function addUniform( container, uniformObject ) {
container.seq.push( uniformObject );
container.map[ uniformObject.id ] = uniformObject;
}
function parseUniform( activeInfo, addr, container ) {
var path = activeInfo.name,
pathLength = path.length;
// reset RegExp object, because of the early exit of a previous run
RePathPart.lastIndex = 0;
for ( ; ; ) {
var match = RePathPart.exec( path ),
matchEnd = RePathPart.lastIndex,
id = match[ 1 ],
idIsIndex = match[ 2 ] === ']',
subscript = match[ 3 ];
if ( idIsIndex ) id = id | 0; // convert to integer
if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) {
// bare name or "pure" bottom-level array "[0]" suffix
addUniform( container, subscript === undefined ?
new SingleUniform( id, activeInfo, addr ) :
new PureArrayUniform( id, activeInfo, addr ) );
break;
} else {
// step into inner node / create it in case it doesn't exist
var map = container.map, next = map[ id ];
if ( next === undefined ) {
next = new StructuredUniform( id );
addUniform( container, next );
}
container = next;
}
}
}
// Root Container
function WebGLUniforms( gl, program, renderer ) {
UniformContainer.call( this );
this.renderer = renderer;
var n = gl.getProgramParameter( program, gl.ACTIVE_UNIFORMS );
for ( var i = 0; i < n; ++ i ) {
var info = gl.getActiveUniform( program, i ),
path = info.name,
addr = gl.getUniformLocation( program, path );
parseUniform( info, addr, this );
}
}
WebGLUniforms.prototype.setValue = function ( gl, name, value ) {
var u = this.map[ name ];
if ( u !== undefined ) u.setValue( gl, value, this.renderer );
};
WebGLUniforms.prototype.setOptional = function ( gl, object, name ) {
var v = object[ name ];
if ( v !== undefined ) this.setValue( gl, name, v );
};
// Static interface
WebGLUniforms.upload = function ( gl, seq, values, renderer ) {
for ( var i = 0, n = seq.length; i !== n; ++ i ) {
var u = seq[ i ],
v = values[ u.id ];
if ( v.needsUpdate !== false ) {
// note: always updating when .needsUpdate is undefined
u.setValue( gl, v.value, renderer );
}
}
};
WebGLUniforms.seqWithValue = function ( seq, values ) {
var r = [];
for ( var i = 0, n = seq.length; i !== n; ++ i ) {
var u = seq[ i ];
if ( u.id in values ) r.push( u );
}
return r;
};
/**
* @author mrdoob / http://mrdoob.com/
*/
var ColorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF,
'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2,
'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50,
'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B,
'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B,
'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F,
'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3,
'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222,
'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700,
'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4,
'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00,
'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3,
'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA,
'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32,
'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3,
'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC,
'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD,
'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6,
'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9,
'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F,
'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE,
'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA,
'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0,
'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 };
function Color( r, g, b ) {
if ( g === undefined && b === undefined ) {
// r is THREE.Color, hex or string
return this.set( r );
}
return this.setRGB( r, g, b );
}
Object.assign( Color.prototype, {
isColor: true,
r: 1, g: 1, b: 1,
set: function ( value ) {
if ( value && value.isColor ) {
this.copy( value );
} else if ( typeof value === 'number' ) {
this.setHex( value );
} else if ( typeof value === 'string' ) {
this.setStyle( value );
}
return this;
},
setScalar: function ( scalar ) {
this.r = scalar;
this.g = scalar;
this.b = scalar;
return this;
},
setHex: function ( hex ) {
hex = Math.floor( hex );
this.r = ( hex >> 16 & 255 ) / 255;
this.g = ( hex >> 8 & 255 ) / 255;
this.b = ( hex & 255 ) / 255;
return this;
},
setRGB: function ( r, g, b ) {
this.r = r;
this.g = g;
this.b = b;
return this;
},
setHSL: function () {
function hue2rgb( p, q, t ) {
if ( t < 0 ) t += 1;
if ( t > 1 ) t -= 1;
if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t;
if ( t < 1 / 2 ) return q;
if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t );
return p;
}
return function setHSL( h, s, l ) {
// h,s,l ranges are in 0.0 - 1.0
h = _Math.euclideanModulo( h, 1 );
s = _Math.clamp( s, 0, 1 );
l = _Math.clamp( l, 0, 1 );
if ( s === 0 ) {
this.r = this.g = this.b = l;
} else {
var p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s );
var q = ( 2 * l ) - p;
this.r = hue2rgb( q, p, h + 1 / 3 );
this.g = hue2rgb( q, p, h );
this.b = hue2rgb( q, p, h - 1 / 3 );
}
return this;
};
}(),
setStyle: function ( style ) {
function handleAlpha( string ) {
if ( string === undefined ) return;
if ( parseFloat( string ) < 1 ) {
console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' );
}
}
var m;
if ( m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec( style ) ) {
// rgb / hsl
var color;
var name = m[ 1 ];
var components = m[ 2 ];
switch ( name ) {
case 'rgb':
case 'rgba':
if ( color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
// rgb(255,0,0) rgba(255,0,0,0.5)
this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255;
this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255;
this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255;
handleAlpha( color[ 5 ] );
return this;
}
if ( color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
// rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100;
this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100;
this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100;
handleAlpha( color[ 5 ] );
return this;
}
break;
case 'hsl':
case 'hsla':
if ( color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
// hsl(120,50%,50%) hsla(120,50%,50%,0.5)
var h = parseFloat( color[ 1 ] ) / 360;
var s = parseInt( color[ 2 ], 10 ) / 100;
var l = parseInt( color[ 3 ], 10 ) / 100;
handleAlpha( color[ 5 ] );
return this.setHSL( h, s, l );
}
break;
}
} else if ( m = /^\#([A-Fa-f0-9]+)$/.exec( style ) ) {
// hex color
var hex = m[ 1 ];
var size = hex.length;
if ( size === 3 ) {
// #ff0
this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255;
this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255;
this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255;
return this;
} else if ( size === 6 ) {
// #ff0000
this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255;
this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255;
this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255;
return this;
}
}
if ( style && style.length > 0 ) {
// color keywords
var hex = ColorKeywords[ style ];
if ( hex !== undefined ) {
// red
this.setHex( hex );
} else {
// unknown color
console.warn( 'THREE.Color: Unknown color ' + style );
}
}
return this;
},
clone: function () {
return new this.constructor( this.r, this.g, this.b );
},
copy: function ( color ) {
this.r = color.r;
this.g = color.g;
this.b = color.b;
return this;
},
copyGammaToLinear: function ( color, gammaFactor ) {
if ( gammaFactor === undefined ) gammaFactor = 2.0;
this.r = Math.pow( color.r, gammaFactor );
this.g = Math.pow( color.g, gammaFactor );
this.b = Math.pow( color.b, gammaFactor );
return this;
},
copyLinearToGamma: function ( color, gammaFactor ) {
if ( gammaFactor === undefined ) gammaFactor = 2.0;
var safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0;
this.r = Math.pow( color.r, safeInverse );
this.g = Math.pow( color.g, safeInverse );
this.b = Math.pow( color.b, safeInverse );
return this;
},
convertGammaToLinear: function () {
var r = this.r, g = this.g, b = this.b;
this.r = r * r;
this.g = g * g;
this.b = b * b;
return this;
},
convertLinearToGamma: function () {
this.r = Math.sqrt( this.r );
this.g = Math.sqrt( this.g );
this.b = Math.sqrt( this.b );
return this;
},
getHex: function () {
return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0;
},
getHexString: function () {
return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 );
},
getHSL: function ( optionalTarget ) {
// h,s,l ranges are in 0.0 - 1.0
var hsl = optionalTarget || { h: 0, s: 0, l: 0 };
var r = this.r, g = this.g, b = this.b;
var max = Math.max( r, g, b );
var min = Math.min( r, g, b );
var hue, saturation;
var lightness = ( min + max ) / 2.0;
if ( min === max ) {
hue = 0;
saturation = 0;
} else {
var delta = max - min;
saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min );
switch ( max ) {
case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break;
case g: hue = ( b - r ) / delta + 2; break;
case b: hue = ( r - g ) / delta + 4; break;
}
hue /= 6;
}
hsl.h = hue;
hsl.s = saturation;
hsl.l = lightness;
return hsl;
},
getStyle: function () {
return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')';
},
offsetHSL: function ( h, s, l ) {
var hsl = this.getHSL();
hsl.h += h; hsl.s += s; hsl.l += l;
this.setHSL( hsl.h, hsl.s, hsl.l );
return this;
},
add: function ( color ) {
this.r += color.r;
this.g += color.g;
this.b += color.b;
return this;
},
addColors: function ( color1, color2 ) {
this.r = color1.r + color2.r;
this.g = color1.g + color2.g;
this.b = color1.b + color2.b;
return this;
},
addScalar: function ( s ) {
this.r += s;
this.g += s;
this.b += s;
return this;
},
sub: function( color ) {
this.r = Math.max( 0, this.r - color.r );
this.g = Math.max( 0, this.g - color.g );
this.b = Math.max( 0, this.b - color.b );
return this;
},
multiply: function ( color ) {
this.r *= color.r;
this.g *= color.g;
this.b *= color.b;
return this;
},
multiplyScalar: function ( s ) {
this.r *= s;
this.g *= s;
this.b *= s;
return this;
},
lerp: function ( color, alpha ) {
this.r += ( color.r - this.r ) * alpha;
this.g += ( color.g - this.g ) * alpha;
this.b += ( color.b - this.b ) * alpha;
return this;
},
equals: function ( c ) {
return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.r = array[ offset ];
this.g = array[ offset + 1 ];
this.b = array[ offset + 2 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.r;
array[ offset + 1 ] = this.g;
array[ offset + 2 ] = this.b;
return array;
},
toJSON: function () {
return this.getHex();
}
} );
/**
* Uniforms library for shared webgl shaders
*/
var UniformsLib = {
common: {
diffuse: { value: new Color( 0xeeeeee ) },
opacity: { value: 1.0 },
map: { value: null },
offsetRepeat: { value: new Vector4( 0, 0, 1, 1 ) },
specularMap: { value: null },
alphaMap: { value: null },
envMap: { value: null },
flipEnvMap: { value: - 1 },
reflectivity: { value: 1.0 },
refractionRatio: { value: 0.98 }
},
aomap: {
aoMap: { value: null },
aoMapIntensity: { value: 1 }
},
lightmap: {
lightMap: { value: null },
lightMapIntensity: { value: 1 }
},
emissivemap: {
emissiveMap: { value: null }
},
bumpmap: {
bumpMap: { value: null },
bumpScale: { value: 1 }
},
normalmap: {
normalMap: { value: null },
normalScale: { value: new Vector2( 1, 1 ) }
},
displacementmap: {
displacementMap: { value: null },
displacementScale: { value: 1 },
displacementBias: { value: 0 }
},
roughnessmap: {
roughnessMap: { value: null }
},
metalnessmap: {
metalnessMap: { value: null }
},
gradientmap: {
gradientMap: { value: null }
},
fog: {
fogDensity: { value: 0.00025 },
fogNear: { value: 1 },
fogFar: { value: 2000 },
fogColor: { value: new Color( 0xffffff ) }
},
lights: {
ambientLightColor: { value: [] },
directionalLights: { value: [], properties: {
direction: {},
color: {},
shadow: {},
shadowBias: {},
shadowRadius: {},
shadowMapSize: {}
} },
directionalShadowMap: { value: [] },
directionalShadowMatrix: { value: [] },
spotLights: { value: [], properties: {
color: {},
position: {},
direction: {},
distance: {},
coneCos: {},
penumbraCos: {},
decay: {},
shadow: {},
shadowBias: {},
shadowRadius: {},
shadowMapSize: {}
} },
spotShadowMap: { value: [] },
spotShadowMatrix: { value: [] },
pointLights: { value: [], properties: {
color: {},
position: {},
decay: {},
distance: {},
shadow: {},
shadowBias: {},
shadowRadius: {},
shadowMapSize: {}
} },
pointShadowMap: { value: [] },
pointShadowMatrix: { value: [] },
hemisphereLights: { value: [], properties: {
direction: {},
skyColor: {},
groundColor: {}
} },
// TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src
rectAreaLights: { value: [], properties: {
color: {},
position: {},
width: {},
height: {}
} }
},
points: {
diffuse: { value: new Color( 0xeeeeee ) },
opacity: { value: 1.0 },
size: { value: 1.0 },
scale: { value: 1.0 },
map: { value: null },
offsetRepeat: { value: new Vector4( 0, 0, 1, 1 ) }
}
};
/**
* Uniform Utilities
*/
var UniformsUtils = {
merge: function ( uniforms ) {
var merged = {};
for ( var u = 0; u < uniforms.length; u ++ ) {
var tmp = this.clone( uniforms[ u ] );
for ( var p in tmp ) {
merged[ p ] = tmp[ p ];
}
}
return merged;
},
clone: function ( uniforms_src ) {
var uniforms_dst = {};
for ( var u in uniforms_src ) {
uniforms_dst[ u ] = {};
for ( var p in uniforms_src[ u ] ) {
var parameter_src = uniforms_src[ u ][ p ];
if ( parameter_src && ( parameter_src.isColor ||
parameter_src.isMatrix3 || parameter_src.isMatrix4 ||
parameter_src.isVector2 || parameter_src.isVector3 || parameter_src.isVector4 ||
parameter_src.isTexture ) ) {
uniforms_dst[ u ][ p ] = parameter_src.clone();
} else if ( Array.isArray( parameter_src ) ) {
uniforms_dst[ u ][ p ] = parameter_src.slice();
} else {
uniforms_dst[ u ][ p ] = parameter_src;
}
}
}
return uniforms_dst;
}
};
var alphamap_fragment = "#ifdef USE_ALPHAMAP\r\n\r\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\r\n\r\n#endif\r\n";
var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\r\n\r\n\tuniform sampler2D alphaMap;\r\n\r\n#endif\r\n";
var alphatest_fragment = "#ifdef ALPHATEST\r\n\r\n\tif ( diffuseColor.a < ALPHATEST ) discard;\r\n\r\n#endif\r\n";
var aomap_fragment = "#ifdef USE_AOMAP\r\n\r\n\t// reads channel R, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\r\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\r\n\r\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\r\n\r\n\t#if defined( USE_ENVMAP ) && defined( PHYSICAL )\r\n\r\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\r\n\r\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\r\n\r\n\t#endif\r\n\r\n#endif\r\n";
var aomap_pars_fragment = "#ifdef USE_AOMAP\r\n\r\n\tuniform sampler2D aoMap;\r\n\tuniform float aoMapIntensity;\r\n\r\n#endif";
var begin_vertex = "\r\nvec3 transformed = vec3( position );\r\n";
var beginnormal_vertex = "\r\nvec3 objectNormal = vec3( normal );\r\n";
var bsdfs = "float punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\r\n\r\n\tif( decayExponent > 0.0 ) {\r\n\r\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\r\n\r\n\t\t// based upon Frostbite 3 Moving to Physically-based Rendering\r\n\t\t// page 32, equation 26: E[window1]\r\n\t\t// http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr_v2.pdf\r\n\t\t// this is intended to be used on spot and point lights who are represented as luminous intensity\r\n\t\t// but who must be converted to luminous irradiance for surface lighting calculation\r\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\r\n\t\tfloat maxDistanceCutoffFactor = pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\r\n\t\treturn distanceFalloff * maxDistanceCutoffFactor;\r\n\r\n#else\r\n\r\n\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\r\n\r\n#endif\r\n\r\n\t}\r\n\r\n\treturn 1.0;\r\n\r\n}\r\n\r\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\r\n\r\n\treturn RECIPROCAL_PI * diffuseColor;\r\n\r\n} // validated\r\n\r\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\r\n\r\n\t// Original approximation by Christophe Schlick '94\r\n\t// float fresnel = pow( 1.0 - dotLH, 5.0 );\r\n\r\n\t// Optimized variant (presented by Epic at SIGGRAPH '13)\r\n\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\r\n\r\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\r\n\r\n} // validated\r\n\r\n// Microfacet Models for Refraction through Rough Surfaces - equation (34)\r\n// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html\r\n// alpha is \"roughness squared\" in Disneys reparameterization\r\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\r\n\r\n\t// geometry term = G(l)⋅G(v) / 4(n⋅l)(n⋅v)\r\n\r\n\tfloat a2 = pow2( alpha );\r\n\r\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\r\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\r\n\r\n\treturn 1.0 / ( gl * gv );\r\n\r\n} // validated\r\n\r\n// Moving Frostbite to Physically Based Rendering 2.0 - page 12, listing 2\r\n// http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr_v2.pdf\r\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\r\n\r\n\tfloat a2 = pow2( alpha );\r\n\r\n\t// dotNL and dotNV are explicitly swapped. This is not a mistake.\r\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\r\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\r\n\r\n\treturn 0.5 / max( gv + gl, EPSILON );\r\n}\r\n\r\n// Microfacet Models for Refraction through Rough Surfaces - equation (33)\r\n// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html\r\n// alpha is \"roughness squared\" in Disneys reparameterization\r\nfloat D_GGX( const in float alpha, const in float dotNH ) {\r\n\r\n\tfloat a2 = pow2( alpha );\r\n\r\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0; // avoid alpha = 0 with dotNH = 1\r\n\r\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\r\n\r\n}\r\n\r\n// GGX Distribution, Schlick Fresnel, GGX-Smith Visibility\r\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\r\n\r\n\tfloat alpha = pow2( roughness ); // UE4's roughness\r\n\r\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\r\n\r\n\tfloat dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );\r\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\r\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\r\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\r\n\r\n\tvec3 F = F_Schlick( specularColor, dotLH );\r\n\r\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\r\n\r\n\tfloat D = D_GGX( alpha, dotNH );\r\n\r\n\treturn F * ( G * D );\r\n\r\n} // validated\r\n\r\n// Rect Area Light\r\n\r\n// Area light computation code adapted from:\r\n// Real-Time Polygonal-Light Shading with Linearly Transformed Cosines\r\n// By: Eric Heitz, Jonathan Dupuy, Stephen Hill and David Neubelt\r\n// https://drive.google.com/file/d/0BzvWIdpUpRx_d09ndGVjNVJzZjA/view\r\n// https://eheitzresearch.wordpress.com/415-2/\r\n// http://blog.selfshadow.com/sandbox/ltc.html\r\n\r\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\r\n\r\n\tconst float LUT_SIZE = 64.0;\r\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\r\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\r\n\r\n\tfloat theta = acos( dot( N, V ) );\r\n\r\n\t// Parameterization of texture:\r\n\t// sqrt(roughness) -> [0,1]\r\n\t// theta -> [0, PI/2]\r\n\tvec2 uv = vec2(\r\n\t\tsqrt( saturate( roughness ) ),\r\n\t\tsaturate( theta / ( 0.5 * PI ) ) );\r\n\r\n\t// Ensure we don't have nonlinearities at the look-up table's edges\r\n\t// see: http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter24.html\r\n\t// \"Shader Analysis\" section\r\n\tuv = uv * LUT_SCALE + LUT_BIAS;\r\n\r\n\treturn uv;\r\n\r\n}\r\n\r\n// Real-Time Area Lighting: a Journey from Research to Production\r\n// By: Stephen Hill & Eric Heitz\r\n// http://advances.realtimerendering.com/s2016/s2016_ltc_rnd.pdf\r\n// An approximation for the form factor of a clipped rectangle.\r\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\r\n\r\n\tfloat l = length( f );\r\n\r\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\r\n\r\n}\r\n\r\n// Real-Time Polygonal-Light Shading with Linearly Transformed Cosines\r\n// also Real-Time Area Lighting: a Journey from Research to Production\r\n// http://advances.realtimerendering.com/s2016/s2016_ltc_rnd.pdf\r\n// Normalization by 2*PI is incorporated in this function itself.\r\n// theta/sin(theta) is approximated by rational polynomial\r\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\r\n\r\n\tfloat x = dot( v1, v2 );\r\n\r\n\tfloat y = abs( x );\r\n\tfloat a = 0.86267 + (0.49788 + 0.01436 * y ) * y;\r\n\tfloat b = 3.45068 + (4.18814 + y) * y;\r\n\tfloat v = a / b;\r\n\r\n\tfloat theta_sintheta = (x > 0.0) ? v : 0.5 * inversesqrt( 1.0 - x * x ) - v;\r\n\r\n\treturn cross( v1, v2 ) * theta_sintheta;\r\n\r\n}\r\n\r\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\r\n\r\n\t// bail if point is on back side of plane of light\r\n\t// assumes ccw winding order of light vertices\r\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\r\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\r\n\tvec3 lightNormal = cross( v1, v2 );\r\n\r\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\r\n\r\n\t// construct orthonormal basis around N\r\n\tvec3 T1, T2;\r\n\tT1 = normalize( V - N * dot( V, N ) );\r\n\tT2 = - cross( N, T1 ); // negated from paper; possibly due to a different assumed handedness of world coordinate system\r\n\r\n\t// compute transform\r\n\tmat3 mat = mInv * transpose( mat3( T1, T2, N ) );\r\n\r\n\t// transform rect\r\n\tvec3 coords[ 4 ];\r\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\r\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\r\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\r\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\r\n\r\n\t// project rect onto sphere\r\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\r\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\r\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\r\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\r\n\r\n\t// calculate vector form factor\r\n\tvec3 vectorFormFactor = vec3( 0.0 );\r\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\r\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\r\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\r\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\r\n\r\n\t// adjust for horizon clipping\r\n\tvec3 result = vec3( LTC_ClippedSphereFormFactor( vectorFormFactor ) );\r\n\r\n\treturn result;\r\n\r\n}\r\n\r\n// End Rect Area Light\r\n\r\n// ref: https://www.unrealengine.com/blog/physically-based-shading-on-mobile - environmentBRDF for GGX on mobile\r\nvec3 BRDF_Specular_GGX_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\r\n\r\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\r\n\r\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\r\n\r\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\r\n\r\n\tvec4 r = roughness * c0 + c1;\r\n\r\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\r\n\r\n\tvec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;\r\n\r\n\treturn specularColor * AB.x + AB.y;\r\n\r\n} // validated\r\n\r\n\r\nfloat G_BlinnPhong_Implicit( ) {\r\n\r\n\t// geometry term is (n dot l)(n dot v) / 4(n dot l)(n dot v)\r\n\treturn 0.25;\r\n\r\n}\r\n\r\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\r\n\r\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\r\n\r\n}\r\n\r\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\r\n\r\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\r\n\r\n\t//float dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );\r\n\t//float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\r\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\r\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\r\n\r\n\tvec3 F = F_Schlick( specularColor, dotLH );\r\n\r\n\tfloat G = G_BlinnPhong_Implicit( );\r\n\r\n\tfloat D = D_BlinnPhong( shininess, dotNH );\r\n\r\n\treturn F * ( G * D );\r\n\r\n} // validated\r\n\r\n// source: http://simonstechblog.blogspot.ca/2011/12/microfacet-brdf.html\r\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\r\n\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\r\n}\r\n\r\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\r\n\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\r\n}\r\n";
var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\r\n\r\n\tuniform sampler2D bumpMap;\r\n\tuniform float bumpScale;\r\n\r\n\t// Derivative maps - bump mapping unparametrized surfaces by Morten Mikkelsen\r\n\t// http://mmikkelsen3d.blogspot.sk/2011/07/derivative-maps.html\r\n\r\n\t// Evaluate the derivative of the height w.r.t. screen-space using forward differencing (listing 2)\r\n\r\n\tvec2 dHdxy_fwd() {\r\n\r\n\t\tvec2 dSTdx = dFdx( vUv );\r\n\t\tvec2 dSTdy = dFdy( vUv );\r\n\r\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\r\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\r\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\r\n\r\n\t\treturn vec2( dBx, dBy );\r\n\r\n\t}\r\n\r\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\r\n\r\n\t\t// Workaround for Adreno 3XX dFd*( vec3 ) bug. See #9988\r\n\r\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\r\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\r\n\t\tvec3 vN = surf_norm;\t\t// normalized\r\n\r\n\t\tvec3 R1 = cross( vSigmaY, vN );\r\n\t\tvec3 R2 = cross( vN, vSigmaX );\r\n\r\n\t\tfloat fDet = dot( vSigmaX, R1 );\r\n\r\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\r\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\r\n\r\n\t}\r\n\r\n#endif\r\n";
var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\r\n\r\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; ++ i ) {\r\n\r\n\t\tvec4 plane = clippingPlanes[ i ];\r\n\t\tif ( dot( vViewPosition, plane.xyz ) > plane.w ) discard;\r\n\r\n\t}\r\n\t\t\r\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\r\n\r\n\t\tbool clipped = true;\r\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; ++ i ) {\r\n\t\t\tvec4 plane = clippingPlanes[ i ];\r\n\t\t\tclipped = ( dot( vViewPosition, plane.xyz ) > plane.w ) && clipped;\r\n\t\t}\r\n\r\n\t\tif ( clipped ) discard;\r\n\t\r\n\t#endif\r\n\r\n#endif\r\n";
var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\r\n\r\n\t#if ! defined( PHYSICAL ) && ! defined( PHONG )\r\n\t\tvarying vec3 vViewPosition;\r\n\t#endif\r\n\r\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\r\n\r\n#endif\r\n";
var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\r\n\tvarying vec3 vViewPosition;\r\n#endif\r\n";
var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\r\n\tvViewPosition = - mvPosition.xyz;\r\n#endif\r\n\r\n";
var color_fragment = "#ifdef USE_COLOR\r\n\r\n\tdiffuseColor.rgb *= vColor;\r\n\r\n#endif";
var color_pars_fragment = "#ifdef USE_COLOR\r\n\r\n\tvarying vec3 vColor;\r\n\r\n#endif\r\n";
var color_pars_vertex = "#ifdef USE_COLOR\r\n\r\n\tvarying vec3 vColor;\r\n\r\n#endif";
var color_vertex = "#ifdef USE_COLOR\r\n\r\n\tvColor.xyz = color.xyz;\r\n\r\n#endif";
var common = "#define PI 3.14159265359\r\n#define PI2 6.28318530718\r\n#define PI_HALF 1.5707963267949\r\n#define RECIPROCAL_PI 0.31830988618\r\n#define RECIPROCAL_PI2 0.15915494\r\n#define LOG2 1.442695\r\n#define EPSILON 1e-6\r\n\r\n#define saturate(a) clamp( a, 0.0, 1.0 )\r\n#define whiteCompliment(a) ( 1.0 - saturate( a ) )\r\n\r\nfloat pow2( const in float x ) { return x*x; }\r\nfloat pow3( const in float x ) { return x*x*x; }\r\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\r\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\r\n// expects values in the range of [0,1]x[0,1], returns values in the [0,1] range.\r\n// do not collapse into a single function per: http://byteblacksmith.com/improvements-to-the-canonical-one-liner-glsl-rand-for-opengl-es-2-0/\r\nhighp float rand( const in vec2 uv ) {\r\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\r\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\r\n\treturn fract(sin(sn) * c);\r\n}\r\n\r\nstruct IncidentLight {\r\n\tvec3 color;\r\n\tvec3 direction;\r\n\tbool visible;\r\n};\r\n\r\nstruct ReflectedLight {\r\n\tvec3 directDiffuse;\r\n\tvec3 directSpecular;\r\n\tvec3 indirectDiffuse;\r\n\tvec3 indirectSpecular;\r\n};\r\n\r\nstruct GeometricContext {\r\n\tvec3 position;\r\n\tvec3 normal;\r\n\tvec3 viewDir;\r\n};\r\n\r\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\r\n\r\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\r\n\r\n}\r\n\r\n// http://en.wikibooks.org/wiki/GLSL_Programming/Applying_Matrix_Transformations\r\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\r\n\r\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\r\n\r\n}\r\n\r\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\r\n\r\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\r\n\r\n\treturn - distance * planeNormal + point;\r\n\r\n}\r\n\r\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\r\n\r\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\r\n\r\n}\r\n\r\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\r\n\r\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\r\n\r\n}\r\n\r\nmat3 transpose( const in mat3 v ) {\r\n\r\n\tmat3 tmp;\r\n\ttmp[0] = vec3(v[0].x, v[1].x, v[2].x);\r\n\ttmp[1] = vec3(v[0].y, v[1].y, v[2].y);\r\n\ttmp[2] = vec3(v[0].z, v[1].z, v[2].z);\r\n\r\n\treturn tmp;\r\n\r\n}\r\n";
var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\r\n\r\n#define cubeUV_textureSize (1024.0)\r\n\r\nint getFaceFromDirection(vec3 direction) {\r\n\tvec3 absDirection = abs(direction);\r\n\tint face = -1;\r\n\tif( absDirection.x > absDirection.z ) {\r\n\t\tif(absDirection.x > absDirection.y )\r\n\t\t\tface = direction.x > 0.0 ? 0 : 3;\r\n\t\telse\r\n\t\t\tface = direction.y > 0.0 ? 1 : 4;\r\n\t}\r\n\telse {\r\n\t\tif(absDirection.z > absDirection.y )\r\n\t\t\tface = direction.z > 0.0 ? 2 : 5;\r\n\t\telse\r\n\t\t\tface = direction.y > 0.0 ? 1 : 4;\r\n\t}\r\n\treturn face;\r\n}\r\n#define cubeUV_maxLods1 (log2(cubeUV_textureSize*0.25) - 1.0)\r\n#define cubeUV_rangeClamp (exp2((6.0 - 1.0) * 2.0))\r\n\r\nvec2 MipLevelInfo( vec3 vec, float roughnessLevel, float roughness ) {\r\n\tfloat scale = exp2(cubeUV_maxLods1 - roughnessLevel);\r\n\tfloat dxRoughness = dFdx(roughness);\r\n\tfloat dyRoughness = dFdy(roughness);\r\n\tvec3 dx = dFdx( vec * scale * dxRoughness );\r\n\tvec3 dy = dFdy( vec * scale * dyRoughness );\r\n\tfloat d = max( dot( dx, dx ), dot( dy, dy ) );\r\n\t// Clamp the value to the max mip level counts. hard coded to 6 mips\r\n\td = clamp(d, 1.0, cubeUV_rangeClamp);\r\n\tfloat mipLevel = 0.5 * log2(d);\r\n\treturn vec2(floor(mipLevel), fract(mipLevel));\r\n}\r\n\r\n#define cubeUV_maxLods2 (log2(cubeUV_textureSize*0.25) - 2.0)\r\n#define cubeUV_rcpTextureSize (1.0 / cubeUV_textureSize)\r\n\r\nvec2 getCubeUV(vec3 direction, float roughnessLevel, float mipLevel) {\r\n\tmipLevel = roughnessLevel > cubeUV_maxLods2 - 3.0 ? 0.0 : mipLevel;\r\n\tfloat a = 16.0 * cubeUV_rcpTextureSize;\r\n\r\n\tvec2 exp2_packed = exp2( vec2( roughnessLevel, mipLevel ) );\r\n\tvec2 rcp_exp2_packed = vec2( 1.0 ) / exp2_packed;\r\n\t// float powScale = exp2(roughnessLevel + mipLevel);\r\n\tfloat powScale = exp2_packed.x * exp2_packed.y;\r\n\t// float scale = 1.0 / exp2(roughnessLevel + 2.0 + mipLevel);\r\n\tfloat scale = rcp_exp2_packed.x * rcp_exp2_packed.y * 0.25;\r\n\t// float mipOffset = 0.75*(1.0 - 1.0/exp2(mipLevel))/exp2(roughnessLevel);\r\n\tfloat mipOffset = 0.75*(1.0 - rcp_exp2_packed.y) * rcp_exp2_packed.x;\r\n\r\n\tbool bRes = mipLevel == 0.0;\r\n\tscale = bRes && (scale < a) ? a : scale;\r\n\r\n\tvec3 r;\r\n\tvec2 offset;\r\n\tint face = getFaceFromDirection(direction);\r\n\r\n\tfloat rcpPowScale = 1.0 / powScale;\r\n\r\n\tif( face == 0) {\r\n\t\tr = vec3(direction.x, -direction.z, direction.y);\r\n\t\toffset = vec2(0.0+mipOffset,0.75 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\r\n\t}\r\n\telse if( face == 1) {\r\n\t\tr = vec3(direction.y, direction.x, direction.z);\r\n\t\toffset = vec2(scale+mipOffset, 0.75 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\r\n\t}\r\n\telse if( face == 2) {\r\n\t\tr = vec3(direction.z, direction.x, direction.y);\r\n\t\toffset = vec2(2.0*scale+mipOffset, 0.75 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\r\n\t}\r\n\telse if( face == 3) {\r\n\t\tr = vec3(direction.x, direction.z, direction.y);\r\n\t\toffset = vec2(0.0+mipOffset,0.5 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\r\n\t}\r\n\telse if( face == 4) {\r\n\t\tr = vec3(direction.y, direction.x, -direction.z);\r\n\t\toffset = vec2(scale+mipOffset, 0.5 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\r\n\t}\r\n\telse {\r\n\t\tr = vec3(direction.z, -direction.x, direction.y);\r\n\t\toffset = vec2(2.0*scale+mipOffset, 0.5 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\r\n\t}\r\n\tr = normalize(r);\r\n\tfloat texelOffset = 0.5 * cubeUV_rcpTextureSize;\r\n\tvec2 s = ( r.yz / abs( r.x ) + vec2( 1.0 ) ) * 0.5;\r\n\tvec2 base = offset + vec2( texelOffset );\r\n\treturn base + s * ( scale - 2.0 * texelOffset );\r\n}\r\n\r\n#define cubeUV_maxLods3 (log2(cubeUV_textureSize*0.25) - 3.0)\r\n\r\nvec4 textureCubeUV(vec3 reflectedDirection, float roughness ) {\r\n\tfloat roughnessVal = roughness* cubeUV_maxLods3;\r\n\tfloat r1 = floor(roughnessVal);\r\n\tfloat r2 = r1 + 1.0;\r\n\tfloat t = fract(roughnessVal);\r\n\tvec2 mipInfo = MipLevelInfo(reflectedDirection, r1, roughness);\r\n\tfloat s = mipInfo.y;\r\n\tfloat level0 = mipInfo.x;\r\n\tfloat level1 = level0 + 1.0;\r\n\tlevel1 = level1 > 5.0 ? 5.0 : level1;\r\n\r\n\t// round to nearest mipmap if we are not interpolating.\r\n\tlevel0 += min( floor( s + 0.5 ), 5.0 );\r\n\r\n\t// Tri linear interpolation.\r\n\tvec2 uv_10 = getCubeUV(reflectedDirection, r1, level0);\r\n\tvec4 color10 = envMapTexelToLinear(texture2D(envMap, uv_10));\r\n\r\n\tvec2 uv_20 = getCubeUV(reflectedDirection, r2, level0);\r\n\tvec4 color20 = envMapTexelToLinear(texture2D(envMap, uv_20));\r\n\r\n\tvec4 result = mix(color10, color20, t);\r\n\r\n\treturn vec4(result.rgb, 1.0);\r\n}\r\n\r\n#endif\r\n";
var defaultnormal_vertex = "vec3 transformedNormal = normalMatrix * objectNormal;\r\n\r\n#ifdef FLIP_SIDED\r\n\r\n\ttransformedNormal = - transformedNormal;\r\n\r\n#endif\r\n";
var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\r\n\r\n\tuniform sampler2D displacementMap;\r\n\tuniform float displacementScale;\r\n\tuniform float displacementBias;\r\n\r\n#endif\r\n";
var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\r\n\r\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, uv ).x * displacementScale + displacementBias );\r\n\r\n#endif\r\n";
var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\r\n\r\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\r\n\r\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\r\n\r\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\r\n\r\n#endif\r\n";
var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\r\n\r\n\tuniform sampler2D emissiveMap;\r\n\r\n#endif\r\n";
var encodings_fragment = " gl_FragColor = linearToOutputTexel( gl_FragColor );\r\n";
var encodings_pars_fragment = "// For a discussion of what this is, please read this: http://lousodrome.net/blog/light/2013/05/26/gamma-correct-and-hdr-rendering-in-a-32-bits-buffer/\r\n\r\nvec4 LinearToLinear( in vec4 value ) {\r\n\treturn value;\r\n}\r\n\r\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\r\n\treturn vec4( pow( value.xyz, vec3( gammaFactor ) ), value.w );\r\n}\r\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\r\n\treturn vec4( pow( value.xyz, vec3( 1.0 / gammaFactor ) ), value.w );\r\n}\r\n\r\nvec4 sRGBToLinear( in vec4 value ) {\r\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.w );\r\n}\r\nvec4 LinearTosRGB( in vec4 value ) {\r\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.w );\r\n}\r\n\r\nvec4 RGBEToLinear( in vec4 value ) {\r\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\r\n}\r\nvec4 LinearToRGBE( in vec4 value ) {\r\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\r\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\r\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\r\n// return vec4( value.brg, ( 3.0 + 128.0 ) / 256.0 );\r\n}\r\n\r\n// reference: http://iwasbeingirony.blogspot.ca/2010/06/difference-between-rgbm-and-rgbd.html\r\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\r\n\treturn vec4( value.xyz * value.w * maxRange, 1.0 );\r\n}\r\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\r\n\tfloat maxRGB = max( value.x, max( value.g, value.b ) );\r\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\r\n\tM = ceil( M * 255.0 ) / 255.0;\r\n\treturn vec4( value.rgb / ( M * maxRange ), M );\r\n}\r\n\r\n// reference: http://iwasbeingirony.blogspot.ca/2010/06/difference-between-rgbm-and-rgbd.html\r\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\r\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\r\n}\r\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\r\n\tfloat maxRGB = max( value.x, max( value.g, value.b ) );\r\n\tfloat D = max( maxRange / maxRGB, 1.0 );\r\n\tD = min( floor( D ) / 255.0, 1.0 );\r\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\r\n}\r\n\r\n// LogLuv reference: http://graphicrants.blogspot.ca/2009/04/rgbm-color-encoding.html\r\n\r\n// M matrix, for encoding\r\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\r\nvec4 LinearToLogLuv( in vec4 value ) {\r\n\tvec3 Xp_Y_XYZp = value.rgb * cLogLuvM;\r\n\tXp_Y_XYZp = max(Xp_Y_XYZp, vec3(1e-6, 1e-6, 1e-6));\r\n\tvec4 vResult;\r\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\r\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\r\n\tvResult.w = fract(Le);\r\n\tvResult.z = (Le - (floor(vResult.w*255.0))/255.0)/255.0;\r\n\treturn vResult;\r\n}\r\n\r\n// Inverse M matrix, for decoding\r\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\r\nvec4 LogLuvToLinear( in vec4 value ) {\r\n\tfloat Le = value.z * 255.0 + value.w;\r\n\tvec3 Xp_Y_XYZp;\r\n\tXp_Y_XYZp.y = exp2((Le - 127.0) / 2.0);\r\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\r\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\r\n\tvec3 vRGB = Xp_Y_XYZp.rgb * cLogLuvInverseM;\r\n\treturn vec4( max(vRGB, 0.0), 1.0 );\r\n}\r\n";
var envmap_fragment = "#ifdef USE_ENVMAP\r\n\r\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\r\n\r\n\t\tvec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );\r\n\r\n\t\t// Transforming Normal Vectors with the Inverse Transformation\r\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\r\n\r\n\t\t#ifdef ENVMAP_MODE_REFLECTION\r\n\r\n\t\t\tvec3 reflectVec = reflect( cameraToVertex, worldNormal );\r\n\r\n\t\t#else\r\n\r\n\t\t\tvec3 reflectVec = refract( cameraToVertex, worldNormal, refractionRatio );\r\n\r\n\t\t#endif\r\n\r\n\t#else\r\n\r\n\t\tvec3 reflectVec = vReflect;\r\n\r\n\t#endif\r\n\r\n\t#ifdef ENVMAP_TYPE_CUBE\r\n\r\n\t\tvec4 envColor = textureCube( envMap, flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\r\n\r\n\t#elif defined( ENVMAP_TYPE_EQUIREC )\r\n\r\n\t\tvec2 sampleUV;\r\n\t\tsampleUV.y = asin( flipNormal * reflectVec.y ) * RECIPROCAL_PI + 0.5;\r\n\t\tsampleUV.x = atan( flipNormal * reflectVec.z, flipNormal * reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\r\n\t\tvec4 envColor = texture2D( envMap, sampleUV );\r\n\r\n\t#elif defined( ENVMAP_TYPE_SPHERE )\r\n\r\n\t\tvec3 reflectView = flipNormal * normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0, 0.0, 1.0 ) );\r\n\t\tvec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );\r\n\r\n\t#else\r\n\r\n\t\tvec4 envColor = vec4( 0.0 );\r\n\r\n\t#endif\r\n\r\n\tenvColor = envMapTexelToLinear( envColor );\r\n\r\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\r\n\r\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\r\n\r\n\t#elif defined( ENVMAP_BLENDING_MIX )\r\n\r\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\r\n\r\n\t#elif defined( ENVMAP_BLENDING_ADD )\r\n\r\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\r\n\r\n\t#endif\r\n\r\n#endif\r\n";
var envmap_pars_fragment = "#if defined( USE_ENVMAP ) || defined( PHYSICAL )\r\n\tuniform float reflectivity;\r\n\tuniform float envMapIntensity;\r\n#endif\r\n\r\n#ifdef USE_ENVMAP\r\n\r\n\t#if ! defined( PHYSICAL ) && ( defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) )\r\n\t\tvarying vec3 vWorldPosition;\r\n\t#endif\r\n\r\n\t#ifdef ENVMAP_TYPE_CUBE\r\n\t\tuniform samplerCube envMap;\r\n\t#else\r\n\t\tuniform sampler2D envMap;\r\n\t#endif\r\n\tuniform float flipEnvMap;\r\n\r\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( PHYSICAL )\r\n\t\tuniform float refractionRatio;\r\n\t#else\r\n\t\tvarying vec3 vReflect;\r\n\t#endif\r\n\r\n#endif\r\n";
var envmap_pars_vertex = "#ifdef USE_ENVMAP\r\n\r\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\r\n\t\tvarying vec3 vWorldPosition;\r\n\r\n\t#else\r\n\r\n\t\tvarying vec3 vReflect;\r\n\t\tuniform float refractionRatio;\r\n\r\n\t#endif\r\n\r\n#endif\r\n";
var envmap_vertex = "#ifdef USE_ENVMAP\r\n\r\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\r\n\r\n\t\tvWorldPosition = worldPosition.xyz;\r\n\r\n\t#else\r\n\r\n\t\tvec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );\r\n\r\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\r\n\r\n\t\t#ifdef ENVMAP_MODE_REFLECTION\r\n\r\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\r\n\r\n\t\t#else\r\n\r\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\r\n\r\n\t\t#endif\r\n\r\n\t#endif\r\n\r\n#endif\r\n";
var fog_vertex = "\r\n#ifdef USE_FOG\r\nfogDepth = -mvPosition.z;\r\n#endif";
var fog_pars_vertex = "#ifdef USE_FOG\r\n\r\n varying float fogDepth;\r\n\r\n#endif\r\n";
var fog_fragment = "#ifdef USE_FOG\r\n\r\n\t#ifdef FOG_EXP2\r\n\r\n\t\tfloat fogFactor = whiteCompliment( exp2( - fogDensity * fogDensity * fogDepth * fogDepth * LOG2 ) );\r\n\r\n\t#else\r\n\r\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\r\n\r\n\t#endif\r\n\r\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\r\n\r\n#endif\r\n";
var fog_pars_fragment = "#ifdef USE_FOG\r\n\r\n\tuniform vec3 fogColor;\r\n\tvarying float fogDepth;\r\n\r\n\t#ifdef FOG_EXP2\r\n\r\n\t\tuniform float fogDensity;\r\n\r\n\t#else\r\n\r\n\t\tuniform float fogNear;\r\n\t\tuniform float fogFar;\r\n\r\n\t#endif\r\n\r\n#endif\r\n";
var gradientmap_pars_fragment = "#ifdef TOON\r\n\r\n\tuniform sampler2D gradientMap;\r\n\r\n\tvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\r\n\r\n\t\t// dotNL will be from -1.0 to 1.0\r\n\t\tfloat dotNL = dot( normal, lightDirection );\r\n\t\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\r\n\r\n\t\t#ifdef USE_GRADIENTMAP\r\n\r\n\t\t\treturn texture2D( gradientMap, coord ).rgb;\r\n\r\n\t\t#else\r\n\r\n\t\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\r\n\r\n\t\t#endif\r\n\r\n\r\n\t}\r\n\r\n#endif\r\n";
var lightmap_fragment = "#ifdef USE_LIGHTMAP\r\n\r\n\treflectedLight.indirectDiffuse += PI * texture2D( lightMap, vUv2 ).xyz * lightMapIntensity; // factor of PI should not be present; included here to prevent breakage\r\n\r\n#endif\r\n";
var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\r\n\r\n\tuniform sampler2D lightMap;\r\n\tuniform float lightMapIntensity;\r\n\r\n#endif";
var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\r\n\r\nGeometricContext geometry;\r\ngeometry.position = mvPosition.xyz;\r\ngeometry.normal = normalize( transformedNormal );\r\ngeometry.viewDir = normalize( -mvPosition.xyz );\r\n\r\nGeometricContext backGeometry;\r\nbackGeometry.position = geometry.position;\r\nbackGeometry.normal = -geometry.normal;\r\nbackGeometry.viewDir = geometry.viewDir;\r\n\r\nvLightFront = vec3( 0.0 );\r\n\r\n#ifdef DOUBLE_SIDED\r\n\tvLightBack = vec3( 0.0 );\r\n#endif\r\n\r\nIncidentLight directLight;\r\nfloat dotNL;\r\nvec3 directLightColor_Diffuse;\r\n\r\n#if NUM_POINT_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\r\n\r\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\r\n\r\n\t\tdotNL = dot( geometry.normal, directLight.direction );\r\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\r\n\r\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#ifdef DOUBLE_SIDED\r\n\r\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#endif\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if NUM_SPOT_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\r\n\r\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\r\n\r\n\t\tdotNL = dot( geometry.normal, directLight.direction );\r\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\r\n\r\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#ifdef DOUBLE_SIDED\r\n\r\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#endif\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n\r\n#if NUM_DIR_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\r\n\r\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\r\n\r\n\t\tdotNL = dot( geometry.normal, directLight.direction );\r\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\r\n\r\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#ifdef DOUBLE_SIDED\r\n\r\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#endif\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if NUM_HEMI_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\r\n\r\n\t\tvLightFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\r\n\r\n\t\t#ifdef DOUBLE_SIDED\r\n\r\n\t\t\tvLightBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\r\n\r\n\t\t#endif\r\n\r\n\t}\r\n\r\n#endif\r\n";
var lights_pars = "uniform vec3 ambientLightColor;\r\n\r\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\r\n\r\n\tvec3 irradiance = ambientLightColor;\r\n\r\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\tirradiance *= PI;\r\n\r\n\t#endif\r\n\r\n\treturn irradiance;\r\n\r\n}\r\n\r\n#if NUM_DIR_LIGHTS > 0\r\n\r\n\tstruct DirectionalLight {\r\n\t\tvec3 direction;\r\n\t\tvec3 color;\r\n\r\n\t\tint shadow;\r\n\t\tfloat shadowBias;\r\n\t\tfloat shadowRadius;\r\n\t\tvec2 shadowMapSize;\r\n\t};\r\n\r\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\r\n\r\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\r\n\r\n\t\tdirectLight.color = directionalLight.color;\r\n\t\tdirectLight.direction = directionalLight.direction;\r\n\t\tdirectLight.visible = true;\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n#if NUM_POINT_LIGHTS > 0\r\n\r\n\tstruct PointLight {\r\n\t\tvec3 position;\r\n\t\tvec3 color;\r\n\t\tfloat distance;\r\n\t\tfloat decay;\r\n\r\n\t\tint shadow;\r\n\t\tfloat shadowBias;\r\n\t\tfloat shadowRadius;\r\n\t\tvec2 shadowMapSize;\r\n\t};\r\n\r\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\r\n\r\n\t// directLight is an out parameter as having it as a return value caused compiler errors on some devices\r\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\r\n\r\n\t\tvec3 lVector = pointLight.position - geometry.position;\r\n\t\tdirectLight.direction = normalize( lVector );\r\n\r\n\t\tfloat lightDistance = length( lVector );\r\n\r\n\t\tdirectLight.color = pointLight.color;\r\n\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\r\n\t\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n#if NUM_SPOT_LIGHTS > 0\r\n\r\n\tstruct SpotLight {\r\n\t\tvec3 position;\r\n\t\tvec3 direction;\r\n\t\tvec3 color;\r\n\t\tfloat distance;\r\n\t\tfloat decay;\r\n\t\tfloat coneCos;\r\n\t\tfloat penumbraCos;\r\n\r\n\t\tint shadow;\r\n\t\tfloat shadowBias;\r\n\t\tfloat shadowRadius;\r\n\t\tvec2 shadowMapSize;\r\n\t};\r\n\r\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\r\n\r\n\t// directLight is an out parameter as having it as a return value caused compiler errors on some devices\r\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) {\r\n\r\n\t\tvec3 lVector = spotLight.position - geometry.position;\r\n\t\tdirectLight.direction = normalize( lVector );\r\n\r\n\t\tfloat lightDistance = length( lVector );\r\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\r\n\r\n\t\tif ( angleCos > spotLight.coneCos ) {\r\n\r\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\r\n\r\n\t\t\tdirectLight.color = spotLight.color;\r\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\r\n\t\t\tdirectLight.visible = true;\r\n\r\n\t\t} else {\r\n\r\n\t\t\tdirectLight.color = vec3( 0.0 );\r\n\t\t\tdirectLight.visible = false;\r\n\r\n\t\t}\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n#if NUM_RECT_AREA_LIGHTS > 0\r\n\r\n\tstruct RectAreaLight {\r\n\t\tvec3 color;\r\n\t\tvec3 position;\r\n\t\tvec3 halfWidth;\r\n\t\tvec3 halfHeight;\r\n\t};\r\n\r\n\t// Pre-computed values of LinearTransformedCosine approximation of BRDF\r\n\t// BRDF approximation Texture is 64x64\r\n\tuniform sampler2D ltcMat; // RGBA Float\r\n\tuniform sampler2D ltcMag; // Alpha Float (only has w component)\r\n\r\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\r\n\r\n#endif\r\n\r\n\r\n#if NUM_HEMI_LIGHTS > 0\r\n\r\n\tstruct HemisphereLight {\r\n\t\tvec3 direction;\r\n\t\tvec3 skyColor;\r\n\t\tvec3 groundColor;\r\n\t};\r\n\r\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\r\n\r\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\r\n\r\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\r\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\r\n\r\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\r\n\r\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\t\tirradiance *= PI;\r\n\r\n\t\t#endif\r\n\r\n\t\treturn irradiance;\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n#if defined( USE_ENVMAP ) && defined( PHYSICAL )\r\n\r\n\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\r\n\r\n\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\r\n\r\n\t\t#ifdef ENVMAP_TYPE_CUBE\r\n\r\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\r\n\r\n\t\t\t// TODO: replace with properly filtered cubemaps and access the irradiance LOD level, be it the last LOD level\r\n\t\t\t// of a specular cubemap, or just the default level of a specially created irradiance cubemap.\r\n\r\n\t\t\t#ifdef TEXTURE_LOD_EXT\r\n\r\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\r\n\r\n\t\t\t#else\r\n\r\n\t\t\t\t// force the bias high to get the last LOD level as it is the most blurred.\r\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\r\n\r\n\t\t\t#endif\r\n\r\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\r\n\r\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\r\n\r\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\r\n\t\t\tvec4 envMapColor = textureCubeUV( queryVec, 1.0 );\r\n\r\n\t\t#else\r\n\r\n\t\t\tvec4 envMapColor = vec4( 0.0 );\r\n\r\n\t\t#endif\r\n\r\n\t\treturn PI * envMapColor.rgb * envMapIntensity;\r\n\r\n\t}\r\n\r\n\t// taken from here: http://casual-effects.blogspot.ca/2011/08/plausible-environment-lighting-in-two.html\r\n\tfloat getSpecularMIPLevel( const in float blinnShininessExponent, const in int maxMIPLevel ) {\r\n\r\n\t\t//float envMapWidth = pow( 2.0, maxMIPLevelScalar );\r\n\t\t//float desiredMIPLevel = log2( envMapWidth * sqrt( 3.0 ) ) - 0.5 * log2( pow2( blinnShininessExponent ) + 1.0 );\r\n\r\n\t\tfloat maxMIPLevelScalar = float( maxMIPLevel );\r\n\t\tfloat desiredMIPLevel = maxMIPLevelScalar - 0.79248 - 0.5 * log2( pow2( blinnShininessExponent ) + 1.0 );\r\n\r\n\t\t// clamp to allowable LOD ranges.\r\n\t\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\r\n\r\n\t}\r\n\r\n\tvec3 getLightProbeIndirectRadiance( const in GeometricContext geometry, const in float blinnShininessExponent, const in int maxMIPLevel ) {\r\n\r\n\t\t#ifdef ENVMAP_MODE_REFLECTION\r\n\r\n\t\t\tvec3 reflectVec = reflect( -geometry.viewDir, geometry.normal );\r\n\r\n\t\t#else\r\n\r\n\t\t\tvec3 reflectVec = refract( -geometry.viewDir, geometry.normal, refractionRatio );\r\n\r\n\t\t#endif\r\n\r\n\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\r\n\r\n\t\tfloat specularMIPLevel = getSpecularMIPLevel( blinnShininessExponent, maxMIPLevel );\r\n\r\n\t\t#ifdef ENVMAP_TYPE_CUBE\r\n\r\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\r\n\r\n\t\t\t#ifdef TEXTURE_LOD_EXT\r\n\r\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\r\n\r\n\t\t\t#else\r\n\r\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\r\n\r\n\t\t\t#endif\r\n\r\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\r\n\r\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\r\n\r\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\r\n\t\t\tvec4 envMapColor = textureCubeUV(queryReflectVec, BlinnExponentToGGXRoughness(blinnShininessExponent));\r\n\r\n\t\t#elif defined( ENVMAP_TYPE_EQUIREC )\r\n\r\n\t\t\tvec2 sampleUV;\r\n\t\t\tsampleUV.y = saturate( reflectVec.y * 0.5 + 0.5 );\r\n\t\t\tsampleUV.x = atan( reflectVec.z, reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\r\n\r\n\t\t\t#ifdef TEXTURE_LOD_EXT\r\n\r\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, sampleUV, specularMIPLevel );\r\n\r\n\t\t\t#else\r\n\r\n\t\t\t\tvec4 envMapColor = texture2D( envMap, sampleUV, specularMIPLevel );\r\n\r\n\t\t\t#endif\r\n\r\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\r\n\r\n\t\t#elif defined( ENVMAP_TYPE_SPHERE )\r\n\r\n\t\t\tvec3 reflectView = normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0,0.0,1.0 ) );\r\n\r\n\t\t\t#ifdef TEXTURE_LOD_EXT\r\n\r\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\r\n\r\n\t\t\t#else\r\n\r\n\t\t\t\tvec4 envMapColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\r\n\r\n\t\t\t#endif\r\n\r\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\r\n\r\n\t\t#endif\r\n\r\n\t\treturn envMapColor.rgb * envMapIntensity;\r\n\r\n\t}\r\n\r\n#endif\r\n";
var lights_phong_fragment = "BlinnPhongMaterial material;\r\nmaterial.diffuseColor = diffuseColor.rgb;\r\nmaterial.specularColor = specular;\r\nmaterial.specularShininess = shininess;\r\nmaterial.specularStrength = specularStrength;\r\n";
var lights_phong_pars_fragment = "varying vec3 vViewPosition;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n\r\nstruct BlinnPhongMaterial {\r\n\r\n\tvec3\tdiffuseColor;\r\n\tvec3\tspecularColor;\r\n\tfloat\tspecularShininess;\r\n\tfloat\tspecularStrength;\r\n\r\n};\r\n\r\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\t#ifdef TOON\r\n\r\n\t\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\r\n\r\n\t#else\r\n\r\n\t\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\r\n\t\tvec3 irradiance = dotNL * directLight.color;\r\n\r\n\t#endif\r\n\r\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\tirradiance *= PI; // punctual light\r\n\r\n\t#endif\r\n\r\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\r\n\r\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\r\n\r\n}\r\n\r\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\r\n\r\n}\r\n\r\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\r\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\r\n\r\n#define Material_LightProbeLOD( material )\t(0)\r\n";
var lights_physical_fragment = "PhysicalMaterial material;\r\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\r\nmaterial.specularRoughness = clamp( roughnessFactor, 0.04, 1.0 );\r\n#ifdef STANDARD\r\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\r\n#else\r\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\r\n\tmaterial.clearCoat = saturate( clearCoat ); // Burley clearcoat model\r\n\tmaterial.clearCoatRoughness = clamp( clearCoatRoughness, 0.04, 1.0 );\r\n#endif\r\n";
var lights_physical_pars_fragment = "struct PhysicalMaterial {\r\n\r\n\tvec3\tdiffuseColor;\r\n\tfloat\tspecularRoughness;\r\n\tvec3\tspecularColor;\r\n\r\n\t#ifndef STANDARD\r\n\t\tfloat clearCoat;\r\n\t\tfloat clearCoatRoughness;\r\n\t#endif\r\n\r\n};\r\n\r\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\r\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\r\n\r\n// Clear coat directional hemishperical reflectance (this approximation should be improved)\r\nfloat clearCoatDHRApprox( const in float roughness, const in float dotNL ) {\r\n\r\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\r\n\r\n}\r\n\r\n#if NUM_RECT_AREA_LIGHTS > 0\r\n\r\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\t\tvec3 normal = geometry.normal;\r\n\t\tvec3 viewDir = geometry.viewDir;\r\n\t\tvec3 position = geometry.position;\r\n\t\tvec3 lightPos = rectAreaLight.position;\r\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\r\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\r\n\t\tvec3 lightColor = rectAreaLight.color;\r\n\t\tfloat roughness = material.specularRoughness;\r\n\r\n\t\tvec3 rectCoords[ 4 ];\r\n\t\trectCoords[ 0 ] = lightPos - halfWidth - halfHeight; // counterclockwise\r\n\t\trectCoords[ 1 ] = lightPos + halfWidth - halfHeight;\r\n\t\trectCoords[ 2 ] = lightPos + halfWidth + halfHeight;\r\n\t\trectCoords[ 3 ] = lightPos - halfWidth + halfHeight;\r\n\r\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\r\n\r\n\t\tfloat norm = texture2D( ltcMag, uv ).a;\r\n\r\n\t\tvec4 t = texture2D( ltcMat, uv );\r\n\r\n\t\tmat3 mInv = mat3(\r\n\t\t\tvec3( 1, 0, t.y ),\r\n\t\t\tvec3( 0, t.z, 0 ),\r\n\t\t\tvec3( t.w, 0, t.x )\r\n\t\t);\r\n\r\n\t\treflectedLight.directSpecular += lightColor * material.specularColor * norm * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords ); // no fresnel\r\n\r\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1 ), rectCoords );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\r\n\r\n\tvec3 irradiance = dotNL * directLight.color;\r\n\r\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\tirradiance *= PI; // punctual light\r\n\r\n\t#endif\r\n\r\n\t#ifndef STANDARD\r\n\t\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\r\n\t#else\r\n\t\tfloat clearCoatDHR = 0.0;\r\n\t#endif\r\n\r\n\treflectedLight.directSpecular += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry, material.specularColor, material.specularRoughness );\r\n\r\n\treflectedLight.directDiffuse += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\r\n\r\n\t#ifndef STANDARD\r\n\r\n\t\treflectedLight.directSpecular += irradiance * material.clearCoat * BRDF_Specular_GGX( directLight, geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\r\n\r\n\t#endif\r\n\r\n}\r\n\r\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\r\n\r\n}\r\n\r\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 clearCoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\t#ifndef STANDARD\r\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\r\n\t\tfloat dotNL = dotNV;\r\n\t\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\r\n\t#else\r\n\t\tfloat clearCoatDHR = 0.0;\r\n\t#endif\r\n\r\n\treflectedLight.indirectSpecular += ( 1.0 - clearCoatDHR ) * radiance * BRDF_Specular_GGX_Environment( geometry, material.specularColor, material.specularRoughness );\r\n\r\n\t#ifndef STANDARD\r\n\r\n\t\treflectedLight.indirectSpecular += clearCoatRadiance * material.clearCoat * BRDF_Specular_GGX_Environment( geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\r\n\r\n\t#endif\r\n\r\n}\r\n\r\n#define RE_Direct\t\t\t\tRE_Direct_Physical\r\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\r\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\r\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\r\n\r\n#define Material_BlinnShininessExponent( material ) GGXRoughnessToBlinnExponent( material.specularRoughness )\r\n#define Material_ClearCoat_BlinnShininessExponent( material ) GGXRoughnessToBlinnExponent( material.clearCoatRoughness )\r\n\r\n// ref: http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr_v2.pdf\r\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\r\n\r\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\r\n\r\n}\r\n";
var lights_template = "\r\n\r\nGeometricContext geometry;\r\n\r\ngeometry.position = - vViewPosition;\r\ngeometry.normal = normal;\r\ngeometry.viewDir = normalize( vViewPosition );\r\n\r\nIncidentLight directLight;\r\n\r\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\r\n\r\n\tPointLight pointLight;\r\n\r\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\r\n\r\n\t\tpointLight = pointLights[ i ];\r\n\r\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\r\n\r\n\t\t#ifdef USE_SHADOWMAP\r\n\t\tdirectLight.color *= all( bvec2( pointLight.shadow, directLight.visible ) ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\r\n\t\t#endif\r\n\r\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\r\n\r\n\tSpotLight spotLight;\r\n\r\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\r\n\r\n\t\tspotLight = spotLights[ i ];\r\n\r\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\r\n\r\n\t\t#ifdef USE_SHADOWMAP\r\n\t\tdirectLight.color *= all( bvec2( spotLight.shadow, directLight.visible ) ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\r\n\t\t#endif\r\n\r\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\r\n\r\n\tDirectionalLight directionalLight;\r\n\r\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\r\n\r\n\t\tdirectionalLight = directionalLights[ i ];\r\n\r\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\r\n\r\n\t\t#ifdef USE_SHADOWMAP\r\n\t\tdirectLight.color *= all( bvec2( directionalLight.shadow, directLight.visible ) ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\r\n\t\t#endif\r\n\r\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\r\n\r\n\tRectAreaLight rectAreaLight;\r\n\r\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\r\n\r\n\t\trectAreaLight = rectAreaLights[ i ];\r\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if defined( RE_IndirectDiffuse )\r\n\r\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\r\n\r\n\t#ifdef USE_LIGHTMAP\r\n\r\n\t\tvec3 lightMapIrradiance = texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\r\n\r\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\t\tlightMapIrradiance *= PI; // factor of PI should not be present; included here to prevent breakage\r\n\r\n\t\t#endif\r\n\r\n\t\tirradiance += lightMapIrradiance;\r\n\r\n\t#endif\r\n\r\n\t#if ( NUM_HEMI_LIGHTS > 0 )\r\n\r\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\r\n\r\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\r\n\r\n\t\t}\r\n\r\n\t#endif\r\n\r\n\t#if defined( USE_ENVMAP ) && defined( PHYSICAL ) && defined( ENVMAP_TYPE_CUBE_UV )\r\n\r\n\t\t// TODO, replace 8 with the real maxMIPLevel\r\n\t\tirradiance += getLightProbeIndirectIrradiance( geometry, 8 );\r\n\r\n\t#endif\r\n\r\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\r\n\r\n#endif\r\n\r\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\r\n\r\n\t// TODO, replace 8 with the real maxMIPLevel\r\n\tvec3 radiance = getLightProbeIndirectRadiance( geometry, Material_BlinnShininessExponent( material ), 8 );\r\n\r\n\t#ifndef STANDARD\r\n\t\tvec3 clearCoatRadiance = getLightProbeIndirectRadiance( geometry, Material_ClearCoat_BlinnShininessExponent( material ), 8 );\r\n\t#else\r\n\t\tvec3 clearCoatRadiance = vec3( 0.0 );\r\n\t#endif\r\n\r\n\tRE_IndirectSpecular( radiance, clearCoatRadiance, geometry, material, reflectedLight );\r\n\r\n#endif\r\n";
var logdepthbuf_fragment = "#if defined(USE_LOGDEPTHBUF) && defined(USE_LOGDEPTHBUF_EXT)\r\n\r\n\tgl_FragDepthEXT = log2(vFragDepth) * logDepthBufFC * 0.5;\r\n\r\n#endif";
var logdepthbuf_pars_fragment = "#ifdef USE_LOGDEPTHBUF\r\n\r\n\tuniform float logDepthBufFC;\r\n\r\n\t#ifdef USE_LOGDEPTHBUF_EXT\r\n\r\n\t\tvarying float vFragDepth;\r\n\r\n\t#endif\r\n\r\n#endif\r\n";
var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\r\n\r\n\t#ifdef USE_LOGDEPTHBUF_EXT\r\n\r\n\t\tvarying float vFragDepth;\r\n\r\n\t#endif\r\n\r\n\tuniform float logDepthBufFC;\r\n\r\n#endif";
var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\r\n\r\n\tgl_Position.z = log2(max( EPSILON, gl_Position.w + 1.0 )) * logDepthBufFC;\r\n\r\n\t#ifdef USE_LOGDEPTHBUF_EXT\r\n\r\n\t\tvFragDepth = 1.0 + gl_Position.w;\r\n\r\n\t#else\r\n\r\n\t\tgl_Position.z = (gl_Position.z - 1.0) * gl_Position.w;\r\n\r\n\t#endif\r\n\r\n#endif\r\n";
var map_fragment = "#ifdef USE_MAP\r\n\r\n\tvec4 texelColor = texture2D( map, vUv );\r\n\r\n\ttexelColor = mapTexelToLinear( texelColor );\r\n\tdiffuseColor *= texelColor;\r\n\r\n#endif\r\n";
var map_pars_fragment = "#ifdef USE_MAP\r\n\r\n\tuniform sampler2D map;\r\n\r\n#endif\r\n";
var map_particle_fragment = "#ifdef USE_MAP\r\n\r\n\tvec4 mapTexel = texture2D( map, vec2( gl_PointCoord.x, 1.0 - gl_PointCoord.y ) * offsetRepeat.zw + offsetRepeat.xy );\r\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\r\n\r\n#endif\r\n";
var map_particle_pars_fragment = "#ifdef USE_MAP\r\n\r\n\tuniform vec4 offsetRepeat;\r\n\tuniform sampler2D map;\r\n\r\n#endif\r\n";
var metalnessmap_fragment = "float metalnessFactor = metalness;\r\n\r\n#ifdef USE_METALNESSMAP\r\n\r\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\r\n\r\n\t// reads channel B, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\r\n\tmetalnessFactor *= texelMetalness.b;\r\n\r\n#endif\r\n";
var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\r\n\r\n\tuniform sampler2D metalnessMap;\r\n\r\n#endif";
var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\r\n\r\n\tobjectNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];\r\n\tobjectNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];\r\n\tobjectNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];\r\n\tobjectNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];\r\n\r\n#endif\r\n";
var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\r\n\r\n\t#ifndef USE_MORPHNORMALS\r\n\r\n\tuniform float morphTargetInfluences[ 8 ];\r\n\r\n\t#else\r\n\r\n\tuniform float morphTargetInfluences[ 4 ];\r\n\r\n\t#endif\r\n\r\n#endif";
var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\r\n\r\n\ttransformed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];\r\n\ttransformed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];\r\n\ttransformed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];\r\n\ttransformed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];\r\n\r\n\t#ifndef USE_MORPHNORMALS\r\n\r\n\ttransformed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];\r\n\ttransformed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];\r\n\ttransformed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];\r\n\ttransformed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];\r\n\r\n\t#endif\r\n\r\n#endif\r\n";
var normal_flip = "#ifdef DOUBLE_SIDED\r\n\tfloat flipNormal = ( float( gl_FrontFacing ) * 2.0 - 1.0 );\r\n#else\r\n\tfloat flipNormal = 1.0;\r\n#endif\r\n";
var normal_fragment = "#ifdef FLAT_SHADED\r\n\r\n\t// Workaround for Adreno/Nexus5 not able able to do dFdx( vViewPosition ) ...\r\n\r\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\r\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\r\n\tvec3 normal = normalize( cross( fdx, fdy ) );\r\n\r\n#else\r\n\r\n\tvec3 normal = normalize( vNormal ) * flipNormal;\r\n\r\n#endif\r\n\r\n#ifdef USE_NORMALMAP\r\n\r\n\tnormal = perturbNormal2Arb( -vViewPosition, normal );\r\n\r\n#elif defined( USE_BUMPMAP )\r\n\r\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\r\n\r\n#endif\r\n";
var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\r\n\r\n\tuniform sampler2D normalMap;\r\n\tuniform vec2 normalScale;\r\n\r\n\t// Per-Pixel Tangent Space Normal Mapping\r\n\t// http://hacksoflife.blogspot.ch/2009/11/per-pixel-tangent-space-normal-mapping.html\r\n\r\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm ) {\r\n\r\n\t\t// Workaround for Adreno 3XX dFd*( vec3 ) bug. See #9988\r\n\r\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\r\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\r\n\t\tvec2 st0 = dFdx( vUv.st );\r\n\t\tvec2 st1 = dFdy( vUv.st );\r\n\r\n\t\tvec3 S = normalize( q0 * st1.t - q1 * st0.t );\r\n\t\tvec3 T = normalize( -q0 * st1.s + q1 * st0.s );\r\n\t\tvec3 N = normalize( surf_norm );\r\n\r\n\t\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\r\n\t\tmapN.xy = normalScale * mapN.xy;\r\n\t\tmat3 tsn = mat3( S, T, N );\r\n\t\treturn normalize( tsn * mapN );\r\n\r\n\t}\r\n\r\n#endif\r\n";
var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\r\n\treturn normalize( normal ) * 0.5 + 0.5;\r\n}\r\n\r\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\r\n\treturn 1.0 - 2.0 * rgb.xyz;\r\n}\r\n\r\nconst float PackUpscale = 256. / 255.; // fraction -> 0..1 (including 1)\r\nconst float UnpackDownscale = 255. / 256.; // 0..1 -> fraction (excluding 1)\r\n\r\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\r\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\r\n\r\nconst float ShiftRight8 = 1. / 256.;\r\n\r\nvec4 packDepthToRGBA( const in float v ) {\r\n\tvec4 r = vec4( fract( v * PackFactors ), v );\r\n\tr.yzw -= r.xyz * ShiftRight8; // tidy overflow\r\n\treturn r * PackUpscale;\r\n}\r\n\r\nfloat unpackRGBAToDepth( const in vec4 v ) {\r\n\treturn dot( v, UnpackFactors );\r\n}\r\n\r\n// NOTE: viewZ/eyeZ is < 0 when in front of the camera per OpenGL conventions\r\n\r\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\r\n\treturn ( viewZ + near ) / ( near - far );\r\n}\r\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\r\n\treturn linearClipZ * ( near - far ) - near;\r\n}\r\n\r\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\r\n\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\r\n}\r\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\r\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\r\n}\r\n";
var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\r\n\r\n\t// Get get normal blending with premultipled, use with CustomBlending, OneFactor, OneMinusSrcAlphaFactor, AddEquation.\r\n\tgl_FragColor.rgb *= gl_FragColor.a;\r\n\r\n#endif\r\n";
var project_vertex = "vec4 mvPosition = modelViewMatrix * vec4( transformed, 1.0 );\r\n\r\ngl_Position = projectionMatrix * mvPosition;\r\n";
var dithering_fragment = "#if defined( DITHERING )\r\n\r\n gl_FragColor.rgb = dithering( gl_FragColor.rgb );\r\n\r\n#endif\r\n";
var dithering_pars_fragment = "#if defined( DITHERING )\r\n\r\n\t// based on https://www.shadertoy.com/view/MslGR8\r\n\tvec3 dithering( vec3 color ) {\r\n\t\t//Calculate grid position\r\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\r\n\r\n\t\t//Shift the individual colors differently, thus making it even harder to see the dithering pattern\r\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\r\n\r\n\t\t//modify shift acording to grid position.\r\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\r\n\r\n\t\t//shift the color by dither_shift\r\n\t\treturn color + dither_shift_RGB;\r\n\t}\r\n\r\n#endif\r\n";
var roughnessmap_fragment = "float roughnessFactor = roughness;\r\n\r\n#ifdef USE_ROUGHNESSMAP\r\n\r\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\r\n\r\n\t// reads channel G, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\r\n\troughnessFactor *= texelRoughness.g;\r\n\r\n#endif\r\n";
var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\r\n\r\n\tuniform sampler2D roughnessMap;\r\n\r\n#endif";
var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\r\n\r\n\t#if NUM_DIR_LIGHTS > 0\r\n\r\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHTS ];\r\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\t#if NUM_SPOT_LIGHTS > 0\r\n\r\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHTS ];\r\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\t#if NUM_POINT_LIGHTS > 0\r\n\r\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHTS ];\r\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\r\n\r\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\r\n\r\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\r\n\r\n\t}\r\n\r\n\tfloat texture2DShadowLerp( sampler2D depths, vec2 size, vec2 uv, float compare ) {\r\n\r\n\t\tconst vec2 offset = vec2( 0.0, 1.0 );\r\n\r\n\t\tvec2 texelSize = vec2( 1.0 ) / size;\r\n\t\tvec2 centroidUV = floor( uv * size + 0.5 ) / size;\r\n\r\n\t\tfloat lb = texture2DCompare( depths, centroidUV + texelSize * offset.xx, compare );\r\n\t\tfloat lt = texture2DCompare( depths, centroidUV + texelSize * offset.xy, compare );\r\n\t\tfloat rb = texture2DCompare( depths, centroidUV + texelSize * offset.yx, compare );\r\n\t\tfloat rt = texture2DCompare( depths, centroidUV + texelSize * offset.yy, compare );\r\n\r\n\t\tvec2 f = fract( uv * size + 0.5 );\r\n\r\n\t\tfloat a = mix( lb, lt, f.y );\r\n\t\tfloat b = mix( rb, rt, f.y );\r\n\t\tfloat c = mix( a, b, f.x );\r\n\r\n\t\treturn c;\r\n\r\n\t}\r\n\r\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\r\n\r\n\t\tfloat shadow = 1.0;\r\n\r\n\t\tshadowCoord.xyz /= shadowCoord.w;\r\n\t\tshadowCoord.z += shadowBias;\r\n\r\n\t\t// if ( something && something ) breaks ATI OpenGL shader compiler\r\n\t\t// if ( all( something, something ) ) using this instead\r\n\r\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\r\n\t\tbool inFrustum = all( inFrustumVec );\r\n\r\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\r\n\r\n\t\tbool frustumTest = all( frustumTestVec );\r\n\r\n\t\tif ( frustumTest ) {\r\n\r\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\r\n\r\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\r\n\r\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\r\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\r\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\r\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\r\n\r\n\t\t\tshadow = (\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\r\n\t\t\t) * ( 1.0 / 9.0 );\r\n\r\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\r\n\r\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\r\n\r\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\r\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\r\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\r\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\r\n\r\n\t\t\tshadow = (\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy, shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\r\n\t\t\t) * ( 1.0 / 9.0 );\r\n\r\n\t\t#else // no percentage-closer filtering:\r\n\r\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\r\n\r\n\t\t#endif\r\n\r\n\t\t}\r\n\r\n\t\treturn shadow;\r\n\r\n\t}\r\n\r\n\t// cubeToUV() maps a 3D direction vector suitable for cube texture mapping to a 2D\r\n\t// vector suitable for 2D texture mapping. This code uses the following layout for the\r\n\t// 2D texture:\r\n\t//\r\n\t// xzXZ\r\n\t// y Y\r\n\t//\r\n\t// Y - Positive y direction\r\n\t// y - Negative y direction\r\n\t// X - Positive x direction\r\n\t// x - Negative x direction\r\n\t// Z - Positive z direction\r\n\t// z - Negative z direction\r\n\t//\r\n\t// Source and test bed:\r\n\t// https://gist.github.com/tschw/da10c43c467ce8afd0c4\r\n\r\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\r\n\r\n\t\t// Number of texels to avoid at the edge of each square\r\n\r\n\t\tvec3 absV = abs( v );\r\n\r\n\t\t// Intersect unit cube\r\n\r\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\r\n\t\tabsV *= scaleToCube;\r\n\r\n\t\t// Apply scale to avoid seams\r\n\r\n\t\t// two texels less per square (one texel will do for NEAREST)\r\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\r\n\r\n\t\t// Unwrap\r\n\r\n\t\t// space: -1 ... 1 range for each square\r\n\t\t//\r\n\t\t// #X##\t\tdim := ( 4 , 2 )\r\n\t\t// # #\t\tcenter := ( 1 , 1 )\r\n\r\n\t\tvec2 planar = v.xy;\r\n\r\n\t\tfloat almostATexel = 1.5 * texelSizeY;\r\n\t\tfloat almostOne = 1.0 - almostATexel;\r\n\r\n\t\tif ( absV.z >= almostOne ) {\r\n\r\n\t\t\tif ( v.z > 0.0 )\r\n\t\t\t\tplanar.x = 4.0 - v.x;\r\n\r\n\t\t} else if ( absV.x >= almostOne ) {\r\n\r\n\t\t\tfloat signX = sign( v.x );\r\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\r\n\r\n\t\t} else if ( absV.y >= almostOne ) {\r\n\r\n\t\t\tfloat signY = sign( v.y );\r\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\r\n\t\t\tplanar.y = v.z * signY - 2.0;\r\n\r\n\t\t}\r\n\r\n\t\t// Transform to UV space\r\n\r\n\t\t// scale := 0.5 / dim\r\n\t\t// translate := ( center + 0.5 ) / dim\r\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\r\n\r\n\t}\r\n\r\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\r\n\r\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\r\n\r\n\t\t// for point lights, the uniform @vShadowCoord is re-purposed to hold\r\n\t\t// the distance from the light to the world-space position of the fragment.\r\n\t\tvec3 lightToPosition = shadowCoord.xyz;\r\n\r\n\t\t// bd3D = base direction 3D\r\n\t\tvec3 bd3D = normalize( lightToPosition );\r\n\t\t// dp = distance from light to fragment position\r\n\t\tfloat dp = ( length( lightToPosition ) - shadowBias ) / 1000.0;\r\n\r\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT )\r\n\r\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\r\n\r\n\t\t\treturn (\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\r\n\t\t\t) * ( 1.0 / 9.0 );\r\n\r\n\t\t#else // no percentage-closer filtering\r\n\r\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\r\n\r\n\t\t#endif\r\n\r\n\t}\r\n\r\n#endif\r\n";
var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\r\n\r\n\t#if NUM_DIR_LIGHTS > 0\r\n\r\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHTS ];\r\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\t#if NUM_SPOT_LIGHTS > 0\r\n\r\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHTS ];\r\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\t#if NUM_POINT_LIGHTS > 0\r\n\r\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHTS ];\r\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\r\n\r\n#endif\r\n";
var shadowmap_vertex = "#ifdef USE_SHADOWMAP\r\n\r\n\t#if NUM_DIR_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\r\n\r\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * worldPosition;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\t#if NUM_SPOT_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\r\n\r\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * worldPosition;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\t#if NUM_POINT_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\r\n\r\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * worldPosition;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\r\n\r\n#endif\r\n";
var shadowmask_pars_fragment = "float getShadowMask() {\r\n\r\n\tfloat shadow = 1.0;\r\n\r\n\t#ifdef USE_SHADOWMAP\r\n\r\n\t#if NUM_DIR_LIGHTS > 0\r\n\r\n\tDirectionalLight directionalLight;\r\n\r\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\r\n\r\n\t\tdirectionalLight = directionalLights[ i ];\r\n\t\tshadow *= bool( directionalLight.shadow ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\t#if NUM_SPOT_LIGHTS > 0\r\n\r\n\tSpotLight spotLight;\r\n\r\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\r\n\r\n\t\tspotLight = spotLights[ i ];\r\n\t\tshadow *= bool( spotLight.shadow ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\t#if NUM_POINT_LIGHTS > 0\r\n\r\n\tPointLight pointLight;\r\n\r\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\r\n\r\n\t\tpointLight = pointLights[ i ];\r\n\t\tshadow *= bool( pointLight.shadow ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\r\n\r\n\t#endif\r\n\r\n\treturn shadow;\r\n\r\n}\r\n";
var skinbase_vertex = "#ifdef USE_SKINNING\r\n\r\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\r\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\r\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\r\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\r\n\r\n#endif";
var skinning_pars_vertex = "#ifdef USE_SKINNING\r\n\r\n\tuniform mat4 bindMatrix;\r\n\tuniform mat4 bindMatrixInverse;\r\n\r\n\t#ifdef BONE_TEXTURE\r\n\r\n\t\tuniform sampler2D boneTexture;\r\n\t\tuniform int boneTextureSize;\r\n\r\n\t\tmat4 getBoneMatrix( const in float i ) {\r\n\r\n\t\t\tfloat j = i * 4.0;\r\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\r\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\r\n\r\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\r\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\r\n\r\n\t\t\ty = dy * ( y + 0.5 );\r\n\r\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\r\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\r\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\r\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\r\n\r\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\r\n\r\n\t\t\treturn bone;\r\n\r\n\t\t}\r\n\r\n\t#else\r\n\r\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\r\n\r\n\t\tmat4 getBoneMatrix( const in float i ) {\r\n\r\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\r\n\t\t\treturn bone;\r\n\r\n\t\t}\r\n\r\n\t#endif\r\n\r\n#endif\r\n";
var skinning_vertex = "#ifdef USE_SKINNING\r\n\r\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\r\n\r\n\tvec4 skinned = vec4( 0.0 );\r\n\tskinned += boneMatX * skinVertex * skinWeight.x;\r\n\tskinned += boneMatY * skinVertex * skinWeight.y;\r\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\r\n\tskinned += boneMatW * skinVertex * skinWeight.w;\r\n\r\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\r\n\r\n#endif\r\n";
var skinnormal_vertex = "#ifdef USE_SKINNING\r\n\r\n\tmat4 skinMatrix = mat4( 0.0 );\r\n\tskinMatrix += skinWeight.x * boneMatX;\r\n\tskinMatrix += skinWeight.y * boneMatY;\r\n\tskinMatrix += skinWeight.z * boneMatZ;\r\n\tskinMatrix += skinWeight.w * boneMatW;\r\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\r\n\r\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\r\n\r\n#endif\r\n";
var specularmap_fragment = "float specularStrength;\r\n\r\n#ifdef USE_SPECULARMAP\r\n\r\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\r\n\tspecularStrength = texelSpecular.r;\r\n\r\n#else\r\n\r\n\tspecularStrength = 1.0;\r\n\r\n#endif";
var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\r\n\r\n\tuniform sampler2D specularMap;\r\n\r\n#endif";
var tonemapping_fragment = "#if defined( TONE_MAPPING )\r\n\r\n gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\r\n\r\n#endif\r\n";
var tonemapping_pars_fragment = "#define saturate(a) clamp( a, 0.0, 1.0 )\r\n\r\nuniform float toneMappingExposure;\r\nuniform float toneMappingWhitePoint;\r\n\r\n// exposure only\r\nvec3 LinearToneMapping( vec3 color ) {\r\n\r\n\treturn toneMappingExposure * color;\r\n\r\n}\r\n\r\n// source: https://www.cs.utah.edu/~reinhard/cdrom/\r\nvec3 ReinhardToneMapping( vec3 color ) {\r\n\r\n\tcolor *= toneMappingExposure;\r\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\r\n\r\n}\r\n\r\n// source: http://filmicgames.com/archives/75\r\n#define Uncharted2Helper( x ) max( ( ( x * ( 0.15 * x + 0.10 * 0.50 ) + 0.20 * 0.02 ) / ( x * ( 0.15 * x + 0.50 ) + 0.20 * 0.30 ) ) - 0.02 / 0.30, vec3( 0.0 ) )\r\nvec3 Uncharted2ToneMapping( vec3 color ) {\r\n\r\n\t// John Hable's filmic operator from Uncharted 2 video game\r\n\tcolor *= toneMappingExposure;\r\n\treturn saturate( Uncharted2Helper( color ) / Uncharted2Helper( vec3( toneMappingWhitePoint ) ) );\r\n\r\n}\r\n\r\n// source: http://filmicgames.com/archives/75\r\nvec3 OptimizedCineonToneMapping( vec3 color ) {\r\n\r\n\t// optimized filmic operator by Jim Hejl and Richard Burgess-Dawson\r\n\tcolor *= toneMappingExposure;\r\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\r\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\r\n\r\n}\r\n";
var uv_pars_fragment = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\r\n\r\n\tvarying vec2 vUv;\r\n\r\n#endif";
var uv_pars_vertex = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\r\n\r\n\tvarying vec2 vUv;\r\n\tuniform vec4 offsetRepeat;\r\n\r\n#endif\r\n";
var uv_vertex = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\r\n\r\n\tvUv = uv * offsetRepeat.zw + offsetRepeat.xy;\r\n\r\n#endif";
var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\r\n\r\n\tvarying vec2 vUv2;\r\n\r\n#endif";
var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\r\n\r\n\tattribute vec2 uv2;\r\n\tvarying vec2 vUv2;\r\n\r\n#endif";
var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\r\n\r\n\tvUv2 = uv2;\r\n\r\n#endif";
var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( PHONG ) || defined( PHYSICAL ) || defined( LAMBERT ) || defined ( USE_SHADOWMAP )\r\n\r\n\tvec4 worldPosition = modelMatrix * vec4( transformed, 1.0 );\r\n\r\n#endif\r\n";
var cube_frag = "uniform samplerCube tCube;\r\nuniform float tFlip;\r\nuniform float opacity;\r\n\r\nvarying vec3 vWorldPosition;\r\n\r\n#include <common>\r\n\r\nvoid main() {\r\n\r\n\tgl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );\r\n\tgl_FragColor.a *= opacity;\r\n\r\n}\r\n";
var cube_vert = "varying vec3 vWorldPosition;\r\n\r\n#include <common>\r\n\r\nvoid main() {\r\n\r\n\tvWorldPosition = transformDirection( position, modelMatrix );\r\n\r\n\t#include <begin_vertex>\r\n\t#include <project_vertex>\r\n\r\n}\r\n";
var depth_frag = "#if DEPTH_PACKING == 3200\r\n\r\n\tuniform float opacity;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <uv_pars_fragment>\r\n#include <map_pars_fragment>\r\n#include <alphamap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec4 diffuseColor = vec4( 1.0 );\r\n\r\n\t#if DEPTH_PACKING == 3200\r\n\r\n\t\tdiffuseColor.a = opacity;\r\n\r\n\t#endif\r\n\r\n\t#include <map_fragment>\r\n\t#include <alphamap_fragment>\r\n\t#include <alphatest_fragment>\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\r\n\t#if DEPTH_PACKING == 3200\r\n\r\n\t\tgl_FragColor = vec4( vec3( gl_FragCoord.z ), opacity );\r\n\r\n\t#elif DEPTH_PACKING == 3201\r\n\r\n\t\tgl_FragColor = packDepthToRGBA( gl_FragCoord.z );\r\n\r\n\t#endif\r\n\r\n}\r\n";
var depth_vert = "#include <common>\r\n#include <uv_pars_vertex>\r\n#include <displacementmap_pars_vertex>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <uv_vertex>\r\n\r\n\t#include <skinbase_vertex>\r\n\r\n\t#ifdef USE_DISPLACEMENTMAP\r\n\r\n\t\t#include <beginnormal_vertex>\r\n\t\t#include <morphnormal_vertex>\r\n\t\t#include <skinnormal_vertex>\r\n\r\n\t#endif\r\n\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <displacementmap_vertex>\r\n\t#include <project_vertex>\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\r\n}\r\n";
var distanceRGBA_frag = "uniform vec3 lightPos;\r\nvarying vec4 vWorldPosition;\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main () {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tgl_FragColor = packDepthToRGBA( length( vWorldPosition.xyz - lightPos.xyz ) / 1000.0 );\r\n\r\n}\r\n";
var distanceRGBA_vert = "varying vec4 vWorldPosition;\r\n\r\n#include <common>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <skinbase_vertex>\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <project_vertex>\r\n\t#include <worldpos_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\r\n\tvWorldPosition = worldPosition;\r\n\r\n}\r\n";
var equirect_frag = "uniform sampler2D tEquirect;\r\nuniform float tFlip;\r\n\r\nvarying vec3 vWorldPosition;\r\n\r\n#include <common>\r\n\r\nvoid main() {\r\n\r\n\t// \tgl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );\r\n\tvec3 direction = normalize( vWorldPosition );\r\n\tvec2 sampleUV;\r\n\tsampleUV.y = saturate( tFlip * direction.y * -0.5 + 0.5 );\r\n\tsampleUV.x = atan( direction.z, direction.x ) * RECIPROCAL_PI2 + 0.5;\r\n\tgl_FragColor = texture2D( tEquirect, sampleUV );\r\n\r\n}\r\n";
var equirect_vert = "varying vec3 vWorldPosition;\r\n\r\n#include <common>\r\n\r\nvoid main() {\r\n\r\n\tvWorldPosition = transformDirection( position, modelMatrix );\r\n\r\n\t#include <begin_vertex>\r\n\t#include <project_vertex>\r\n\r\n}\r\n";
var linedashed_frag = "uniform vec3 diffuse;\r\nuniform float opacity;\r\n\r\nuniform float dashSize;\r\nuniform float totalSize;\r\n\r\nvarying float vLineDistance;\r\n\r\n#include <common>\r\n#include <color_pars_fragment>\r\n#include <fog_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\r\n\r\n\t\tdiscard;\r\n\r\n\t}\r\n\r\n\tvec3 outgoingLight = vec3( 0.0 );\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <color_fragment>\r\n\r\n\toutgoingLight = diffuseColor.rgb; // simple shader\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\r\n}\r\n";
var linedashed_vert = "uniform float scale;\r\nattribute float lineDistance;\r\n\r\nvarying float vLineDistance;\r\n\r\n#include <common>\r\n#include <color_pars_vertex>\r\n#include <fog_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <color_vertex>\r\n\r\n\tvLineDistance = scale * lineDistance;\r\n\r\n\tvec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );\r\n\tgl_Position = projectionMatrix * mvPosition;\r\n\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\t#include <fog_vertex>\r\n\r\n}\r\n";
var meshbasic_frag = "uniform vec3 diffuse;\r\nuniform float opacity;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <color_pars_fragment>\r\n#include <uv_pars_fragment>\r\n#include <uv2_pars_fragment>\r\n#include <map_pars_fragment>\r\n#include <alphamap_pars_fragment>\r\n#include <aomap_pars_fragment>\r\n#include <lightmap_pars_fragment>\r\n#include <envmap_pars_fragment>\r\n#include <fog_pars_fragment>\r\n#include <specularmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <map_fragment>\r\n\t#include <color_fragment>\r\n\t#include <alphamap_fragment>\r\n\t#include <alphatest_fragment>\r\n\t#include <specularmap_fragment>\r\n\r\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\r\n\r\n\t// accumulation (baked indirect lighting only)\r\n\t#ifdef USE_LIGHTMAP\r\n\r\n\t\treflectedLight.indirectDiffuse += texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\r\n\r\n\t#else\r\n\r\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\r\n\r\n\t#endif\r\n\r\n\t// modulation\r\n\t#include <aomap_fragment>\r\n\r\n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\r\n\r\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\r\n\r\n\t#include <normal_flip>\r\n\t#include <envmap_fragment>\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\r\n}\r\n";
var meshbasic_vert = "#include <common>\r\n#include <uv_pars_vertex>\r\n#include <uv2_pars_vertex>\r\n#include <envmap_pars_vertex>\r\n#include <color_pars_vertex>\r\n#include <fog_pars_vertex>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <uv_vertex>\r\n\t#include <uv2_vertex>\r\n\t#include <color_vertex>\r\n\t#include <skinbase_vertex>\r\n\r\n\t#ifdef USE_ENVMAP\r\n\r\n\t#include <beginnormal_vertex>\r\n\t#include <morphnormal_vertex>\r\n\t#include <skinnormal_vertex>\r\n\t#include <defaultnormal_vertex>\r\n\r\n\t#endif\r\n\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <project_vertex>\r\n\t#include <logdepthbuf_vertex>\r\n\r\n\t#include <worldpos_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\t#include <envmap_vertex>\r\n\t#include <fog_vertex>\r\n\r\n}\r\n";
var meshlambert_frag = "uniform vec3 diffuse;\r\nuniform vec3 emissive;\r\nuniform float opacity;\r\n\r\nvarying vec3 vLightFront;\r\n\r\n#ifdef DOUBLE_SIDED\r\n\r\n\tvarying vec3 vLightBack;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <dithering_pars_fragment>\r\n#include <color_pars_fragment>\r\n#include <uv_pars_fragment>\r\n#include <uv2_pars_fragment>\r\n#include <map_pars_fragment>\r\n#include <alphamap_pars_fragment>\r\n#include <aomap_pars_fragment>\r\n#include <lightmap_pars_fragment>\r\n#include <emissivemap_pars_fragment>\r\n#include <envmap_pars_fragment>\r\n#include <bsdfs>\r\n#include <lights_pars>\r\n#include <fog_pars_fragment>\r\n#include <shadowmap_pars_fragment>\r\n#include <shadowmask_pars_fragment>\r\n#include <specularmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\r\n\tvec3 totalEmissiveRadiance = emissive;\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <map_fragment>\r\n\t#include <color_fragment>\r\n\t#include <alphamap_fragment>\r\n\t#include <alphatest_fragment>\r\n\t#include <specularmap_fragment>\r\n\t#include <emissivemap_fragment>\r\n\r\n\t// accumulation\r\n\treflectedLight.indirectDiffuse = getAmbientLightIrradiance( ambientLightColor );\r\n\r\n\t#include <lightmap_fragment>\r\n\r\n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\r\n\r\n\t#ifdef DOUBLE_SIDED\r\n\r\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\r\n\r\n\t#else\r\n\r\n\t\treflectedLight.directDiffuse = vLightFront;\r\n\r\n\t#endif\r\n\r\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\r\n\r\n\t// modulation\r\n\t#include <aomap_fragment>\r\n\r\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\r\n\r\n\t#include <normal_flip>\r\n\t#include <envmap_fragment>\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <dithering_fragment>\r\n\r\n}\r\n";
var meshlambert_vert = "#define LAMBERT\r\n\r\nvarying vec3 vLightFront;\r\n\r\n#ifdef DOUBLE_SIDED\r\n\r\n\tvarying vec3 vLightBack;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <uv_pars_vertex>\r\n#include <uv2_pars_vertex>\r\n#include <envmap_pars_vertex>\r\n#include <bsdfs>\r\n#include <lights_pars>\r\n#include <color_pars_vertex>\r\n#include <fog_pars_vertex>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <shadowmap_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <uv_vertex>\r\n\t#include <uv2_vertex>\r\n\t#include <color_vertex>\r\n\r\n\t#include <beginnormal_vertex>\r\n\t#include <morphnormal_vertex>\r\n\t#include <skinbase_vertex>\r\n\t#include <skinnormal_vertex>\r\n\t#include <defaultnormal_vertex>\r\n\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <project_vertex>\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\r\n\t#include <worldpos_vertex>\r\n\t#include <envmap_vertex>\r\n\t#include <lights_lambert_vertex>\r\n\t#include <shadowmap_vertex>\r\n\t#include <fog_vertex>\r\n\r\n}\r\n";
var meshphong_frag = "#define PHONG\r\n\r\nuniform vec3 diffuse;\r\nuniform vec3 emissive;\r\nuniform vec3 specular;\r\nuniform float shininess;\r\nuniform float opacity;\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <dithering_pars_fragment>\r\n#include <color_pars_fragment>\r\n#include <uv_pars_fragment>\r\n#include <uv2_pars_fragment>\r\n#include <map_pars_fragment>\r\n#include <alphamap_pars_fragment>\r\n#include <aomap_pars_fragment>\r\n#include <lightmap_pars_fragment>\r\n#include <emissivemap_pars_fragment>\r\n#include <envmap_pars_fragment>\r\n#include <gradientmap_pars_fragment>\r\n#include <fog_pars_fragment>\r\n#include <bsdfs>\r\n#include <lights_pars>\r\n#include <lights_phong_pars_fragment>\r\n#include <shadowmap_pars_fragment>\r\n#include <bumpmap_pars_fragment>\r\n#include <normalmap_pars_fragment>\r\n#include <specularmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\r\n\tvec3 totalEmissiveRadiance = emissive;\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <map_fragment>\r\n\t#include <color_fragment>\r\n\t#include <alphamap_fragment>\r\n\t#include <alphatest_fragment>\r\n\t#include <specularmap_fragment>\r\n\t#include <normal_flip>\r\n\t#include <normal_fragment>\r\n\t#include <emissivemap_fragment>\r\n\r\n\t// accumulation\r\n\t#include <lights_phong_fragment>\r\n\t#include <lights_template>\r\n\r\n\t// modulation\r\n\t#include <aomap_fragment>\r\n\r\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\r\n\r\n\t#include <envmap_fragment>\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <dithering_fragment>\r\n\r\n}\r\n";
var meshphong_vert = "#define PHONG\r\n\r\nvarying vec3 vViewPosition;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <uv_pars_vertex>\r\n#include <uv2_pars_vertex>\r\n#include <displacementmap_pars_vertex>\r\n#include <envmap_pars_vertex>\r\n#include <color_pars_vertex>\r\n#include <fog_pars_vertex>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <shadowmap_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <uv_vertex>\r\n\t#include <uv2_vertex>\r\n\t#include <color_vertex>\r\n\r\n\t#include <beginnormal_vertex>\r\n\t#include <morphnormal_vertex>\r\n\t#include <skinbase_vertex>\r\n\t#include <skinnormal_vertex>\r\n\t#include <defaultnormal_vertex>\r\n\r\n#ifndef FLAT_SHADED // Normal computed with derivatives when FLAT_SHADED\r\n\r\n\tvNormal = normalize( transformedNormal );\r\n\r\n#endif\r\n\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <displacementmap_vertex>\r\n\t#include <project_vertex>\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\r\n\tvViewPosition = - mvPosition.xyz;\r\n\r\n\t#include <worldpos_vertex>\r\n\t#include <envmap_vertex>\r\n\t#include <shadowmap_vertex>\r\n\t#include <fog_vertex>\r\n\r\n}\r\n";
var meshphysical_frag = "#define PHYSICAL\r\n\r\nuniform vec3 diffuse;\r\nuniform vec3 emissive;\r\nuniform float roughness;\r\nuniform float metalness;\r\nuniform float opacity;\r\n\r\n#ifndef STANDARD\r\n\tuniform float clearCoat;\r\n\tuniform float clearCoatRoughness;\r\n#endif\r\n\r\nvarying vec3 vViewPosition;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <dithering_pars_fragment>\r\n#include <color_pars_fragment>\r\n#include <uv_pars_fragment>\r\n#include <uv2_pars_fragment>\r\n#include <map_pars_fragment>\r\n#include <alphamap_pars_fragment>\r\n#include <aomap_pars_fragment>\r\n#include <lightmap_pars_fragment>\r\n#include <emissivemap_pars_fragment>\r\n#include <envmap_pars_fragment>\r\n#include <fog_pars_fragment>\r\n#include <bsdfs>\r\n#include <cube_uv_reflection_fragment>\r\n#include <lights_pars>\r\n#include <lights_physical_pars_fragment>\r\n#include <shadowmap_pars_fragment>\r\n#include <bumpmap_pars_fragment>\r\n#include <normalmap_pars_fragment>\r\n#include <roughnessmap_pars_fragment>\r\n#include <metalnessmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\r\n\tvec3 totalEmissiveRadiance = emissive;\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <map_fragment>\r\n\t#include <color_fragment>\r\n\t#include <alphamap_fragment>\r\n\t#include <alphatest_fragment>\r\n\t#include <roughnessmap_fragment>\r\n\t#include <metalnessmap_fragment>\r\n\t#include <normal_flip>\r\n\t#include <normal_fragment>\r\n\t#include <emissivemap_fragment>\r\n\r\n\t// accumulation\r\n\t#include <lights_physical_fragment>\r\n\t#include <lights_template>\r\n\r\n\t// modulation\r\n\t#include <aomap_fragment>\r\n\r\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <dithering_fragment>\r\n\r\n}\r\n";
var meshphysical_vert = "#define PHYSICAL\r\n\r\nvarying vec3 vViewPosition;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <uv_pars_vertex>\r\n#include <uv2_pars_vertex>\r\n#include <displacementmap_pars_vertex>\r\n#include <color_pars_vertex>\r\n#include <fog_pars_vertex>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <shadowmap_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <uv_vertex>\r\n\t#include <uv2_vertex>\r\n\t#include <color_vertex>\r\n\r\n\t#include <beginnormal_vertex>\r\n\t#include <morphnormal_vertex>\r\n\t#include <skinbase_vertex>\r\n\t#include <skinnormal_vertex>\r\n\t#include <defaultnormal_vertex>\r\n\r\n#ifndef FLAT_SHADED // Normal computed with derivatives when FLAT_SHADED\r\n\r\n\tvNormal = normalize( transformedNormal );\r\n\r\n#endif\r\n\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <displacementmap_vertex>\r\n\t#include <project_vertex>\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\r\n\tvViewPosition = - mvPosition.xyz;\r\n\r\n\t#include <worldpos_vertex>\r\n\t#include <shadowmap_vertex>\r\n\t#include <fog_vertex>\r\n\r\n}\r\n";
var normal_frag = "#define NORMAL\r\n\r\nuniform float opacity;\r\n\r\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\r\n\r\n\tvarying vec3 vViewPosition;\r\n\r\n#endif\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include <packing>\r\n#include <uv_pars_fragment>\r\n#include <bumpmap_pars_fragment>\r\n#include <normalmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <normal_flip>\r\n\t#include <normal_fragment>\r\n\r\n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\r\n\r\n}\r\n";
var normal_vert = "#define NORMAL\r\n\r\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\r\n\r\n\tvarying vec3 vViewPosition;\r\n\r\n#endif\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include <uv_pars_vertex>\r\n#include <displacementmap_pars_vertex>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <uv_vertex>\r\n\r\n\t#include <beginnormal_vertex>\r\n\t#include <morphnormal_vertex>\r\n\t#include <skinbase_vertex>\r\n\t#include <skinnormal_vertex>\r\n\t#include <defaultnormal_vertex>\r\n\r\n#ifndef FLAT_SHADED // Normal computed with derivatives when FLAT_SHADED\r\n\r\n\tvNormal = normalize( transformedNormal );\r\n\r\n#endif\r\n\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <displacementmap_vertex>\r\n\t#include <project_vertex>\r\n\t#include <logdepthbuf_vertex>\r\n\r\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\r\n\r\n\tvViewPosition = - mvPosition.xyz;\r\n\r\n#endif\r\n\r\n}\r\n";
var points_frag = "uniform vec3 diffuse;\r\nuniform float opacity;\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <color_pars_fragment>\r\n#include <map_particle_pars_fragment>\r\n#include <fog_pars_fragment>\r\n#include <shadowmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec3 outgoingLight = vec3( 0.0 );\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <map_particle_fragment>\r\n\t#include <color_fragment>\r\n\t#include <alphatest_fragment>\r\n\r\n\toutgoingLight = diffuseColor.rgb;\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\r\n}\r\n";
var points_vert = "uniform float size;\r\nuniform float scale;\r\n\r\n#include <common>\r\n#include <color_pars_vertex>\r\n#include <fog_pars_vertex>\r\n#include <shadowmap_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <color_vertex>\r\n\t#include <begin_vertex>\r\n\t#include <project_vertex>\r\n\r\n\t#ifdef USE_SIZEATTENUATION\r\n\t\tgl_PointSize = size * ( scale / - mvPosition.z );\r\n\t#else\r\n\t\tgl_PointSize = size;\r\n\t#endif\r\n\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\t#include <worldpos_vertex>\r\n\t#include <shadowmap_vertex>\r\n\t#include <fog_vertex>\r\n\r\n}\r\n";
var shadow_frag = "uniform float opacity;\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <bsdfs>\r\n#include <lights_pars>\r\n#include <shadowmap_pars_fragment>\r\n#include <shadowmask_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\tgl_FragColor = vec4( 0.0, 0.0, 0.0, opacity * ( 1.0 - getShadowMask() ) );\r\n\r\n}\r\n";
var shadow_vert = "#include <shadowmap_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <begin_vertex>\r\n\t#include <project_vertex>\r\n\t#include <worldpos_vertex>\r\n\t#include <shadowmap_vertex>\r\n\r\n}\r\n";
var ShaderChunk = {
alphamap_fragment: alphamap_fragment,
alphamap_pars_fragment: alphamap_pars_fragment,
alphatest_fragment: alphatest_fragment,
aomap_fragment: aomap_fragment,
aomap_pars_fragment: aomap_pars_fragment,
begin_vertex: begin_vertex,
beginnormal_vertex: beginnormal_vertex,
bsdfs: bsdfs,
bumpmap_pars_fragment: bumpmap_pars_fragment,
clipping_planes_fragment: clipping_planes_fragment,
clipping_planes_pars_fragment: clipping_planes_pars_fragment,
clipping_planes_pars_vertex: clipping_planes_pars_vertex,
clipping_planes_vertex: clipping_planes_vertex,
color_fragment: color_fragment,
color_pars_fragment: color_pars_fragment,
color_pars_vertex: color_pars_vertex,
color_vertex: color_vertex,
common: common,
cube_uv_reflection_fragment: cube_uv_reflection_fragment,
defaultnormal_vertex: defaultnormal_vertex,
displacementmap_pars_vertex: displacementmap_pars_vertex,
displacementmap_vertex: displacementmap_vertex,
emissivemap_fragment: emissivemap_fragment,
emissivemap_pars_fragment: emissivemap_pars_fragment,
encodings_fragment: encodings_fragment,
encodings_pars_fragment: encodings_pars_fragment,
envmap_fragment: envmap_fragment,
envmap_pars_fragment: envmap_pars_fragment,
envmap_pars_vertex: envmap_pars_vertex,
envmap_vertex: envmap_vertex,
fog_vertex: fog_vertex,
fog_pars_vertex: fog_pars_vertex,
fog_fragment: fog_fragment,
fog_pars_fragment: fog_pars_fragment,
gradientmap_pars_fragment: gradientmap_pars_fragment,
lightmap_fragment: lightmap_fragment,
lightmap_pars_fragment: lightmap_pars_fragment,
lights_lambert_vertex: lights_lambert_vertex,
lights_pars: lights_pars,
lights_phong_fragment: lights_phong_fragment,
lights_phong_pars_fragment: lights_phong_pars_fragment,
lights_physical_fragment: lights_physical_fragment,
lights_physical_pars_fragment: lights_physical_pars_fragment,
lights_template: lights_template,
logdepthbuf_fragment: logdepthbuf_fragment,
logdepthbuf_pars_fragment: logdepthbuf_pars_fragment,
logdepthbuf_pars_vertex: logdepthbuf_pars_vertex,
logdepthbuf_vertex: logdepthbuf_vertex,
map_fragment: map_fragment,
map_pars_fragment: map_pars_fragment,
map_particle_fragment: map_particle_fragment,
map_particle_pars_fragment: map_particle_pars_fragment,
metalnessmap_fragment: metalnessmap_fragment,
metalnessmap_pars_fragment: metalnessmap_pars_fragment,
morphnormal_vertex: morphnormal_vertex,
morphtarget_pars_vertex: morphtarget_pars_vertex,
morphtarget_vertex: morphtarget_vertex,
normal_flip: normal_flip,
normal_fragment: normal_fragment,
normalmap_pars_fragment: normalmap_pars_fragment,
packing: packing,
premultiplied_alpha_fragment: premultiplied_alpha_fragment,
project_vertex: project_vertex,
dithering_fragment: dithering_fragment,
dithering_pars_fragment: dithering_pars_fragment,
roughnessmap_fragment: roughnessmap_fragment,
roughnessmap_pars_fragment: roughnessmap_pars_fragment,
shadowmap_pars_fragment: shadowmap_pars_fragment,
shadowmap_pars_vertex: shadowmap_pars_vertex,
shadowmap_vertex: shadowmap_vertex,
shadowmask_pars_fragment: shadowmask_pars_fragment,
skinbase_vertex: skinbase_vertex,
skinning_pars_vertex: skinning_pars_vertex,
skinning_vertex: skinning_vertex,
skinnormal_vertex: skinnormal_vertex,
specularmap_fragment: specularmap_fragment,
specularmap_pars_fragment: specularmap_pars_fragment,
tonemapping_fragment: tonemapping_fragment,
tonemapping_pars_fragment: tonemapping_pars_fragment,
uv_pars_fragment: uv_pars_fragment,
uv_pars_vertex: uv_pars_vertex,
uv_vertex: uv_vertex,
uv2_pars_fragment: uv2_pars_fragment,
uv2_pars_vertex: uv2_pars_vertex,
uv2_vertex: uv2_vertex,
worldpos_vertex: worldpos_vertex,
cube_frag: cube_frag,
cube_vert: cube_vert,
depth_frag: depth_frag,
depth_vert: depth_vert,
distanceRGBA_frag: distanceRGBA_frag,
distanceRGBA_vert: distanceRGBA_vert,
equirect_frag: equirect_frag,
equirect_vert: equirect_vert,
linedashed_frag: linedashed_frag,
linedashed_vert: linedashed_vert,
meshbasic_frag: meshbasic_frag,
meshbasic_vert: meshbasic_vert,
meshlambert_frag: meshlambert_frag,
meshlambert_vert: meshlambert_vert,
meshphong_frag: meshphong_frag,
meshphong_vert: meshphong_vert,
meshphysical_frag: meshphysical_frag,
meshphysical_vert: meshphysical_vert,
normal_frag: normal_frag,
normal_vert: normal_vert,
points_frag: points_frag,
points_vert: points_vert,
shadow_frag: shadow_frag,
shadow_vert: shadow_vert
};
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
* @author mikael emtinger / http://gomo.se/
*/
var ShaderLib = {
basic: {
uniforms: UniformsUtils.merge( [
UniformsLib.common,
UniformsLib.aomap,
UniformsLib.lightmap,
UniformsLib.fog
] ),
vertexShader: ShaderChunk.meshbasic_vert,
fragmentShader: ShaderChunk.meshbasic_frag
},
lambert: {
uniforms: UniformsUtils.merge( [
UniformsLib.common,
UniformsLib.aomap,
UniformsLib.lightmap,
UniformsLib.emissivemap,
UniformsLib.fog,
UniformsLib.lights,
{
emissive: { value: new Color( 0x000000 ) }
}
] ),
vertexShader: ShaderChunk.meshlambert_vert,
fragmentShader: ShaderChunk.meshlambert_frag
},
phong: {
uniforms: UniformsUtils.merge( [
UniformsLib.common,
UniformsLib.aomap,
UniformsLib.lightmap,
UniformsLib.emissivemap,
UniformsLib.bumpmap,
UniformsLib.normalmap,
UniformsLib.displacementmap,
UniformsLib.gradientmap,
UniformsLib.fog,
UniformsLib.lights,
{
emissive: { value: new Color( 0x000000 ) },
specular: { value: new Color( 0x111111 ) },
shininess: { value: 30 }
}
] ),
vertexShader: ShaderChunk.meshphong_vert,
fragmentShader: ShaderChunk.meshphong_frag
},
standard: {
uniforms: UniformsUtils.merge( [
UniformsLib.common,
UniformsLib.aomap,
UniformsLib.lightmap,
UniformsLib.emissivemap,
UniformsLib.bumpmap,
UniformsLib.normalmap,
UniformsLib.displacementmap,
UniformsLib.roughnessmap,
UniformsLib.metalnessmap,
UniformsLib.fog,
UniformsLib.lights,
{
emissive: { value: new Color( 0x000000 ) },
roughness: { value: 0.5 },
metalness: { value: 0.5 },
envMapIntensity: { value: 1 } // temporary
}
] ),
vertexShader: ShaderChunk.meshphysical_vert,
fragmentShader: ShaderChunk.meshphysical_frag
},
points: {
uniforms: UniformsUtils.merge( [
UniformsLib.points,
UniformsLib.fog
] ),
vertexShader: ShaderChunk.points_vert,
fragmentShader: ShaderChunk.points_frag
},
dashed: {
uniforms: UniformsUtils.merge( [
UniformsLib.common,
UniformsLib.fog,
{
scale: { value: 1 },
dashSize: { value: 1 },
totalSize: { value: 2 }
}
] ),
vertexShader: ShaderChunk.linedashed_vert,
fragmentShader: ShaderChunk.linedashed_frag
},
depth: {
uniforms: UniformsUtils.merge( [
UniformsLib.common,
UniformsLib.displacementmap
] ),
vertexShader: ShaderChunk.depth_vert,
fragmentShader: ShaderChunk.depth_frag
},
normal: {
uniforms: UniformsUtils.merge( [
UniformsLib.common,
UniformsLib.bumpmap,
UniformsLib.normalmap,
UniformsLib.displacementmap,
{
opacity: { value: 1.0 }
}
] ),
vertexShader: ShaderChunk.normal_vert,
fragmentShader: ShaderChunk.normal_frag
},
/* -------------------------------------------------------------------------
// Cube map shader
------------------------------------------------------------------------- */
cube: {
uniforms: {
tCube: { value: null },
tFlip: { value: - 1 },
opacity: { value: 1.0 }
},
vertexShader: ShaderChunk.cube_vert,
fragmentShader: ShaderChunk.cube_frag
},
/* -------------------------------------------------------------------------
// Cube map shader
------------------------------------------------------------------------- */
equirect: {
uniforms: {
tEquirect: { value: null },
tFlip: { value: - 1 }
},
vertexShader: ShaderChunk.equirect_vert,
fragmentShader: ShaderChunk.equirect_frag
},
distanceRGBA: {
uniforms: {
lightPos: { value: new Vector3() }
},
vertexShader: ShaderChunk.distanceRGBA_vert,
fragmentShader: ShaderChunk.distanceRGBA_frag
}
};
ShaderLib.physical = {
uniforms: UniformsUtils.merge( [
ShaderLib.standard.uniforms,
{
clearCoat: { value: 0 },
clearCoatRoughness: { value: 0 }
}
] ),
vertexShader: ShaderChunk.meshphysical_vert,
fragmentShader: ShaderChunk.meshphysical_frag
};
/**
* @author bhouston / http://clara.io
*/
function Box2( min, max ) {
this.min = ( min !== undefined ) ? min : new Vector2( + Infinity, + Infinity );
this.max = ( max !== undefined ) ? max : new Vector2( - Infinity, - Infinity );
}
Object.assign( Box2.prototype, {
set: function ( min, max ) {
this.min.copy( min );
this.max.copy( max );
return this;
},
setFromPoints: function ( points ) {
this.makeEmpty();
for ( var i = 0, il = points.length; i < il; i ++ ) {
this.expandByPoint( points[ i ] );
}
return this;
},
setFromCenterAndSize: function () {
var v1 = new Vector2();
return function setFromCenterAndSize( center, size ) {
var halfSize = v1.copy( size ).multiplyScalar( 0.5 );
this.min.copy( center ).sub( halfSize );
this.max.copy( center ).add( halfSize );
return this;
};
}(),
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( box ) {
this.min.copy( box.min );
this.max.copy( box.max );
return this;
},
makeEmpty: function () {
this.min.x = this.min.y = + Infinity;
this.max.x = this.max.y = - Infinity;
return this;
},
isEmpty: function () {
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y );
},
getCenter: function ( optionalTarget ) {
var result = optionalTarget || new Vector2();
return this.isEmpty() ? result.set( 0, 0 ) : result.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
},
getSize: function ( optionalTarget ) {
var result = optionalTarget || new Vector2();
return this.isEmpty() ? result.set( 0, 0 ) : result.subVectors( this.max, this.min );
},
expandByPoint: function ( point ) {
this.min.min( point );
this.max.max( point );
return this;
},
expandByVector: function ( vector ) {
this.min.sub( vector );
this.max.add( vector );
return this;
},
expandByScalar: function ( scalar ) {
this.min.addScalar( - scalar );
this.max.addScalar( scalar );
return this;
},
containsPoint: function ( point ) {
return point.x < this.min.x || point.x > this.max.x ||
point.y < this.min.y || point.y > this.max.y ? false : true;
},
containsBox: function ( box ) {
return this.min.x <= box.min.x && box.max.x <= this.max.x &&
this.min.y <= box.min.y && box.max.y <= this.max.y;
},
getParameter: function ( point, optionalTarget ) {
// This can potentially have a divide by zero if the box
// has a size dimension of 0.
var result = optionalTarget || new Vector2();
return result.set(
( point.x - this.min.x ) / ( this.max.x - this.min.x ),
( point.y - this.min.y ) / ( this.max.y - this.min.y )
);
},
intersectsBox: function ( box ) {
// using 4 splitting planes to rule out intersections
return box.max.x < this.min.x || box.min.x > this.max.x ||
box.max.y < this.min.y || box.min.y > this.max.y ? false : true;
},
clampPoint: function ( point, optionalTarget ) {
var result = optionalTarget || new Vector2();
return result.copy( point ).clamp( this.min, this.max );
},
distanceToPoint: function () {
var v1 = new Vector2();
return function distanceToPoint( point ) {
var clampedPoint = v1.copy( point ).clamp( this.min, this.max );
return clampedPoint.sub( point ).length();
};
}(),
intersect: function ( box ) {
this.min.max( box.min );
this.max.min( box.max );
return this;
},
union: function ( box ) {
this.min.min( box.min );
this.max.max( box.max );
return this;
},
translate: function ( offset ) {
this.min.add( offset );
this.max.add( offset );
return this;
},
equals: function ( box ) {
return box.min.equals( this.min ) && box.max.equals( this.max );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
var materialId = 0;
function Material() {
Object.defineProperty( this, 'id', { value: materialId ++ } );
this.uuid = _Math.generateUUID();
this.name = '';
this.type = 'Material';
this.fog = true;
this.lights = true;
this.blending = NormalBlending;
this.side = FrontSide;
this.shading = SmoothShading; // THREE.FlatShading, THREE.SmoothShading
this.vertexColors = NoColors; // THREE.NoColors, THREE.VertexColors, THREE.FaceColors
this.opacity = 1;
this.transparent = false;
this.blendSrc = SrcAlphaFactor;
this.blendDst = OneMinusSrcAlphaFactor;
this.blendEquation = AddEquation;
this.blendSrcAlpha = null;
this.blendDstAlpha = null;
this.blendEquationAlpha = null;
this.depthFunc = LessEqualDepth;
this.depthTest = true;
this.depthWrite = true;
this.clippingPlanes = null;
this.clipIntersection = false;
this.clipShadows = false;
this.colorWrite = true;
this.precision = null; // override the renderer's default precision for this material
this.polygonOffset = false;
this.polygonOffsetFactor = 0;
this.polygonOffsetUnits = 0;
this.dithering = false;
this.alphaTest = 0;
this.premultipliedAlpha = false;
this.overdraw = 0; // Overdrawn pixels (typically between 0 and 1) for fixing antialiasing gaps in CanvasRenderer
this.visible = true;
this.needsUpdate = true;
}
Object.assign( Material.prototype, EventDispatcher.prototype, {
isMaterial: true,
onBeforeCompile: function () {},
setValues: function ( values ) {
if ( values === undefined ) return;
for ( var key in values ) {
var newValue = values[ key ];
if ( newValue === undefined ) {
console.warn( "THREE.Material: '" + key + "' parameter is undefined." );
continue;
}
var currentValue = this[ key ];
if ( currentValue === undefined ) {
console.warn( "THREE." + this.type + ": '" + key + "' is not a property of this material." );
continue;
}
if ( currentValue && currentValue.isColor ) {
currentValue.set( newValue );
} else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) {
currentValue.copy( newValue );
} else if ( key === 'overdraw' ) {
// ensure overdraw is backwards-compatible with legacy boolean type
this[ key ] = Number( newValue );
} else {
this[ key ] = newValue;
}
}
},
toJSON: function ( meta ) {
var isRoot = meta === undefined;
if ( isRoot ) {
meta = {
textures: {},
images: {}
};
}
var data = {
metadata: {
version: 4.5,
type: 'Material',
generator: 'Material.toJSON'
}
};
// standard Material serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( this.color && this.color.isColor ) data.color = this.color.getHex();
if ( this.roughness !== undefined ) data.roughness = this.roughness;
if ( this.metalness !== undefined ) data.metalness = this.metalness;
if ( this.emissive && this.emissive.isColor ) data.emissive = this.emissive.getHex();
if ( this.specular && this.specular.isColor ) data.specular = this.specular.getHex();
if ( this.shininess !== undefined ) data.shininess = this.shininess;
if ( this.clearCoat !== undefined ) data.clearCoat = this.clearCoat;
if ( this.clearCoatRoughness !== undefined ) data.clearCoatRoughness = this.clearCoatRoughness;
if ( this.map && this.map.isTexture ) data.map = this.map.toJSON( meta ).uuid;
if ( this.alphaMap && this.alphaMap.isTexture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid;
if ( this.lightMap && this.lightMap.isTexture ) data.lightMap = this.lightMap.toJSON( meta ).uuid;
if ( this.bumpMap && this.bumpMap.isTexture ) {
data.bumpMap = this.bumpMap.toJSON( meta ).uuid;
data.bumpScale = this.bumpScale;
}
if ( this.normalMap && this.normalMap.isTexture ) {
data.normalMap = this.normalMap.toJSON( meta ).uuid;
data.normalScale = this.normalScale.toArray();
}
if ( this.displacementMap && this.displacementMap.isTexture ) {
data.displacementMap = this.displacementMap.toJSON( meta ).uuid;
data.displacementScale = this.displacementScale;
data.displacementBias = this.displacementBias;
}
if ( this.roughnessMap && this.roughnessMap.isTexture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid;
if ( this.metalnessMap && this.metalnessMap.isTexture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid;
if ( this.emissiveMap && this.emissiveMap.isTexture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid;
if ( this.specularMap && this.specularMap.isTexture ) data.specularMap = this.specularMap.toJSON( meta ).uuid;
if ( this.envMap && this.envMap.isTexture ) {
data.envMap = this.envMap.toJSON( meta ).uuid;
data.reflectivity = this.reflectivity; // Scale behind envMap
}
if ( this.gradientMap && this.gradientMap.isTexture ) {
data.gradientMap = this.gradientMap.toJSON( meta ).uuid;
}
if ( this.size !== undefined ) data.size = this.size;
if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation;
if ( this.blending !== NormalBlending ) data.blending = this.blending;
if ( this.shading !== SmoothShading ) data.shading = this.shading;
if ( this.side !== FrontSide ) data.side = this.side;
if ( this.vertexColors !== NoColors ) data.vertexColors = this.vertexColors;
if ( this.opacity < 1 ) data.opacity = this.opacity;
if ( this.transparent === true ) data.transparent = this.transparent;
data.depthFunc = this.depthFunc;
data.depthTest = this.depthTest;
data.depthWrite = this.depthWrite;
if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest;
if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = this.premultipliedAlpha;
if ( this.wireframe === true ) data.wireframe = this.wireframe;
if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth;
if ( this.wireframeLinecap !== 'round' ) data.wireframeLinecap = this.wireframeLinecap;
if ( this.wireframeLinejoin !== 'round' ) data.wireframeLinejoin = this.wireframeLinejoin;
data.skinning = this.skinning;
data.morphTargets = this.morphTargets;
data.dithering = this.dithering;
// TODO: Copied from Object3D.toJSON
function extractFromCache( cache ) {
var values = [];
for ( var key in cache ) {
var data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
if ( isRoot ) {
var textures = extractFromCache( meta.textures );
var images = extractFromCache( meta.images );
if ( textures.length > 0 ) data.textures = textures;
if ( images.length > 0 ) data.images = images;
}
return data;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.name = source.name;
this.fog = source.fog;
this.lights = source.lights;
this.blending = source.blending;
this.side = source.side;
this.shading = source.shading;
this.vertexColors = source.vertexColors;
this.opacity = source.opacity;
this.transparent = source.transparent;
this.blendSrc = source.blendSrc;
this.blendDst = source.blendDst;
this.blendEquation = source.blendEquation;
this.blendSrcAlpha = source.blendSrcAlpha;
this.blendDstAlpha = source.blendDstAlpha;
this.blendEquationAlpha = source.blendEquationAlpha;
this.depthFunc = source.depthFunc;
this.depthTest = source.depthTest;
this.depthWrite = source.depthWrite;
this.colorWrite = source.colorWrite;
this.precision = source.precision;
this.polygonOffset = source.polygonOffset;
this.polygonOffsetFactor = source.polygonOffsetFactor;
this.polygonOffsetUnits = source.polygonOffsetUnits;
this.dithering = source.dithering;
this.alphaTest = source.alphaTest;
this.premultipliedAlpha = source.premultipliedAlpha;
this.overdraw = source.overdraw;
this.visible = source.visible;
this.clipShadows = source.clipShadows;
this.clipIntersection = source.clipIntersection;
var srcPlanes = source.clippingPlanes,
dstPlanes = null;
if ( srcPlanes !== null ) {
var n = srcPlanes.length;
dstPlanes = new Array( n );
for ( var i = 0; i !== n; ++ i )
dstPlanes[ i ] = srcPlanes[ i ].clone();
}
this.clippingPlanes = dstPlanes;
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
} );
/**
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* defines: { "label" : "value" },
* uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } },
*
* fragmentShader: <string>,
* vertexShader: <string>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* lights: <bool>,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>
* }
*/
function ShaderMaterial( parameters ) {
Material.call( this );
this.type = 'ShaderMaterial';
this.defines = {};
this.uniforms = {};
this.vertexShader = 'void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}';
this.fragmentShader = 'void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}';
this.linewidth = 1;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.fog = false; // set to use scene fog
this.lights = false; // set to use scene lights
this.clipping = false; // set to use user-defined clipping planes
this.skinning = false; // set to use skinning attribute streams
this.morphTargets = false; // set to use morph targets
this.morphNormals = false; // set to use morph normals
this.extensions = {
derivatives: false, // set to use derivatives
fragDepth: false, // set to use fragment depth values
drawBuffers: false, // set to use draw buffers
shaderTextureLOD: false // set to use shader texture LOD
};
// When rendered geometry doesn't include these attributes but the material does,
// use these default values in WebGL. This avoids errors when buffer data is missing.
this.defaultAttributeValues = {
'color': [ 1, 1, 1 ],
'uv': [ 0, 0 ],
'uv2': [ 0, 0 ]
};
this.index0AttributeName = undefined;
if ( parameters !== undefined ) {
if ( parameters.attributes !== undefined ) {
console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' );
}
this.setValues( parameters );
}
}
ShaderMaterial.prototype = Object.create( Material.prototype );
ShaderMaterial.prototype.constructor = ShaderMaterial;
ShaderMaterial.prototype.isShaderMaterial = true;
ShaderMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.fragmentShader = source.fragmentShader;
this.vertexShader = source.vertexShader;
this.uniforms = UniformsUtils.clone( source.uniforms );
this.defines = source.defines;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.lights = source.lights;
this.clipping = source.clipping;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
this.extensions = source.extensions;
return this;
};
ShaderMaterial.prototype.toJSON = function ( meta ) {
var data = Material.prototype.toJSON.call( this, meta );
data.uniforms = this.uniforms;
data.vertexShader = this.vertexShader;
data.fragmentShader = this.fragmentShader;
return data;
};
/**
* @author alteredq / http://alteredqualia.com/
* @author WestLangley / http://github.com/WestLangley
* @author bhouston / http://clara.io
* @author tschw
*/
function Matrix3() {
this.elements = [
1, 0, 0,
0, 1, 0,
0, 0, 1
];
if ( arguments.length > 0 ) {
console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' );
}
}
Object.assign( Matrix3.prototype, {
isMatrix3: true,
set: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {
var te = this.elements;
te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31;
te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32;
te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33;
return this;
},
identity: function () {
this.set(
1, 0, 0,
0, 1, 0,
0, 0, 1
);
return this;
},
clone: function () {
return new this.constructor().fromArray( this.elements );
},
copy: function ( m ) {
var te = this.elements;
var me = m.elements;
te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ];
te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ];
te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ];
return this;
},
setFromMatrix4: function ( m ) {
var me = m.elements;
this.set(
me[ 0 ], me[ 4 ], me[ 8 ],
me[ 1 ], me[ 5 ], me[ 9 ],
me[ 2 ], me[ 6 ], me[ 10 ]
);
return this;
},
applyToBufferAttribute: function () {
var v1 = new Vector3();
return function applyToBufferAttribute( attribute ) {
for ( var i = 0, l = attribute.count; i < l; i ++ ) {
v1.x = attribute.getX( i );
v1.y = attribute.getY( i );
v1.z = attribute.getZ( i );
v1.applyMatrix3( this );
attribute.setXYZ( i, v1.x, v1.y, v1.z );
}
return attribute;
};
}(),
multiply: function ( m ) {
return this.multiplyMatrices( this, m );
},
premultiply: function ( m ) {
return this.multiplyMatrices( m, this );
},
multiplyMatrices: function ( a, b ) {
var ae = a.elements;
var be = b.elements;
var te = this.elements;
var a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ];
var a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ];
var a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ];
var b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ];
var b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ];
var b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ];
te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31;
te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32;
te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33;
te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31;
te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32;
te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33;
te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31;
te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32;
te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33;
return this;
},
multiplyScalar: function ( s ) {
var te = this.elements;
te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s;
te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s;
te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s;
return this;
},
determinant: function () {
var te = this.elements;
var a = te[ 0 ], b = te[ 1 ], c = te[ 2 ],
d = te[ 3 ], e = te[ 4 ], f = te[ 5 ],
g = te[ 6 ], h = te[ 7 ], i = te[ 8 ];
return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;
},
getInverse: function ( matrix, throwOnDegenerate ) {
if ( matrix && matrix.isMatrix4 ) {
console.error( "THREE.Matrix3.getInverse no longer takes a Matrix4 argument." );
}
var me = matrix.elements,
te = this.elements,
n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ],
n12 = me[ 3 ], n22 = me[ 4 ], n32 = me[ 5 ],
n13 = me[ 6 ], n23 = me[ 7 ], n33 = me[ 8 ],
t11 = n33 * n22 - n32 * n23,
t12 = n32 * n13 - n33 * n12,
t13 = n23 * n12 - n22 * n13,
det = n11 * t11 + n21 * t12 + n31 * t13;
if ( det === 0 ) {
var msg = "THREE.Matrix3.getInverse(): can't invert matrix, determinant is 0";
if ( throwOnDegenerate === true ) {
throw new Error( msg );
} else {
console.warn( msg );
}
return this.identity();
}
var detInv = 1 / det;
te[ 0 ] = t11 * detInv;
te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv;
te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv;
te[ 3 ] = t12 * detInv;
te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv;
te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv;
te[ 6 ] = t13 * detInv;
te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv;
te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv;
return this;
},
transpose: function () {
var tmp, m = this.elements;
tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp;
tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp;
tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp;
return this;
},
getNormalMatrix: function ( matrix4 ) {
return this.setFromMatrix4( matrix4 ).getInverse( this ).transpose();
},
transposeIntoArray: function ( r ) {
var m = this.elements;
r[ 0 ] = m[ 0 ];
r[ 1 ] = m[ 3 ];
r[ 2 ] = m[ 6 ];
r[ 3 ] = m[ 1 ];
r[ 4 ] = m[ 4 ];
r[ 5 ] = m[ 7 ];
r[ 6 ] = m[ 2 ];
r[ 7 ] = m[ 5 ];
r[ 8 ] = m[ 8 ];
return this;
},
equals: function ( matrix ) {
var te = this.elements;
var me = matrix.elements;
for ( var i = 0; i < 9; i ++ ) {
if ( te[ i ] !== me[ i ] ) return false;
}
return true;
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
for ( var i = 0; i < 9; i ++ ) {
this.elements[ i ] = array[ i + offset ];
}
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
var te = this.elements;
array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ];
array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ];
array[ offset + 8 ] = te[ 8 ];
return array;
}
} );
/**
* @author bhouston / http://clara.io
*/
function Plane( normal, constant ) {
this.normal = ( normal !== undefined ) ? normal : new Vector3( 1, 0, 0 );
this.constant = ( constant !== undefined ) ? constant : 0;
}
Object.assign( Plane.prototype, {
set: function ( normal, constant ) {
this.normal.copy( normal );
this.constant = constant;
return this;
},
setComponents: function ( x, y, z, w ) {
this.normal.set( x, y, z );
this.constant = w;
return this;
},
setFromNormalAndCoplanarPoint: function ( normal, point ) {
this.normal.copy( normal );
this.constant = - point.dot( this.normal ); // must be this.normal, not normal, as this.normal is normalized
return this;
},
setFromCoplanarPoints: function () {
var v1 = new Vector3();
var v2 = new Vector3();
return function setFromCoplanarPoints( a, b, c ) {
var normal = v1.subVectors( c, b ).cross( v2.subVectors( a, b ) ).normalize();
// Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
this.setFromNormalAndCoplanarPoint( normal, a );
return this;
};
}(),
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( plane ) {
this.normal.copy( plane.normal );
this.constant = plane.constant;
return this;
},
normalize: function () {
// Note: will lead to a divide by zero if the plane is invalid.
var inverseNormalLength = 1.0 / this.normal.length();
this.normal.multiplyScalar( inverseNormalLength );
this.constant *= inverseNormalLength;
return this;
},
negate: function () {
this.constant *= - 1;
this.normal.negate();
return this;
},
distanceToPoint: function ( point ) {
return this.normal.dot( point ) + this.constant;
},
distanceToSphere: function ( sphere ) {
return this.distanceToPoint( sphere.center ) - sphere.radius;
},
projectPoint: function ( point, optionalTarget ) {
return this.orthoPoint( point, optionalTarget ).sub( point ).negate();
},
orthoPoint: function ( point, optionalTarget ) {
var perpendicularMagnitude = this.distanceToPoint( point );
var result = optionalTarget || new Vector3();
return result.copy( this.normal ).multiplyScalar( perpendicularMagnitude );
},
intersectLine: function () {
var v1 = new Vector3();
return function intersectLine( line, optionalTarget ) {
var result = optionalTarget || new Vector3();
var direction = line.delta( v1 );
var denominator = this.normal.dot( direction );
if ( denominator === 0 ) {
// line is coplanar, return origin
if ( this.distanceToPoint( line.start ) === 0 ) {
return result.copy( line.start );
}
// Unsure if this is the correct method to handle this case.
return undefined;
}
var t = - ( line.start.dot( this.normal ) + this.constant ) / denominator;
if ( t < 0 || t > 1 ) {
return undefined;
}
return result.copy( direction ).multiplyScalar( t ).add( line.start );
};
}(),
intersectsLine: function ( line ) {
// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.
var startSign = this.distanceToPoint( line.start );
var endSign = this.distanceToPoint( line.end );
return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 );
},
intersectsBox: function ( box ) {
return box.intersectsPlane( this );
},
intersectsSphere: function ( sphere ) {
return sphere.intersectsPlane( this );
},
coplanarPoint: function ( optionalTarget ) {
var result = optionalTarget || new Vector3();
return result.copy( this.normal ).multiplyScalar( - this.constant );
},
applyMatrix4: function () {
var v1 = new Vector3();
var m1 = new Matrix3();
return function applyMatrix4( matrix, optionalNormalMatrix ) {
var referencePoint = this.coplanarPoint( v1 ).applyMatrix4( matrix );
// transform normal based on theory here:
// http://www.songho.ca/opengl/gl_normaltransform.html
var normalMatrix = optionalNormalMatrix || m1.getNormalMatrix( matrix );
var normal = this.normal.applyMatrix3( normalMatrix ).normalize();
// recalculate constant (like in setFromNormalAndCoplanarPoint)
this.constant = - referencePoint.dot( normal );
return this;
};
}(),
translate: function ( offset ) {
this.constant = this.constant - offset.dot( this.normal );
return this;
},
equals: function ( plane ) {
return plane.normal.equals( this.normal ) && ( plane.constant === this.constant );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author bhouston / http://clara.io
*/
function Frustum( p0, p1, p2, p3, p4, p5 ) {
this.planes = [
( p0 !== undefined ) ? p0 : new Plane(),
( p1 !== undefined ) ? p1 : new Plane(),
( p2 !== undefined ) ? p2 : new Plane(),
( p3 !== undefined ) ? p3 : new Plane(),
( p4 !== undefined ) ? p4 : new Plane(),
( p5 !== undefined ) ? p5 : new Plane()
];
}
Object.assign( Frustum.prototype, {
set: function ( p0, p1, p2, p3, p4, p5 ) {
var planes = this.planes;
planes[ 0 ].copy( p0 );
planes[ 1 ].copy( p1 );
planes[ 2 ].copy( p2 );
planes[ 3 ].copy( p3 );
planes[ 4 ].copy( p4 );
planes[ 5 ].copy( p5 );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( frustum ) {
var planes = this.planes;
for ( var i = 0; i < 6; i ++ ) {
planes[ i ].copy( frustum.planes[ i ] );
}
return this;
},
setFromMatrix: function ( m ) {
var planes = this.planes;
var me = m.elements;
var me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ];
var me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ];
var me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ];
var me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ];
planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize();
planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize();
planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize();
planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize();
planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize();
planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize();
return this;
},
intersectsObject: function () {
var sphere = new Sphere();
return function intersectsObject( object ) {
var geometry = object.geometry;
if ( geometry.boundingSphere === null )
geometry.computeBoundingSphere();
sphere.copy( geometry.boundingSphere )
.applyMatrix4( object.matrixWorld );
return this.intersectsSphere( sphere );
};
}(),
intersectsSprite: function () {
var sphere = new Sphere();
return function intersectsSprite( sprite ) {
sphere.center.set( 0, 0, 0 );
sphere.radius = 0.7071067811865476;
sphere.applyMatrix4( sprite.matrixWorld );
return this.intersectsSphere( sphere );
};
}(),
intersectsSphere: function ( sphere ) {
var planes = this.planes;
var center = sphere.center;
var negRadius = - sphere.radius;
for ( var i = 0; i < 6; i ++ ) {
var distance = planes[ i ].distanceToPoint( center );
if ( distance < negRadius ) {
return false;
}
}
return true;
},
intersectsBox: function () {
var p1 = new Vector3(),
p2 = new Vector3();
return function intersectsBox( box ) {
var planes = this.planes;
for ( var i = 0; i < 6; i ++ ) {
var plane = planes[ i ];
p1.x = plane.normal.x > 0 ? box.min.x : box.max.x;
p2.x = plane.normal.x > 0 ? box.max.x : box.min.x;
p1.y = plane.normal.y > 0 ? box.min.y : box.max.y;
p2.y = plane.normal.y > 0 ? box.max.y : box.min.y;
p1.z = plane.normal.z > 0 ? box.min.z : box.max.z;
p2.z = plane.normal.z > 0 ? box.max.z : box.min.z;
var d1 = plane.distanceToPoint( p1 );
var d2 = plane.distanceToPoint( p2 );
// if both outside plane, no intersection
if ( d1 < 0 && d2 < 0 ) {
return false;
}
}
return true;
};
}(),
containsPoint: function ( point ) {
var planes = this.planes;
for ( var i = 0; i < 6; i ++ ) {
if ( planes[ i ].distanceToPoint( point ) < 0 ) {
return false;
}
}
return true;
}
} );
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
* @author WestLangley / http://github.com/WestLangley
* @author bhouston / http://clara.io
*/
function Euler( x, y, z, order ) {
this._x = x || 0;
this._y = y || 0;
this._z = z || 0;
this._order = order || Euler.DefaultOrder;
}
Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ];
Euler.DefaultOrder = 'XYZ';
Object.defineProperties( Euler.prototype, {
x: {
get: function () {
return this._x;
},
set: function ( value ) {
this._x = value;
this.onChangeCallback();
}
},
y: {
get: function () {
return this._y;
},
set: function ( value ) {
this._y = value;
this.onChangeCallback();
}
},
z: {
get: function () {
return this._z;
},
set: function ( value ) {
this._z = value;
this.onChangeCallback();
}
},
order: {
get: function () {
return this._order;
},
set: function ( value ) {
this._order = value;
this.onChangeCallback();
}
}
} );
Object.assign( Euler.prototype, {
isEuler: true,
set: function ( x, y, z, order ) {
this._x = x;
this._y = y;
this._z = z;
this._order = order || this._order;
this.onChangeCallback();
return this;
},
clone: function () {
return new this.constructor( this._x, this._y, this._z, this._order );
},
copy: function ( euler ) {
this._x = euler._x;
this._y = euler._y;
this._z = euler._z;
this._order = euler._order;
this.onChangeCallback();
return this;
},
setFromRotationMatrix: function ( m, order, update ) {
var clamp = _Math.clamp;
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
var te = m.elements;
var m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ];
var m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ];
var m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
order = order || this._order;
if ( order === 'XYZ' ) {
this._y = Math.asin( clamp( m13, - 1, 1 ) );
if ( Math.abs( m13 ) < 0.99999 ) {
this._x = Math.atan2( - m23, m33 );
this._z = Math.atan2( - m12, m11 );
} else {
this._x = Math.atan2( m32, m22 );
this._z = 0;
}
} else if ( order === 'YXZ' ) {
this._x = Math.asin( - clamp( m23, - 1, 1 ) );
if ( Math.abs( m23 ) < 0.99999 ) {
this._y = Math.atan2( m13, m33 );
this._z = Math.atan2( m21, m22 );
} else {
this._y = Math.atan2( - m31, m11 );
this._z = 0;
}
} else if ( order === 'ZXY' ) {
this._x = Math.asin( clamp( m32, - 1, 1 ) );
if ( Math.abs( m32 ) < 0.99999 ) {
this._y = Math.atan2( - m31, m33 );
this._z = Math.atan2( - m12, m22 );
} else {
this._y = 0;
this._z = Math.atan2( m21, m11 );
}
} else if ( order === 'ZYX' ) {
this._y = Math.asin( - clamp( m31, - 1, 1 ) );
if ( Math.abs( m31 ) < 0.99999 ) {
this._x = Math.atan2( m32, m33 );
this._z = Math.atan2( m21, m11 );
} else {
this._x = 0;
this._z = Math.atan2( - m12, m22 );
}
} else if ( order === 'YZX' ) {
this._z = Math.asin( clamp( m21, - 1, 1 ) );
if ( Math.abs( m21 ) < 0.99999 ) {
this._x = Math.atan2( - m23, m22 );
this._y = Math.atan2( - m31, m11 );
} else {
this._x = 0;
this._y = Math.atan2( m13, m33 );
}
} else if ( order === 'XZY' ) {
this._z = Math.asin( - clamp( m12, - 1, 1 ) );
if ( Math.abs( m12 ) < 0.99999 ) {
this._x = Math.atan2( m32, m22 );
this._y = Math.atan2( m13, m11 );
} else {
this._x = Math.atan2( - m23, m33 );
this._y = 0;
}
} else {
console.warn( 'THREE.Euler: .setFromRotationMatrix() given unsupported order: ' + order );
}
this._order = order;
if ( update !== false ) this.onChangeCallback();
return this;
},
setFromQuaternion: function () {
var matrix = new Matrix4();
return function setFromQuaternion( q, order, update ) {
matrix.makeRotationFromQuaternion( q );
return this.setFromRotationMatrix( matrix, order, update );
};
}(),
setFromVector3: function ( v, order ) {
return this.set( v.x, v.y, v.z, order || this._order );
},
reorder: function () {
// WARNING: this discards revolution information -bhouston
var q = new Quaternion();
return function reorder( newOrder ) {
q.setFromEuler( this );
return this.setFromQuaternion( q, newOrder );
};
}(),
equals: function ( euler ) {
return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order );
},
fromArray: function ( array ) {
this._x = array[ 0 ];
this._y = array[ 1 ];
this._z = array[ 2 ];
if ( array[ 3 ] !== undefined ) this._order = array[ 3 ];
this.onChangeCallback();
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this._x;
array[ offset + 1 ] = this._y;
array[ offset + 2 ] = this._z;
array[ offset + 3 ] = this._order;
return array;
},
toVector3: function ( optionalResult ) {
if ( optionalResult ) {
return optionalResult.set( this._x, this._y, this._z );
} else {
return new Vector3( this._x, this._y, this._z );
}
},
onChange: function ( callback ) {
this.onChangeCallback = callback;
return this;
},
onChangeCallback: function () {}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function Layers() {
this.mask = 1 | 0;
}
Object.assign( Layers.prototype, {
set: function ( channel ) {
this.mask = 1 << channel | 0;
},
enable: function ( channel ) {
this.mask |= 1 << channel | 0;
},
toggle: function ( channel ) {
this.mask ^= 1 << channel | 0;
},
disable: function ( channel ) {
this.mask &= ~ ( 1 << channel | 0 );
},
test: function ( layers ) {
return ( this.mask & layers.mask ) !== 0;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author WestLangley / http://github.com/WestLangley
* @author elephantatwork / www.elephantatwork.ch
*/
var object3DId = 0;
function Object3D() {
Object.defineProperty( this, 'id', { value: object3DId ++ } );
this.uuid = _Math.generateUUID();
this.name = '';
this.type = 'Object3D';
this.parent = null;
this.children = [];
this.up = Object3D.DefaultUp.clone();
var position = new Vector3();
var rotation = new Euler();
var quaternion = new Quaternion();
var scale = new Vector3( 1, 1, 1 );
function onRotationChange() {
quaternion.setFromEuler( rotation, false );
}
function onQuaternionChange() {
rotation.setFromQuaternion( quaternion, undefined, false );
}
rotation.onChange( onRotationChange );
quaternion.onChange( onQuaternionChange );
Object.defineProperties( this, {
position: {
enumerable: true,
value: position
},
rotation: {
enumerable: true,
value: rotation
},
quaternion: {
enumerable: true,
value: quaternion
},
scale: {
enumerable: true,
value: scale
},
modelViewMatrix: {
value: new Matrix4()
},
normalMatrix: {
value: new Matrix3()
}
} );
this.matrix = new Matrix4();
this.matrixWorld = new Matrix4();
this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate;
this.matrixWorldNeedsUpdate = false;
this.layers = new Layers();
this.visible = true;
this.castShadow = false;
this.receiveShadow = false;
this.frustumCulled = true;
this.renderOrder = 0;
this.userData = {};
}
Object3D.DefaultUp = new Vector3( 0, 1, 0 );
Object3D.DefaultMatrixAutoUpdate = true;
Object.assign( Object3D.prototype, EventDispatcher.prototype, {
isObject3D: true,
onBeforeRender: function () {},
onAfterRender: function () {},
applyMatrix: function ( matrix ) {
this.matrix.multiplyMatrices( matrix, this.matrix );
this.matrix.decompose( this.position, this.quaternion, this.scale );
},
applyQuaternion: function ( q ) {
this.quaternion.premultiply( q );
return this;
},
setRotationFromAxisAngle: function ( axis, angle ) {
// assumes axis is normalized
this.quaternion.setFromAxisAngle( axis, angle );
},
setRotationFromEuler: function ( euler ) {
this.quaternion.setFromEuler( euler, true );
},
setRotationFromMatrix: function ( m ) {
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
this.quaternion.setFromRotationMatrix( m );
},
setRotationFromQuaternion: function ( q ) {
// assumes q is normalized
this.quaternion.copy( q );
},
rotateOnAxis: function () {
// rotate object on axis in object space
// axis is assumed to be normalized
var q1 = new Quaternion();
return function rotateOnAxis( axis, angle ) {
q1.setFromAxisAngle( axis, angle );
this.quaternion.multiply( q1 );
return this;
};
}(),
rotateX: function () {
var v1 = new Vector3( 1, 0, 0 );
return function rotateX( angle ) {
return this.rotateOnAxis( v1, angle );
};
}(),
rotateY: function () {
var v1 = new Vector3( 0, 1, 0 );
return function rotateY( angle ) {
return this.rotateOnAxis( v1, angle );
};
}(),
rotateZ: function () {
var v1 = new Vector3( 0, 0, 1 );
return function rotateZ( angle ) {
return this.rotateOnAxis( v1, angle );
};
}(),
translateOnAxis: function () {
// translate object by distance along axis in object space
// axis is assumed to be normalized
var v1 = new Vector3();
return function translateOnAxis( axis, distance ) {
v1.copy( axis ).applyQuaternion( this.quaternion );
this.position.add( v1.multiplyScalar( distance ) );
return this;
};
}(),
translateX: function () {
var v1 = new Vector3( 1, 0, 0 );
return function translateX( distance ) {
return this.translateOnAxis( v1, distance );
};
}(),
translateY: function () {
var v1 = new Vector3( 0, 1, 0 );
return function translateY( distance ) {
return this.translateOnAxis( v1, distance );
};
}(),
translateZ: function () {
var v1 = new Vector3( 0, 0, 1 );
return function translateZ( distance ) {
return this.translateOnAxis( v1, distance );
};
}(),
localToWorld: function ( vector ) {
return vector.applyMatrix4( this.matrixWorld );
},
worldToLocal: function () {
var m1 = new Matrix4();
return function worldToLocal( vector ) {
return vector.applyMatrix4( m1.getInverse( this.matrixWorld ) );
};
}(),
lookAt: function () {
// This method does not support objects with rotated and/or translated parent(s)
var m1 = new Matrix4();
return function lookAt( vector ) {
if ( this.isCamera ) {
m1.lookAt( this.position, vector, this.up );
} else {
m1.lookAt( vector, this.position, this.up );
}
this.quaternion.setFromRotationMatrix( m1 );
};
}(),
add: function ( object ) {
if ( arguments.length > 1 ) {
for ( var i = 0; i < arguments.length; i ++ ) {
this.add( arguments[ i ] );
}
return this;
}
if ( object === this ) {
console.error( "THREE.Object3D.add: object can't be added as a child of itself.", object );
return this;
}
if ( ( object && object.isObject3D ) ) {
if ( object.parent !== null ) {
object.parent.remove( object );
}
object.parent = this;
object.dispatchEvent( { type: 'added' } );
this.children.push( object );
} else {
console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object );
}
return this;
},
remove: function ( object ) {
if ( arguments.length > 1 ) {
for ( var i = 0; i < arguments.length; i ++ ) {
this.remove( arguments[ i ] );
}
return this;
}
var index = this.children.indexOf( object );
if ( index !== - 1 ) {
object.parent = null;
object.dispatchEvent( { type: 'removed' } );
this.children.splice( index, 1 );
}
return this;
},
getObjectById: function ( id ) {
return this.getObjectByProperty( 'id', id );
},
getObjectByName: function ( name ) {
return this.getObjectByProperty( 'name', name );
},
getObjectByProperty: function ( name, value ) {
if ( this[ name ] === value ) return this;
for ( var i = 0, l = this.children.length; i < l; i ++ ) {
var child = this.children[ i ];
var object = child.getObjectByProperty( name, value );
if ( object !== undefined ) {
return object;
}
}
return undefined;
},
getWorldPosition: function ( optionalTarget ) {
var result = optionalTarget || new Vector3();
this.updateMatrixWorld( true );
return result.setFromMatrixPosition( this.matrixWorld );
},
getWorldQuaternion: function () {
var position = new Vector3();
var scale = new Vector3();
return function getWorldQuaternion( optionalTarget ) {
var result = optionalTarget || new Quaternion();
this.updateMatrixWorld( true );
this.matrixWorld.decompose( position, result, scale );
return result;
};
}(),
getWorldRotation: function () {
var quaternion = new Quaternion();
return function getWorldRotation( optionalTarget ) {
var result = optionalTarget || new Euler();
this.getWorldQuaternion( quaternion );
return result.setFromQuaternion( quaternion, this.rotation.order, false );
};
}(),
getWorldScale: function () {
var position = new Vector3();
var quaternion = new Quaternion();
return function getWorldScale( optionalTarget ) {
var result = optionalTarget || new Vector3();
this.updateMatrixWorld( true );
this.matrixWorld.decompose( position, quaternion, result );
return result;
};
}(),
getWorldDirection: function () {
var quaternion = new Quaternion();
return function getWorldDirection( optionalTarget ) {
var result = optionalTarget || new Vector3();
this.getWorldQuaternion( quaternion );
return result.set( 0, 0, 1 ).applyQuaternion( quaternion );
};
}(),
raycast: function () {},
traverse: function ( callback ) {
callback( this );
var children = this.children;
for ( var i = 0, l = children.length; i < l; i ++ ) {
children[ i ].traverse( callback );
}
},
traverseVisible: function ( callback ) {
if ( this.visible === false ) return;
callback( this );
var children = this.children;
for ( var i = 0, l = children.length; i < l; i ++ ) {
children[ i ].traverseVisible( callback );
}
},
traverseAncestors: function ( callback ) {
var parent = this.parent;
if ( parent !== null ) {
callback( parent );
parent.traverseAncestors( callback );
}
},
updateMatrix: function () {
this.matrix.compose( this.position, this.quaternion, this.scale );
this.matrixWorldNeedsUpdate = true;
},
updateMatrixWorld: function ( force ) {
if ( this.matrixAutoUpdate ) this.updateMatrix();
if ( this.matrixWorldNeedsUpdate || force ) {
if ( this.parent === null ) {
this.matrixWorld.copy( this.matrix );
} else {
this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );
}
this.matrixWorldNeedsUpdate = false;
force = true;
}
// update children
var children = this.children;
for ( var i = 0, l = children.length; i < l; i ++ ) {
children[ i ].updateMatrixWorld( force );
}
},
toJSON: function ( meta ) {
// meta is '' when called from JSON.stringify
var isRootObject = ( meta === undefined || meta === '' );
var output = {};
// meta is a hash used to collect geometries, materials.
// not providing it implies that this is the root object
// being serialized.
if ( isRootObject ) {
// initialize meta obj
meta = {
geometries: {},
materials: {},
textures: {},
images: {}
};
output.metadata = {
version: 4.5,
type: 'Object',
generator: 'Object3D.toJSON'
};
}
// standard Object3D serialization
var object = {};
object.uuid = this.uuid;
object.type = this.type;
if ( this.name !== '' ) object.name = this.name;
if ( JSON.stringify( this.userData ) !== '{}' ) object.userData = this.userData;
if ( this.castShadow === true ) object.castShadow = true;
if ( this.receiveShadow === true ) object.receiveShadow = true;
if ( this.visible === false ) object.visible = false;
object.matrix = this.matrix.toArray();
//
function serialize( library, element ) {
if ( library[ element.uuid ] === undefined ) {
library[ element.uuid ] = element.toJSON( meta );
}
return element.uuid;
}
if ( this.geometry !== undefined ) {
object.geometry = serialize( meta.geometries, this.geometry );
}
if ( this.material !== undefined ) {
if ( Array.isArray( this.material ) ) {
var uuids = [];
for ( var i = 0, l = this.material.length; i < l; i ++ ) {
uuids.push( serialize( meta.materials, this.material[ i ] ) );
}
object.material = uuids;
} else {
object.material = serialize( meta.materials, this.material );
}
}
//
if ( this.children.length > 0 ) {
object.children = [];
for ( var i = 0; i < this.children.length; i ++ ) {
object.children.push( this.children[ i ].toJSON( meta ).object );
}
}
if ( isRootObject ) {
var geometries = extractFromCache( meta.geometries );
var materials = extractFromCache( meta.materials );
var textures = extractFromCache( meta.textures );
var images = extractFromCache( meta.images );
if ( geometries.length > 0 ) output.geometries = geometries;
if ( materials.length > 0 ) output.materials = materials;
if ( textures.length > 0 ) output.textures = textures;
if ( images.length > 0 ) output.images = images;
}
output.object = object;
return output;
// extract data from the cache hash
// remove metadata on each item
// and return as array
function extractFromCache( cache ) {
var values = [];
for ( var key in cache ) {
var data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
},
clone: function ( recursive ) {
return new this.constructor().copy( this, recursive );
},
copy: function ( source, recursive ) {
if ( recursive === undefined ) recursive = true;
this.name = source.name;
this.up.copy( source.up );
this.position.copy( source.position );
this.quaternion.copy( source.quaternion );
this.scale.copy( source.scale );
this.matrix.copy( source.matrix );
this.matrixWorld.copy( source.matrixWorld );
this.matrixAutoUpdate = source.matrixAutoUpdate;
this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;
this.layers.mask = source.layers.mask;
this.visible = source.visible;
this.castShadow = source.castShadow;
this.receiveShadow = source.receiveShadow;
this.frustumCulled = source.frustumCulled;
this.renderOrder = source.renderOrder;
this.userData = JSON.parse( JSON.stringify( source.userData ) );
if ( recursive === true ) {
for ( var i = 0; i < source.children.length; i ++ ) {
var child = source.children[ i ];
this.add( child.clone() );
}
}
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author mikael emtinger / http://gomo.se/
* @author WestLangley / http://github.com/WestLangley
*/
function Camera() {
Object3D.call( this );
this.type = 'Camera';
this.matrixWorldInverse = new Matrix4();
this.projectionMatrix = new Matrix4();
}
Camera.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Camera,
isCamera: true,
copy: function ( source, recursive ) {
Object3D.prototype.copy.call( this, source, recursive );
this.matrixWorldInverse.copy( source.matrixWorldInverse );
this.projectionMatrix.copy( source.projectionMatrix );
return this;
},
getWorldDirection: function () {
var quaternion = new Quaternion();
return function getWorldDirection( optionalTarget ) {
var result = optionalTarget || new Vector3();
this.getWorldQuaternion( quaternion );
return result.set( 0, 0, - 1 ).applyQuaternion( quaternion );
};
}(),
updateMatrixWorld: function ( force ) {
Object3D.prototype.updateMatrixWorld.call( this, force );
this.matrixWorldInverse.getInverse( this.matrixWorld );
},
clone: function () {
return new this.constructor().copy( this );
}
} );
/**
* @author alteredq / http://alteredqualia.com/
* @author arose / http://github.com/arose
*/
function OrthographicCamera( left, right, top, bottom, near, far ) {
Camera.call( this );
this.type = 'OrthographicCamera';
this.zoom = 1;
this.view = null;
this.left = left;
this.right = right;
this.top = top;
this.bottom = bottom;
this.near = ( near !== undefined ) ? near : 0.1;
this.far = ( far !== undefined ) ? far : 2000;
this.updateProjectionMatrix();
}
OrthographicCamera.prototype = Object.assign( Object.create( Camera.prototype ), {
constructor: OrthographicCamera,
isOrthographicCamera: true,
copy: function ( source, recursive ) {
Camera.prototype.copy.call( this, source, recursive );
this.left = source.left;
this.right = source.right;
this.top = source.top;
this.bottom = source.bottom;
this.near = source.near;
this.far = source.far;
this.zoom = source.zoom;
this.view = source.view === null ? null : Object.assign( {}, source.view );
return this;
},
setViewOffset: function( fullWidth, fullHeight, x, y, width, height ) {
this.view = {
fullWidth: fullWidth,
fullHeight: fullHeight,
offsetX: x,
offsetY: y,
width: width,
height: height
};
this.updateProjectionMatrix();
},
clearViewOffset: function() {
this.view = null;
this.updateProjectionMatrix();
},
updateProjectionMatrix: function () {
var dx = ( this.right - this.left ) / ( 2 * this.zoom );
var dy = ( this.top - this.bottom ) / ( 2 * this.zoom );
var cx = ( this.right + this.left ) / 2;
var cy = ( this.top + this.bottom ) / 2;
var left = cx - dx;
var right = cx + dx;
var top = cy + dy;
var bottom = cy - dy;
if ( this.view !== null ) {
var zoomW = this.zoom / ( this.view.width / this.view.fullWidth );
var zoomH = this.zoom / ( this.view.height / this.view.fullHeight );
var scaleW = ( this.right - this.left ) / this.view.width;
var scaleH = ( this.top - this.bottom ) / this.view.height;
left += scaleW * ( this.view.offsetX / zoomW );
right = left + scaleW * ( this.view.width / zoomW );
top -= scaleH * ( this.view.offsetY / zoomH );
bottom = top - scaleH * ( this.view.height / zoomH );
}
this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far );
},
toJSON: function ( meta ) {
var data = Object3D.prototype.toJSON.call( this, meta );
data.object.zoom = this.zoom;
data.object.left = this.left;
data.object.right = this.right;
data.object.top = this.top;
data.object.bottom = this.bottom;
data.object.near = this.near;
data.object.far = this.far;
if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );
return data;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author greggman / http://games.greggman.com/
* @author zz85 / http://www.lab4games.net/zz85/blog
* @author tschw
*/
function PerspectiveCamera( fov, aspect, near, far ) {
Camera.call( this );
this.type = 'PerspectiveCamera';
this.fov = fov !== undefined ? fov : 50;
this.zoom = 1;
this.near = near !== undefined ? near : 0.1;
this.far = far !== undefined ? far : 2000;
this.focus = 10;
this.aspect = aspect !== undefined ? aspect : 1;
this.view = null;
this.filmGauge = 35; // width of the film (default in millimeters)
this.filmOffset = 0; // horizontal film offset (same unit as gauge)
this.updateProjectionMatrix();
}
PerspectiveCamera.prototype = Object.assign( Object.create( Camera.prototype ), {
constructor: PerspectiveCamera,
isPerspectiveCamera: true,
copy: function ( source, recursive ) {
Camera.prototype.copy.call( this, source, recursive );
this.fov = source.fov;
this.zoom = source.zoom;
this.near = source.near;
this.far = source.far;
this.focus = source.focus;
this.aspect = source.aspect;
this.view = source.view === null ? null : Object.assign( {}, source.view );
this.filmGauge = source.filmGauge;
this.filmOffset = source.filmOffset;
return this;
},
/**
* Sets the FOV by focal length in respect to the current .filmGauge.
*
* The default film gauge is 35, so that the focal length can be specified for
* a 35mm (full frame) camera.
*
* Values for focal length and film gauge must have the same unit.
*/
setFocalLength: function ( focalLength ) {
// see http://www.bobatkins.com/photography/technical/field_of_view.html
var vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;
this.fov = _Math.RAD2DEG * 2 * Math.atan( vExtentSlope );
this.updateProjectionMatrix();
},
/**
* Calculates the focal length from the current .fov and .filmGauge.
*/
getFocalLength: function () {
var vExtentSlope = Math.tan( _Math.DEG2RAD * 0.5 * this.fov );
return 0.5 * this.getFilmHeight() / vExtentSlope;
},
getEffectiveFOV: function () {
return _Math.RAD2DEG * 2 * Math.atan(
Math.tan( _Math.DEG2RAD * 0.5 * this.fov ) / this.zoom );
},
getFilmWidth: function () {
// film not completely covered in portrait format (aspect < 1)
return this.filmGauge * Math.min( this.aspect, 1 );
},
getFilmHeight: function () {
// film not completely covered in landscape format (aspect > 1)
return this.filmGauge / Math.max( this.aspect, 1 );
},
/**
* Sets an offset in a larger frustum. This is useful for multi-window or
* multi-monitor/multi-machine setups.
*
* For example, if you have 3x2 monitors and each monitor is 1920x1080 and
* the monitors are in grid like this
*
* +---+---+---+
* | A | B | C |
* +---+---+---+
* | D | E | F |
* +---+---+---+
*
* then for each monitor you would call it like this
*
* var w = 1920;
* var h = 1080;
* var fullWidth = w * 3;
* var fullHeight = h * 2;
*
* --A--
* camera.setOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
* --B--
* camera.setOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
* --C--
* camera.setOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
* --D--
* camera.setOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
* --E--
* camera.setOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
* --F--
* camera.setOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
*
* Note there is no reason monitors have to be the same size or in a grid.
*/
setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) {
this.aspect = fullWidth / fullHeight;
this.view = {
fullWidth: fullWidth,
fullHeight: fullHeight,
offsetX: x,
offsetY: y,
width: width,
height: height
};
this.updateProjectionMatrix();
},
clearViewOffset: function () {
this.view = null;
this.updateProjectionMatrix();
},
updateProjectionMatrix: function () {
var near = this.near,
top = near * Math.tan(
_Math.DEG2RAD * 0.5 * this.fov ) / this.zoom,
height = 2 * top,
width = this.aspect * height,
left = - 0.5 * width,
view = this.view;
if ( view !== null ) {
var fullWidth = view.fullWidth,
fullHeight = view.fullHeight;
left += view.offsetX * width / fullWidth;
top -= view.offsetY * height / fullHeight;
width *= view.width / fullWidth;
height *= view.height / fullHeight;
}
var skew = this.filmOffset;
if ( skew !== 0 ) left += near * skew / this.getFilmWidth();
this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far );
},
toJSON: function ( meta ) {
var data = Object3D.prototype.toJSON.call( this, meta );
data.object.fov = this.fov;
data.object.zoom = this.zoom;
data.object.near = this.near;
data.object.far = this.far;
data.object.focus = this.focus;
data.object.aspect = this.aspect;
if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );
data.object.filmGauge = this.filmGauge;
data.object.filmOffset = this.filmOffset;
return data;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
function Face3( a, b, c, normal, color, materialIndex ) {
this.a = a;
this.b = b;
this.c = c;
this.normal = ( normal && normal.isVector3 ) ? normal : new Vector3();
this.vertexNormals = Array.isArray( normal ) ? normal : [];
this.color = ( color && color.isColor ) ? color : new Color();
this.vertexColors = Array.isArray( color ) ? color : [];
this.materialIndex = materialIndex !== undefined ? materialIndex : 0;
}
Object.assign( Face3.prototype, {
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.a = source.a;
this.b = source.b;
this.c = source.c;
this.normal.copy( source.normal );
this.color.copy( source.color );
this.materialIndex = source.materialIndex;
for ( var i = 0, il = source.vertexNormals.length; i < il; i ++ ) {
this.vertexNormals[ i ] = source.vertexNormals[ i ].clone();
}
for ( var i = 0, il = source.vertexColors.length; i < il; i ++ ) {
this.vertexColors[ i ] = source.vertexColors[ i ].clone();
}
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author kile / http://kile.stravaganza.org/
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author zz85 / http://www.lab4games.net/zz85/blog
* @author bhouston / http://clara.io
*/
var count = 0;
function GeometryIdCount() { return count++; }
function Geometry() {
Object.defineProperty( this, 'id', { value: GeometryIdCount() } );
this.uuid = _Math.generateUUID();
this.name = '';
this.type = 'Geometry';
this.vertices = [];
this.colors = [];
this.faces = [];
this.faceVertexUvs = [[]];
this.morphTargets = [];
this.morphNormals = [];
this.skinWeights = [];
this.skinIndices = [];
this.lineDistances = [];
this.boundingBox = null;
this.boundingSphere = null;
// update flags
this.elementsNeedUpdate = false;
this.verticesNeedUpdate = false;
this.uvsNeedUpdate = false;
this.normalsNeedUpdate = false;
this.colorsNeedUpdate = false;
this.lineDistancesNeedUpdate = false;
this.groupsNeedUpdate = false;
}
Object.assign( Geometry.prototype, EventDispatcher.prototype, {
isGeometry: true,
applyMatrix: function ( matrix ) {
var normalMatrix = new Matrix3().getNormalMatrix( matrix );
for ( var i = 0, il = this.vertices.length; i < il; i ++ ) {
var vertex = this.vertices[ i ];
vertex.applyMatrix4( matrix );
}
for ( var i = 0, il = this.faces.length; i < il; i ++ ) {
var face = this.faces[ i ];
face.normal.applyMatrix3( normalMatrix ).normalize();
for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {
face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize();
}
}
if ( this.boundingBox !== null ) {
this.computeBoundingBox();
}
if ( this.boundingSphere !== null ) {
this.computeBoundingSphere();
}
this.verticesNeedUpdate = true;
this.normalsNeedUpdate = true;
return this;
},
rotateX: function () {
// rotate geometry around world x-axis
var m1 = new Matrix4();
return function rotateX( angle ) {
m1.makeRotationX( angle );
this.applyMatrix( m1 );
return this;
};
}(),
rotateY: function () {
// rotate geometry around world y-axis
var m1 = new Matrix4();
return function rotateY( angle ) {
m1.makeRotationY( angle );
this.applyMatrix( m1 );
return this;
};
}(),
rotateZ: function () {
// rotate geometry around world z-axis
var m1 = new Matrix4();
return function rotateZ( angle ) {
m1.makeRotationZ( angle );
this.applyMatrix( m1 );
return this;
};
}(),
translate: function () {
// translate geometry
var m1 = new Matrix4();
return function translate( x, y, z ) {
m1.makeTranslation( x, y, z );
this.applyMatrix( m1 );
return this;
};
}(),
scale: function () {
// scale geometry
var m1 = new Matrix4();
return function scale( x, y, z ) {
m1.makeScale( x, y, z );
this.applyMatrix( m1 );
return this;
};
}(),
lookAt: function () {
var obj = new Object3D();
return function lookAt( vector ) {
obj.lookAt( vector );
obj.updateMatrix();
this.applyMatrix( obj.matrix );
};
}(),
fromBufferGeometry: function ( geometry ) {
var scope = this;
var indices = geometry.index !== null ? geometry.index.array : undefined;
var attributes = geometry.attributes;
var positions = attributes.position.array;
var normals = attributes.normal !== undefined ? attributes.normal.array : undefined;
var colors = attributes.color !== undefined ? attributes.color.array : undefined;
var uvs = attributes.uv !== undefined ? attributes.uv.array : undefined;
var uvs2 = attributes.uv2 !== undefined ? attributes.uv2.array : undefined;
if ( uvs2 !== undefined ) this.faceVertexUvs[ 1 ] = [];
var tempNormals = [];
var tempUVs = [];
var tempUVs2 = [];
for ( var i = 0, j = 0; i < positions.length; i += 3, j += 2 ) {
scope.vertices.push( new Vector3( positions[ i ], positions[ i + 1 ], positions[ i + 2 ] ) );
if ( normals !== undefined ) {
tempNormals.push( new Vector3( normals[ i ], normals[ i + 1 ], normals[ i + 2 ] ) );
}
if ( colors !== undefined ) {
scope.colors.push( new Color( colors[ i ], colors[ i + 1 ], colors[ i + 2 ] ) );
}
if ( uvs !== undefined ) {
tempUVs.push( new Vector2( uvs[ j ], uvs[ j + 1 ] ) );
}
if ( uvs2 !== undefined ) {
tempUVs2.push( new Vector2( uvs2[ j ], uvs2[ j + 1 ] ) );
}
}
function addFace( a, b, c, materialIndex ) {
var vertexNormals = normals !== undefined ? [ tempNormals[ a ].clone(), tempNormals[ b ].clone(), tempNormals[ c ].clone() ] : [];
var vertexColors = colors !== undefined ? [ scope.colors[ a ].clone(), scope.colors[ b ].clone(), scope.colors[ c ].clone() ] : [];
var face = new Face3( a, b, c, vertexNormals, vertexColors, materialIndex );
scope.faces.push( face );
if ( uvs !== undefined ) {
scope.faceVertexUvs[ 0 ].push( [ tempUVs[ a ].clone(), tempUVs[ b ].clone(), tempUVs[ c ].clone() ] );
}
if ( uvs2 !== undefined ) {
scope.faceVertexUvs[ 1 ].push( [ tempUVs2[ a ].clone(), tempUVs2[ b ].clone(), tempUVs2[ c ].clone() ] );
}
}
var groups = geometry.groups;
if ( groups.length > 0 ) {
for ( var i = 0; i < groups.length; i ++ ) {
var group = groups[ i ];
var start = group.start;
var count = group.count;
for ( var j = start, jl = start + count; j < jl; j += 3 ) {
if ( indices !== undefined ) {
addFace( indices[ j ], indices[ j + 1 ], indices[ j + 2 ], group.materialIndex );
} else {
addFace( j, j + 1, j + 2, group.materialIndex );
}
}
}
} else {
if ( indices !== undefined ) {
for ( var i = 0; i < indices.length; i += 3 ) {
addFace( indices[ i ], indices[ i + 1 ], indices[ i + 2 ] );
}
} else {
for ( var i = 0; i < positions.length / 3; i += 3 ) {
addFace( i, i + 1, i + 2 );
}
}
}
this.computeFaceNormals();
if ( geometry.boundingBox !== null ) {
this.boundingBox = geometry.boundingBox.clone();
}
if ( geometry.boundingSphere !== null ) {
this.boundingSphere = geometry.boundingSphere.clone();
}
return this;
},
center: function () {
this.computeBoundingBox();
var offset = this.boundingBox.getCenter().negate();
this.translate( offset.x, offset.y, offset.z );
return offset;
},
normalize: function () {
this.computeBoundingSphere();
var center = this.boundingSphere.center;
var radius = this.boundingSphere.radius;
var s = radius === 0 ? 1 : 1.0 / radius;
var matrix = new Matrix4();
matrix.set(
s, 0, 0, - s * center.x,
0, s, 0, - s * center.y,
0, 0, s, - s * center.z,
0, 0, 0, 1
);
this.applyMatrix( matrix );
return this;
},
computeFaceNormals: function () {
var cb = new Vector3(), ab = new Vector3();
for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) {
var face = this.faces[ f ];
var vA = this.vertices[ face.a ];
var vB = this.vertices[ face.b ];
var vC = this.vertices[ face.c ];
cb.subVectors( vC, vB );
ab.subVectors( vA, vB );
cb.cross( ab );
cb.normalize();
face.normal.copy( cb );
}
},
computeVertexNormals: function ( areaWeighted ) {
if ( areaWeighted === undefined ) areaWeighted = true;
var v, vl, f, fl, face, vertices;
vertices = new Array( this.vertices.length );
for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {
vertices[ v ] = new Vector3();
}
if ( areaWeighted ) {
// vertex normals weighted by triangle areas
// http://www.iquilezles.org/www/articles/normals/normals.htm
var vA, vB, vC;
var cb = new Vector3(), ab = new Vector3();
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
vA = this.vertices[ face.a ];
vB = this.vertices[ face.b ];
vC = this.vertices[ face.c ];
cb.subVectors( vC, vB );
ab.subVectors( vA, vB );
cb.cross( ab );
vertices[ face.a ].add( cb );
vertices[ face.b ].add( cb );
vertices[ face.c ].add( cb );
}
} else {
this.computeFaceNormals();
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
vertices[ face.a ].add( face.normal );
vertices[ face.b ].add( face.normal );
vertices[ face.c ].add( face.normal );
}
}
for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {
vertices[ v ].normalize();
}
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
var vertexNormals = face.vertexNormals;
if ( vertexNormals.length === 3 ) {
vertexNormals[ 0 ].copy( vertices[ face.a ] );
vertexNormals[ 1 ].copy( vertices[ face.b ] );
vertexNormals[ 2 ].copy( vertices[ face.c ] );
} else {
vertexNormals[ 0 ] = vertices[ face.a ].clone();
vertexNormals[ 1 ] = vertices[ face.b ].clone();
vertexNormals[ 2 ] = vertices[ face.c ].clone();
}
}
if ( this.faces.length > 0 ) {
this.normalsNeedUpdate = true;
}
},
computeFlatVertexNormals: function () {
var f, fl, face;
this.computeFaceNormals();
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
var vertexNormals = face.vertexNormals;
if ( vertexNormals.length === 3 ) {
vertexNormals[ 0 ].copy( face.normal );
vertexNormals[ 1 ].copy( face.normal );
vertexNormals[ 2 ].copy( face.normal );
} else {
vertexNormals[ 0 ] = face.normal.clone();
vertexNormals[ 1 ] = face.normal.clone();
vertexNormals[ 2 ] = face.normal.clone();
}
}
if ( this.faces.length > 0 ) {
this.normalsNeedUpdate = true;
}
},
computeMorphNormals: function () {
var i, il, f, fl, face;
// save original normals
// - create temp variables on first access
// otherwise just copy (for faster repeated calls)
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
if ( ! face.__originalFaceNormal ) {
face.__originalFaceNormal = face.normal.clone();
} else {
face.__originalFaceNormal.copy( face.normal );
}
if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = [];
for ( i = 0, il = face.vertexNormals.length; i < il; i ++ ) {
if ( ! face.__originalVertexNormals[ i ] ) {
face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone();
} else {
face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] );
}
}
}
// use temp geometry to compute face and vertex normals for each morph
var tmpGeo = new Geometry();
tmpGeo.faces = this.faces;
for ( i = 0, il = this.morphTargets.length; i < il; i ++ ) {
// create on first access
if ( ! this.morphNormals[ i ] ) {
this.morphNormals[ i ] = {};
this.morphNormals[ i ].faceNormals = [];
this.morphNormals[ i ].vertexNormals = [];
var dstNormalsFace = this.morphNormals[ i ].faceNormals;
var dstNormalsVertex = this.morphNormals[ i ].vertexNormals;
var faceNormal, vertexNormals;
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
faceNormal = new Vector3();
vertexNormals = { a: new Vector3(), b: new Vector3(), c: new Vector3() };
dstNormalsFace.push( faceNormal );
dstNormalsVertex.push( vertexNormals );
}
}
var morphNormals = this.morphNormals[ i ];
// set vertices to morph target
tmpGeo.vertices = this.morphTargets[ i ].vertices;
// compute morph normals
tmpGeo.computeFaceNormals();
tmpGeo.computeVertexNormals();
// store morph normals
var faceNormal, vertexNormals;
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
faceNormal = morphNormals.faceNormals[ f ];
vertexNormals = morphNormals.vertexNormals[ f ];
faceNormal.copy( face.normal );
vertexNormals.a.copy( face.vertexNormals[ 0 ] );
vertexNormals.b.copy( face.vertexNormals[ 1 ] );
vertexNormals.c.copy( face.vertexNormals[ 2 ] );
}
}
// restore original normals
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
face.normal = face.__originalFaceNormal;
face.vertexNormals = face.__originalVertexNormals;
}
},
computeLineDistances: function () {
var d = 0;
var vertices = this.vertices;
for ( var i = 0, il = vertices.length; i < il; i ++ ) {
if ( i > 0 ) {
d += vertices[ i ].distanceTo( vertices[ i - 1 ] );
}
this.lineDistances[ i ] = d;
}
},
computeBoundingBox: function () {
if ( this.boundingBox === null ) {
this.boundingBox = new Box3();
}
this.boundingBox.setFromPoints( this.vertices );
},
computeBoundingSphere: function () {
if ( this.boundingSphere === null ) {
this.boundingSphere = new Sphere();
}
this.boundingSphere.setFromPoints( this.vertices );
},
merge: function ( geometry, matrix, materialIndexOffset ) {
if ( ! ( geometry && geometry.isGeometry ) ) {
console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry );
return;
}
var normalMatrix,
vertexOffset = this.vertices.length,
vertices1 = this.vertices,
vertices2 = geometry.vertices,
faces1 = this.faces,
faces2 = geometry.faces,
uvs1 = this.faceVertexUvs[ 0 ],
uvs2 = geometry.faceVertexUvs[ 0 ],
colors1 = this.colors,
colors2 = geometry.colors;
if ( materialIndexOffset === undefined ) materialIndexOffset = 0;
if ( matrix !== undefined ) {
normalMatrix = new Matrix3().getNormalMatrix( matrix );
}
// vertices
for ( var i = 0, il = vertices2.length; i < il; i ++ ) {
var vertex = vertices2[ i ];
var vertexCopy = vertex.clone();
if ( matrix !== undefined ) vertexCopy.applyMatrix4( matrix );
vertices1.push( vertexCopy );
}
// colors
for ( var i = 0, il = colors2.length; i < il; i ++ ) {
colors1.push( colors2[ i ].clone() );
}
// faces
for ( i = 0, il = faces2.length; i < il; i ++ ) {
var face = faces2[ i ], faceCopy, normal, color,
faceVertexNormals = face.vertexNormals,
faceVertexColors = face.vertexColors;
faceCopy = new Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset );
faceCopy.normal.copy( face.normal );
if ( normalMatrix !== undefined ) {
faceCopy.normal.applyMatrix3( normalMatrix ).normalize();
}
for ( var j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) {
normal = faceVertexNormals[ j ].clone();
if ( normalMatrix !== undefined ) {
normal.applyMatrix3( normalMatrix ).normalize();
}
faceCopy.vertexNormals.push( normal );
}
faceCopy.color.copy( face.color );
for ( var j = 0, jl = faceVertexColors.length; j < jl; j ++ ) {
color = faceVertexColors[ j ];
faceCopy.vertexColors.push( color.clone() );
}
faceCopy.materialIndex = face.materialIndex + materialIndexOffset;
faces1.push( faceCopy );
}
// uvs
for ( i = 0, il = uvs2.length; i < il; i ++ ) {
var uv = uvs2[ i ], uvCopy = [];
if ( uv === undefined ) {
continue;
}
for ( var j = 0, jl = uv.length; j < jl; j ++ ) {
uvCopy.push( uv[ j ].clone() );
}
uvs1.push( uvCopy );
}
},
mergeMesh: function ( mesh ) {
if ( ! ( mesh && mesh.isMesh ) ) {
console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh );
return;
}
mesh.matrixAutoUpdate && mesh.updateMatrix();
this.merge( mesh.geometry, mesh.matrix );
},
/*
* Checks for duplicate vertices with hashmap.
* Duplicated vertices are removed
* and faces' vertices are updated.
*/
mergeVertices: function () {
var verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique)
var unique = [], changes = [];
var v, key;
var precisionPoints = 4; // number of decimal points, e.g. 4 for epsilon of 0.0001
var precision = Math.pow( 10, precisionPoints );
var i, il, face;
var indices, j, jl;
for ( i = 0, il = this.vertices.length; i < il; i ++ ) {
v = this.vertices[ i ];
key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision );
if ( verticesMap[ key ] === undefined ) {
verticesMap[ key ] = i;
unique.push( this.vertices[ i ] );
changes[ i ] = unique.length - 1;
} else {
//console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]);
changes[ i ] = changes[ verticesMap[ key ] ];
}
}
// if faces are completely degenerate after merging vertices, we
// have to remove them from the geometry.
var faceIndicesToRemove = [];
for ( i = 0, il = this.faces.length; i < il; i ++ ) {
face = this.faces[ i ];
face.a = changes[ face.a ];
face.b = changes[ face.b ];
face.c = changes[ face.c ];
indices = [ face.a, face.b, face.c ];
// if any duplicate vertices are found in a Face3
// we have to remove the face as nothing can be saved
for ( var n = 0; n < 3; n ++ ) {
if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) {
faceIndicesToRemove.push( i );
break;
}
}
}
for ( i = faceIndicesToRemove.length - 1; i >= 0; i -- ) {
var idx = faceIndicesToRemove[ i ];
this.faces.splice( idx, 1 );
for ( j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) {
this.faceVertexUvs[ j ].splice( idx, 1 );
}
}
// Use unique set of vertices
var diff = this.vertices.length - unique.length;
this.vertices = unique;
return diff;
},
sortFacesByMaterialIndex: function () {
var faces = this.faces;
var length = faces.length;
// tag faces
for ( var i = 0; i < length; i ++ ) {
faces[ i ]._id = i;
}
// sort faces
function materialIndexSort( a, b ) {
return a.materialIndex - b.materialIndex;
}
faces.sort( materialIndexSort );
// sort uvs
var uvs1 = this.faceVertexUvs[ 0 ];
var uvs2 = this.faceVertexUvs[ 1 ];
var newUvs1, newUvs2;
if ( uvs1 && uvs1.length === length ) newUvs1 = [];
if ( uvs2 && uvs2.length === length ) newUvs2 = [];
for ( var i = 0; i < length; i ++ ) {
var id = faces[ i ]._id;
if ( newUvs1 ) newUvs1.push( uvs1[ id ] );
if ( newUvs2 ) newUvs2.push( uvs2[ id ] );
}
if ( newUvs1 ) this.faceVertexUvs[ 0 ] = newUvs1;
if ( newUvs2 ) this.faceVertexUvs[ 1 ] = newUvs2;
},
toJSON: function () {
var data = {
metadata: {
version: 4.5,
type: 'Geometry',
generator: 'Geometry.toJSON'
}
};
// standard Geometry serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( this.parameters !== undefined ) {
var parameters = this.parameters;
for ( var key in parameters ) {
if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];
}
return data;
}
var vertices = [];
for ( var i = 0; i < this.vertices.length; i ++ ) {
var vertex = this.vertices[ i ];
vertices.push( vertex.x, vertex.y, vertex.z );
}
var faces = [];
var normals = [];
var normalsHash = {};
var colors = [];
var colorsHash = {};
var uvs = [];
var uvsHash = {};
for ( var i = 0; i < this.faces.length; i ++ ) {
var face = this.faces[ i ];
var hasMaterial = true;
var hasFaceUv = false; // deprecated
var hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i ] !== undefined;
var hasFaceNormal = face.normal.length() > 0;
var hasFaceVertexNormal = face.vertexNormals.length > 0;
var hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1;
var hasFaceVertexColor = face.vertexColors.length > 0;
var faceType = 0;
faceType = setBit( faceType, 0, 0 ); // isQuad
faceType = setBit( faceType, 1, hasMaterial );
faceType = setBit( faceType, 2, hasFaceUv );
faceType = setBit( faceType, 3, hasFaceVertexUv );
faceType = setBit( faceType, 4, hasFaceNormal );
faceType = setBit( faceType, 5, hasFaceVertexNormal );
faceType = setBit( faceType, 6, hasFaceColor );
faceType = setBit( faceType, 7, hasFaceVertexColor );
faces.push( faceType );
faces.push( face.a, face.b, face.c );
faces.push( face.materialIndex );
if ( hasFaceVertexUv ) {
var faceVertexUvs = this.faceVertexUvs[ 0 ][ i ];
faces.push(
getUvIndex( faceVertexUvs[ 0 ] ),
getUvIndex( faceVertexUvs[ 1 ] ),
getUvIndex( faceVertexUvs[ 2 ] )
);
}
if ( hasFaceNormal ) {
faces.push( getNormalIndex( face.normal ) );
}
if ( hasFaceVertexNormal ) {
var vertexNormals = face.vertexNormals;
faces.push(
getNormalIndex( vertexNormals[ 0 ] ),
getNormalIndex( vertexNormals[ 1 ] ),
getNormalIndex( vertexNormals[ 2 ] )
);
}
if ( hasFaceColor ) {
faces.push( getColorIndex( face.color ) );
}
if ( hasFaceVertexColor ) {
var vertexColors = face.vertexColors;
faces.push(
getColorIndex( vertexColors[ 0 ] ),
getColorIndex( vertexColors[ 1 ] ),
getColorIndex( vertexColors[ 2 ] )
);
}
}
function setBit( value, position, enabled ) {
return enabled ? value | ( 1 << position ) : value & ( ~ ( 1 << position ) );
}
function getNormalIndex( normal ) {
var hash = normal.x.toString() + normal.y.toString() + normal.z.toString();
if ( normalsHash[ hash ] !== undefined ) {
return normalsHash[ hash ];
}
normalsHash[ hash ] = normals.length / 3;
normals.push( normal.x, normal.y, normal.z );
return normalsHash[ hash ];
}
function getColorIndex( color ) {
var hash = color.r.toString() + color.g.toString() + color.b.toString();
if ( colorsHash[ hash ] !== undefined ) {
return colorsHash[ hash ];
}
colorsHash[ hash ] = colors.length;
colors.push( color.getHex() );
return colorsHash[ hash ];
}
function getUvIndex( uv ) {
var hash = uv.x.toString() + uv.y.toString();
if ( uvsHash[ hash ] !== undefined ) {
return uvsHash[ hash ];
}
uvsHash[ hash ] = uvs.length / 2;
uvs.push( uv.x, uv.y );
return uvsHash[ hash ];
}
data.data = {};
data.data.vertices = vertices;
data.data.normals = normals;
if ( colors.length > 0 ) data.data.colors = colors;
if ( uvs.length > 0 ) data.data.uvs = [ uvs ]; // temporal backward compatibility
data.data.faces = faces;
return data;
},
clone: function () {
/*
// Handle primitives
var parameters = this.parameters;
if ( parameters !== undefined ) {
var values = [];
for ( var key in parameters ) {
values.push( parameters[ key ] );
}
var geometry = Object.create( this.constructor.prototype );
this.constructor.apply( geometry, values );
return geometry;
}
return new this.constructor().copy( this );
*/
return new Geometry().copy( this );
},
copy: function ( source ) {
var i, il, j, jl, k, kl;
// reset
this.vertices = [];
this.colors = [];
this.faces = [];
this.faceVertexUvs = [[]];
this.morphTargets = [];
this.morphNormals = [];
this.skinWeights = [];
this.skinIndices = [];
this.lineDistances = [];
this.boundingBox = null;
this.boundingSphere = null;
// name
this.name = source.name;
// vertices
var vertices = source.vertices;
for ( i = 0, il = vertices.length; i < il; i ++ ) {
this.vertices.push( vertices[ i ].clone() );
}
// colors
var colors = source.colors;
for ( i = 0, il = colors.length; i < il; i ++ ) {
this.colors.push( colors[ i ].clone() );
}
// faces
var faces = source.faces;
for ( i = 0, il = faces.length; i < il; i ++ ) {
this.faces.push( faces[ i ].clone() );
}
// face vertex uvs
for ( i = 0, il = source.faceVertexUvs.length; i < il; i ++ ) {
var faceVertexUvs = source.faceVertexUvs[ i ];
if ( this.faceVertexUvs[ i ] === undefined ) {
this.faceVertexUvs[ i ] = [];
}
for ( j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) {
var uvs = faceVertexUvs[ j ], uvsCopy = [];
for ( k = 0, kl = uvs.length; k < kl; k ++ ) {
var uv = uvs[ k ];
uvsCopy.push( uv.clone() );
}
this.faceVertexUvs[ i ].push( uvsCopy );
}
}
// morph targets
var morphTargets = source.morphTargets;
for ( i = 0, il = morphTargets.length; i < il; i ++ ) {
var morphTarget = {};
morphTarget.name = morphTargets[ i ].name;
// vertices
if ( morphTargets[ i ].vertices !== undefined ) {
morphTarget.vertices = [];
for ( j = 0, jl = morphTargets[ i ].vertices.length; j < jl; j ++ ) {
morphTarget.vertices.push( morphTargets[ i ].vertices[ j ].clone() );
}
}
// normals
if ( morphTargets[ i ].normals !== undefined ) {
morphTarget.normals = [];
for ( j = 0, jl = morphTargets[ i ].normals.length; j < jl; j ++ ) {
morphTarget.normals.push( morphTargets[ i ].normals[ j ].clone() );
}
}
this.morphTargets.push( morphTarget );
}
// morph normals
var morphNormals = source.morphNormals;
for ( i = 0, il = morphNormals.length; i < il; i ++ ) {
var morphNormal = {};
// vertex normals
if ( morphNormals[ i ].vertexNormals !== undefined ) {
morphNormal.vertexNormals = [];
for ( j = 0, jl = morphNormals[ i ].vertexNormals.length; j < jl; j ++ ) {
var srcVertexNormal = morphNormals[ i ].vertexNormals[ j ];
var destVertexNormal = {};
destVertexNormal.a = srcVertexNormal.a.clone();
destVertexNormal.b = srcVertexNormal.b.clone();
destVertexNormal.c = srcVertexNormal.c.clone();
morphNormal.vertexNormals.push( destVertexNormal );
}
}
// face normals
if ( morphNormals[ i ].faceNormals !== undefined ) {
morphNormal.faceNormals = [];
for ( j = 0, jl = morphNormals[ i ].faceNormals.length; j < jl; j ++ ) {
morphNormal.faceNormals.push( morphNormals[ i ].faceNormals[ j ].clone() );
}
}
this.morphNormals.push( morphNormal );
}
// skin weights
var skinWeights = source.skinWeights;
for ( i = 0, il = skinWeights.length; i < il; i ++ ) {
this.skinWeights.push( skinWeights[ i ].clone() );
}
// skin indices
var skinIndices = source.skinIndices;
for ( i = 0, il = skinIndices.length; i < il; i ++ ) {
this.skinIndices.push( skinIndices[ i ].clone() );
}
// line distances
var lineDistances = source.lineDistances;
for ( i = 0, il = lineDistances.length; i < il; i ++ ) {
this.lineDistances.push( lineDistances[ i ] );
}
// bounding box
var boundingBox = source.boundingBox;
if ( boundingBox !== null ) {
this.boundingBox = boundingBox.clone();
}
// bounding sphere
var boundingSphere = source.boundingSphere;
if ( boundingSphere !== null ) {
this.boundingSphere = boundingSphere.clone();
}
// update flags
this.elementsNeedUpdate = source.elementsNeedUpdate;
this.verticesNeedUpdate = source.verticesNeedUpdate;
this.uvsNeedUpdate = source.uvsNeedUpdate;
this.normalsNeedUpdate = source.normalsNeedUpdate;
this.colorsNeedUpdate = source.colorsNeedUpdate;
this.lineDistancesNeedUpdate = source.lineDistancesNeedUpdate;
this.groupsNeedUpdate = source.groupsNeedUpdate;
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function BufferAttribute( array, itemSize, normalized ) {
if ( Array.isArray( array ) ) {
throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );
}
this.uuid = _Math.generateUUID();
this.name = '';
this.array = array;
this.itemSize = itemSize;
this.count = array !== undefined ? array.length / itemSize : 0;
this.normalized = normalized === true;
this.dynamic = false;
this.updateRange = { offset: 0, count: - 1 };
this.onUploadCallback = function () {};
this.version = 0;
}
Object.defineProperty( BufferAttribute.prototype, 'needsUpdate', {
set: function ( value ) {
if ( value === true ) this.version ++;
}
} );
Object.assign( BufferAttribute.prototype, {
isBufferAttribute: true,
setArray: function ( array ) {
if ( Array.isArray( array ) ) {
throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );
}
this.count = array !== undefined ? array.length / this.itemSize : 0;
this.array = array;
},
setDynamic: function ( value ) {
this.dynamic = value;
return this;
},
copy: function ( source ) {
this.array = new source.array.constructor( source.array );
this.itemSize = source.itemSize;
this.count = source.count;
this.normalized = source.normalized;
this.dynamic = source.dynamic;
return this;
},
copyAt: function ( index1, attribute, index2 ) {
index1 *= this.itemSize;
index2 *= attribute.itemSize;
for ( var i = 0, l = this.itemSize; i < l; i ++ ) {
this.array[ index1 + i ] = attribute.array[ index2 + i ];
}
return this;
},
copyArray: function ( array ) {
this.array.set( array );
return this;
},
copyColorsArray: function ( colors ) {
var array = this.array, offset = 0;
for ( var i = 0, l = colors.length; i < l; i ++ ) {
var color = colors[ i ];
if ( color === undefined ) {
console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i );
color = new Color();
}
array[ offset ++ ] = color.r;
array[ offset ++ ] = color.g;
array[ offset ++ ] = color.b;
}
return this;
},
copyIndicesArray: function ( indices ) {
var array = this.array, offset = 0;
for ( var i = 0, l = indices.length; i < l; i ++ ) {
var index = indices[ i ];
array[ offset ++ ] = index.a;
array[ offset ++ ] = index.b;
array[ offset ++ ] = index.c;
}
return this;
},
copyVector2sArray: function ( vectors ) {
var array = this.array, offset = 0;
for ( var i = 0, l = vectors.length; i < l; i ++ ) {
var vector = vectors[ i ];
if ( vector === undefined ) {
console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i );
vector = new Vector2();
}
array[ offset ++ ] = vector.x;
array[ offset ++ ] = vector.y;
}
return this;
},
copyVector3sArray: function ( vectors ) {
var array = this.array, offset = 0;
for ( var i = 0, l = vectors.length; i < l; i ++ ) {
var vector = vectors[ i ];
if ( vector === undefined ) {
console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i );
vector = new Vector3();
}
array[ offset ++ ] = vector.x;
array[ offset ++ ] = vector.y;
array[ offset ++ ] = vector.z;
}
return this;
},
copyVector4sArray: function ( vectors ) {
var array = this.array, offset = 0;
for ( var i = 0, l = vectors.length; i < l; i ++ ) {
var vector = vectors[ i ];
if ( vector === undefined ) {
console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i );
vector = new Vector4();
}
array[ offset ++ ] = vector.x;
array[ offset ++ ] = vector.y;
array[ offset ++ ] = vector.z;
array[ offset ++ ] = vector.w;
}
return this;
},
set: function ( value, offset ) {
if ( offset === undefined ) offset = 0;
this.array.set( value, offset );
return this;
},
getX: function ( index ) {
return this.array[ index * this.itemSize ];
},
setX: function ( index, x ) {
this.array[ index * this.itemSize ] = x;
return this;
},
getY: function ( index ) {
return this.array[ index * this.itemSize + 1 ];
},
setY: function ( index, y ) {
this.array[ index * this.itemSize + 1 ] = y;
return this;
},
getZ: function ( index ) {
return this.array[ index * this.itemSize + 2 ];
},
setZ: function ( index, z ) {
this.array[ index * this.itemSize + 2 ] = z;
return this;
},
getW: function ( index ) {
return this.array[ index * this.itemSize + 3 ];
},
setW: function ( index, w ) {
this.array[ index * this.itemSize + 3 ] = w;
return this;
},
setXY: function ( index, x, y ) {
index *= this.itemSize;
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
return this;
},
setXYZ: function ( index, x, y, z ) {
index *= this.itemSize;
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
this.array[ index + 2 ] = z;
return this;
},
setXYZW: function ( index, x, y, z, w ) {
index *= this.itemSize;
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
this.array[ index + 2 ] = z;
this.array[ index + 3 ] = w;
return this;
},
onUpload: function ( callback ) {
this.onUploadCallback = callback;
return this;
},
clone: function () {
return new this.constructor( this.array, this.itemSize ).copy( this );
}
} );
function Uint16BufferAttribute( array, itemSize ) {
BufferAttribute.call( this, new Uint16Array( array ), itemSize );
}
Uint16BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
Uint16BufferAttribute.prototype.constructor = Uint16BufferAttribute;
function Uint32BufferAttribute( array, itemSize ) {
BufferAttribute.call( this, new Uint32Array( array ), itemSize );
}
Uint32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
Uint32BufferAttribute.prototype.constructor = Uint32BufferAttribute;
function Float32BufferAttribute( array, itemSize ) {
BufferAttribute.call( this, new Float32Array( array ), itemSize );
}
Float32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
Float32BufferAttribute.prototype.constructor = Float32BufferAttribute;
/**
* @author mrdoob / http://mrdoob.com/
*/
function DirectGeometry() {
this.indices = [];
this.vertices = [];
this.normals = [];
this.colors = [];
this.uvs = [];
this.uvs2 = [];
this.groups = [];
this.morphTargets = {};
this.skinWeights = [];
this.skinIndices = [];
// this.lineDistances = [];
this.boundingBox = null;
this.boundingSphere = null;
// update flags
this.verticesNeedUpdate = false;
this.normalsNeedUpdate = false;
this.colorsNeedUpdate = false;
this.uvsNeedUpdate = false;
this.groupsNeedUpdate = false;
}
Object.assign( DirectGeometry.prototype, {
computeGroups: function ( geometry ) {
var group;
var groups = [];
var materialIndex = undefined;
var faces = geometry.faces;
for ( var i = 0; i < faces.length; i ++ ) {
var face = faces[ i ];
// materials
if ( face.materialIndex !== materialIndex ) {
materialIndex = face.materialIndex;
if ( group !== undefined ) {
group.count = ( i * 3 ) - group.start;
groups.push( group );
}
group = {
start: i * 3,
materialIndex: materialIndex
};
}
}
if ( group !== undefined ) {
group.count = ( i * 3 ) - group.start;
groups.push( group );
}
this.groups = groups;
},
fromGeometry: function ( geometry ) {
var faces = geometry.faces;
var vertices = geometry.vertices;
var faceVertexUvs = geometry.faceVertexUvs;
var hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0;
var hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0;
// morphs
var morphTargets = geometry.morphTargets;
var morphTargetsLength = morphTargets.length;
var morphTargetsPosition;
if ( morphTargetsLength > 0 ) {
morphTargetsPosition = [];
for ( var i = 0; i < morphTargetsLength; i ++ ) {
morphTargetsPosition[ i ] = [];
}
this.morphTargets.position = morphTargetsPosition;
}
var morphNormals = geometry.morphNormals;
var morphNormalsLength = morphNormals.length;
var morphTargetsNormal;
if ( morphNormalsLength > 0 ) {
morphTargetsNormal = [];
for ( var i = 0; i < morphNormalsLength; i ++ ) {
morphTargetsNormal[ i ] = [];
}
this.morphTargets.normal = morphTargetsNormal;
}
// skins
var skinIndices = geometry.skinIndices;
var skinWeights = geometry.skinWeights;
var hasSkinIndices = skinIndices.length === vertices.length;
var hasSkinWeights = skinWeights.length === vertices.length;
//
for ( var i = 0; i < faces.length; i ++ ) {
var face = faces[ i ];
this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] );
var vertexNormals = face.vertexNormals;
if ( vertexNormals.length === 3 ) {
this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] );
} else {
var normal = face.normal;
this.normals.push( normal, normal, normal );
}
var vertexColors = face.vertexColors;
if ( vertexColors.length === 3 ) {
this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] );
} else {
var color = face.color;
this.colors.push( color, color, color );
}
if ( hasFaceVertexUv === true ) {
var vertexUvs = faceVertexUvs[ 0 ][ i ];
if ( vertexUvs !== undefined ) {
this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );
} else {
console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i );
this.uvs.push( new Vector2(), new Vector2(), new Vector2() );
}
}
if ( hasFaceVertexUv2 === true ) {
var vertexUvs = faceVertexUvs[ 1 ][ i ];
if ( vertexUvs !== undefined ) {
this.uvs2.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );
} else {
console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i );
this.uvs2.push( new Vector2(), new Vector2(), new Vector2() );
}
}
// morphs
for ( var j = 0; j < morphTargetsLength; j ++ ) {
var morphTarget = morphTargets[ j ].vertices;
morphTargetsPosition[ j ].push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] );
}
for ( var j = 0; j < morphNormalsLength; j ++ ) {
var morphNormal = morphNormals[ j ].vertexNormals[ i ];
morphTargetsNormal[ j ].push( morphNormal.a, morphNormal.b, morphNormal.c );
}
// skins
if ( hasSkinIndices ) {
this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] );
}
if ( hasSkinWeights ) {
this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] );
}
}
this.computeGroups( geometry );
this.verticesNeedUpdate = geometry.verticesNeedUpdate;
this.normalsNeedUpdate = geometry.normalsNeedUpdate;
this.colorsNeedUpdate = geometry.colorsNeedUpdate;
this.uvsNeedUpdate = geometry.uvsNeedUpdate;
this.groupsNeedUpdate = geometry.groupsNeedUpdate;
return this;
}
} );
function arrayMax( array ) {
if ( array.length === 0 ) return - Infinity;
var max = array[ 0 ];
for ( var i = 1, l = array.length; i < l; ++ i ) {
if ( array[ i ] > max ) max = array[ i ];
}
return max;
}
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
function BufferGeometry() {
Object.defineProperty( this, 'id', { value: GeometryIdCount() } );
this.uuid = _Math.generateUUID();
this.name = '';
this.type = 'BufferGeometry';
this.index = null;
this.attributes = {};
this.morphAttributes = {};
this.groups = [];
this.boundingBox = null;
this.boundingSphere = null;
this.drawRange = { start: 0, count: Infinity };
}
BufferGeometry.MaxIndex = 65535;
Object.assign( BufferGeometry.prototype, EventDispatcher.prototype, {
isBufferGeometry: true,
getIndex: function () {
return this.index;
},
setIndex: function ( index ) {
if ( Array.isArray( index ) ) {
this.index = new ( arrayMax( index ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 );
} else {
this.index = index;
}
},
addAttribute: function ( name, attribute ) {
if ( ! ( attribute && attribute.isBufferAttribute ) && ! ( attribute && attribute.isInterleavedBufferAttribute ) ) {
console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' );
this.addAttribute( name, new BufferAttribute( arguments[ 1 ], arguments[ 2 ] ) );
return;
}
if ( name === 'index' ) {
console.warn( 'THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.' );
this.setIndex( attribute );
return;
}
this.attributes[ name ] = attribute;
return this;
},
getAttribute: function ( name ) {
return this.attributes[ name ];
},
removeAttribute: function ( name ) {
delete this.attributes[ name ];
return this;
},
addGroup: function ( start, count, materialIndex ) {
this.groups.push( {
start: start,
count: count,
materialIndex: materialIndex !== undefined ? materialIndex : 0
} );
},
clearGroups: function () {
this.groups = [];
},
setDrawRange: function ( start, count ) {
this.drawRange.start = start;
this.drawRange.count = count;
},
applyMatrix: function ( matrix ) {
var position = this.attributes.position;
if ( position !== undefined ) {
matrix.applyToBufferAttribute( position );
position.needsUpdate = true;
}
var normal = this.attributes.normal;
if ( normal !== undefined ) {
var normalMatrix = new Matrix3().getNormalMatrix( matrix );
normalMatrix.applyToBufferAttribute( normal );
normal.needsUpdate = true;
}
if ( this.boundingBox !== null ) {
this.computeBoundingBox();
}
if ( this.boundingSphere !== null ) {
this.computeBoundingSphere();
}
return this;
},
rotateX: function () {
// rotate geometry around world x-axis
var m1 = new Matrix4();
return function rotateX( angle ) {
m1.makeRotationX( angle );
this.applyMatrix( m1 );
return this;
};
}(),
rotateY: function () {
// rotate geometry around world y-axis
var m1 = new Matrix4();
return function rotateY( angle ) {
m1.makeRotationY( angle );
this.applyMatrix( m1 );
return this;
};
}(),
rotateZ: function () {
// rotate geometry around world z-axis
var m1 = new Matrix4();
return function rotateZ( angle ) {
m1.makeRotationZ( angle );
this.applyMatrix( m1 );
return this;
};
}(),
translate: function () {
// translate geometry
var m1 = new Matrix4();
return function translate( x, y, z ) {
m1.makeTranslation( x, y, z );
this.applyMatrix( m1 );
return this;
};
}(),
scale: function () {
// scale geometry
var m1 = new Matrix4();
return function scale( x, y, z ) {
m1.makeScale( x, y, z );
this.applyMatrix( m1 );
return this;
};
}(),
lookAt: function () {
var obj = new Object3D();
return function lookAt( vector ) {
obj.lookAt( vector );
obj.updateMatrix();
this.applyMatrix( obj.matrix );
};
}(),
center: function () {
this.computeBoundingBox();
var offset = this.boundingBox.getCenter().negate();
this.translate( offset.x, offset.y, offset.z );
return offset;
},
setFromObject: function ( object ) {
// console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this );
var geometry = object.geometry;
if ( object.isPoints || object.isLine ) {
var positions = new Float32BufferAttribute( geometry.vertices.length * 3, 3 );
var colors = new Float32BufferAttribute( geometry.colors.length * 3, 3 );
this.addAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) );
this.addAttribute( 'color', colors.copyColorsArray( geometry.colors ) );
if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) {
var lineDistances = new Float32BufferAttribute( geometry.lineDistances.length, 1 );
this.addAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) );
}
if ( geometry.boundingSphere !== null ) {
this.boundingSphere = geometry.boundingSphere.clone();
}
if ( geometry.boundingBox !== null ) {
this.boundingBox = geometry.boundingBox.clone();
}
} else if ( object.isMesh ) {
if ( geometry && geometry.isGeometry ) {
this.fromGeometry( geometry );
}
}
return this;
},
updateFromObject: function ( object ) {
var geometry = object.geometry;
if ( object.isMesh ) {
var direct = geometry.__directGeometry;
if ( geometry.elementsNeedUpdate === true ) {
direct = undefined;
geometry.elementsNeedUpdate = false;
}
if ( direct === undefined ) {
return this.fromGeometry( geometry );
}
direct.verticesNeedUpdate = geometry.verticesNeedUpdate;
direct.normalsNeedUpdate = geometry.normalsNeedUpdate;
direct.colorsNeedUpdate = geometry.colorsNeedUpdate;
direct.uvsNeedUpdate = geometry.uvsNeedUpdate;
direct.groupsNeedUpdate = geometry.groupsNeedUpdate;
geometry.verticesNeedUpdate = false;
geometry.normalsNeedUpdate = false;
geometry.colorsNeedUpdate = false;
geometry.uvsNeedUpdate = false;
geometry.groupsNeedUpdate = false;
geometry = direct;
}
var attribute;
if ( geometry.verticesNeedUpdate === true ) {
attribute = this.attributes.position;
if ( attribute !== undefined ) {
attribute.copyVector3sArray( geometry.vertices );
attribute.needsUpdate = true;
}
geometry.verticesNeedUpdate = false;
}
if ( geometry.normalsNeedUpdate === true ) {
attribute = this.attributes.normal;
if ( attribute !== undefined ) {
attribute.copyVector3sArray( geometry.normals );
attribute.needsUpdate = true;
}
geometry.normalsNeedUpdate = false;
}
if ( geometry.colorsNeedUpdate === true ) {
attribute = this.attributes.color;
if ( attribute !== undefined ) {
attribute.copyColorsArray( geometry.colors );
attribute.needsUpdate = true;
}
geometry.colorsNeedUpdate = false;
}
if ( geometry.uvsNeedUpdate ) {
attribute = this.attributes.uv;
if ( attribute !== undefined ) {
attribute.copyVector2sArray( geometry.uvs );
attribute.needsUpdate = true;
}
geometry.uvsNeedUpdate = false;
}
if ( geometry.lineDistancesNeedUpdate ) {
attribute = this.attributes.lineDistance;
if ( attribute !== undefined ) {
attribute.copyArray( geometry.lineDistances );
attribute.needsUpdate = true;
}
geometry.lineDistancesNeedUpdate = false;
}
if ( geometry.groupsNeedUpdate ) {
geometry.computeGroups( object.geometry );
this.groups = geometry.groups;
geometry.groupsNeedUpdate = false;
}
return this;
},
fromGeometry: function ( geometry ) {
geometry.__directGeometry = new DirectGeometry().fromGeometry( geometry );
return this.fromDirectGeometry( geometry.__directGeometry );
},
fromDirectGeometry: function ( geometry ) {
var positions = new Float32Array( geometry.vertices.length * 3 );
this.addAttribute( 'position', new BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) );
if ( geometry.normals.length > 0 ) {
var normals = new Float32Array( geometry.normals.length * 3 );
this.addAttribute( 'normal', new BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) );
}
if ( geometry.colors.length > 0 ) {
var colors = new Float32Array( geometry.colors.length * 3 );
this.addAttribute( 'color', new BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) );
}
if ( geometry.uvs.length > 0 ) {
var uvs = new Float32Array( geometry.uvs.length * 2 );
this.addAttribute( 'uv', new BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) );
}
if ( geometry.uvs2.length > 0 ) {
var uvs2 = new Float32Array( geometry.uvs2.length * 2 );
this.addAttribute( 'uv2', new BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) );
}
if ( geometry.indices.length > 0 ) {
var TypeArray = arrayMax( geometry.indices ) > 65535 ? Uint32Array : Uint16Array;
var indices = new TypeArray( geometry.indices.length * 3 );
this.setIndex( new BufferAttribute( indices, 1 ).copyIndicesArray( geometry.indices ) );
}
// groups
this.groups = geometry.groups;
// morphs
for ( var name in geometry.morphTargets ) {
var array = [];
var morphTargets = geometry.morphTargets[ name ];
for ( var i = 0, l = morphTargets.length; i < l; i ++ ) {
var morphTarget = morphTargets[ i ];
var attribute = new Float32BufferAttribute( morphTarget.length * 3, 3 );
array.push( attribute.copyVector3sArray( morphTarget ) );
}
this.morphAttributes[ name ] = array;
}
// skinning
if ( geometry.skinIndices.length > 0 ) {
var skinIndices = new Float32BufferAttribute( geometry.skinIndices.length * 4, 4 );
this.addAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) );
}
if ( geometry.skinWeights.length > 0 ) {
var skinWeights = new Float32BufferAttribute( geometry.skinWeights.length * 4, 4 );
this.addAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) );
}
//
if ( geometry.boundingSphere !== null ) {
this.boundingSphere = geometry.boundingSphere.clone();
}
if ( geometry.boundingBox !== null ) {
this.boundingBox = geometry.boundingBox.clone();
}
return this;
},
computeBoundingBox: function () {
if ( this.boundingBox === null ) {
this.boundingBox = new Box3();
}
var position = this.attributes.position;
if ( position !== undefined ) {
this.boundingBox.setFromBufferAttribute( position );
} else {
this.boundingBox.makeEmpty();
}
if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) {
console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this );
}
},
computeBoundingSphere: function () {
var box = new Box3();
var vector = new Vector3();
return function computeBoundingSphere() {
if ( this.boundingSphere === null ) {
this.boundingSphere = new Sphere();
}
var position = this.attributes.position;
if ( position ) {
var center = this.boundingSphere.center;
box.setFromBufferAttribute( position );
box.getCenter( center );
// hoping to find a boundingSphere with a radius smaller than the
// boundingSphere of the boundingBox: sqrt(3) smaller in the best case
var maxRadiusSq = 0;
for ( var i = 0, il = position.count; i < il; i ++ ) {
vector.x = position.getX( i );
vector.y = position.getY( i );
vector.z = position.getZ( i );
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( vector ) );
}
this.boundingSphere.radius = Math.sqrt( maxRadiusSq );
if ( isNaN( this.boundingSphere.radius ) ) {
console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this );
}
}
};
}(),
computeFaceNormals: function () {
// backwards compatibility
},
computeVertexNormals: function () {
var index = this.index;
var attributes = this.attributes;
var groups = this.groups;
if ( attributes.position ) {
var positions = attributes.position.array;
if ( attributes.normal === undefined ) {
this.addAttribute( 'normal', new BufferAttribute( new Float32Array( positions.length ), 3 ) );
} else {
// reset existing normals to zero
var array = attributes.normal.array;
for ( var i = 0, il = array.length; i < il; i ++ ) {
array[ i ] = 0;
}
}
var normals = attributes.normal.array;
var vA, vB, vC;
var pA = new Vector3(), pB = new Vector3(), pC = new Vector3();
var cb = new Vector3(), ab = new Vector3();
// indexed elements
if ( index ) {
var indices = index.array;
if ( groups.length === 0 ) {
this.addGroup( 0, indices.length );
}
for ( var j = 0, jl = groups.length; j < jl; ++ j ) {
var group = groups[ j ];
var start = group.start;
var count = group.count;
for ( var i = start, il = start + count; i < il; i += 3 ) {
vA = indices[ i + 0 ] * 3;
vB = indices[ i + 1 ] * 3;
vC = indices[ i + 2 ] * 3;
pA.fromArray( positions, vA );
pB.fromArray( positions, vB );
pC.fromArray( positions, vC );
cb.subVectors( pC, pB );
ab.subVectors( pA, pB );
cb.cross( ab );
normals[ vA ] += cb.x;
normals[ vA + 1 ] += cb.y;
normals[ vA + 2 ] += cb.z;
normals[ vB ] += cb.x;
normals[ vB + 1 ] += cb.y;
normals[ vB + 2 ] += cb.z;
normals[ vC ] += cb.x;
normals[ vC + 1 ] += cb.y;
normals[ vC + 2 ] += cb.z;
}
}
} else {
// non-indexed elements (unconnected triangle soup)
for ( var i = 0, il = positions.length; i < il; i += 9 ) {
pA.fromArray( positions, i );
pB.fromArray( positions, i + 3 );
pC.fromArray( positions, i + 6 );
cb.subVectors( pC, pB );
ab.subVectors( pA, pB );
cb.cross( ab );
normals[ i ] = cb.x;
normals[ i + 1 ] = cb.y;
normals[ i + 2 ] = cb.z;
normals[ i + 3 ] = cb.x;
normals[ i + 4 ] = cb.y;
normals[ i + 5 ] = cb.z;
normals[ i + 6 ] = cb.x;
normals[ i + 7 ] = cb.y;
normals[ i + 8 ] = cb.z;
}
}
this.normalizeNormals();
attributes.normal.needsUpdate = true;
}
},
merge: function ( geometry, offset ) {
if ( ! ( geometry && geometry.isBufferGeometry ) ) {
console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry );
return;
}
if ( offset === undefined ) offset = 0;
var attributes = this.attributes;
for ( var key in attributes ) {
if ( geometry.attributes[ key ] === undefined ) continue;
var attribute1 = attributes[ key ];
var attributeArray1 = attribute1.array;
var attribute2 = geometry.attributes[ key ];
var attributeArray2 = attribute2.array;
var attributeSize = attribute2.itemSize;
for ( var i = 0, j = attributeSize * offset; i < attributeArray2.length; i ++, j ++ ) {
attributeArray1[ j ] = attributeArray2[ i ];
}
}
return this;
},
normalizeNormals: function () {
var normals = this.attributes.normal;
var x, y, z, n;
for ( var i = 0, il = normals.count; i < il; i ++ ) {
x = normals.getX( i );
y = normals.getY( i );
z = normals.getZ( i );
n = 1.0 / Math.sqrt( x * x + y * y + z * z );
normals.setXYZ( i, x * n, y * n, z * n );
}
},
toNonIndexed: function () {
if ( this.index === null ) {
console.warn( 'THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.' );
return this;
}
var geometry2 = new BufferGeometry();
var indices = this.index.array;
var attributes = this.attributes;
for ( var name in attributes ) {
var attribute = attributes[ name ];
var array = attribute.array;
var itemSize = attribute.itemSize;
var array2 = new array.constructor( indices.length * itemSize );
var index = 0, index2 = 0;
for ( var i = 0, l = indices.length; i < l; i ++ ) {
index = indices[ i ] * itemSize;
for ( var j = 0; j < itemSize; j ++ ) {
array2[ index2 ++ ] = array[ index ++ ];
}
}
geometry2.addAttribute( name, new BufferAttribute( array2, itemSize ) );
}
return geometry2;
},
toJSON: function () {
var data = {
metadata: {
version: 4.5,
type: 'BufferGeometry',
generator: 'BufferGeometry.toJSON'
}
};
// standard BufferGeometry serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( this.parameters !== undefined ) {
var parameters = this.parameters;
for ( var key in parameters ) {
if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];
}
return data;
}
data.data = { attributes: {} };
var index = this.index;
if ( index !== null ) {
var array = Array.prototype.slice.call( index.array );
data.data.index = {
type: index.array.constructor.name,
array: array
};
}
var attributes = this.attributes;
for ( var key in attributes ) {
var attribute = attributes[ key ];
var array = Array.prototype.slice.call( attribute.array );
data.data.attributes[ key ] = {
itemSize: attribute.itemSize,
type: attribute.array.constructor.name,
array: array,
normalized: attribute.normalized
};
}
var groups = this.groups;
if ( groups.length > 0 ) {
data.data.groups = JSON.parse( JSON.stringify( groups ) );
}
var boundingSphere = this.boundingSphere;
if ( boundingSphere !== null ) {
data.data.boundingSphere = {
center: boundingSphere.center.toArray(),
radius: boundingSphere.radius
};
}
return data;
},
clone: function () {
/*
// Handle primitives
var parameters = this.parameters;
if ( parameters !== undefined ) {
var values = [];
for ( var key in parameters ) {
values.push( parameters[ key ] );
}
var geometry = Object.create( this.constructor.prototype );
this.constructor.apply( geometry, values );
return geometry;
}
return new this.constructor().copy( this );
*/
return new BufferGeometry().copy( this );
},
copy: function ( source ) {
var name, i, l;
// reset
this.index = null;
this.attributes = {};
this.morphAttributes = {};
this.groups = [];
this.boundingBox = null;
this.boundingSphere = null;
// name
this.name = source.name;
// index
var index = source.index;
if ( index !== null ) {
this.setIndex( index.clone() );
}
// attributes
var attributes = source.attributes;
for ( name in attributes ) {
var attribute = attributes[ name ];
this.addAttribute( name, attribute.clone() );
}
// morph attributes
var morphAttributes = source.morphAttributes;
for ( name in morphAttributes ) {
var array = [];
var morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes
for ( i = 0, l = morphAttribute.length; i < l; i ++ ) {
array.push( morphAttribute[ i ].clone() );
}
this.morphAttributes[ name ] = array;
}
// groups
var groups = source.groups;
for ( i = 0, l = groups.length; i < l; i ++ ) {
var group = groups[ i ];
this.addGroup( group.start, group.count, group.materialIndex );
}
// bounding box
var boundingBox = source.boundingBox;
if ( boundingBox !== null ) {
this.boundingBox = boundingBox.clone();
}
// bounding sphere
var boundingSphere = source.boundingSphere;
if ( boundingSphere !== null ) {
this.boundingSphere = boundingSphere.clone();
}
// draw range
this.drawRange.start = source.drawRange.start;
this.drawRange.count = source.drawRange.count;
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author Mugen87 / https://github.com/Mugen87
*/
/**
* @author mrdoob / http://mrdoob.com/
* @author Mugen87 / https://github.com/Mugen87
*/
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* specularMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* shading: THREE.SmoothShading,
* depthTest: <bool>,
* depthWrite: <bool>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* skinning: <bool>,
* morphTargets: <bool>
* }
*/
function MeshBasicMaterial( parameters ) {
Material.call( this );
this.type = 'MeshBasicMaterial';
this.color = new Color( 0xffffff ); // emissive
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.skinning = false;
this.morphTargets = false;
this.lights = false;
this.setValues( parameters );
}
MeshBasicMaterial.prototype = Object.create( Material.prototype );
MeshBasicMaterial.prototype.constructor = MeshBasicMaterial;
MeshBasicMaterial.prototype.isMeshBasicMaterial = true;
MeshBasicMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
return this;
};
/**
* @author bhouston / http://clara.io
*/
function Ray( origin, direction ) {
this.origin = ( origin !== undefined ) ? origin : new Vector3();
this.direction = ( direction !== undefined ) ? direction : new Vector3();
}
Object.assign( Ray.prototype, {
set: function ( origin, direction ) {
this.origin.copy( origin );
this.direction.copy( direction );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( ray ) {
this.origin.copy( ray.origin );
this.direction.copy( ray.direction );
return this;
},
at: function ( t, optionalTarget ) {
var result = optionalTarget || new Vector3();
return result.copy( this.direction ).multiplyScalar( t ).add( this.origin );
},
lookAt: function ( v ) {
this.direction.copy( v ).sub( this.origin ).normalize();
return this;
},
recast: function () {
var v1 = new Vector3();
return function recast( t ) {
this.origin.copy( this.at( t, v1 ) );
return this;
};
}(),
closestPointToPoint: function ( point, optionalTarget ) {
var result = optionalTarget || new Vector3();
result.subVectors( point, this.origin );
var directionDistance = result.dot( this.direction );
if ( directionDistance < 0 ) {
return result.copy( this.origin );
}
return result.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );
},
distanceToPoint: function ( point ) {
return Math.sqrt( this.distanceSqToPoint( point ) );
},
distanceSqToPoint: function () {
var v1 = new Vector3();
return function distanceSqToPoint( point ) {
var directionDistance = v1.subVectors( point, this.origin ).dot( this.direction );
// point behind the ray
if ( directionDistance < 0 ) {
return this.origin.distanceToSquared( point );
}
v1.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );
return v1.distanceToSquared( point );
};
}(),
distanceSqToSegment: function () {
var segCenter = new Vector3();
var segDir = new Vector3();
var diff = new Vector3();
return function distanceSqToSegment( v0, v1, optionalPointOnRay, optionalPointOnSegment ) {
// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h
// It returns the min distance between the ray and the segment
// defined by v0 and v1
// It can also set two optional targets :
// - The closest point on the ray
// - The closest point on the segment
segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 );
segDir.copy( v1 ).sub( v0 ).normalize();
diff.copy( this.origin ).sub( segCenter );
var segExtent = v0.distanceTo( v1 ) * 0.5;
var a01 = - this.direction.dot( segDir );
var b0 = diff.dot( this.direction );
var b1 = - diff.dot( segDir );
var c = diff.lengthSq();
var det = Math.abs( 1 - a01 * a01 );
var s0, s1, sqrDist, extDet;
if ( det > 0 ) {
// The ray and segment are not parallel.
s0 = a01 * b1 - b0;
s1 = a01 * b0 - b1;
extDet = segExtent * det;
if ( s0 >= 0 ) {
if ( s1 >= - extDet ) {
if ( s1 <= extDet ) {
// region 0
// Minimum at interior points of ray and segment.
var invDet = 1 / det;
s0 *= invDet;
s1 *= invDet;
sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c;
} else {
// region 1
s1 = segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
} else {
// region 5
s1 = - segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
} else {
if ( s1 <= - extDet ) {
// region 4
s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) );
s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
} else if ( s1 <= extDet ) {
// region 3
s0 = 0;
s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = s1 * ( s1 + 2 * b1 ) + c;
} else {
// region 2
s0 = Math.max( 0, - ( a01 * segExtent + b0 ) );
s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
}
} else {
// Ray and segment are parallel.
s1 = ( a01 > 0 ) ? - segExtent : segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
if ( optionalPointOnRay ) {
optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin );
}
if ( optionalPointOnSegment ) {
optionalPointOnSegment.copy( segDir ).multiplyScalar( s1 ).add( segCenter );
}
return sqrDist;
};
}(),
intersectSphere: function () {
var v1 = new Vector3();
return function intersectSphere( sphere, optionalTarget ) {
v1.subVectors( sphere.center, this.origin );
var tca = v1.dot( this.direction );
var d2 = v1.dot( v1 ) - tca * tca;
var radius2 = sphere.radius * sphere.radius;
if ( d2 > radius2 ) return null;
var thc = Math.sqrt( radius2 - d2 );
// t0 = first intersect point - entrance on front of sphere
var t0 = tca - thc;
// t1 = second intersect point - exit point on back of sphere
var t1 = tca + thc;
// test to see if both t0 and t1 are behind the ray - if so, return null
if ( t0 < 0 && t1 < 0 ) return null;
// test to see if t0 is behind the ray:
// if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
// in order to always return an intersect point that is in front of the ray.
if ( t0 < 0 ) return this.at( t1, optionalTarget );
// else t0 is in front of the ray, so return the first collision point scaled by t0
return this.at( t0, optionalTarget );
};
}(),
intersectsSphere: function ( sphere ) {
return this.distanceToPoint( sphere.center ) <= sphere.radius;
},
distanceToPlane: function ( plane ) {
var denominator = plane.normal.dot( this.direction );
if ( denominator === 0 ) {
// line is coplanar, return origin
if ( plane.distanceToPoint( this.origin ) === 0 ) {
return 0;
}
// Null is preferable to undefined since undefined means.... it is undefined
return null;
}
var t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator;
// Return if the ray never intersects the plane
return t >= 0 ? t : null;
},
intersectPlane: function ( plane, optionalTarget ) {
var t = this.distanceToPlane( plane );
if ( t === null ) {
return null;
}
return this.at( t, optionalTarget );
},
intersectsPlane: function ( plane ) {
// check if the ray lies on the plane first
var distToPoint = plane.distanceToPoint( this.origin );
if ( distToPoint === 0 ) {
return true;
}
var denominator = plane.normal.dot( this.direction );
if ( denominator * distToPoint < 0 ) {
return true;
}
// ray origin is behind the plane (and is pointing behind it)
return false;
},
intersectBox: function ( box, optionalTarget ) {
var tmin, tmax, tymin, tymax, tzmin, tzmax;
var invdirx = 1 / this.direction.x,
invdiry = 1 / this.direction.y,
invdirz = 1 / this.direction.z;
var origin = this.origin;
if ( invdirx >= 0 ) {
tmin = ( box.min.x - origin.x ) * invdirx;
tmax = ( box.max.x - origin.x ) * invdirx;
} else {
tmin = ( box.max.x - origin.x ) * invdirx;
tmax = ( box.min.x - origin.x ) * invdirx;
}
if ( invdiry >= 0 ) {
tymin = ( box.min.y - origin.y ) * invdiry;
tymax = ( box.max.y - origin.y ) * invdiry;
} else {
tymin = ( box.max.y - origin.y ) * invdiry;
tymax = ( box.min.y - origin.y ) * invdiry;
}
if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null;
// These lines also handle the case where tmin or tmax is NaN
// (result of 0 * Infinity). x !== x returns true if x is NaN
if ( tymin > tmin || tmin !== tmin ) tmin = tymin;
if ( tymax < tmax || tmax !== tmax ) tmax = tymax;
if ( invdirz >= 0 ) {
tzmin = ( box.min.z - origin.z ) * invdirz;
tzmax = ( box.max.z - origin.z ) * invdirz;
} else {
tzmin = ( box.max.z - origin.z ) * invdirz;
tzmax = ( box.min.z - origin.z ) * invdirz;
}
if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null;
if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin;
if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax;
//return point closest to the ray (positive side)
if ( tmax < 0 ) return null;
return this.at( tmin >= 0 ? tmin : tmax, optionalTarget );
},
intersectsBox: ( function () {
var v = new Vector3();
return function intersectsBox( box ) {
return this.intersectBox( box, v ) !== null;
};
} )(),
intersectTriangle: function () {
// Compute the offset origin, edges, and normal.
var diff = new Vector3();
var edge1 = new Vector3();
var edge2 = new Vector3();
var normal = new Vector3();
return function intersectTriangle( a, b, c, backfaceCulling, optionalTarget ) {
// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h
edge1.subVectors( b, a );
edge2.subVectors( c, a );
normal.crossVectors( edge1, edge2 );
// Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
// |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
// |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
// |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
var DdN = this.direction.dot( normal );
var sign;
if ( DdN > 0 ) {
if ( backfaceCulling ) return null;
sign = 1;
} else if ( DdN < 0 ) {
sign = - 1;
DdN = - DdN;
} else {
return null;
}
diff.subVectors( this.origin, a );
var DdQxE2 = sign * this.direction.dot( edge2.crossVectors( diff, edge2 ) );
// b1 < 0, no intersection
if ( DdQxE2 < 0 ) {
return null;
}
var DdE1xQ = sign * this.direction.dot( edge1.cross( diff ) );
// b2 < 0, no intersection
if ( DdE1xQ < 0 ) {
return null;
}
// b1+b2 > 1, no intersection
if ( DdQxE2 + DdE1xQ > DdN ) {
return null;
}
// Line intersects triangle, check if ray does.
var QdN = - sign * diff.dot( normal );
// t < 0, no intersection
if ( QdN < 0 ) {
return null;
}
// Ray intersects triangle.
return this.at( QdN / DdN, optionalTarget );
};
}(),
applyMatrix4: function ( matrix4 ) {
this.origin.applyMatrix4( matrix4 );
this.direction.transformDirection( matrix4 );
return this;
},
equals: function ( ray ) {
return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction );
}
} );
/**
* @author bhouston / http://clara.io
*/
function Line3( start, end ) {
this.start = ( start !== undefined ) ? start : new Vector3();
this.end = ( end !== undefined ) ? end : new Vector3();
}
Object.assign( Line3.prototype, {
set: function ( start, end ) {
this.start.copy( start );
this.end.copy( end );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( line ) {
this.start.copy( line.start );
this.end.copy( line.end );
return this;
},
getCenter: function ( optionalTarget ) {
var result = optionalTarget || new Vector3();
return result.addVectors( this.start, this.end ).multiplyScalar( 0.5 );
},
delta: function ( optionalTarget ) {
var result = optionalTarget || new Vector3();
return result.subVectors( this.end, this.start );
},
distanceSq: function () {
return this.start.distanceToSquared( this.end );
},
distance: function () {
return this.start.distanceTo( this.end );
},
at: function ( t, optionalTarget ) {
var result = optionalTarget || new Vector3();
return this.delta( result ).multiplyScalar( t ).add( this.start );
},
closestPointToPointParameter: function () {
var startP = new Vector3();
var startEnd = new Vector3();
return function closestPointToPointParameter( point, clampToLine ) {
startP.subVectors( point, this.start );
startEnd.subVectors( this.end, this.start );
var startEnd2 = startEnd.dot( startEnd );
var startEnd_startP = startEnd.dot( startP );
var t = startEnd_startP / startEnd2;
if ( clampToLine ) {
t = _Math.clamp( t, 0, 1 );
}
return t;
};
}(),
closestPointToPoint: function ( point, clampToLine, optionalTarget ) {
var t = this.closestPointToPointParameter( point, clampToLine );
var result = optionalTarget || new Vector3();
return this.delta( result ).multiplyScalar( t ).add( this.start );
},
applyMatrix4: function ( matrix ) {
this.start.applyMatrix4( matrix );
this.end.applyMatrix4( matrix );
return this;
},
equals: function ( line ) {
return line.start.equals( this.start ) && line.end.equals( this.end );
}
} );
/**
* @author bhouston / http://clara.io
* @author mrdoob / http://mrdoob.com/
*/
function Triangle( a, b, c ) {
this.a = ( a !== undefined ) ? a : new Vector3();
this.b = ( b !== undefined ) ? b : new Vector3();
this.c = ( c !== undefined ) ? c : new Vector3();
}
Object.assign( Triangle, {
normal: function () {
var v0 = new Vector3();
return function normal( a, b, c, optionalTarget ) {
var result = optionalTarget || new Vector3();
result.subVectors( c, b );
v0.subVectors( a, b );
result.cross( v0 );
var resultLengthSq = result.lengthSq();
if ( resultLengthSq > 0 ) {
return result.multiplyScalar( 1 / Math.sqrt( resultLengthSq ) );
}
return result.set( 0, 0, 0 );
};
}(),
// static/instance method to calculate barycentric coordinates
// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
barycoordFromPoint: function () {
var v0 = new Vector3();
var v1 = new Vector3();
var v2 = new Vector3();
return function barycoordFromPoint( point, a, b, c, optionalTarget ) {
v0.subVectors( c, a );
v1.subVectors( b, a );
v2.subVectors( point, a );
var dot00 = v0.dot( v0 );
var dot01 = v0.dot( v1 );
var dot02 = v0.dot( v2 );
var dot11 = v1.dot( v1 );
var dot12 = v1.dot( v2 );
var denom = ( dot00 * dot11 - dot01 * dot01 );
var result = optionalTarget || new Vector3();
// collinear or singular triangle
if ( denom === 0 ) {
// arbitrary location outside of triangle?
// not sure if this is the best idea, maybe should be returning undefined
return result.set( - 2, - 1, - 1 );
}
var invDenom = 1 / denom;
var u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom;
var v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom;
// barycentric coordinates must always sum to 1
return result.set( 1 - u - v, v, u );
};
}(),
containsPoint: function () {
var v1 = new Vector3();
return function containsPoint( point, a, b, c ) {
var result = Triangle.barycoordFromPoint( point, a, b, c, v1 );
return ( result.x >= 0 ) && ( result.y >= 0 ) && ( ( result.x + result.y ) <= 1 );
};
}()
} );
Object.assign( Triangle.prototype, {
set: function ( a, b, c ) {
this.a.copy( a );
this.b.copy( b );
this.c.copy( c );
return this;
},
setFromPointsAndIndices: function ( points, i0, i1, i2 ) {
this.a.copy( points[ i0 ] );
this.b.copy( points[ i1 ] );
this.c.copy( points[ i2 ] );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( triangle ) {
this.a.copy( triangle.a );
this.b.copy( triangle.b );
this.c.copy( triangle.c );
return this;
},
area: function () {
var v0 = new Vector3();
var v1 = new Vector3();
return function area() {
v0.subVectors( this.c, this.b );
v1.subVectors( this.a, this.b );
return v0.cross( v1 ).length() * 0.5;
};
}(),
midpoint: function ( optionalTarget ) {
var result = optionalTarget || new Vector3();
return result.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 );
},
normal: function ( optionalTarget ) {
return Triangle.normal( this.a, this.b, this.c, optionalTarget );
},
plane: function ( optionalTarget ) {
var result = optionalTarget || new Plane();
return result.setFromCoplanarPoints( this.a, this.b, this.c );
},
barycoordFromPoint: function ( point, optionalTarget ) {
return Triangle.barycoordFromPoint( point, this.a, this.b, this.c, optionalTarget );
},
containsPoint: function ( point ) {
return Triangle.containsPoint( point, this.a, this.b, this.c );
},
closestPointToPoint: function () {
var plane = new Plane();
var edgeList = [ new Line3(), new Line3(), new Line3() ];
var projectedPoint = new Vector3();
var closestPoint = new Vector3();
return function closestPointToPoint( point, optionalTarget ) {
var result = optionalTarget || new Vector3();
var minDistance = Infinity;
// project the point onto the plane of the triangle
plane.setFromCoplanarPoints( this.a, this.b, this.c );
plane.projectPoint( point, projectedPoint );
// check if the projection lies within the triangle
if( this.containsPoint( projectedPoint ) === true ) {
// if so, this is the closest point
result.copy( projectedPoint );
} else {
// if not, the point falls outside the triangle. the result is the closest point to the triangle's edges or vertices
edgeList[ 0 ].set( this.a, this.b );
edgeList[ 1 ].set( this.b, this.c );
edgeList[ 2 ].set( this.c, this.a );
for( var i = 0; i < edgeList.length; i ++ ) {
edgeList[ i ].closestPointToPoint( projectedPoint, true, closestPoint );
var distance = projectedPoint.distanceToSquared( closestPoint );
if( distance < minDistance ) {
minDistance = distance;
result.copy( closestPoint );
}
}
}
return result;
};
}(),
equals: function ( triangle ) {
return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author jonobr1 / http://jonobr1.com/
*/
function Mesh( geometry, material ) {
Object3D.call( this );
this.type = 'Mesh';
this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
this.material = material !== undefined ? material : new MeshBasicMaterial( { color: Math.random() * 0xffffff } );
this.drawMode = TrianglesDrawMode;
this.updateMorphTargets();
}
Mesh.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Mesh,
isMesh: true,
setDrawMode: function ( value ) {
this.drawMode = value;
},
copy: function ( source ) {
Object3D.prototype.copy.call( this, source );
this.drawMode = source.drawMode;
return this;
},
updateMorphTargets: function () {
var geometry = this.geometry;
var m, ml, name;
if ( geometry.isBufferGeometry ) {
var morphAttributes = geometry.morphAttributes;
var keys = Object.keys( morphAttributes );
if ( keys.length > 0 ) {
var morphAttribute = morphAttributes[ keys[ 0 ] ];
if ( morphAttribute !== undefined ) {
this.morphTargetInfluences = [];
this.morphTargetDictionary = {};
for ( m = 0, ml = morphAttribute.length; m < ml; m ++ ) {
name = morphAttribute[ m ].name || String( m );
this.morphTargetInfluences.push( 0 );
this.morphTargetDictionary[ name ] = m;
}
}
}
} else {
var morphTargets = geometry.morphTargets;
if ( morphTargets !== undefined && morphTargets.length > 0 ) {
this.morphTargetInfluences = [];
this.morphTargetDictionary = {};
for ( m = 0, ml = morphTargets.length; m < ml; m ++ ) {
name = morphTargets[ m ].name || String( m );
this.morphTargetInfluences.push( 0 );
this.morphTargetDictionary[ name ] = m;
}
}
}
},
raycast: ( function () {
var inverseMatrix = new Matrix4();
var ray = new Ray();
var sphere = new Sphere();
var vA = new Vector3();
var vB = new Vector3();
var vC = new Vector3();
var tempA = new Vector3();
var tempB = new Vector3();
var tempC = new Vector3();
var uvA = new Vector2();
var uvB = new Vector2();
var uvC = new Vector2();
var barycoord = new Vector3();
var intersectionPoint = new Vector3();
var intersectionPointWorld = new Vector3();
function uvIntersection( point, p1, p2, p3, uv1, uv2, uv3 ) {
Triangle.barycoordFromPoint( point, p1, p2, p3, barycoord );
uv1.multiplyScalar( barycoord.x );
uv2.multiplyScalar( barycoord.y );
uv3.multiplyScalar( barycoord.z );
uv1.add( uv2 ).add( uv3 );
return uv1.clone();
}
function checkIntersection( object, raycaster, ray, pA, pB, pC, point ) {
var intersect;
var material = object.material;
if ( material.side === BackSide ) {
intersect = ray.intersectTriangle( pC, pB, pA, true, point );
} else {
intersect = ray.intersectTriangle( pA, pB, pC, material.side !== DoubleSide, point );
}
if ( intersect === null ) return null;
intersectionPointWorld.copy( point );
intersectionPointWorld.applyMatrix4( object.matrixWorld );
var distance = raycaster.ray.origin.distanceTo( intersectionPointWorld );
if ( distance < raycaster.near || distance > raycaster.far ) return null;
return {
distance: distance,
point: intersectionPointWorld.clone(),
object: object
};
}
function checkBufferGeometryIntersection( object, raycaster, ray, position, uv, a, b, c ) {
vA.fromBufferAttribute( position, a );
vB.fromBufferAttribute( position, b );
vC.fromBufferAttribute( position, c );
var intersection = checkIntersection( object, raycaster, ray, vA, vB, vC, intersectionPoint );
if ( intersection ) {
if ( uv ) {
uvA.fromBufferAttribute( uv, a );
uvB.fromBufferAttribute( uv, b );
uvC.fromBufferAttribute( uv, c );
intersection.uv = uvIntersection( intersectionPoint, vA, vB, vC, uvA, uvB, uvC );
}
intersection.face = new Face3( a, b, c, Triangle.normal( vA, vB, vC ) );
intersection.faceIndex = a;
}
return intersection;
}
return function raycast( raycaster, intersects ) {
var geometry = this.geometry;
var material = this.material;
var matrixWorld = this.matrixWorld;
if ( material === undefined ) return;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
sphere.copy( geometry.boundingSphere );
sphere.applyMatrix4( matrixWorld );
if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;
//
inverseMatrix.getInverse( matrixWorld );
ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );
// Check boundingBox before continuing
if ( geometry.boundingBox !== null ) {
if ( ray.intersectsBox( geometry.boundingBox ) === false ) return;
}
var intersection;
if ( geometry.isBufferGeometry ) {
var a, b, c;
var index = geometry.index;
var position = geometry.attributes.position;
var uv = geometry.attributes.uv;
var i, l;
if ( index !== null ) {
// indexed buffer geometry
for ( i = 0, l = index.count; i < l; i += 3 ) {
a = index.getX( i );
b = index.getX( i + 1 );
c = index.getX( i + 2 );
intersection = checkBufferGeometryIntersection( this, raycaster, ray, position, uv, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indices buffer semantics
intersects.push( intersection );
}
}
} else {
// non-indexed buffer geometry
for ( i = 0, l = position.count; i < l; i += 3 ) {
a = i;
b = i + 1;
c = i + 2;
intersection = checkBufferGeometryIntersection( this, raycaster, ray, position, uv, a, b, c );
if ( intersection ) {
intersection.index = a; // triangle number in positions buffer semantics
intersects.push( intersection );
}
}
}
} else if ( geometry.isGeometry ) {
var fvA, fvB, fvC;
var isMultiMaterial = Array.isArray( material );
var vertices = geometry.vertices;
var faces = geometry.faces;
var uvs;
var faceVertexUvs = geometry.faceVertexUvs[ 0 ];
if ( faceVertexUvs.length > 0 ) uvs = faceVertexUvs;
for ( var f = 0, fl = faces.length; f < fl; f ++ ) {
var face = faces[ f ];
var faceMaterial = isMultiMaterial ? material[ face.materialIndex ] : material;
if ( faceMaterial === undefined ) continue;
fvA = vertices[ face.a ];
fvB = vertices[ face.b ];
fvC = vertices[ face.c ];
if ( faceMaterial.morphTargets === true ) {
var morphTargets = geometry.morphTargets;
var morphInfluences = this.morphTargetInfluences;
vA.set( 0, 0, 0 );
vB.set( 0, 0, 0 );
vC.set( 0, 0, 0 );
for ( var t = 0, tl = morphTargets.length; t < tl; t ++ ) {
var influence = morphInfluences[ t ];
if ( influence === 0 ) continue;
var targets = morphTargets[ t ].vertices;
vA.addScaledVector( tempA.subVectors( targets[ face.a ], fvA ), influence );
vB.addScaledVector( tempB.subVectors( targets[ face.b ], fvB ), influence );
vC.addScaledVector( tempC.subVectors( targets[ face.c ], fvC ), influence );
}
vA.add( fvA );
vB.add( fvB );
vC.add( fvC );
fvA = vA;
fvB = vB;
fvC = vC;
}
intersection = checkIntersection( this, raycaster, ray, fvA, fvB, fvC, intersectionPoint );
if ( intersection ) {
if ( uvs && uvs[ f ] ) {
var uvs_f = uvs[ f ];
uvA.copy( uvs_f[ 0 ] );
uvB.copy( uvs_f[ 1 ] );
uvC.copy( uvs_f[ 2 ] );
intersection.uv = uvIntersection( intersectionPoint, fvA, fvB, fvC, uvA, uvB, uvC );
}
intersection.face = face;
intersection.faceIndex = f;
intersects.push( intersection );
}
}
}
};
}() ),
clone: function () {
return new this.constructor( this.geometry, this.material ).copy( this );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
function addLineNumbers( string ) {
var lines = string.split( '\n' );
for ( var i = 0; i < lines.length; i ++ ) {
lines[ i ] = ( i + 1 ) + ': ' + lines[ i ];
}
return lines.join( '\n' );
}
function WebGLShader( gl, type, string ) {
var shader = gl.createShader( type );
gl.shaderSource( shader, string );
gl.compileShader( shader );
if ( gl.getShaderParameter( shader, gl.COMPILE_STATUS ) === false ) {
console.error( 'THREE.WebGLShader: Shader couldn\'t compile.' );
}
if ( gl.getShaderInfoLog( shader ) !== '' ) {
console.warn( 'THREE.WebGLShader: gl.getShaderInfoLog()', type === gl.VERTEX_SHADER ? 'vertex' : 'fragment', gl.getShaderInfoLog( shader ), addLineNumbers( string ) );
}
// --enable-privileged-webgl-extension
// console.log( type, gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );
return shader;
}
/**
* @author mrdoob / http://mrdoob.com/
*/
var programIdCount = 0;
function getEncodingComponents( encoding ) {
switch ( encoding ) {
case LinearEncoding:
return [ 'Linear','( value )' ];
case sRGBEncoding:
return [ 'sRGB','( value )' ];
case RGBEEncoding:
return [ 'RGBE','( value )' ];
case RGBM7Encoding:
return [ 'RGBM','( value, 7.0 )' ];
case RGBM16Encoding:
return [ 'RGBM','( value, 16.0 )' ];
case RGBDEncoding:
return [ 'RGBD','( value, 256.0 )' ];
case GammaEncoding:
return [ 'Gamma','( value, float( GAMMA_FACTOR ) )' ];
default:
throw new Error( 'unsupported encoding: ' + encoding );
}
}
function getTexelDecodingFunction( functionName, encoding ) {
var components = getEncodingComponents( encoding );
return "vec4 " + functionName + "( vec4 value ) { return " + components[ 0 ] + "ToLinear" + components[ 1 ] + "; }";
}
function getTexelEncodingFunction( functionName, encoding ) {
var components = getEncodingComponents( encoding );
return "vec4 " + functionName + "( vec4 value ) { return LinearTo" + components[ 0 ] + components[ 1 ] + "; }";
}
function getToneMappingFunction( functionName, toneMapping ) {
var toneMappingName;
switch ( toneMapping ) {
case LinearToneMapping:
toneMappingName = "Linear";
break;
case ReinhardToneMapping:
toneMappingName = "Reinhard";
break;
case Uncharted2ToneMapping:
toneMappingName = "Uncharted2";
break;
case CineonToneMapping:
toneMappingName = "OptimizedCineon";
break;
default:
throw new Error( 'unsupported toneMapping: ' + toneMapping );
}
return "vec3 " + functionName + "( vec3 color ) { return " + toneMappingName + "ToneMapping( color ); }";
}
function generateExtensions( extensions, parameters, rendererExtensions ) {
extensions = extensions || {};
var chunks = [
( extensions.derivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.normalMap || parameters.flatShading ) ? '#extension GL_OES_standard_derivatives : enable' : '',
( extensions.fragDepth || parameters.logarithmicDepthBuffer ) && rendererExtensions.get( 'EXT_frag_depth' ) ? '#extension GL_EXT_frag_depth : enable' : '',
( extensions.drawBuffers ) && rendererExtensions.get( 'WEBGL_draw_buffers' ) ? '#extension GL_EXT_draw_buffers : require' : '',
( extensions.shaderTextureLOD || parameters.envMap ) && rendererExtensions.get( 'EXT_shader_texture_lod' ) ? '#extension GL_EXT_shader_texture_lod : enable' : ''
];
return chunks.filter( filterEmptyLine ).join( '\n' );
}
function generateDefines( defines ) {
var chunks = [];
for ( var name in defines ) {
var value = defines[ name ];
if ( value === false ) continue;
chunks.push( '#define ' + name + ' ' + value );
}
return chunks.join( '\n' );
}
function fetchAttributeLocations( gl, program, identifiers ) {
var attributes = {};
var n = gl.getProgramParameter( program, gl.ACTIVE_ATTRIBUTES );
for ( var i = 0; i < n; i ++ ) {
var info = gl.getActiveAttrib( program, i );
var name = info.name;
// console.log("THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:", name, i );
attributes[ name ] = gl.getAttribLocation( program, name );
}
return attributes;
}
function filterEmptyLine( string ) {
return string !== '';
}
function replaceLightNums( string, parameters ) {
return string
.replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights )
.replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights )
.replace( /NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights )
.replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights )
.replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights );
}
function parseIncludes( string ) {
var pattern = /^[ \t]*#include +<([\w\d.]+)>/gm;
function replace( match, include ) {
var replace = ShaderChunk[ include ];
if ( replace === undefined ) {
throw new Error( 'Can not resolve #include <' + include + '>' );
}
return parseIncludes( replace );
}
return string.replace( pattern, replace );
}
function unrollLoops( string ) {
var pattern = /for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;
function replace( match, start, end, snippet ) {
var unroll = '';
for ( var i = parseInt( start ); i < parseInt( end ); i ++ ) {
unroll += snippet.replace( /\[ i \]/g, '[ ' + i + ' ]' );
}
return unroll;
}
return string.replace( pattern, replace );
}
function WebGLProgram( renderer, code, material, shader, parameters ) {
var gl = renderer.context;
var extensions = material.extensions;
var defines = material.defines;
var vertexShader = shader.vertexShader;
var fragmentShader = shader.fragmentShader;
var shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';
if ( parameters.shadowMapType === PCFShadowMap ) {
shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';
} else if ( parameters.shadowMapType === PCFSoftShadowMap ) {
shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';
}
var envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
var envMapModeDefine = 'ENVMAP_MODE_REFLECTION';
var envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
if ( parameters.envMap ) {
switch ( material.envMap.mapping ) {
case CubeReflectionMapping:
case CubeRefractionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
break;
case CubeUVReflectionMapping:
case CubeUVRefractionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV';
break;
case EquirectangularReflectionMapping:
case EquirectangularRefractionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_EQUIREC';
break;
case SphericalReflectionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_SPHERE';
break;
}
switch ( material.envMap.mapping ) {
case CubeRefractionMapping:
case EquirectangularRefractionMapping:
envMapModeDefine = 'ENVMAP_MODE_REFRACTION';
break;
}
switch ( material.combine ) {
case MultiplyOperation:
envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
break;
case MixOperation:
envMapBlendingDefine = 'ENVMAP_BLENDING_MIX';
break;
case AddOperation:
envMapBlendingDefine = 'ENVMAP_BLENDING_ADD';
break;
}
}
var gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0;
// console.log( 'building new program ' );
//
var customExtensions = generateExtensions( extensions, parameters, renderer.extensions );
var customDefines = generateDefines( defines );
//
var program = gl.createProgram();
var prefixVertex, prefixFragment;
if ( material.isRawShaderMaterial ) {
prefixVertex = [
customDefines,
'\n'
].filter( filterEmptyLine ).join( '\n' );
prefixFragment = [
customExtensions,
customDefines,
'\n'
].filter( filterEmptyLine ).join( '\n' );
} else {
prefixVertex = [
'precision ' + parameters.precision + ' float;',
'precision ' + parameters.precision + ' int;',
'#define SHADER_NAME ' + shader.name,
customDefines,
parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '',
'#define GAMMA_FACTOR ' + gammaFactorDefine,
'#define MAX_BONES ' + parameters.maxBones,
( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : '',
parameters.map ? '#define USE_MAP' : '',
parameters.envMap ? '#define USE_ENVMAP' : '',
parameters.envMap ? '#define ' + envMapModeDefine : '',
parameters.lightMap ? '#define USE_LIGHTMAP' : '',
parameters.aoMap ? '#define USE_AOMAP' : '',
parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
parameters.bumpMap ? '#define USE_BUMPMAP' : '',
parameters.normalMap ? '#define USE_NORMALMAP' : '',
parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '',
parameters.specularMap ? '#define USE_SPECULARMAP' : '',
parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
parameters.alphaMap ? '#define USE_ALPHAMAP' : '',
parameters.vertexColors ? '#define USE_COLOR' : '',
parameters.flatShading ? '#define FLAT_SHADED' : '',
parameters.skinning ? '#define USE_SKINNING' : '',
parameters.useVertexTexture ? '#define BONE_TEXTURE' : '',
parameters.morphTargets ? '#define USE_MORPHTARGETS' : '',
parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '',
parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
parameters.flipSided ? '#define FLIP_SIDED' : '',
'#define NUM_CLIPPING_PLANES ' + parameters.numClippingPlanes,
parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',
parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '',
parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '',
'uniform mat4 modelMatrix;',
'uniform mat4 modelViewMatrix;',
'uniform mat4 projectionMatrix;',
'uniform mat4 viewMatrix;',
'uniform mat3 normalMatrix;',
'uniform vec3 cameraPosition;',
'attribute vec3 position;',
'attribute vec3 normal;',
'attribute vec2 uv;',
'#ifdef USE_COLOR',
' attribute vec3 color;',
'#endif',
'#ifdef USE_MORPHTARGETS',
' attribute vec3 morphTarget0;',
' attribute vec3 morphTarget1;',
' attribute vec3 morphTarget2;',
' attribute vec3 morphTarget3;',
' #ifdef USE_MORPHNORMALS',
' attribute vec3 morphNormal0;',
' attribute vec3 morphNormal1;',
' attribute vec3 morphNormal2;',
' attribute vec3 morphNormal3;',
' #else',
' attribute vec3 morphTarget4;',
' attribute vec3 morphTarget5;',
' attribute vec3 morphTarget6;',
' attribute vec3 morphTarget7;',
' #endif',
'#endif',
'#ifdef USE_SKINNING',
' attribute vec4 skinIndex;',
' attribute vec4 skinWeight;',
'#endif',
'\n'
].filter( filterEmptyLine ).join( '\n' );
prefixFragment = [
customExtensions,
'precision ' + parameters.precision + ' float;',
'precision ' + parameters.precision + ' int;',
'#define SHADER_NAME ' + shader.name,
customDefines,
parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest : '',
'#define GAMMA_FACTOR ' + gammaFactorDefine,
( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : '',
parameters.map ? '#define USE_MAP' : '',
parameters.envMap ? '#define USE_ENVMAP' : '',
parameters.envMap ? '#define ' + envMapTypeDefine : '',
parameters.envMap ? '#define ' + envMapModeDefine : '',
parameters.envMap ? '#define ' + envMapBlendingDefine : '',
parameters.lightMap ? '#define USE_LIGHTMAP' : '',
parameters.aoMap ? '#define USE_AOMAP' : '',
parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
parameters.bumpMap ? '#define USE_BUMPMAP' : '',
parameters.normalMap ? '#define USE_NORMALMAP' : '',
parameters.specularMap ? '#define USE_SPECULARMAP' : '',
parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
parameters.alphaMap ? '#define USE_ALPHAMAP' : '',
parameters.vertexColors ? '#define USE_COLOR' : '',
parameters.gradientMap ? '#define USE_GRADIENTMAP' : '',
parameters.flatShading ? '#define FLAT_SHADED' : '',
parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
parameters.flipSided ? '#define FLIP_SIDED' : '',
'#define NUM_CLIPPING_PLANES ' + parameters.numClippingPlanes,
'#define UNION_CLIPPING_PLANES ' + (parameters.numClippingPlanes - parameters.numClipIntersection),
parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',
parameters.premultipliedAlpha ? "#define PREMULTIPLIED_ALPHA" : '',
parameters.physicallyCorrectLights ? "#define PHYSICALLY_CORRECT_LIGHTS" : '',
parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '',
parameters.envMap && renderer.extensions.get( 'EXT_shader_texture_lod' ) ? '#define TEXTURE_LOD_EXT' : '',
'uniform mat4 viewMatrix;',
'uniform vec3 cameraPosition;',
( parameters.toneMapping !== NoToneMapping ) ? "#define TONE_MAPPING" : '',
( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below
( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( "toneMapping", parameters.toneMapping ) : '',
parameters.dithering ? '#define DITHERING' : '',
( parameters.outputEncoding || parameters.mapEncoding || parameters.envMapEncoding || parameters.emissiveMapEncoding ) ? ShaderChunk[ 'encodings_pars_fragment' ] : '', // this code is required here because it is used by the various encoding/decoding function defined below
parameters.mapEncoding ? getTexelDecodingFunction( 'mapTexelToLinear', parameters.mapEncoding ) : '',
parameters.envMapEncoding ? getTexelDecodingFunction( 'envMapTexelToLinear', parameters.envMapEncoding ) : '',
parameters.emissiveMapEncoding ? getTexelDecodingFunction( 'emissiveMapTexelToLinear', parameters.emissiveMapEncoding ) : '',
parameters.outputEncoding ? getTexelEncodingFunction( "linearToOutputTexel", parameters.outputEncoding ) : '',
parameters.depthPacking ? "#define DEPTH_PACKING " + material.depthPacking : '',
'\n'
].filter( filterEmptyLine ).join( '\n' );
}
vertexShader = parseIncludes( vertexShader );
vertexShader = replaceLightNums( vertexShader, parameters );
fragmentShader = parseIncludes( fragmentShader );
fragmentShader = replaceLightNums( fragmentShader, parameters );
if ( ! material.isShaderMaterial ) {
vertexShader = unrollLoops( vertexShader );
fragmentShader = unrollLoops( fragmentShader );
}
var vertexGlsl = prefixVertex + vertexShader;
var fragmentGlsl = prefixFragment + fragmentShader;
// console.log( '*VERTEX*', vertexGlsl );
// console.log( '*FRAGMENT*', fragmentGlsl );
var glVertexShader = WebGLShader( gl, gl.VERTEX_SHADER, vertexGlsl );
var glFragmentShader = WebGLShader( gl, gl.FRAGMENT_SHADER, fragmentGlsl );
gl.attachShader( program, glVertexShader );
gl.attachShader( program, glFragmentShader );
// Force a particular attribute to index 0.
if ( material.index0AttributeName !== undefined ) {
gl.bindAttribLocation( program, 0, material.index0AttributeName );
} else if ( parameters.morphTargets === true ) {
// programs with morphTargets displace position out of attribute 0
gl.bindAttribLocation( program, 0, 'position' );
}
gl.linkProgram( program );
var programLog = gl.getProgramInfoLog( program );
var vertexLog = gl.getShaderInfoLog( glVertexShader );
var fragmentLog = gl.getShaderInfoLog( glFragmentShader );
var runnable = true;
var haveDiagnostics = true;
// console.log( '**VERTEX**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glVertexShader ) );
// console.log( '**FRAGMENT**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glFragmentShader ) );
if ( gl.getProgramParameter( program, gl.LINK_STATUS ) === false ) {
runnable = false;
console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), 'gl.VALIDATE_STATUS', gl.getProgramParameter( program, gl.VALIDATE_STATUS ), 'gl.getProgramInfoLog', programLog, vertexLog, fragmentLog );
} else if ( programLog !== '' ) {
console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', programLog );
} else if ( vertexLog === '' || fragmentLog === '' ) {
haveDiagnostics = false;
}
if ( haveDiagnostics ) {
this.diagnostics = {
runnable: runnable,
material: material,
programLog: programLog,
vertexShader: {
log: vertexLog,
prefix: prefixVertex
},
fragmentShader: {
log: fragmentLog,
prefix: prefixFragment
}
};
}
// clean up
gl.deleteShader( glVertexShader );
gl.deleteShader( glFragmentShader );
// set up caching for uniform locations
var cachedUniforms;
this.getUniforms = function() {
if ( cachedUniforms === undefined ) {
cachedUniforms =
new WebGLUniforms( gl, program, renderer );
}
return cachedUniforms;
};
// set up caching for attribute locations
var cachedAttributes;
this.getAttributes = function() {
if ( cachedAttributes === undefined ) {
cachedAttributes = fetchAttributeLocations( gl, program );
}
return cachedAttributes;
};
// free resource
this.destroy = function() {
gl.deleteProgram( program );
this.program = undefined;
};
// DEPRECATED
Object.defineProperties( this, {
uniforms: {
get: function() {
console.warn( 'THREE.WebGLProgram: .uniforms is now .getUniforms().' );
return this.getUniforms();
}
},
attributes: {
get: function() {
console.warn( 'THREE.WebGLProgram: .attributes is now .getAttributes().' );
return this.getAttributes();
}
}
} );
//
this.id = programIdCount ++;
this.code = code;
this.usedTimes = 1;
this.program = program;
this.vertexShader = glVertexShader;
this.fragmentShader = glFragmentShader;
return this;
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLPrograms( renderer, capabilities ) {
var programs = [];
var shaderIDs = {
MeshDepthMaterial: 'depth',
MeshNormalMaterial: 'normal',
MeshBasicMaterial: 'basic',
MeshLambertMaterial: 'lambert',
MeshPhongMaterial: 'phong',
MeshToonMaterial: 'phong',
MeshStandardMaterial: 'physical',
MeshPhysicalMaterial: 'physical',
LineBasicMaterial: 'basic',
LineDashedMaterial: 'dashed',
PointsMaterial: 'points'
};
var parameterNames = [
"precision", "supportsVertexTextures", "map", "mapEncoding", "envMap", "envMapMode", "envMapEncoding",
"lightMap", "aoMap", "emissiveMap", "emissiveMapEncoding", "bumpMap", "normalMap", "displacementMap", "specularMap",
"roughnessMap", "metalnessMap", "gradientMap",
"alphaMap", "combine", "vertexColors", "fog", "useFog", "fogExp",
"flatShading", "sizeAttenuation", "logarithmicDepthBuffer", "skinning",
"maxBones", "useVertexTexture", "morphTargets", "morphNormals",
"maxMorphTargets", "maxMorphNormals", "premultipliedAlpha",
"numDirLights", "numPointLights", "numSpotLights", "numHemiLights", "numRectAreaLights",
"shadowMapEnabled", "shadowMapType", "toneMapping", 'physicallyCorrectLights',
"alphaTest", "doubleSided", "flipSided", "numClippingPlanes", "numClipIntersection", "depthPacking", "dithering"
];
function allocateBones( object ) {
var skeleton = object.skeleton;
var bones = skeleton.bones;
if ( capabilities.floatVertexTextures ) {
return 1024;
} else {
// default for when object is not specified
// ( for example when prebuilding shader to be used with multiple objects )
//
// - leave some extra space for other uniforms
// - limit here is ANGLE's 254 max uniform vectors
// (up to 54 should be safe)
var nVertexUniforms = capabilities.maxVertexUniforms;
var nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 );
var maxBones = Math.min( nVertexMatrices, bones.length );
if ( maxBones < bones.length ) {
console.warn( 'THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.' );
return 0;
}
return maxBones;
}
}
function getTextureEncodingFromMap( map, gammaOverrideLinear ) {
var encoding;
if ( ! map ) {
encoding = LinearEncoding;
} else if ( map.isTexture ) {
encoding = map.encoding;
} else if ( map.isWebGLRenderTarget ) {
console.warn( "THREE.WebGLPrograms.getTextureEncodingFromMap: don't use render targets as textures. Use their .texture property instead." );
encoding = map.texture.encoding;
}
// add backwards compatibility for WebGLRenderer.gammaInput/gammaOutput parameter, should probably be removed at some point.
if ( encoding === LinearEncoding && gammaOverrideLinear ) {
encoding = GammaEncoding;
}
return encoding;
}
this.getParameters = function ( material, lights, fog, nClipPlanes, nClipIntersection, object ) {
var shaderID = shaderIDs[ material.type ];
// heuristics to create shader parameters according to lights in the scene
// (not to blow over maxLights budget)
var maxBones = object.isSkinnedMesh ? allocateBones( object ) : 0;
var precision = renderer.getPrecision();
if ( material.precision !== null ) {
precision = capabilities.getMaxPrecision( material.precision );
if ( precision !== material.precision ) {
console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' );
}
}
var currentRenderTarget = renderer.getRenderTarget();
var parameters = {
shaderID: shaderID,
precision: precision,
supportsVertexTextures: capabilities.vertexTextures,
outputEncoding: getTextureEncodingFromMap( ( ! currentRenderTarget ) ? null : currentRenderTarget.texture, renderer.gammaOutput ),
map: !! material.map,
mapEncoding: getTextureEncodingFromMap( material.map, renderer.gammaInput ),
envMap: !! material.envMap,
envMapMode: material.envMap && material.envMap.mapping,
envMapEncoding: getTextureEncodingFromMap( material.envMap, renderer.gammaInput ),
envMapCubeUV: ( !! material.envMap ) && ( ( material.envMap.mapping === CubeUVReflectionMapping ) || ( material.envMap.mapping === CubeUVRefractionMapping ) ),
lightMap: !! material.lightMap,
aoMap: !! material.aoMap,
emissiveMap: !! material.emissiveMap,
emissiveMapEncoding: getTextureEncodingFromMap( material.emissiveMap, renderer.gammaInput ),
bumpMap: !! material.bumpMap,
normalMap: !! material.normalMap,
displacementMap: !! material.displacementMap,
roughnessMap: !! material.roughnessMap,
metalnessMap: !! material.metalnessMap,
specularMap: !! material.specularMap,
alphaMap: !! material.alphaMap,
gradientMap: !! material.gradientMap,
combine: material.combine,
vertexColors: material.vertexColors,
fog: !! fog,
useFog: material.fog,
fogExp: ( fog && fog.isFogExp2 ),
flatShading: material.shading === FlatShading,
sizeAttenuation: material.sizeAttenuation,
logarithmicDepthBuffer: capabilities.logarithmicDepthBuffer,
skinning: material.skinning && maxBones > 0,
maxBones: maxBones,
useVertexTexture: capabilities.floatVertexTextures,
morphTargets: material.morphTargets,
morphNormals: material.morphNormals,
maxMorphTargets: renderer.maxMorphTargets,
maxMorphNormals: renderer.maxMorphNormals,
numDirLights: lights.directional.length,
numPointLights: lights.point.length,
numSpotLights: lights.spot.length,
numRectAreaLights: lights.rectArea.length,
numHemiLights: lights.hemi.length,
numClippingPlanes: nClipPlanes,
numClipIntersection: nClipIntersection,
dithering: material.dithering,
shadowMapEnabled: renderer.shadowMap.enabled && object.receiveShadow && lights.shadows.length > 0,
shadowMapType: renderer.shadowMap.type,
toneMapping: renderer.toneMapping,
physicallyCorrectLights: renderer.physicallyCorrectLights,
premultipliedAlpha: material.premultipliedAlpha,
alphaTest: material.alphaTest,
doubleSided: material.side === DoubleSide,
flipSided: material.side === BackSide,
depthPacking: ( material.depthPacking !== undefined ) ? material.depthPacking : false
};
return parameters;
};
this.getProgramCode = function ( material, parameters ) {
var array = [];
if ( parameters.shaderID ) {
array.push( parameters.shaderID );
} else {
array.push( material.fragmentShader );
array.push( material.vertexShader );
}
if ( material.defines !== undefined ) {
for ( var name in material.defines ) {
array.push( name );
array.push( material.defines[ name ] );
}
}
for ( var i = 0; i < parameterNames.length; i ++ ) {
array.push( parameters[ parameterNames[ i ] ] );
}
array.push( material.onBeforeCompile.toString() );
array.push( renderer.gammaOutput );
return array.join();
};
this.acquireProgram = function ( material, shader, parameters, code ) {
var program;
// Check if code has been already compiled
for ( var p = 0, pl = programs.length; p < pl; p ++ ) {
var programInfo = programs[ p ];
if ( programInfo.code === code ) {
program = programInfo;
++ program.usedTimes;
break;
}
}
if ( program === undefined ) {
program = new WebGLProgram( renderer, code, material, shader, parameters );
programs.push( program );
}
return program;
};
this.releaseProgram = function ( program ) {
if ( -- program.usedTimes === 0 ) {
// Remove from unordered set
var i = programs.indexOf( program );
programs[ i ] = programs[ programs.length - 1 ];
programs.pop();
// Free WebGL resources
program.destroy();
}
};
// Exposed for resource monitoring & error feedback via renderer.info:
this.programs = programs;
}
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author fordacious / fordacious.github.io
*/
function WebGLProperties() {
var properties = {};
function get( object ) {
var uuid = object.uuid;
var map = properties[ uuid ];
if ( map === undefined ) {
map = {};
properties[ uuid ] = map;
}
return map;
}
function remove( object ) {
delete properties[ object.uuid ];
}
function clear() {
properties = {};
}
return {
get: get,
remove: remove,
clear: clear
};
}
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLCapabilities( gl, extensions, parameters ) {
var maxAnisotropy;
function getMaxAnisotropy() {
if ( maxAnisotropy !== undefined ) return maxAnisotropy;
var extension = extensions.get( 'EXT_texture_filter_anisotropic' );
if ( extension !== null ) {
maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT );
} else {
maxAnisotropy = 0;
}
return maxAnisotropy;
}
function getMaxPrecision( precision ) {
if ( precision === 'highp' ) {
if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.HIGH_FLOAT ).precision > 0 &&
gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.HIGH_FLOAT ).precision > 0 ) {
return 'highp';
}
precision = 'mediump';
}
if ( precision === 'mediump' ) {
if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.MEDIUM_FLOAT ).precision > 0 &&
gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT ).precision > 0 ) {
return 'mediump';
}
}
return 'lowp';
}
var precision = parameters.precision !== undefined ? parameters.precision : 'highp';
var maxPrecision = getMaxPrecision( precision );
if ( maxPrecision !== precision ) {
console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' );
precision = maxPrecision;
}
var logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true && !! extensions.get( 'EXT_frag_depth' );
var maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS );
var maxVertexTextures = gl.getParameter( gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS );
var maxTextureSize = gl.getParameter( gl.MAX_TEXTURE_SIZE );
var maxCubemapSize = gl.getParameter( gl.MAX_CUBE_MAP_TEXTURE_SIZE );
var maxAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS );
var maxVertexUniforms = gl.getParameter( gl.MAX_VERTEX_UNIFORM_VECTORS );
var maxVaryings = gl.getParameter( gl.MAX_VARYING_VECTORS );
var maxFragmentUniforms = gl.getParameter( gl.MAX_FRAGMENT_UNIFORM_VECTORS );
var vertexTextures = maxVertexTextures > 0;
var floatFragmentTextures = !! extensions.get( 'OES_texture_float' );
var floatVertexTextures = vertexTextures && floatFragmentTextures;
return {
getMaxAnisotropy: getMaxAnisotropy,
getMaxPrecision: getMaxPrecision,
precision: precision,
logarithmicDepthBuffer: logarithmicDepthBuffer,
maxTextures: maxTextures,
maxVertexTextures: maxVertexTextures,
maxTextureSize: maxTextureSize,
maxCubemapSize: maxCubemapSize,
maxAttributes: maxAttributes,
maxVertexUniforms: maxVertexUniforms,
maxVaryings: maxVaryings,
maxFragmentUniforms: maxFragmentUniforms,
vertexTextures: vertexTextures,
floatFragmentTextures: floatFragmentTextures,
floatVertexTextures: floatVertexTextures
};
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function ArrayCamera( array ) {
PerspectiveCamera.call( this );
this.cameras = array || [];
}
ArrayCamera.prototype = Object.assign( Object.create( PerspectiveCamera.prototype ), {
constructor: ArrayCamera,
isArrayCamera: true
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLExtensions( gl ) {
var extensions = {};
return {
get: function ( name ) {
if ( extensions[ name ] !== undefined ) {
return extensions[ name ];
}
var extension;
switch ( name ) {
case 'WEBGL_depth_texture':
extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' );
break;
case 'EXT_texture_filter_anisotropic':
extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' );
break;
case 'WEBGL_compressed_texture_s3tc':
extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' );
break;
case 'WEBGL_compressed_texture_pvrtc':
extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' );
break;
case 'WEBGL_compressed_texture_etc1':
extension = gl.getExtension( 'WEBGL_compressed_texture_etc1' );
break;
default:
extension = gl.getExtension( name );
}
if ( extension === null ) {
console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' );
}
extensions[ name ] = extension;
return extension;
}
};
}
/**
* @author tschw
*/
function WebGLClipping() {
var scope = this,
globalState = null,
numGlobalPlanes = 0,
localClippingEnabled = false,
renderingShadows = false,
plane = new Plane(),
viewNormalMatrix = new Matrix3(),
uniform = { value: null, needsUpdate: false };
this.uniform = uniform;
this.numPlanes = 0;
this.numIntersection = 0;
this.init = function( planes, enableLocalClipping, camera ) {
var enabled =
planes.length !== 0 ||
enableLocalClipping ||
// enable state of previous frame - the clipping code has to
// run another frame in order to reset the state:
numGlobalPlanes !== 0 ||
localClippingEnabled;
localClippingEnabled = enableLocalClipping;
globalState = projectPlanes( planes, camera, 0 );
numGlobalPlanes = planes.length;
return enabled;
};
this.beginShadows = function() {
renderingShadows = true;
projectPlanes( null );
};
this.endShadows = function() {
renderingShadows = false;
resetGlobalState();
};
this.setState = function( planes, clipIntersection, clipShadows, camera, cache, fromCache ) {
if ( ! localClippingEnabled ||
planes === null || planes.length === 0 ||
renderingShadows && ! clipShadows ) {
// there's no local clipping
if ( renderingShadows ) {
// there's no global clipping
projectPlanes( null );
} else {
resetGlobalState();
}
} else {
var nGlobal = renderingShadows ? 0 : numGlobalPlanes,
lGlobal = nGlobal * 4,
dstArray = cache.clippingState || null;
uniform.value = dstArray; // ensure unique state
dstArray = projectPlanes( planes, camera, lGlobal, fromCache );
for ( var i = 0; i !== lGlobal; ++ i ) {
dstArray[ i ] = globalState[ i ];
}
cache.clippingState = dstArray;
this.numIntersection = clipIntersection ? this.numPlanes : 0;
this.numPlanes += nGlobal;
}
};
function resetGlobalState() {
if ( uniform.value !== globalState ) {
uniform.value = globalState;
uniform.needsUpdate = numGlobalPlanes > 0;
}
scope.numPlanes = numGlobalPlanes;
scope.numIntersection = 0;
}
function projectPlanes( planes, camera, dstOffset, skipTransform ) {
var nPlanes = planes !== null ? planes.length : 0,
dstArray = null;
if ( nPlanes !== 0 ) {
dstArray = uniform.value;
if ( skipTransform !== true || dstArray === null ) {
var flatSize = dstOffset + nPlanes * 4,
viewMatrix = camera.matrixWorldInverse;
viewNormalMatrix.getNormalMatrix( viewMatrix );
if ( dstArray === null || dstArray.length < flatSize ) {
dstArray = new Float32Array( flatSize );
}
for ( var i = 0, i4 = dstOffset;
i !== nPlanes; ++ i, i4 += 4 ) {
plane.copy( planes[ i ] ).
applyMatrix4( viewMatrix, viewNormalMatrix );
plane.normal.toArray( dstArray, i4 );
dstArray[ i4 + 3 ] = plane.constant;
}
}
uniform.value = dstArray;
uniform.needsUpdate = true;
}
scope.numPlanes = nPlanes;
return dstArray;
}
}
// import { Sphere } from '../math/Sphere';
/**
* @author mrdoob / http://mrdoob.com/
*/
function Scene () {
Object3D.call( this );
this.type = 'Scene';
this.background = null;
this.fog = null;
this.overrideMaterial = null;
this.autoUpdate = true; // checked by the renderer
}
Scene.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Scene,
copy: function ( source, recursive ) {
Object3D.prototype.copy.call( this, source, recursive );
if ( source.background !== null ) this.background = source.background.clone();
if ( source.fog !== null ) this.fog = source.fog.clone();
if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone();
this.autoUpdate = source.autoUpdate;
this.matrixAutoUpdate = source.matrixAutoUpdate;
return this;
},
toJSON: function ( meta ) {
var data = Object3D.prototype.toJSON.call( this, meta );
if ( this.background !== null ) data.object.background = this.background.toJSON( meta );
if ( this.fog !== null ) data.object.fog = this.fog.toJSON();
return data;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* linewidth: <float>,
* linecap: "round",
* linejoin: "round"
* }
*/
function LineBasicMaterial( parameters ) {
Material.call( this );
this.type = 'LineBasicMaterial';
this.color = new Color( 0xffffff );
this.linewidth = 1;
this.linecap = 'round';
this.linejoin = 'round';
this.lights = false;
this.setValues( parameters );
}
LineBasicMaterial.prototype = Object.create( Material.prototype );
LineBasicMaterial.prototype.constructor = LineBasicMaterial;
LineBasicMaterial.prototype.isLineBasicMaterial = true;
LineBasicMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.linewidth = source.linewidth;
this.linecap = source.linecap;
this.linejoin = source.linejoin;
return this;
};
/**
* @author mrdoob / http://mrdoob.com/
*/
function Line( geometry, material, mode ) {
if ( mode === 1 ) {
console.warn( 'THREE.Line: parameter THREE.LinePieces no longer supported. Created THREE.LineSegments instead.' );
return new LineSegments( geometry, material );
}
Object3D.call( this );
this.type = 'Line';
this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
this.material = material !== undefined ? material : new LineBasicMaterial( { color: Math.random() * 0xffffff } );
}
Line.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Line,
isLine: true,
raycast: ( function () {
var inverseMatrix = new Matrix4();
var ray = new Ray();
var sphere = new Sphere();
return function raycast( raycaster, intersects ) {
var precision = raycaster.linePrecision;
var precisionSq = precision * precision;
var geometry = this.geometry;
var matrixWorld = this.matrixWorld;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
sphere.copy( geometry.boundingSphere );
sphere.applyMatrix4( matrixWorld );
if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;
//
inverseMatrix.getInverse( matrixWorld );
ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );
var vStart = new Vector3();
var vEnd = new Vector3();
var interSegment = new Vector3();
var interRay = new Vector3();
var step = (this && this.isLineSegments) ? 2 : 1;
if ( geometry.isBufferGeometry ) {
var index = geometry.index;
var attributes = geometry.attributes;
var positions = attributes.position.array;
if ( index !== null ) {
var indices = index.array;
for ( var i = 0, l = indices.length - 1; i < l; i += step ) {
var a = indices[ i ];
var b = indices[ i + 1 ];
vStart.fromArray( positions, a * 3 );
vEnd.fromArray( positions, b * 3 );
var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment );
if ( distSq > precisionSq ) continue;
interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
var distance = raycaster.ray.origin.distanceTo( interRay );
if ( distance < raycaster.near || distance > raycaster.far ) continue;
intersects.push( {
distance: distance,
// What do we want? intersection point on the ray or on the segment??
// point: raycaster.ray.at( distance ),
point: interSegment.clone().applyMatrix4( this.matrixWorld ),
index: i,
face: null,
faceIndex: null,
object: this
} );
}
} else {
for ( var i = 0, l = positions.length / 3 - 1; i < l; i += step ) {
vStart.fromArray( positions, 3 * i );
vEnd.fromArray( positions, 3 * i + 3 );
var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment );
if ( distSq > precisionSq ) continue;
interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
var distance = raycaster.ray.origin.distanceTo( interRay );
if ( distance < raycaster.near || distance > raycaster.far ) continue;
intersects.push( {
distance: distance,
// What do we want? intersection point on the ray or on the segment??
// point: raycaster.ray.at( distance ),
point: interSegment.clone().applyMatrix4( this.matrixWorld ),
index: i,
face: null,
faceIndex: null,
object: this
} );
}
}
} else if ( geometry.isGeometry ) {
var vertices = geometry.vertices;
var nbVertices = vertices.length;
for ( var i = 0; i < nbVertices - 1; i += step ) {
var distSq = ray.distanceSqToSegment( vertices[ i ], vertices[ i + 1 ], interRay, interSegment );
if ( distSq > precisionSq ) continue;
interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
var distance = raycaster.ray.origin.distanceTo( interRay );
if ( distance < raycaster.near || distance > raycaster.far ) continue;
intersects.push( {
distance: distance,
// What do we want? intersection point on the ray or on the segment??
// point: raycaster.ray.at( distance ),
point: interSegment.clone().applyMatrix4( this.matrixWorld ),
index: i,
face: null,
faceIndex: null,
object: this
} );
}
}
};
}() ),
clone: function () {
return new this.constructor( this.geometry, this.material ).copy( this );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function LineSegments( geometry, material ) {
Line.call( this, geometry, material );
this.type = 'LineSegments';
}
LineSegments.prototype = Object.assign( Object.create( Line.prototype ), {
constructor: LineSegments,
isLineSegments: true
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
* map: new THREE.Texture( <Image> ),
*
* size: <float>,
* sizeAttenuation: <bool>
* }
*/
function PointsMaterial( parameters ) {
Material.call( this );
this.type = 'PointsMaterial';
this.color = new Color( 0xffffff );
this.map = null;
this.size = 1;
this.sizeAttenuation = true;
this.lights = false;
this.setValues( parameters );
}
PointsMaterial.prototype = Object.create( Material.prototype );
PointsMaterial.prototype.constructor = PointsMaterial;
PointsMaterial.prototype.isPointsMaterial = true;
PointsMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.size = source.size;
this.sizeAttenuation = source.sizeAttenuation;
return this;
};
/**
* @author alteredq / http://alteredqualia.com/
*/
function Points( geometry, material ) {
Object3D.call( this );
this.type = 'Points';
this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
this.material = material !== undefined ? material : new PointsMaterial( { color: Math.random() * 0xffffff } );
}
Points.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Points,
isPoints: true,
raycast: ( function () {
var inverseMatrix = new Matrix4();
var ray = new Ray();
var sphere = new Sphere();
return function raycast( raycaster, intersects ) {
var object = this;
var geometry = this.geometry;
var matrixWorld = this.matrixWorld;
var threshold = raycaster.params.Points.threshold;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
sphere.copy( geometry.boundingSphere );
sphere.applyMatrix4( matrixWorld );
sphere.radius += threshold;
if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;
//
inverseMatrix.getInverse( matrixWorld );
ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );
var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 );
var localThresholdSq = localThreshold * localThreshold;
var position = new Vector3();
function testPoint( point, index ) {
var rayPointDistanceSq = ray.distanceSqToPoint( point );
if ( rayPointDistanceSq < localThresholdSq ) {
var intersectPoint = ray.closestPointToPoint( point );
intersectPoint.applyMatrix4( matrixWorld );
var distance = raycaster.ray.origin.distanceTo( intersectPoint );
if ( distance < raycaster.near || distance > raycaster.far ) return;
intersects.push( {
distance: distance,
distanceToRay: Math.sqrt( rayPointDistanceSq ),
point: intersectPoint.clone(),
index: index,
face: null,
object: object
} );
}
}
if ( geometry.isBufferGeometry ) {
var index = geometry.index;
var attributes = geometry.attributes;
var positions = attributes.position.array;
if ( index !== null ) {
var indices = index.array;
for ( var i = 0, il = indices.length; i < il; i ++ ) {
var a = indices[ i ];
position.fromArray( positions, a * 3 );
testPoint( position, a );
}
} else {
for ( var i = 0, l = positions.length / 3; i < l; i ++ ) {
position.fromArray( positions, i * 3 );
testPoint( position, i );
}
}
} else {
var vertices = geometry.vertices;
for ( var i = 0, l = vertices.length; i < l; i ++ ) {
testPoint( vertices[ i ], i );
}
}
};
}() ),
clone: function () {
return new this.constructor( this.geometry, this.material ).copy( this );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function Group() {
Object3D.call( this );
this.type = 'Group';
}
Group.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Group
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author benaadams / https://twitter.com/ben_a_adams
* @author Mugen87 / https://github.com/Mugen87
*/
/**
* @author Kaleb Murphy
* @author Mugen87 / https://github.com/Mugen87
*/
/**
* @author mrdoob / http://mrdoob.com/
* @author Mugen87 / https://github.com/Mugen87
*/
/**
* @author benaadams / https://twitter.com/ben_a_adams
* @author Mugen87 / https://github.com/Mugen87
* @author hughes
*/
//export { WireframeGeometry } from './WireframeGeometry.js';
//export { ParametricGeometry, ParametricBufferGeometry } from './ParametricGeometry.js';
//export { TetrahedronGeometry, TetrahedronBufferGeometry } from './TetrahedronGeometry.js';
//export { OctahedronGeometry, OctahedronBufferGeometry } from './OctahedronGeometry.js';
//export { IcosahedronGeometry, IcosahedronBufferGeometry } from './IcosahedronGeometry.js';
//export { DodecahedronGeometry, DodecahedronBufferGeometry } from './DodecahedronGeometry.js';
//export { PolyhedronGeometry, PolyhedronBufferGeometry } from './PolyhedronGeometry.js';
//export { TubeGeometry, TubeBufferGeometry } from './TubeGeometry.js';
//export { TorusKnotGeometry, TorusKnotBufferGeometry } from './TorusKnotGeometry.js';
//export { TorusGeometry, TorusBufferGeometry } from './TorusGeometry.js';
//export { TextGeometry, TextBufferGeometry } from './TextGeometry.js';
//export { BoxGeometry, BoxBufferGeometry } from './BoxGeometry.js';
/**
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
* map: new THREE.Texture( <Image> ),
*
* uvOffset: new THREE.Vector2(),
* uvScale: new THREE.Vector2()
* }
*/
function SpriteMaterial( parameters ) {
Material.call( this );
this.type = 'SpriteMaterial';
this.color = new Color( 0xffffff );
this.map = null;
this.rotation = 0;
this.fog = false;
this.lights = false;
this.setValues( parameters );
}
SpriteMaterial.prototype = Object.create( Material.prototype );
SpriteMaterial.prototype.constructor = SpriteMaterial;
SpriteMaterial.prototype.isSpriteMaterial = true;
SpriteMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.rotation = source.rotation;
return this;
};
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* specular: <hex>,
* shininess: <float>,
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* emissive: <hex>,
* emissiveIntensity: <float>
* emissiveMap: new THREE.Texture( <Image> ),
*
* bumpMap: new THREE.Texture( <Image> ),
* bumpScale: <float>,
*
* normalMap: new THREE.Texture( <Image> ),
* normalScale: <Vector2>,
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* specularMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>
* }
*/
function MeshPhongMaterial( parameters ) {
Material.call( this );
this.type = 'MeshPhongMaterial';
this.color = new Color( 0xffffff ); // diffuse
this.specular = new Color( 0x111111 );
this.shininess = 30;
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new Color( 0x000000 );
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalScale = new Vector2( 1, 1 );
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.skinning = false;
this.morphTargets = false;
this.morphNormals = false;
this.setValues( parameters );
}
MeshPhongMaterial.prototype = Object.create( Material.prototype );
MeshPhongMaterial.prototype.constructor = MeshPhongMaterial;
MeshPhongMaterial.prototype.isMeshPhongMaterial = true;
MeshPhongMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.specular.copy( source.specular );
this.shininess = source.shininess;
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy( source.emissive );
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalScale.copy( source.normalScale );
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
return this;
};
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* emissive: <hex>,
* emissiveIntensity: <float>
* emissiveMap: new THREE.Texture( <Image> ),
*
* specularMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>
* }
*/
function MeshLambertMaterial( parameters ) {
Material.call( this );
this.type = 'MeshLambertMaterial';
this.color = new Color( 0xffffff ); // diffuse
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new Color( 0x000000 );
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.skinning = false;
this.morphTargets = false;
this.morphNormals = false;
this.setValues( parameters );
}
MeshLambertMaterial.prototype = Object.create( Material.prototype );
MeshLambertMaterial.prototype.constructor = MeshLambertMaterial;
MeshLambertMaterial.prototype.isMeshLambertMaterial = true;
MeshLambertMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy( source.emissive );
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
return this;
};
//export { ShadowMaterial } from './ShadowMaterial.js';
var Materials = Object.freeze({
SpriteMaterial: SpriteMaterial,
ShaderMaterial: ShaderMaterial,
PointsMaterial: PointsMaterial,
MeshPhongMaterial: MeshPhongMaterial,
MeshLambertMaterial: MeshLambertMaterial,
MeshBasicMaterial: MeshBasicMaterial,
LineBasicMaterial: LineBasicMaterial,
Material: Material
});
/**
* @author mrdoob / http://mrdoob.com/
*/
var Cache = {
enabled: false,
files: {},
add: function ( key, file ) {
if ( this.enabled === false ) return;
// console.log( 'THREE.Cache', 'Adding key:', key );
this.files[ key ] = file;
},
get: function ( key ) {
if ( this.enabled === false ) return;
// console.log( 'THREE.Cache', 'Checking key:', key );
return this.files[ key ];
},
remove: function ( key ) {
delete this.files[ key ];
},
clear: function () {
this.files = {};
}
};
/**
* @author mrdoob / http://mrdoob.com/
*/
function LoadingManager( onLoad, onProgress, onError ) {
var scope = this;
var isLoading = false, itemsLoaded = 0, itemsTotal = 0;
this.onStart = undefined;
this.onLoad = onLoad;
this.onProgress = onProgress;
this.onError = onError;
this.itemStart = function ( url ) {
itemsTotal ++;
if ( isLoading === false ) {
if ( scope.onStart !== undefined ) {
scope.onStart( url, itemsLoaded, itemsTotal );
}
}
isLoading = true;
};
this.itemEnd = function ( url ) {
itemsLoaded ++;
if ( scope.onProgress !== undefined ) {
scope.onProgress( url, itemsLoaded, itemsTotal );
}
if ( itemsLoaded === itemsTotal ) {
isLoading = false;
if ( scope.onLoad !== undefined ) {
scope.onLoad();
}
}
};
this.itemError = function ( url ) {
if ( scope.onError !== undefined ) {
scope.onError( url );
}
};
}
var DefaultLoadingManager = new LoadingManager();
/**
* @author mrdoob / http://mrdoob.com/
*/
function ImageLoader( manager ) {
this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
}
Object.assign( ImageLoader.prototype, {
load: function ( url, onLoad, onProgress, onError ) {
if ( url === undefined ) url = '';
if ( this.path !== undefined ) url = this.path + url;
var scope = this;
var cached = Cache.get( url );
if ( cached !== undefined ) {
scope.manager.itemStart( url );
setTimeout( function () {
if ( onLoad ) onLoad( cached );
scope.manager.itemEnd( url );
}, 0 );
return cached;
}
var image = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'img' );
image.addEventListener( 'load', function () {
Cache.add( url, this );
if ( onLoad ) onLoad( this );
scope.manager.itemEnd( url );
}, false );
/*
image.addEventListener( 'progress', function ( event ) {
if ( onProgress ) onProgress( event );
}, false );
*/
image.addEventListener( 'error', function ( event ) {
if ( onError ) onError( event );
scope.manager.itemEnd( url );
scope.manager.itemError( url );
}, false );
if ( url.substr( 0, 5 ) !== 'data:' ) {
if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin;
}
scope.manager.itemStart( url );
image.src = url;
return image;
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
return this;
},
setPath: function ( value ) {
this.path = value;
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function TextureLoader( manager ) {
this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
}
Object.assign( TextureLoader.prototype, {
load: function ( url, onLoad, onProgress, onError ) {
var loader = new ImageLoader( this.manager );
loader.setCrossOrigin( this.crossOrigin );
loader.setPath( this.path );
var texture = new Texture();
texture.image = loader.load( url, function () {
// JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB.
var isJPEG = url.search( /\.(jpg|jpeg)$/ ) > 0 || url.search( /^data\:image\/jpeg/ ) === 0;
texture.format = isJPEG ? RGBFormat : RGBAFormat;
texture.needsUpdate = true;
if ( onLoad !== undefined ) {
onLoad( texture );
}
}, onProgress, onError );
return texture;
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
return this;
},
setPath: function ( value ) {
this.path = value;
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function FileLoader( manager ) {
this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
}
Object.assign( FileLoader.prototype, {
load: function ( url, onLoad, onProgress, onError ) {
if ( url === undefined ) url = '';
if ( this.path !== undefined ) url = this.path + url;
var scope = this;
var cached = Cache.get( url );
if ( cached !== undefined ) {
scope.manager.itemStart( url );
setTimeout( function () {
if ( onLoad ) onLoad( cached );
scope.manager.itemEnd( url );
}, 0 );
return cached;
}
// Check for data: URI
var dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/;
var dataUriRegexResult = url.match( dataUriRegex );
// Safari can not handle Data URIs through XMLHttpRequest so process manually
if ( dataUriRegexResult ) {
var mimeType = dataUriRegexResult[ 1 ];
var isBase64 = !! dataUriRegexResult[ 2 ];
var data = dataUriRegexResult[ 3 ];
data = window.decodeURIComponent( data );
if ( isBase64 ) data = window.atob( data );
try {
var response;
var responseType = ( this.responseType || '' ).toLowerCase();
switch ( responseType ) {
case 'arraybuffer':
case 'blob':
response = new ArrayBuffer( data.length );
var view = new Uint8Array( response );
for ( var i = 0; i < data.length; i ++ ) {
view[ i ] = data.charCodeAt( i );
}
if ( responseType === 'blob' ) {
response = new Blob( [ response ], { type: mimeType } );
}
break;
case 'document':
var parser = new DOMParser();
response = parser.parseFromString( data, mimeType );
break;
case 'json':
response = JSON.parse( data );
break;
default: // 'text' or other
response = data;
break;
}
// Wait for next browser tick
window.setTimeout( function () {
if ( onLoad ) onLoad( response );
scope.manager.itemEnd( url );
}, 0 );
} catch ( error ) {
// Wait for next browser tick
window.setTimeout( function () {
if ( onError ) onError( error );
scope.manager.itemEnd( url );
scope.manager.itemError( url );
}, 0 );
}
} else {
var request = new XMLHttpRequest();
request.open( 'GET', url, true );
request.addEventListener( 'load', function ( event ) {
var response = event.target.response;
Cache.add( url, response );
if ( this.status === 200 ) {
if ( onLoad ) onLoad( response );
scope.manager.itemEnd( url );
} else if ( this.status === 0 ) {
// Some browsers return HTTP Status 0 when using non-http protocol
// e.g. 'file://' or 'data://'. Handle as success.
console.warn( 'THREE.FileLoader: HTTP Status 0 received.' );
if ( onLoad ) onLoad( response );
scope.manager.itemEnd( url );
} else {
if ( onError ) onError( event );
scope.manager.itemEnd( url );
scope.manager.itemError( url );
}
}, false );
if ( onProgress !== undefined ) {
request.addEventListener( 'progress', function ( event ) {
onProgress( event );
}, false );
}
request.addEventListener( 'error', function ( event ) {
if ( onError ) onError( event );
scope.manager.itemEnd( url );
scope.manager.itemError( url );
}, false );
if ( this.responseType !== undefined ) request.responseType = this.responseType;
if ( this.withCredentials !== undefined ) request.withCredentials = this.withCredentials;
if ( request.overrideMimeType ) request.overrideMimeType( this.mimeType !== undefined ? this.mimeType : 'text/plain' );
for ( var header in this.requestHeader ) {
request.setRequestHeader( header, this.requestHeader[ header ] );
}
request.send( null );
}
scope.manager.itemStart( url );
return request;
},
setPath: function ( value ) {
this.path = value;
return this;
},
setResponseType: function ( value ) {
this.responseType = value;
return this;
},
setWithCredentials: function ( value ) {
this.withCredentials = value;
return this;
},
setMimeType: function ( value ) {
this.mimeType = value;
return this;
},
setRequestHeader: function ( value ) {
this.requestHeader = value;
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function MaterialLoader( manager ) {
this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
this.textures = {};
}
Object.assign( MaterialLoader.prototype, {
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var loader = new FileLoader( scope.manager );
loader.load( url, function ( text ) {
onLoad( scope.parse( JSON.parse( text ) ) );
}, onProgress, onError );
},
setTextures: function ( value ) {
this.textures = value;
},
parse: function ( json ) {
var textures = this.textures;
function getTexture( name ) {
if ( textures[ name ] === undefined ) {
console.warn( 'THREE.MaterialLoader: Undefined texture', name );
}
return textures[ name ];
}
var material = new Materials[ json.type ]();
if ( json.uuid !== undefined ) material.uuid = json.uuid;
if ( json.name !== undefined ) material.name = json.name;
if ( json.color !== undefined ) material.color.setHex( json.color );
if ( json.roughness !== undefined ) material.roughness = json.roughness;
if ( json.metalness !== undefined ) material.metalness = json.metalness;
if ( json.emissive !== undefined ) material.emissive.setHex( json.emissive );
if ( json.specular !== undefined ) material.specular.setHex( json.specular );
if ( json.shininess !== undefined ) material.shininess = json.shininess;
if ( json.clearCoat !== undefined ) material.clearCoat = json.clearCoat;
if ( json.clearCoatRoughness !== undefined ) material.clearCoatRoughness = json.clearCoatRoughness;
if ( json.uniforms !== undefined ) material.uniforms = json.uniforms;
if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader;
if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader;
if ( json.vertexColors !== undefined ) material.vertexColors = json.vertexColors;
if ( json.fog !== undefined ) material.fog = json.fog;
if ( json.shading !== undefined ) material.shading = json.shading;
if ( json.blending !== undefined ) material.blending = json.blending;
if ( json.side !== undefined ) material.side = json.side;
if ( json.opacity !== undefined ) material.opacity = json.opacity;
if ( json.transparent !== undefined ) material.transparent = json.transparent;
if ( json.alphaTest !== undefined ) material.alphaTest = json.alphaTest;
if ( json.depthTest !== undefined ) material.depthTest = json.depthTest;
if ( json.depthWrite !== undefined ) material.depthWrite = json.depthWrite;
if ( json.colorWrite !== undefined ) material.colorWrite = json.colorWrite;
if ( json.wireframe !== undefined ) material.wireframe = json.wireframe;
if ( json.wireframeLinewidth !== undefined ) material.wireframeLinewidth = json.wireframeLinewidth;
if ( json.wireframeLinecap !== undefined ) material.wireframeLinecap = json.wireframeLinecap;
if ( json.wireframeLinejoin !== undefined ) material.wireframeLinejoin = json.wireframeLinejoin;
if ( json.skinning !== undefined ) material.skinning = json.skinning;
if ( json.morphTargets !== undefined ) material.morphTargets = json.morphTargets;
// for PointsMaterial
if ( json.size !== undefined ) material.size = json.size;
if ( json.sizeAttenuation !== undefined ) material.sizeAttenuation = json.sizeAttenuation;
// maps
if ( json.map !== undefined ) material.map = getTexture( json.map );
if ( json.alphaMap !== undefined ) {
material.alphaMap = getTexture( json.alphaMap );
material.transparent = true;
}
if ( json.bumpMap !== undefined ) material.bumpMap = getTexture( json.bumpMap );
if ( json.bumpScale !== undefined ) material.bumpScale = json.bumpScale;
if ( json.normalMap !== undefined ) material.normalMap = getTexture( json.normalMap );
if ( json.normalScale !== undefined ) {
var normalScale = json.normalScale;
if ( Array.isArray( normalScale ) === false ) {
// Blender exporter used to export a scalar. See #7459
normalScale = [ normalScale, normalScale ];
}
material.normalScale = new Vector2().fromArray( normalScale );
}
if ( json.displacementMap !== undefined ) material.displacementMap = getTexture( json.displacementMap );
if ( json.displacementScale !== undefined ) material.displacementScale = json.displacementScale;
if ( json.displacementBias !== undefined ) material.displacementBias = json.displacementBias;
if ( json.roughnessMap !== undefined ) material.roughnessMap = getTexture( json.roughnessMap );
if ( json.metalnessMap !== undefined ) material.metalnessMap = getTexture( json.metalnessMap );
if ( json.emissiveMap !== undefined ) material.emissiveMap = getTexture( json.emissiveMap );
if ( json.emissiveIntensity !== undefined ) material.emissiveIntensity = json.emissiveIntensity;
if ( json.specularMap !== undefined ) material.specularMap = getTexture( json.specularMap );
if ( json.envMap !== undefined ) material.envMap = getTexture( json.envMap );
if ( json.reflectivity !== undefined ) material.reflectivity = json.reflectivity;
if ( json.lightMap !== undefined ) material.lightMap = getTexture( json.lightMap );
if ( json.lightMapIntensity !== undefined ) material.lightMapIntensity = json.lightMapIntensity;
if ( json.aoMap !== undefined ) material.aoMap = getTexture( json.aoMap );
if ( json.aoMapIntensity !== undefined ) material.aoMapIntensity = json.aoMapIntensity;
if ( json.gradientMap !== undefined ) material.gradientMap = getTexture( json.gradientMap );
return material;
}
} );
/**
* @author alteredq / http://alteredqualia.com/
*/
function Loader() {
this.onLoadStart = function () {};
this.onLoadProgress = function () {};
this.onLoadComplete = function () {};
}
Loader.Handlers = {
handlers: [],
add: function ( regex, loader ) {
this.handlers.push( regex, loader );
},
get: function ( file ) {
var handlers = this.handlers;
for ( var i = 0, l = handlers.length; i < l; i += 2 ) {
var regex = handlers[ i ];
var loader = handlers[ i + 1 ];
if ( regex.test( file ) ) {
return loader;
}
}
return null;
}
};
Object.assign( Loader.prototype, {
crossOrigin: undefined,
extractUrlBase: function ( url ) {
var parts = url.split( '/' );
if ( parts.length === 1 ) return './';
parts.pop();
return parts.join( '/' ) + '/';
},
initMaterials: function ( materials, texturePath, crossOrigin ) {
var array = [];
for ( var i = 0; i < materials.length; ++ i ) {
array[ i ] = this.createMaterial( materials[ i ], texturePath, crossOrigin );
}
return array;
},
createMaterial: ( function () {
var BlendingMode = {
NoBlending: NoBlending,
NormalBlending: NormalBlending,
AdditiveBlending: AdditiveBlending,
SubtractiveBlending: SubtractiveBlending,
MultiplyBlending: MultiplyBlending,
CustomBlending: CustomBlending
};
var color = new Color();
var textureLoader = new TextureLoader();
var materialLoader = new MaterialLoader();
return function createMaterial( m, texturePath, crossOrigin ) {
// convert from old material format
var textures = {};
function loadTexture( path, repeat, offset, wrap, anisotropy ) {
var fullPath = texturePath + path;
var loader = Loader.Handlers.get( fullPath );
var texture;
if ( loader !== null ) {
texture = loader.load( fullPath );
} else {
textureLoader.setCrossOrigin( crossOrigin );
texture = textureLoader.load( fullPath );
}
if ( repeat !== undefined ) {
texture.repeat.fromArray( repeat );
if ( repeat[ 0 ] !== 1 ) texture.wrapS = RepeatWrapping;
if ( repeat[ 1 ] !== 1 ) texture.wrapT = RepeatWrapping;
}
if ( offset !== undefined ) {
texture.offset.fromArray( offset );
}
if ( wrap !== undefined ) {
if ( wrap[ 0 ] === 'repeat' ) texture.wrapS = RepeatWrapping;
if ( wrap[ 0 ] === 'mirror' ) texture.wrapS = MirroredRepeatWrapping;
if ( wrap[ 1 ] === 'repeat' ) texture.wrapT = RepeatWrapping;
if ( wrap[ 1 ] === 'mirror' ) texture.wrapT = MirroredRepeatWrapping;
}
if ( anisotropy !== undefined ) {
texture.anisotropy = anisotropy;
}
var uuid = _Math.generateUUID();
textures[ uuid ] = texture;
return uuid;
}
//
var json = {
uuid: _Math.generateUUID(),
type: 'MeshLambertMaterial'
};
for ( var name in m ) {
var value = m[ name ];
switch ( name ) {
case 'DbgColor':
case 'DbgIndex':
case 'opticalDensity':
case 'illumination':
break;
case 'DbgName':
json.name = value;
break;
case 'blending':
json.blending = BlendingMode[ value ];
break;
case 'colorAmbient':
case 'mapAmbient':
console.warn( 'THREE.Loader.createMaterial:', name, 'is no longer supported.' );
break;
case 'colorDiffuse':
json.color = color.fromArray( value ).getHex();
break;
case 'colorSpecular':
json.specular = color.fromArray( value ).getHex();
break;
case 'colorEmissive':
json.emissive = color.fromArray( value ).getHex();
break;
case 'specularCoef':
json.shininess = value;
break;
case 'shading':
if ( value.toLowerCase() === 'basic' ) json.type = 'MeshBasicMaterial';
if ( value.toLowerCase() === 'phong' ) json.type = 'MeshPhongMaterial';
if ( value.toLowerCase() === 'standard' ) json.type = 'MeshStandardMaterial';
break;
case 'mapDiffuse':
json.map = loadTexture( value, m.mapDiffuseRepeat, m.mapDiffuseOffset, m.mapDiffuseWrap, m.mapDiffuseAnisotropy );
break;
case 'mapDiffuseRepeat':
case 'mapDiffuseOffset':
case 'mapDiffuseWrap':
case 'mapDiffuseAnisotropy':
break;
case 'mapEmissive':
json.emissiveMap = loadTexture( value, m.mapEmissiveRepeat, m.mapEmissiveOffset, m.mapEmissiveWrap, m.mapEmissiveAnisotropy );
break;
case 'mapEmissiveRepeat':
case 'mapEmissiveOffset':
case 'mapEmissiveWrap':
case 'mapEmissiveAnisotropy':
break;
case 'mapLight':
json.lightMap = loadTexture( value, m.mapLightRepeat, m.mapLightOffset, m.mapLightWrap, m.mapLightAnisotropy );
break;
case 'mapLightRepeat':
case 'mapLightOffset':
case 'mapLightWrap':
case 'mapLightAnisotropy':
break;
case 'mapAO':
json.aoMap = loadTexture( value, m.mapAORepeat, m.mapAOOffset, m.mapAOWrap, m.mapAOAnisotropy );
break;
case 'mapAORepeat':
case 'mapAOOffset':
case 'mapAOWrap':
case 'mapAOAnisotropy':
break;
case 'mapBump':
json.bumpMap = loadTexture( value, m.mapBumpRepeat, m.mapBumpOffset, m.mapBumpWrap, m.mapBumpAnisotropy );
break;
case 'mapBumpScale':
json.bumpScale = value;
break;
case 'mapBumpRepeat':
case 'mapBumpOffset':
case 'mapBumpWrap':
case 'mapBumpAnisotropy':
break;
case 'mapNormal':
json.normalMap = loadTexture( value, m.mapNormalRepeat, m.mapNormalOffset, m.mapNormalWrap, m.mapNormalAnisotropy );
break;
case 'mapNormalFactor':
json.normalScale = [ value, value ];
break;
case 'mapNormalRepeat':
case 'mapNormalOffset':
case 'mapNormalWrap':
case 'mapNormalAnisotropy':
break;
case 'mapSpecular':
json.specularMap = loadTexture( value, m.mapSpecularRepeat, m.mapSpecularOffset, m.mapSpecularWrap, m.mapSpecularAnisotropy );
break;
case 'mapSpecularRepeat':
case 'mapSpecularOffset':
case 'mapSpecularWrap':
case 'mapSpecularAnisotropy':
break;
case 'mapMetalness':
json.metalnessMap = loadTexture( value, m.mapMetalnessRepeat, m.mapMetalnessOffset, m.mapMetalnessWrap, m.mapMetalnessAnisotropy );
break;
case 'mapMetalnessRepeat':
case 'mapMetalnessOffset':
case 'mapMetalnessWrap':
case 'mapMetalnessAnisotropy':
break;
case 'mapRoughness':
json.roughnessMap = loadTexture( value, m.mapRoughnessRepeat, m.mapRoughnessOffset, m.mapRoughnessWrap, m.mapRoughnessAnisotropy );
break;
case 'mapRoughnessRepeat':
case 'mapRoughnessOffset':
case 'mapRoughnessWrap':
case 'mapRoughnessAnisotropy':
break;
case 'mapAlpha':
json.alphaMap = loadTexture( value, m.mapAlphaRepeat, m.mapAlphaOffset, m.mapAlphaWrap, m.mapAlphaAnisotropy );
break;
case 'mapAlphaRepeat':
case 'mapAlphaOffset':
case 'mapAlphaWrap':
case 'mapAlphaAnisotropy':
break;
case 'flipSided':
json.side = BackSide;
break;
case 'doubleSided':
json.side = DoubleSide;
break;
case 'transparency':
console.warn( 'THREE.Loader.createMaterial: transparency has been renamed to opacity' );
json.opacity = value;
break;
case 'depthTest':
case 'depthWrite':
case 'colorWrite':
case 'opacity':
case 'reflectivity':
case 'transparent':
case 'visible':
case 'wireframe':
json[ name ] = value;
break;
case 'vertexColors':
if ( value === true ) json.vertexColors = VertexColors;
if ( value === 'face' ) json.vertexColors = FaceColors;
break;
default:
console.error( 'THREE.Loader.createMaterial: Unsupported', name, value );
break;
}
}
if ( json.type === 'MeshBasicMaterial' ) delete json.emissive;
if ( json.type !== 'MeshPhongMaterial' ) delete json.specular;
if ( json.opacity < 1 ) json.transparent = true;
materialLoader.setTextures( textures );
return materialLoader.parse( json );
};
} )()
} );
/**
* @author tschw
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
*/
var AnimationUtils = {
// same as Array.prototype.slice, but also works on typed arrays
arraySlice: function ( array, from, to ) {
if ( AnimationUtils.isTypedArray( array ) ) {
// in ios9 array.subarray(from, undefined) will return empty array
// but array.subarray(from) or array.subarray(from, len) is correct
return new array.constructor( array.subarray( from, to !== undefined ? to : array.length ) );
}
return array.slice( from, to );
},
// converts an array to a specific type
convertArray: function ( array, type, forceClone ) {
if ( ! array || // let 'undefined' and 'null' pass
! forceClone && array.constructor === type ) return array;
if ( typeof type.BYTES_PER_ELEMENT === 'number' ) {
return new type( array ); // create typed array
}
return Array.prototype.slice.call( array ); // create Array
},
isTypedArray: function ( object ) {
return ArrayBuffer.isView( object ) &&
! ( object instanceof DataView );
},
// returns an array by which times and values can be sorted
getKeyframeOrder: function ( times ) {
function compareTime( i, j ) {
return times[ i ] - times[ j ];
}
var n = times.length;
var result = new Array( n );
for ( var i = 0; i !== n; ++ i ) result[ i ] = i;
result.sort( compareTime );
return result;
},
// uses the array previously returned by 'getKeyframeOrder' to sort data
sortedArray: function ( values, stride, order ) {
var nValues = values.length;
var result = new values.constructor( nValues );
for ( var i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) {
var srcOffset = order[ i ] * stride;
for ( var j = 0; j !== stride; ++ j ) {
result[ dstOffset ++ ] = values[ srcOffset + j ];
}
}
return result;
},
// function for parsing AOS keyframe formats
flattenJSON: function ( jsonKeys, times, values, valuePropertyName ) {
var i = 1, key = jsonKeys[ 0 ];
while ( key !== undefined && key[ valuePropertyName ] === undefined ) {
key = jsonKeys[ i ++ ];
}
if ( key === undefined ) return; // no data
var value = key[ valuePropertyName ];
if ( value === undefined ) return; // no data
if ( Array.isArray( value ) ) {
do {
value = key[ valuePropertyName ];
if ( value !== undefined ) {
times.push( key.time );
values.push.apply( values, value ); // push all elements
}
key = jsonKeys[ i ++ ];
} while ( key !== undefined );
} else if ( value.toArray !== undefined ) {
// ...assume THREE.Math-ish
do {
value = key[ valuePropertyName ];
if ( value !== undefined ) {
times.push( key.time );
value.toArray( values, values.length );
}
key = jsonKeys[ i ++ ];
} while ( key !== undefined );
} else {
// otherwise push as-is
do {
value = key[ valuePropertyName ];
if ( value !== undefined ) {
times.push( key.time );
values.push( value );
}
key = jsonKeys[ i ++ ];
} while ( key !== undefined );
}
}
};
/**
* Abstract base class of interpolants over parametric samples.
*
* The parameter domain is one dimensional, typically the time or a path
* along a curve defined by the data.
*
* The sample values can have any dimensionality and derived classes may
* apply special interpretations to the data.
*
* This class provides the interval seek in a Template Method, deferring
* the actual interpolation to derived classes.
*
* Time complexity is O(1) for linear access crossing at most two points
* and O(log N) for random access, where N is the number of positions.
*
* References:
*
* http://www.oodesign.com/template-method-pattern.html
*
* @author tschw
*/
function Interpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
this.parameterPositions = parameterPositions;
this._cachedIndex = 0;
this.resultBuffer = resultBuffer !== undefined ?
resultBuffer : new sampleValues.constructor( sampleSize );
this.sampleValues = sampleValues;
this.valueSize = sampleSize;
}
Object.assign( Interpolant.prototype, {
evaluate: function( t ) {
var pp = this.parameterPositions,
i1 = this._cachedIndex,
t1 = pp[ i1 ],
t0 = pp[ i1 - 1 ];
validate_interval: {
seek: {
var right;
linear_scan: {
//- See http://jsperf.com/comparison-to-undefined/3
//- slower code:
//-
//- if ( t >= t1 || t1 === undefined ) {
forward_scan: if ( ! ( t < t1 ) ) {
for ( var giveUpAt = i1 + 2; ;) {
if ( t1 === undefined ) {
if ( t < t0 ) break forward_scan;
// after end
i1 = pp.length;
this._cachedIndex = i1;
return this.afterEnd_( i1 - 1, t, t0 );
}
if ( i1 === giveUpAt ) break; // this loop
t0 = t1;
t1 = pp[ ++ i1 ];
if ( t < t1 ) {
// we have arrived at the sought interval
break seek;
}
}
// prepare binary search on the right side of the index
right = pp.length;
break linear_scan;
}
//- slower code:
//- if ( t < t0 || t0 === undefined ) {
if ( ! ( t >= t0 ) ) {
// looping?
var t1global = pp[ 1 ];
if ( t < t1global ) {
i1 = 2; // + 1, using the scan for the details
t0 = t1global;
}
// linear reverse scan
for ( var giveUpAt = i1 - 2; ;) {
if ( t0 === undefined ) {
// before start
this._cachedIndex = 0;
return this.beforeStart_( 0, t, t1 );
}
if ( i1 === giveUpAt ) break; // this loop
t1 = t0;
t0 = pp[ -- i1 - 1 ];
if ( t >= t0 ) {
// we have arrived at the sought interval
break seek;
}
}
// prepare binary search on the left side of the index
right = i1;
i1 = 0;
break linear_scan;
}
// the interval is valid
break validate_interval;
} // linear scan
// binary search
while ( i1 < right ) {
var mid = ( i1 + right ) >>> 1;
if ( t < pp[ mid ] ) {
right = mid;
} else {
i1 = mid + 1;
}
}
t1 = pp[ i1 ];
t0 = pp[ i1 - 1 ];
// check boundary cases, again
if ( t0 === undefined ) {
this._cachedIndex = 0;
return this.beforeStart_( 0, t, t1 );
}
if ( t1 === undefined ) {
i1 = pp.length;
this._cachedIndex = i1;
return this.afterEnd_( i1 - 1, t0, t );
}
} // seek
this._cachedIndex = i1;
this.intervalChanged_( i1, t0, t1 );
} // validate_interval
return this.interpolate_( i1, t0, t, t1 );
},
settings: null, // optional, subclass-specific settings structure
// Note: The indirection allows central control of many interpolants.
// --- Protected interface
DefaultSettings_: {},
getSettings_: function() {
return this.settings || this.DefaultSettings_;
},
copySampleValue_: function( index ) {
// copies a sample value to the result buffer
var result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset = index * stride;
for ( var i = 0; i !== stride; ++ i ) {
result[ i ] = values[ offset + i ];
}
return result;
},
// Template methods for derived classes:
interpolate_: function( i1, t0, t, t1 ) {
throw new Error( "call to abstract method" );
// implementations shall return this.resultBuffer
},
intervalChanged_: function( i1, t0, t1 ) {
// empty
}
} );
//!\ DECLARE ALIAS AFTER assign prototype !
Object.assign( Interpolant.prototype, {
//( 0, t, t0 ), returns this.resultBuffer
beforeStart_: Interpolant.prototype.copySampleValue_,
//( N-1, tN-1, t ), returns this.resultBuffer
afterEnd_: Interpolant.prototype.copySampleValue_,
} );
/**
* Fast and simple cubic spline interpolant.
*
* It was derived from a Hermitian construction setting the first derivative
* at each sample position to the linear slope between neighboring positions
* over their parameter interval.
*
* @author tschw
*/
function CubicInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
Interpolant.call(
this, parameterPositions, sampleValues, sampleSize, resultBuffer );
this._weightPrev = -0;
this._offsetPrev = -0;
this._weightNext = -0;
this._offsetNext = -0;
}
CubicInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
constructor: CubicInterpolant,
DefaultSettings_: {
endingStart: ZeroCurvatureEnding,
endingEnd: ZeroCurvatureEnding
},
intervalChanged_: function( i1, t0, t1 ) {
var pp = this.parameterPositions,
iPrev = i1 - 2,
iNext = i1 + 1,
tPrev = pp[ iPrev ],
tNext = pp[ iNext ];
if ( tPrev === undefined ) {
switch ( this.getSettings_().endingStart ) {
case ZeroSlopeEnding:
// f'(t0) = 0
iPrev = i1;
tPrev = 2 * t0 - t1;
break;
case WrapAroundEnding:
// use the other end of the curve
iPrev = pp.length - 2;
tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ];
break;
default: // ZeroCurvatureEnding
// f''(t0) = 0 a.k.a. Natural Spline
iPrev = i1;
tPrev = t1;
}
}
if ( tNext === undefined ) {
switch ( this.getSettings_().endingEnd ) {
case ZeroSlopeEnding:
// f'(tN) = 0
iNext = i1;
tNext = 2 * t1 - t0;
break;
case WrapAroundEnding:
// use the other end of the curve
iNext = 1;
tNext = t1 + pp[ 1 ] - pp[ 0 ];
break;
default: // ZeroCurvatureEnding
// f''(tN) = 0, a.k.a. Natural Spline
iNext = i1 - 1;
tNext = t0;
}
}
var halfDt = ( t1 - t0 ) * 0.5,
stride = this.valueSize;
this._weightPrev = halfDt / ( t0 - tPrev );
this._weightNext = halfDt / ( tNext - t1 );
this._offsetPrev = iPrev * stride;
this._offsetNext = iNext * stride;
},
interpolate_: function( i1, t0, t, t1 ) {
var result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
o1 = i1 * stride, o0 = o1 - stride,
oP = this._offsetPrev, oN = this._offsetNext,
wP = this._weightPrev, wN = this._weightNext,
p = ( t - t0 ) / ( t1 - t0 ),
pp = p * p,
ppp = pp * p;
// evaluate polynomials
var sP = - wP * ppp + 2 * wP * pp - wP * p;
var s0 = ( 1 + wP ) * ppp + (-1.5 - 2 * wP ) * pp + ( -0.5 + wP ) * p + 1;
var s1 = (-1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p;
var sN = wN * ppp - wN * pp;
// combine data linearly
for ( var i = 0; i !== stride; ++ i ) {
result[ i ] =
sP * values[ oP + i ] +
s0 * values[ o0 + i ] +
s1 * values[ o1 + i ] +
sN * values[ oN + i ];
}
return result;
}
} );
/**
* @author tschw
*/
function LinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
}
LinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
constructor: LinearInterpolant,
interpolate_: function( i1, t0, t, t1 ) {
var result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset1 = i1 * stride,
offset0 = offset1 - stride,
weight1 = ( t - t0 ) / ( t1 - t0 ),
weight0 = 1 - weight1;
for ( var i = 0; i !== stride; ++ i ) {
result[ i ] =
values[ offset0 + i ] * weight0 +
values[ offset1 + i ] * weight1;
}
return result;
}
} );
/**
*
* Interpolant that evaluates to the sample value at the position preceeding
* the parameter.
*
* @author tschw
*/
function DiscreteInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
}
DiscreteInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
constructor: DiscreteInterpolant,
interpolate_: function( i1, t0, t, t1 ) {
return this.copySampleValue_( i1 - 1 );
}
} );
var KeyframeTrackPrototype;
KeyframeTrackPrototype = {
TimeBufferType: Float32Array,
ValueBufferType: Float32Array,
DefaultInterpolation: InterpolateLinear,
InterpolantFactoryMethodDiscrete: function ( result ) {
return new DiscreteInterpolant(
this.times, this.values, this.getValueSize(), result );
},
InterpolantFactoryMethodLinear: function ( result ) {
return new LinearInterpolant(
this.times, this.values, this.getValueSize(), result );
},
InterpolantFactoryMethodSmooth: function ( result ) {
return new CubicInterpolant(
this.times, this.values, this.getValueSize(), result );
},
setInterpolation: function ( interpolation ) {
var factoryMethod;
switch ( interpolation ) {
case InterpolateDiscrete:
factoryMethod = this.InterpolantFactoryMethodDiscrete;
break;
case InterpolateLinear:
factoryMethod = this.InterpolantFactoryMethodLinear;
break;
case InterpolateSmooth:
factoryMethod = this.InterpolantFactoryMethodSmooth;
break;
}
if ( factoryMethod === undefined ) {
var message = "unsupported interpolation for " +
this.ValueTypeName + " keyframe track named " + this.name;
if ( this.createInterpolant === undefined ) {
// fall back to default, unless the default itself is messed up
if ( interpolation !== this.DefaultInterpolation ) {
this.setInterpolation( this.DefaultInterpolation );
} else {
throw new Error( message ); // fatal, in this case
}
}
console.warn( 'THREE.KeyframeTrackPrototype:', message );
return;
}
this.createInterpolant = factoryMethod;
},
getInterpolation: function () {
switch ( this.createInterpolant ) {
case this.InterpolantFactoryMethodDiscrete:
return InterpolateDiscrete;
case this.InterpolantFactoryMethodLinear:
return InterpolateLinear;
case this.InterpolantFactoryMethodSmooth:
return InterpolateSmooth;
}
},
getValueSize: function () {
return this.values.length / this.times.length;
},
// move all keyframes either forwards or backwards in time
shift: function ( timeOffset ) {
if ( timeOffset !== 0.0 ) {
var times = this.times;
for ( var i = 0, n = times.length; i !== n; ++ i ) {
times[ i ] += timeOffset;
}
}
return this;
},
// scale all keyframe times by a factor (useful for frame <-> seconds conversions)
scale: function ( timeScale ) {
if ( timeScale !== 1.0 ) {
var times = this.times;
for ( var i = 0, n = times.length; i !== n; ++ i ) {
times[ i ] *= timeScale;
}
}
return this;
},
// removes keyframes before and after animation without changing any values within the range [startTime, endTime].
// IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values
trim: function ( startTime, endTime ) {
var times = this.times,
nKeys = times.length,
from = 0,
to = nKeys - 1;
while ( from !== nKeys && times[ from ] < startTime ) ++ from;
while ( to !== - 1 && times[ to ] > endTime ) -- to;
++ to; // inclusive -> exclusive bound
if ( from !== 0 || to !== nKeys ) {
// empty tracks are forbidden, so keep at least one keyframe
if ( from >= to ) to = Math.max( to, 1 ), from = to - 1;
var stride = this.getValueSize();
this.times = AnimationUtils.arraySlice( times, from, to );
this.values = AnimationUtils.
arraySlice( this.values, from * stride, to * stride );
}
return this;
},
// ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable
validate: function () {
var valid = true;
var valueSize = this.getValueSize();
if ( valueSize - Math.floor( valueSize ) !== 0 ) {
console.error( 'THREE.KeyframeTrackPrototype: Invalid value size in track.', this );
valid = false;
}
var times = this.times,
values = this.values,
nKeys = times.length;
if ( nKeys === 0 ) {
console.error( 'THREE.KeyframeTrackPrototype: Track is empty.', this );
valid = false;
}
var prevTime = null;
for ( var i = 0; i !== nKeys; i ++ ) {
var currTime = times[ i ];
if ( typeof currTime === 'number' && isNaN( currTime ) ) {
console.error( 'THREE.KeyframeTrackPrototype: Time is not a valid number.', this, i, currTime );
valid = false;
break;
}
if ( prevTime !== null && prevTime > currTime ) {
console.error( 'THREE.KeyframeTrackPrototype: Out of order keys.', this, i, currTime, prevTime );
valid = false;
break;
}
prevTime = currTime;
}
if ( values !== undefined ) {
if ( AnimationUtils.isTypedArray( values ) ) {
for ( var i = 0, n = values.length; i !== n; ++ i ) {
var value = values[ i ];
if ( isNaN( value ) ) {
console.error( 'THREE.KeyframeTrackPrototype: Value is not a valid number.', this, i, value );
valid = false;
break;
}
}
}
}
return valid;
},
// removes equivalent sequential keys as common in morph target sequences
// (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)
optimize: function () {
var times = this.times,
values = this.values,
stride = this.getValueSize(),
smoothInterpolation = this.getInterpolation() === InterpolateSmooth,
writeIndex = 1,
lastIndex = times.length - 1;
for ( var i = 1; i < lastIndex; ++ i ) {
var keep = false;
var time = times[ i ];
var timeNext = times[ i + 1 ];
// remove adjacent keyframes scheduled at the same time
if ( time !== timeNext && ( i !== 1 || time !== time[ 0 ] ) ) {
if ( ! smoothInterpolation ) {
// remove unnecessary keyframes same as their neighbors
var offset = i * stride,
offsetP = offset - stride,
offsetN = offset + stride;
for ( var j = 0; j !== stride; ++ j ) {
var value = values[ offset + j ];
if ( value !== values[ offsetP + j ] ||
value !== values[ offsetN + j ] ) {
keep = true;
break;
}
}
} else keep = true;
}
// in-place compaction
if ( keep ) {
if ( i !== writeIndex ) {
times[ writeIndex ] = times[ i ];
var readOffset = i * stride,
writeOffset = writeIndex * stride;
for ( var j = 0; j !== stride; ++ j )
values[ writeOffset + j ] = values[ readOffset + j ];
}
++ writeIndex;
}
}
// flush last keyframe (compaction looks ahead)
if ( lastIndex > 0 ) {
times[ writeIndex ] = times[ lastIndex ];
for ( var readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++ j )
values[ writeOffset + j ] = values[ readOffset + j ];
++ writeIndex;
}
if ( writeIndex !== times.length ) {
this.times = AnimationUtils.arraySlice( times, 0, writeIndex );
this.values = AnimationUtils.arraySlice( values, 0, writeIndex * stride );
}
return this;
}
};
function KeyframeTrackConstructor( name, times, values, interpolation ) {
if ( name === undefined ) throw new Error( "track name is undefined" );
if ( times === undefined || times.length === 0 ) {
throw new Error( "no keyframes in track named " + name );
}
this.name = name;
this.times = AnimationUtils.convertArray( times, this.TimeBufferType );
this.values = AnimationUtils.convertArray( values, this.ValueBufferType );
this.setInterpolation( interpolation || this.DefaultInterpolation );
this.validate();
this.optimize();
}
/**
*
* A Track of vectored keyframe values.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function VectorKeyframeTrack( name, times, values, interpolation ) {
KeyframeTrackConstructor.call( this, name, times, values, interpolation );
}
VectorKeyframeTrack.prototype =
Object.assign( Object.create( KeyframeTrackPrototype ), {
constructor: VectorKeyframeTrack,
ValueTypeName: 'vector'
// ValueBufferType is inherited
// DefaultInterpolation is inherited
} );
/**
* Spherical linear unit quaternion interpolant.
*
* @author tschw
*/
function QuaternionLinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
}
QuaternionLinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
constructor: QuaternionLinearInterpolant,
interpolate_: function( i1, t0, t, t1 ) {
var result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset = i1 * stride,
alpha = ( t - t0 ) / ( t1 - t0 );
for ( var end = offset + stride; offset !== end; offset += 4 ) {
Quaternion.slerpFlat( result, 0,
values, offset - stride, values, offset, alpha );
}
return result;
}
} );
/**
*
* A Track of quaternion keyframe values.
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function QuaternionKeyframeTrack( name, times, values, interpolation ) {
KeyframeTrackConstructor.call( this, name, times, values, interpolation );
}
QuaternionKeyframeTrack.prototype =
Object.assign( Object.create( KeyframeTrackPrototype ), {
constructor: QuaternionKeyframeTrack,
ValueTypeName: 'quaternion',
// ValueBufferType is inherited
DefaultInterpolation: InterpolateLinear,
InterpolantFactoryMethodLinear: function( result ) {
return new QuaternionLinearInterpolant(
this.times, this.values, this.getValueSize(), result );
},
InterpolantFactoryMethodSmooth: undefined // not yet implemented
} );
/**
*
* A Track of numeric keyframe values.
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function NumberKeyframeTrack( name, times, values, interpolation ) {
KeyframeTrackConstructor.call( this, name, times, values, interpolation );
}
NumberKeyframeTrack.prototype =
Object.assign( Object.create( KeyframeTrackPrototype ), {
constructor: NumberKeyframeTrack,
ValueTypeName: 'number'
// ValueBufferType is inherited
// DefaultInterpolation is inherited
} );
/**
*
* A Track that interpolates Strings
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function StringKeyframeTrack( name, times, values, interpolation ) {
KeyframeTrackConstructor.call( this, name, times, values, interpolation );
}
StringKeyframeTrack.prototype =
Object.assign( Object.create( KeyframeTrackPrototype ), {
constructor: StringKeyframeTrack,
ValueTypeName: 'string',
ValueBufferType: Array,
DefaultInterpolation: InterpolateDiscrete,
InterpolantFactoryMethodLinear: undefined,
InterpolantFactoryMethodSmooth: undefined
} );
/**
*
* A Track of Boolean keyframe values.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function BooleanKeyframeTrack( name, times, values ) {
KeyframeTrackConstructor.call( this, name, times, values );
}
BooleanKeyframeTrack.prototype =
Object.assign( Object.create( KeyframeTrackPrototype ), {
constructor: BooleanKeyframeTrack,
ValueTypeName: 'bool',
ValueBufferType: Array,
DefaultInterpolation: InterpolateDiscrete,
InterpolantFactoryMethodLinear: undefined,
InterpolantFactoryMethodSmooth: undefined
// Note: Actually this track could have a optimized / compressed
// representation of a single value and a custom interpolant that
// computes "firstValue ^ isOdd( index )".
} );
/**
*
* A Track of keyframe values that represent color.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function ColorKeyframeTrack( name, times, values, interpolation ) {
KeyframeTrackConstructor.call( this, name, times, values, interpolation );
}
ColorKeyframeTrack.prototype =
Object.assign( Object.create( KeyframeTrackPrototype ), {
constructor: ColorKeyframeTrack,
ValueTypeName: 'color'
// ValueBufferType is inherited
// DefaultInterpolation is inherited
// Note: Very basic implementation and nothing special yet.
// However, this is the place for color space parameterization.
} );
/**
*
* A timed sequence of keyframes for a specific property.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function KeyframeTrack( name, times, values, interpolation ) {
KeyframeTrackConstructor.apply( this, arguments );
}
KeyframeTrack.prototype = KeyframeTrackPrototype;
KeyframeTrackPrototype.constructor = KeyframeTrack;
// Static methods:
Object.assign( KeyframeTrack, {
// Serialization (in static context, because of constructor invocation
// and automatic invocation of .toJSON):
parse: function( json ) {
if( json.type === undefined ) {
throw new Error( "track type undefined, can not parse" );
}
var trackType = KeyframeTrack._getTrackTypeForValueTypeName( json.type );
if ( json.times === undefined ) {
var times = [], values = [];
AnimationUtils.flattenJSON( json.keys, times, values, 'value' );
json.times = times;
json.values = values;
}
// derived classes can define a static parse method
if ( trackType.parse !== undefined ) {
return trackType.parse( json );
} else {
// by default, we asssume a constructor compatible with the base
return new trackType(
json.name, json.times, json.values, json.interpolation );
}
},
toJSON: function( track ) {
var trackType = track.constructor;
var json;
// derived classes can define a static toJSON method
if ( trackType.toJSON !== undefined ) {
json = trackType.toJSON( track );
} else {
// by default, we assume the data can be serialized as-is
json = {
'name': track.name,
'times': AnimationUtils.convertArray( track.times, Array ),
'values': AnimationUtils.convertArray( track.values, Array )
};
var interpolation = track.getInterpolation();
if ( interpolation !== track.DefaultInterpolation ) {
json.interpolation = interpolation;
}
}
json.type = track.ValueTypeName; // mandatory
return json;
},
_getTrackTypeForValueTypeName: function( typeName ) {
switch( typeName.toLowerCase() ) {
case "scalar":
case "double":
case "float":
case "number":
case "integer":
return NumberKeyframeTrack;
case "vector":
case "vector2":
case "vector3":
case "vector4":
return VectorKeyframeTrack;
case "color":
return ColorKeyframeTrack;
case "quaternion":
return QuaternionKeyframeTrack;
case "bool":
case "boolean":
return BooleanKeyframeTrack;
case "string":
return StringKeyframeTrack;
}
throw new Error( "Unsupported typeName: " + typeName );
}
} );
/**
*
* Reusable set of Tracks that represent an animation.
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
*/
function AnimationClip( name, duration, tracks ) {
this.name = name;
this.tracks = tracks;
this.duration = ( duration !== undefined ) ? duration : - 1;
this.uuid = _Math.generateUUID();
// this means it should figure out its duration by scanning the tracks
if ( this.duration < 0 ) {
this.resetDuration();
}
this.optimize();
}
Object.assign( AnimationClip, {
parse: function ( json ) {
var tracks = [],
jsonTracks = json.tracks,
frameTime = 1.0 / ( json.fps || 1.0 );
for ( var i = 0, n = jsonTracks.length; i !== n; ++ i ) {
tracks.push( KeyframeTrack.parse( jsonTracks[ i ] ).scale( frameTime ) );
}
return new AnimationClip( json.name, json.duration, tracks );
},
toJSON: function ( clip ) {
var tracks = [],
clipTracks = clip.tracks;
var json = {
'name': clip.name,
'duration': clip.duration,
'tracks': tracks
};
for ( var i = 0, n = clipTracks.length; i !== n; ++ i ) {
tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) );
}
return json;
},
CreateFromMorphTargetSequence: function ( name, morphTargetSequence, fps, noLoop ) {
var numMorphTargets = morphTargetSequence.length;
var tracks = [];
for ( var i = 0; i < numMorphTargets; i ++ ) {
var times = [];
var values = [];
times.push(
( i + numMorphTargets - 1 ) % numMorphTargets,
i,
( i + 1 ) % numMorphTargets );
values.push( 0, 1, 0 );
var order = AnimationUtils.getKeyframeOrder( times );
times = AnimationUtils.sortedArray( times, 1, order );
values = AnimationUtils.sortedArray( values, 1, order );
// if there is a key at the first frame, duplicate it as the
// last frame as well for perfect loop.
if ( ! noLoop && times[ 0 ] === 0 ) {
times.push( numMorphTargets );
values.push( values[ 0 ] );
}
tracks.push(
new NumberKeyframeTrack(
'.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']',
times, values
).scale( 1.0 / fps ) );
}
return new AnimationClip( name, - 1, tracks );
},
findByName: function ( objectOrClipArray, name ) {
var clipArray = objectOrClipArray;
if ( ! Array.isArray( objectOrClipArray ) ) {
var o = objectOrClipArray;
clipArray = o.geometry && o.geometry.animations || o.animations;
}
for ( var i = 0; i < clipArray.length; i ++ ) {
if ( clipArray[ i ].name === name ) {
return clipArray[ i ];
}
}
return null;
},
CreateClipsFromMorphTargetSequences: function ( morphTargets, fps, noLoop ) {
var animationToMorphTargets = {};
// tested with https://regex101.com/ on trick sequences
// such flamingo_flyA_003, flamingo_run1_003, crdeath0059
var pattern = /^([\w-]*?)([\d]+)$/;
// sort morph target names into animation groups based
// patterns like Walk_001, Walk_002, Run_001, Run_002
for ( var i = 0, il = morphTargets.length; i < il; i ++ ) {
var morphTarget = morphTargets[ i ];
var parts = morphTarget.name.match( pattern );
if ( parts && parts.length > 1 ) {
var name = parts[ 1 ];
var animationMorphTargets = animationToMorphTargets[ name ];
if ( ! animationMorphTargets ) {
animationToMorphTargets[ name ] = animationMorphTargets = [];
}
animationMorphTargets.push( morphTarget );
}
}
var clips = [];
for ( var name in animationToMorphTargets ) {
clips.push( AnimationClip.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) );
}
return clips;
},
// parse the animation.hierarchy format
parseAnimation: function ( animation, bones ) {
if ( ! animation ) {
console.error( 'THREE.AnimationClip: No animation in JSONLoader data.' );
return null;
}
var addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) {
// only return track if there are actually keys.
if ( animationKeys.length !== 0 ) {
var times = [];
var values = [];
AnimationUtils.flattenJSON( animationKeys, times, values, propertyName );
// empty keys are filtered out, so check again
if ( times.length !== 0 ) {
destTracks.push( new trackType( trackName, times, values ) );
}
}
};
var tracks = [];
var clipName = animation.name || 'default';
// automatic length determination in AnimationClip.
var duration = animation.length || - 1;
var fps = animation.fps || 30;
var hierarchyTracks = animation.hierarchy || [];
for ( var h = 0; h < hierarchyTracks.length; h ++ ) {
var animationKeys = hierarchyTracks[ h ].keys;
// skip empty tracks
if ( ! animationKeys || animationKeys.length === 0 ) continue;
// process morph targets
if ( animationKeys[ 0 ].morphTargets ) {
// figure out all morph targets used in this track
var morphTargetNames = {};
for ( var k = 0; k < animationKeys.length; k ++ ) {
if ( animationKeys[ k ].morphTargets ) {
for ( var m = 0; m < animationKeys[ k ].morphTargets.length; m ++ ) {
morphTargetNames[ animationKeys[ k ].morphTargets[ m ] ] = - 1;
}
}
}
// create a track for each morph target with all zero
// morphTargetInfluences except for the keys in which
// the morphTarget is named.
for ( var morphTargetName in morphTargetNames ) {
var times = [];
var values = [];
for ( var m = 0; m !== animationKeys[ k ].morphTargets.length; ++ m ) {
var animationKey = animationKeys[ k ];
times.push( animationKey.time );
values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 );
}
tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) );
}
duration = morphTargetNames.length * ( fps || 1.0 );
} else {
// ...assume skeletal animation
var boneName = '.bones[' + bones[ h ].name + ']';
addNonemptyTrack(
VectorKeyframeTrack, boneName + '.position',
animationKeys, 'pos', tracks );
addNonemptyTrack(
QuaternionKeyframeTrack, boneName + '.quaternion',
animationKeys, 'rot', tracks );
addNonemptyTrack(
VectorKeyframeTrack, boneName + '.scale',
animationKeys, 'scl', tracks );
}
}
if ( tracks.length === 0 ) {
return null;
}
var clip = new AnimationClip( clipName, duration, tracks );
return clip;
}
} );
Object.assign( AnimationClip.prototype, {
resetDuration: function () {
var tracks = this.tracks, duration = 0;
for ( var i = 0, n = tracks.length; i !== n; ++ i ) {
var track = this.tracks[ i ];
duration = Math.max( duration, track.times[ track.times.length - 1 ] );
}
this.duration = duration;
},
trim: function () {
for ( var i = 0; i < this.tracks.length; i ++ ) {
this.tracks[ i ].trim( 0, this.duration );
}
return this;
},
optimize: function () {
for ( var i = 0; i < this.tracks.length; i ++ ) {
this.tracks[ i ].optimize();
}
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
function JSONLoader( manager ) {
if ( typeof manager === 'boolean' ) {
console.warn( 'THREE.JSONLoader: showStatus parameter has been removed from constructor.' );
manager = undefined;
}
this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
this.withCredentials = false;
}
Object.assign( JSONLoader.prototype, {
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var texturePath = this.texturePath && ( typeof this.texturePath === "string" ) ? this.texturePath : Loader.prototype.extractUrlBase( url );
var loader = new FileLoader( this.manager );
loader.setWithCredentials( this.withCredentials );
loader.load( url, function ( text ) {
var json = JSON.parse( text );
var metadata = json.metadata;
if ( metadata !== undefined ) {
var type = metadata.type;
if ( type !== undefined ) {
if ( type.toLowerCase() === 'object' ) {
console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.ObjectLoader instead.' );
return;
}
if ( type.toLowerCase() === 'scene' ) {
console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.SceneLoader instead.' );
return;
}
}
}
var object = scope.parse( json, texturePath );
onLoad( object.geometry, object.materials );
}, onProgress, onError );
},
setTexturePath: function ( value ) {
this.texturePath = value;
},
parse: ( function () {
function parseModel( json, geometry ) {
function isBitSet( value, position ) {
return value & ( 1 << position );
}
var i, j, fi,
offset, zLength,
colorIndex, normalIndex, uvIndex, materialIndex,
type,
isQuad,
hasMaterial,
hasFaceVertexUv,
hasFaceNormal, hasFaceVertexNormal,
hasFaceColor, hasFaceVertexColor,
vertex, face, faceA, faceB, hex, normal,
uvLayer, uv, u, v,
faces = json.faces,
vertices = json.vertices,
normals = json.normals,
colors = json.colors,
scale = json.scale,
nUvLayers = 0;
if ( json.uvs !== undefined ) {
// disregard empty arrays
for ( i = 0; i < json.uvs.length; i ++ ) {
if ( json.uvs[ i ].length ) nUvLayers ++;
}
for ( i = 0; i < nUvLayers; i ++ ) {
geometry.faceVertexUvs[ i ] = [];
}
}
offset = 0;
zLength = vertices.length;
while ( offset < zLength ) {
vertex = new Vector3();
vertex.x = vertices[ offset ++ ] * scale;
vertex.y = vertices[ offset ++ ] * scale;
vertex.z = vertices[ offset ++ ] * scale;
geometry.vertices.push( vertex );
}
offset = 0;
zLength = faces.length;
while ( offset < zLength ) {
type = faces[ offset ++ ];
isQuad = isBitSet( type, 0 );
hasMaterial = isBitSet( type, 1 );
hasFaceVertexUv = isBitSet( type, 3 );
hasFaceNormal = isBitSet( type, 4 );
hasFaceVertexNormal = isBitSet( type, 5 );
hasFaceColor = isBitSet( type, 6 );
hasFaceVertexColor = isBitSet( type, 7 );
// console.log("type", type, "bits", isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor);
if ( isQuad ) {
faceA = new Face3();
faceA.a = faces[ offset ];
faceA.b = faces[ offset + 1 ];
faceA.c = faces[ offset + 3 ];
faceB = new Face3();
faceB.a = faces[ offset + 1 ];
faceB.b = faces[ offset + 2 ];
faceB.c = faces[ offset + 3 ];
offset += 4;
if ( hasMaterial ) {
materialIndex = faces[ offset ++ ];
faceA.materialIndex = materialIndex;
faceB.materialIndex = materialIndex;
}
// to get face <=> uv index correspondence
fi = geometry.faces.length;
if ( hasFaceVertexUv ) {
for ( i = 0; i < nUvLayers; i ++ ) {
uvLayer = json.uvs[ i ];
geometry.faceVertexUvs[ i ][ fi ] = [];
geometry.faceVertexUvs[ i ][ fi + 1 ] = [];
for ( j = 0; j < 4; j ++ ) {
uvIndex = faces[ offset ++ ];
u = uvLayer[ uvIndex * 2 ];
v = uvLayer[ uvIndex * 2 + 1 ];
uv = new Vector2( u, v );
if ( j !== 2 ) geometry.faceVertexUvs[ i ][ fi ].push( uv );
if ( j !== 0 ) geometry.faceVertexUvs[ i ][ fi + 1 ].push( uv );
}
}
}
if ( hasFaceNormal ) {
normalIndex = faces[ offset ++ ] * 3;
faceA.normal.set(
normals[ normalIndex ++ ],
normals[ normalIndex ++ ],
normals[ normalIndex ]
);
faceB.normal.copy( faceA.normal );
}
if ( hasFaceVertexNormal ) {
for ( i = 0; i < 4; i ++ ) {
normalIndex = faces[ offset ++ ] * 3;
normal = new Vector3(
normals[ normalIndex ++ ],
normals[ normalIndex ++ ],
normals[ normalIndex ]
);
if ( i !== 2 ) faceA.vertexNormals.push( normal );
if ( i !== 0 ) faceB.vertexNormals.push( normal );
}
}
if ( hasFaceColor ) {
colorIndex = faces[ offset ++ ];
hex = colors[ colorIndex ];
faceA.color.setHex( hex );
faceB.color.setHex( hex );
}
if ( hasFaceVertexColor ) {
for ( i = 0; i < 4; i ++ ) {
colorIndex = faces[ offset ++ ];
hex = colors[ colorIndex ];
if ( i !== 2 ) faceA.vertexColors.push( new Color( hex ) );
if ( i !== 0 ) faceB.vertexColors.push( new Color( hex ) );
}
}
geometry.faces.push( faceA );
geometry.faces.push( faceB );
} else {
face = new Face3();
face.a = faces[ offset ++ ];
face.b = faces[ offset ++ ];
face.c = faces[ offset ++ ];
if ( hasMaterial ) {
materialIndex = faces[ offset ++ ];
face.materialIndex = materialIndex;
}
// to get face <=> uv index correspondence
fi = geometry.faces.length;
if ( hasFaceVertexUv ) {
for ( i = 0; i < nUvLayers; i ++ ) {
uvLayer = json.uvs[ i ];
geometry.faceVertexUvs[ i ][ fi ] = [];
for ( j = 0; j < 3; j ++ ) {
uvIndex = faces[ offset ++ ];
u = uvLayer[ uvIndex * 2 ];
v = uvLayer[ uvIndex * 2 + 1 ];
uv = new Vector2( u, v );
geometry.faceVertexUvs[ i ][ fi ].push( uv );
}
}
}
if ( hasFaceNormal ) {
normalIndex = faces[ offset ++ ] * 3;
face.normal.set(
normals[ normalIndex ++ ],
normals[ normalIndex ++ ],
normals[ normalIndex ]
);
}
if ( hasFaceVertexNormal ) {
for ( i = 0; i < 3; i ++ ) {
normalIndex = faces[ offset ++ ] * 3;
normal = new Vector3(
normals[ normalIndex ++ ],
normals[ normalIndex ++ ],
normals[ normalIndex ]
);
face.vertexNormals.push( normal );
}
}
if ( hasFaceColor ) {
colorIndex = faces[ offset ++ ];
face.color.setHex( colors[ colorIndex ] );
}
if ( hasFaceVertexColor ) {
for ( i = 0; i < 3; i ++ ) {
colorIndex = faces[ offset ++ ];
face.vertexColors.push( new Color( colors[ colorIndex ] ) );
}
}
geometry.faces.push( face );
}
}
}
function parseSkin( json, geometry ) {
var influencesPerVertex = ( json.influencesPerVertex !== undefined ) ? json.influencesPerVertex : 2;
if ( json.skinWeights ) {
for ( var i = 0, l = json.skinWeights.length; i < l; i += influencesPerVertex ) {
var x = json.skinWeights[ i ];
var y = ( influencesPerVertex > 1 ) ? json.skinWeights[ i + 1 ] : 0;
var z = ( influencesPerVertex > 2 ) ? json.skinWeights[ i + 2 ] : 0;
var w = ( influencesPerVertex > 3 ) ? json.skinWeights[ i + 3 ] : 0;
geometry.skinWeights.push( new Vector4( x, y, z, w ) );
}
}
if ( json.skinIndices ) {
for ( var i = 0, l = json.skinIndices.length; i < l; i += influencesPerVertex ) {
var a = json.skinIndices[ i ];
var b = ( influencesPerVertex > 1 ) ? json.skinIndices[ i + 1 ] : 0;
var c = ( influencesPerVertex > 2 ) ? json.skinIndices[ i + 2 ] : 0;
var d = ( influencesPerVertex > 3 ) ? json.skinIndices[ i + 3 ] : 0;
geometry.skinIndices.push( new Vector4( a, b, c, d ) );
}
}
geometry.bones = json.bones;
if ( geometry.bones && geometry.bones.length > 0 && ( geometry.skinWeights.length !== geometry.skinIndices.length || geometry.skinIndices.length !== geometry.vertices.length ) ) {
console.warn( 'When skinning, number of vertices (' + geometry.vertices.length + '), skinIndices (' +
geometry.skinIndices.length + '), and skinWeights (' + geometry.skinWeights.length + ') should match.' );
}
}
function parseMorphing( json, geometry ) {
var scale = json.scale;
if ( json.morphTargets !== undefined ) {
for ( var i = 0, l = json.morphTargets.length; i < l; i ++ ) {
geometry.morphTargets[ i ] = {};
geometry.morphTargets[ i ].name = json.morphTargets[ i ].name;
geometry.morphTargets[ i ].vertices = [];
var dstVertices = geometry.morphTargets[ i ].vertices;
var srcVertices = json.morphTargets[ i ].vertices;
for ( var v = 0, vl = srcVertices.length; v < vl; v += 3 ) {
var vertex = new Vector3();
vertex.x = srcVertices[ v ] * scale;
vertex.y = srcVertices[ v + 1 ] * scale;
vertex.z = srcVertices[ v + 2 ] * scale;
dstVertices.push( vertex );
}
}
}
if ( json.morphColors !== undefined && json.morphColors.length > 0 ) {
console.warn( 'THREE.JSONLoader: "morphColors" no longer supported. Using them as face colors.' );
var faces = geometry.faces;
var morphColors = json.morphColors[ 0 ].colors;
for ( var i = 0, l = faces.length; i < l; i ++ ) {
faces[ i ].color.fromArray( morphColors, i * 3 );
}
}
}
function parseAnimations( json, geometry ) {
var outputAnimations = [];
// parse old style Bone/Hierarchy animations
var animations = [];
if ( json.animation !== undefined ) {
animations.push( json.animation );
}
if ( json.animations !== undefined ) {
if ( json.animations.length ) {
animations = animations.concat( json.animations );
} else {
animations.push( json.animations );
}
}
for ( var i = 0; i < animations.length; i ++ ) {
var clip = AnimationClip.parseAnimation( animations[ i ], geometry.bones );
if ( clip ) outputAnimations.push( clip );
}
// parse implicit morph animations
if ( geometry.morphTargets ) {
// TODO: Figure out what an appropraite FPS is for morph target animations -- defaulting to 10, but really it is completely arbitrary.
var morphAnimationClips = AnimationClip.CreateClipsFromMorphTargetSequences( geometry.morphTargets, 10 );
outputAnimations = outputAnimations.concat( morphAnimationClips );
}
if ( outputAnimations.length > 0 ) geometry.animations = outputAnimations;
}
return function ( json, texturePath ) {
if ( json.data !== undefined ) {
// Geometry 4.0 spec
json = json.data;
}
if ( json.scale !== undefined ) {
json.scale = 1.0 / json.scale;
} else {
json.scale = 1.0;
}
var geometry = new Geometry();
parseModel( json, geometry );
parseSkin( json, geometry );
parseMorphing( json, geometry );
parseAnimations( json, geometry );
geometry.computeFaceNormals();
geometry.computeBoundingSphere();
if ( json.materials === undefined || json.materials.length === 0 ) {
return { geometry: geometry };
} else {
var materials = Loader.prototype.initMaterials( json.materials, texturePath, this.crossOrigin );
return { geometry: geometry, materials: materials };
}
};
} )()
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
function Light( color, intensity ) {
Object3D.call( this );
this.type = 'Light';
this.color = new Color( color );
this.intensity = intensity !== undefined ? intensity : 1;
this.receiveShadow = undefined;
}
Light.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Light,
isLight: true,
copy: function ( source ) {
Object3D.prototype.copy.call( this, source );
this.color.copy( source.color );
this.intensity = source.intensity;
return this;
},
toJSON: function ( meta ) {
var data = Object3D.prototype.toJSON.call( this, meta );
data.object.color = this.color.getHex();
data.object.intensity = this.intensity;
if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex();
if ( this.distance !== undefined ) data.object.distance = this.distance;
if ( this.angle !== undefined ) data.object.angle = this.angle;
if ( this.decay !== undefined ) data.object.decay = this.decay;
if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra;
if ( this.shadow !== undefined ) data.object.shadow = this.shadow.toJSON();
return data;
}
} );
/**
* @author alteredq / http://alteredqualia.com/
*/
function HemisphereLight( skyColor, groundColor, intensity ) {
Light.call( this, skyColor, intensity );
this.type = 'HemisphereLight';
this.castShadow = undefined;
this.position.copy( Object3D.DefaultUp );
this.updateMatrix();
this.groundColor = new Color( groundColor );
}
HemisphereLight.prototype = Object.assign( Object.create( Light.prototype ), {
constructor: HemisphereLight,
isHemisphereLight: true,
copy: function ( source ) {
Light.prototype.copy.call( this, source );
this.groundColor.copy( source.groundColor );
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function LightShadow( camera ) {
this.camera = camera;
this.bias = 0;
this.radius = 1;
this.mapSize = new Vector2( 512, 512 );
this.map = null;
this.matrix = new Matrix4();
}
Object.assign( LightShadow.prototype, {
copy: function ( source ) {
this.camera = source.camera.clone();
this.bias = source.bias;
this.radius = source.radius;
this.mapSize.copy( source.mapSize );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
toJSON: function () {
var object = {};
if ( this.bias !== 0 ) object.bias = this.bias;
if ( this.radius !== 1 ) object.radius = this.radius;
if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) object.mapSize = this.mapSize.toArray();
object.camera = this.camera.toJSON( false ).object;
delete object.camera.matrix;
return object;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function DirectionalLightShadow( ) {
LightShadow.call( this, new OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) );
}
DirectionalLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {
constructor: DirectionalLightShadow
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
function DirectionalLight( color, intensity ) {
Light.call( this, color, intensity );
this.type = 'DirectionalLight';
this.position.copy( Object3D.DefaultUp );
this.updateMatrix();
this.target = new Object3D();
this.shadow = new DirectionalLightShadow();
}
DirectionalLight.prototype = Object.assign( Object.create( Light.prototype ), {
constructor: DirectionalLight,
isDirectionalLight: true,
copy: function ( source ) {
Light.prototype.copy.call( this, source );
this.target = source.target.clone();
this.shadow = source.shadow.clone();
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function AmbientLight( color, intensity ) {
Light.call( this, color, intensity );
this.type = 'AmbientLight';
this.castShadow = undefined;
}
AmbientLight.prototype = Object.assign( Object.create( Light.prototype ), {
constructor: AmbientLight,
isAmbientLight: true
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function StereoCamera() {
this.type = 'StereoCamera';
this.aspect = 1;
this.eyeSep = 0.064;
this.cameraL = new PerspectiveCamera();
this.cameraL.layers.enable( 1 );
this.cameraL.matrixAutoUpdate = false;
this.cameraR = new PerspectiveCamera();
this.cameraR.layers.enable( 2 );
this.cameraR.matrixAutoUpdate = false;
}
Object.assign( StereoCamera.prototype, {
update: ( function () {
var instance, focus, fov, aspect, near, far, zoom, eyeSep;
var eyeRight = new Matrix4();
var eyeLeft = new Matrix4();
return function update( camera ) {
var needsUpdate = instance !== this || focus !== camera.focus || fov !== camera.fov ||
aspect !== camera.aspect * this.aspect || near !== camera.near ||
far !== camera.far || zoom !== camera.zoom || eyeSep !== this.eyeSep;
if ( needsUpdate ) {
instance = this;
focus = camera.focus;
fov = camera.fov;
aspect = camera.aspect * this.aspect;
near = camera.near;
far = camera.far;
zoom = camera.zoom;
// Off-axis stereoscopic effect based on
// http://paulbourke.net/stereographics/stereorender/
var projectionMatrix = camera.projectionMatrix.clone();
eyeSep = this.eyeSep / 2;
var eyeSepOnProjection = eyeSep * near / focus;
var ymax = ( near * Math.tan( _Math.DEG2RAD * fov * 0.5 ) ) / zoom;
var xmin, xmax;
// translate xOffset
eyeLeft.elements[ 12 ] = - eyeSep;
eyeRight.elements[ 12 ] = eyeSep;
// for left eye
xmin = - ymax * aspect + eyeSepOnProjection;
xmax = ymax * aspect + eyeSepOnProjection;
projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin );
projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );
this.cameraL.projectionMatrix.copy( projectionMatrix );
// for right eye
xmin = - ymax * aspect - eyeSepOnProjection;
xmax = ymax * aspect - eyeSepOnProjection;
projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin );
projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );
this.cameraR.projectionMatrix.copy( projectionMatrix );
}
this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( eyeLeft );
this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( eyeRight );
};
} )()
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
function InstancedBufferGeometry() {
BufferGeometry.call( this );
this.type = 'InstancedBufferGeometry';
this.maxInstancedCount = undefined;
}
InstancedBufferGeometry.prototype = Object.assign( Object.create( BufferGeometry.prototype ), {
constructor: InstancedBufferGeometry,
isInstancedBufferGeometry: true,
addGroup: function ( start, count, materialIndex ) {
this.groups.push( {
start: start,
count: count,
materialIndex: materialIndex
} );
},
copy: function ( source ) {
var index = source.index;
if ( index !== null ) {
this.setIndex( index.clone() );
}
var attributes = source.attributes;
for ( var name in attributes ) {
var attribute = attributes[ name ];
this.addAttribute( name, attribute.clone() );
}
var groups = source.groups;
for ( var i = 0, l = groups.length; i < l; i ++ ) {
var group = groups[ i ];
this.addGroup( group.start, group.count, group.materialIndex );
}
return this;
}
} );
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
function InstancedBufferAttribute( array, itemSize, meshPerAttribute ) {
BufferAttribute.call( this, array, itemSize );
this.meshPerAttribute = meshPerAttribute || 1;
}
InstancedBufferAttribute.prototype = Object.assign( Object.create( BufferAttribute.prototype ), {
constructor: InstancedBufferAttribute,
isInstancedBufferAttribute: true,
copy: function ( source ) {
BufferAttribute.prototype.copy.call( this, source );
this.meshPerAttribute = source.meshPerAttribute;
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author bhouston / http://clara.io/
* @author stephomi / http://stephaneginier.com/
*/
function Raycaster( origin, direction, near, far ) {
this.ray = new Ray( origin, direction );
// direction is assumed to be normalized (for accurate distance calculations)
this.near = near || 0;
this.far = far || Infinity;
this.params = {
Mesh: {},
Line: {},
LOD: {},
Points: { threshold: 1 },
Sprite: {}
};
Object.defineProperties( this.params, {
PointCloud: {
get: function () {
console.warn( 'THREE.Raycaster: params.PointCloud has been renamed to params.Points.' );
return this.Points;
}
}
} );
}
function ascSort( a, b ) {
return a.distance - b.distance;
}
function intersectObject( object, raycaster, intersects, recursive ) {
if ( object.visible === false ) return;
object.raycast( raycaster, intersects );
if ( recursive === true ) {
var children = object.children;
for ( var i = 0, l = children.length; i < l; i ++ ) {
intersectObject( children[ i ], raycaster, intersects, true );
}
}
}
Object.assign( Raycaster.prototype, {
linePrecision: 1,
set: function ( origin, direction ) {
// direction is assumed to be normalized (for accurate distance calculations)
this.ray.set( origin, direction );
},
setFromCamera: function ( coords, camera ) {
if ( ( camera && camera.isPerspectiveCamera ) ) {
this.ray.origin.setFromMatrixPosition( camera.matrixWorld );
this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize();
} else if ( ( camera && camera.isOrthographicCamera ) ) {
this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera
this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld );
} else {
console.error( 'THREE.Raycaster: Unsupported camera type.' );
}
},
intersectObject: function ( object, recursive ) {
var intersects = [];
intersectObject( object, this, intersects, recursive );
intersects.sort( ascSort );
return intersects;
},
intersectObjects: function ( objects, recursive ) {
var intersects = [];
if ( Array.isArray( objects ) === false ) {
console.warn( 'THREE.Raycaster.intersectObjects: objects is not an Array.' );
return intersects;
}
for ( var i = 0, l = objects.length; i < l; i ++ ) {
intersectObject( objects[ i ], this, intersects, recursive );
}
intersects.sort( ascSort );
return intersects;
}
} );
/**
* @author alteredq / http://alteredqualia.com/
*/
function Clock( autoStart ) {
this.autoStart = ( autoStart !== undefined ) ? autoStart : true;
this.startTime = 0;
this.oldTime = 0;
this.elapsedTime = 0;
this.running = false;
}
Object.assign( Clock.prototype, {
start: function () {
this.startTime = ( typeof performance === 'undefined' ? Date : performance ).now(); // see #10732
this.oldTime = this.startTime;
this.elapsedTime = 0;
this.running = true;
},
stop: function () {
this.getElapsedTime();
this.running = false;
this.autoStart = false;
},
getElapsedTime: function () {
this.getDelta();
return this.elapsedTime;
},
getDelta: function () {
var diff = 0;
if ( this.autoStart && ! this.running ) {
this.start();
return 0;
}
if ( this.running ) {
var newTime = ( typeof performance === 'undefined' ? Date : performance ).now();
diff = ( newTime - this.oldTime ) / 1000;
this.oldTime = newTime;
this.elapsedTime += diff;
}
return diff;
}
} );
/**
* @author bhouston / http://clara.io
* @author WestLangley / http://github.com/WestLangley
*
* Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system
*
* The poles (phi) are at the positive and negative y axis.
* The equator starts at positive z.
*/
function Spherical( radius, phi, theta ) {
this.radius = ( radius !== undefined ) ? radius : 1.0;
this.phi = ( phi !== undefined ) ? phi : 0; // up / down towards top and bottom pole
this.theta = ( theta !== undefined ) ? theta : 0; // around the equator of the sphere
return this;
}
Object.assign( Spherical.prototype, {
set: function ( radius, phi, theta ) {
this.radius = radius;
this.phi = phi;
this.theta = theta;
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( other ) {
this.radius = other.radius;
this.phi = other.phi;
this.theta = other.theta;
return this;
},
// restrict phi to be betwee EPS and PI-EPS
makeSafe: function() {
var EPS = 0.000001;
this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) );
return this;
},
setFromVector3: function( vec3 ) {
this.radius = vec3.length();
if ( this.radius === 0 ) {
this.theta = 0;
this.phi = 0;
} else {
this.theta = Math.atan2( vec3.x, vec3.z ); // equator angle around y-up axis
this.phi = Math.acos( _Math.clamp( vec3.y / this.radius, - 1, 1 ) ); // polar angle
}
return this;
}
} );
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* Extensible curve object
*
* Some common of curve methods:
* .getPoint(t), getTangent(t)
* .getPointAt(u), getTangentAt(u)
* .getPoints(), .getSpacedPoints()
* .getLength()
* .updateArcLengths()
*
* This following curves inherit from THREE.Curve:
*
* -- 2D curves --
* THREE.ArcCurve
* THREE.CubicBezierCurve
* THREE.EllipseCurve
* THREE.LineCurve
* THREE.QuadraticBezierCurve
* THREE.SplineCurve
*
* -- 3D curves --
* THREE.CatmullRomCurve3
* THREE.CubicBezierCurve3
* THREE.LineCurve3
* THREE.QuadraticBezierCurve3
*
* A series of curves can be represented as a THREE.CurvePath.
*
**/
/**************************************************************
* Abstract Curve base class
**************************************************************/
function Curve() {
this.arcLengthDivisions = 200;
}
Object.assign( Curve.prototype, {
// Virtual base class method to overwrite and implement in subclasses
// - t [0 .. 1]
getPoint: function () {
console.warn( 'THREE.Curve: .getPoint() not implemented.' );
return null;
},
// Get point at relative position in curve according to arc length
// - u [0 .. 1]
getPointAt: function ( u ) {
var t = this.getUtoTmapping( u );
return this.getPoint( t );
},
// Get sequence of points using getPoint( t )
getPoints: function ( divisions ) {
if ( divisions === undefined ) divisions = 5;
var points = [];
for ( var d = 0; d <= divisions; d ++ ) {
points.push( this.getPoint( d / divisions ) );
}
return points;
},
// Get sequence of points using getPointAt( u )
getSpacedPoints: function ( divisions ) {
if ( divisions === undefined ) divisions = 5;
var points = [];
for ( var d = 0; d <= divisions; d ++ ) {
points.push( this.getPointAt( d / divisions ) );
}
return points;
},
// Get total curve arc length
getLength: function () {
var lengths = this.getLengths();
return lengths[ lengths.length - 1 ];
},
// Get list of cumulative segment lengths
getLengths: function ( divisions ) {
if ( divisions === undefined ) divisions = this.arcLengthDivisions;
if ( this.cacheArcLengths &&
( this.cacheArcLengths.length === divisions + 1 ) &&
! this.needsUpdate ) {
return this.cacheArcLengths;
}
this.needsUpdate = false;
var cache = [];
var current, last = this.getPoint( 0 );
var p, sum = 0;
cache.push( 0 );
for ( p = 1; p <= divisions; p ++ ) {
current = this.getPoint( p / divisions );
sum += current.distanceTo( last );
cache.push( sum );
last = current;
}
this.cacheArcLengths = cache;
return cache; // { sums: cache, sum: sum }; Sum is in the last element.
},
updateArcLengths: function () {
this.needsUpdate = true;
this.getLengths();
},
// Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant
getUtoTmapping: function ( u, distance ) {
var arcLengths = this.getLengths();
var i = 0, il = arcLengths.length;
var targetArcLength; // The targeted u distance value to get
if ( distance ) {
targetArcLength = distance;
} else {
targetArcLength = u * arcLengths[ il - 1 ];
}
// binary search for the index with largest value smaller than target u distance
var low = 0, high = il - 1, comparison;
while ( low <= high ) {
i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
comparison = arcLengths[ i ] - targetArcLength;
if ( comparison < 0 ) {
low = i + 1;
} else if ( comparison > 0 ) {
high = i - 1;
} else {
high = i;
break;
// DONE
}
}
i = high;
if ( arcLengths[ i ] === targetArcLength ) {
return i / ( il - 1 );
}
// we could get finer grain at lengths, or use simple interpolation between two points
var lengthBefore = arcLengths[ i ];
var lengthAfter = arcLengths[ i + 1 ];
var segmentLength = lengthAfter - lengthBefore;
// determine where we are between the 'before' and 'after' points
var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;
// add that fractional amount to t
var t = ( i + segmentFraction ) / ( il - 1 );
return t;
},
// Returns a unit vector tangent at t
// In case any sub curve does not implement its tangent derivation,
// 2 points a small delta apart will be used to find its gradient
// which seems to give a reasonable approximation
getTangent: function ( t ) {
var delta = 0.0001;
var t1 = t - delta;
var t2 = t + delta;
// Capping in case of danger
if ( t1 < 0 ) t1 = 0;
if ( t2 > 1 ) t2 = 1;
var pt1 = this.getPoint( t1 );
var pt2 = this.getPoint( t2 );
var vec = pt2.clone().sub( pt1 );
return vec.normalize();
},
getTangentAt: function ( u ) {
var t = this.getUtoTmapping( u );
return this.getTangent( t );
},
computeFrenetFrames: function ( segments, closed ) {
// see http://www.cs.indiana.edu/pub/techreports/TR425.pdf
var normal = new Vector3();
var tangents = [];
var normals = [];
var binormals = [];
var vec = new Vector3();
var mat = new Matrix4();
var i, u, theta;
// compute the tangent vectors for each segment on the curve
for ( i = 0; i <= segments; i ++ ) {
u = i / segments;
tangents[ i ] = this.getTangentAt( u );
tangents[ i ].normalize();
}
// select an initial normal vector perpendicular to the first tangent vector,
// and in the direction of the minimum tangent xyz component
normals[ 0 ] = new Vector3();
binormals[ 0 ] = new Vector3();
var min = Number.MAX_VALUE;
var tx = Math.abs( tangents[ 0 ].x );
var ty = Math.abs( tangents[ 0 ].y );
var tz = Math.abs( tangents[ 0 ].z );
if ( tx <= min ) {
min = tx;
normal.set( 1, 0, 0 );
}
if ( ty <= min ) {
min = ty;
normal.set( 0, 1, 0 );
}
if ( tz <= min ) {
normal.set( 0, 0, 1 );
}
vec.crossVectors( tangents[ 0 ], normal ).normalize();
normals[ 0 ].crossVectors( tangents[ 0 ], vec );
binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] );
// compute the slowly-varying normal and binormal vectors for each segment on the curve
for ( i = 1; i <= segments; i ++ ) {
normals[ i ] = normals[ i - 1 ].clone();
binormals[ i ] = binormals[ i - 1 ].clone();
vec.crossVectors( tangents[ i - 1 ], tangents[ i ] );
if ( vec.length() > Number.EPSILON ) {
vec.normalize();
theta = Math.acos( _Math.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors
normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) );
}
binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
}
// if the curve is closed, postprocess the vectors so the first and last normal vectors are the same
if ( closed === true ) {
theta = Math.acos( _Math.clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) );
theta /= segments;
if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) {
theta = - theta;
}
for ( i = 1; i <= segments; i ++ ) {
// twist a little...
normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) );
binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
}
}
return {
tangents: tangents,
normals: normals,
binormals: binormals
};
}
} );
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
*
* Bezier Curves formulas obtained from
* http://en.wikipedia.org/wiki/Bézier_curve
*/
//export * from './Three.Legacy.js';
function CaveLoader ( callback, progress ) {
if ( ! callback ) {
alert( 'No callback specified' );
}
this.callback = callback;
this.progress = progress;
this.dataResponse = null;
this.metadataResponse = null;
this.taskCount = 0;
}
CaveLoader.prototype.constructor = CaveLoader;
CaveLoader.prototype.parseName = function ( name ) {
var type;
var rev = name.split( '.' ).reverse();
this.extention = rev.shift();
this.basename = rev.reverse().join( '.' );
switch ( this.extention ) {
case '3d':
type = 'arraybuffer';
break;
case 'lox':
type = 'arraybuffer';
break;
case 'reg':
case 'json':
type = 'json';
break;
default:
console.log( 'Cave: unknown response extension [', self.extention, ']' );
}
return type;
};
CaveLoader.prototype.loadURL = function ( fileName ) {
var self = this;
var prefix = getEnvironmentValue( 'surveyDirectory', '' );
// parse file name
var type = this.parseName( fileName );
if ( ! type ) {
alert( 'Cave: unknown file extension [', self.extention, ']' );
return false;
}
this.doneCount = 0;
this.taskCount = type === 'json' ? 1 : 2;
var loader = new FileLoader().setPath( prefix );
loader.setResponseType( type ).load( fileName, _dataLoaded, _progress, _error );
// request metadata file if not a region (ie json file)
if ( type !== 'json' ) {
loader.setResponseType( 'json' ).load( replaceExtension( fileName, 'json' ), _metadataLoaded, undefined, _error );
}
return true;
function _dataLoaded ( result ) {
self.doneCount++;
self.dataResponse = result;
if ( self.doneCount === self.taskCount ) self.callHandler( fileName );
}
function _metadataLoaded ( result ) {
self.doneCount++;
self.metadataResponse = result;
if ( self.doneCount === self.taskCount ) self.callHandler( fileName );
}
function _progress ( e ) {
if ( self.progress) self.progress( Math.round( 100 * e.loaded / e.total ) );
}
function _error ( event ) {
self.doneCount++;
if ( event.currentTarget.responseType !== 'json' ) console.log( ' error event', event );
if ( self.doneCount === self.taskCount ) self.callHandler( fileName );
}
};
CaveLoader.prototype.loadFile = function ( file ) {
var self = this;
var fileName = file.name;
var type = this.parseName( fileName );
if ( ! type ) {
alert( 'Cave: unknown file extension [', self.extention, ']' );
return false;
}
var fLoader = new FileReader();
fLoader.addEventListener( 'load', _loaded );
fLoader.addEventListener( 'progress', _progress );
switch ( type ) {
case 'arraybuffer':
fLoader.readAsArrayBuffer( file );
break;
/*case 'arraybuffer':
fLoader.readAsArrayText( file );
break;*/
default:
alert( 'unknown file data type' );
return false;
}
return true;
function _loaded () {
self.dataResponse = fLoader.result;
self.callHandler( fileName );
}
function _progress ( e ) {
if ( self.progress ) self.progress( Math.round( 100 * e.loaded / e.total ) );
}
};
CaveLoader.prototype.callHandler = function ( fileName ) {
if ( this.dataResponse === null ) {
this.callback( false );
return;
}
var handler;
var data = this.dataResponse;
var metadata = this.metadataResponse;
switch ( this.extention ) {
case '3d':
handler = new Svx3dHandler( fileName, data, metadata );
break;
case 'lox':
handler = new loxHandler( fileName, data, metadata );
break;
case 'reg':
handler = new RegionHandler( fileName, data );
break;
default:
alert( 'Cave: unknown response extension [', this.extention, ']' );
handler = false;
}
this.dataResponse = null;
this.metadataResponse = null;
this.callback( handler );
};
// EOF
onmessage = onMessage;
function onMessage ( event ) {
var file = event.data;
var loader = new CaveLoader( _caveLoaded );
loader.loadURL( file );
function _caveLoaded( cave ) {
postMessage( { status: 'ok', survey: cave.getSurvey() } );
}
}
})));