(function (global, factory) {
	typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
	typeof define === 'function' && define.amd ? define(['exports'], factory) :
	(factory((global.CV = global.CV || {})));
}(this, (function (exports) { 'use strict';

// Polyfills

if ( Number.EPSILON === undefined ) {

	Number.EPSILON = Math.pow( 2, - 52 );

}

if ( Number.isInteger === undefined ) {

	// Missing in IE
	// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger

	Number.isInteger = function ( value ) {

		return typeof value === 'number' && isFinite( value ) && Math.floor( value ) === value;

	};

}

//

if ( Math.sign === undefined ) {

	// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign

	Math.sign = function ( x ) {

		return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x;

	};

}

if ( Function.prototype.name === undefined ) {

	// Missing in IE
	// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name

	Object.defineProperty( Function.prototype, 'name', {

		get: function () {

			return this.toString().match( /^\s*function\s*([^\(\s]*)/ )[ 1 ];

		}

	} );

}

if ( Object.assign === undefined ) {

	// Missing in IE
	// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign

	( function () {

		Object.assign = function ( target ) {

			'use strict';

			if ( target === undefined || target === null ) {

				throw new TypeError( 'Cannot convert undefined or null to object' );

			}

			var output = Object( target );

			for ( var index = 1; index < arguments.length; index ++ ) {

				var source = arguments[ index ];

				if ( source !== undefined && source !== null ) {

					for ( var nextKey in source ) {

						if ( Object.prototype.hasOwnProperty.call( source, nextKey ) ) {

							output[ nextKey ] = source[ nextKey ];

						}

					}

				}

			}

			return output;

		};

	} )();

}

/**
 * @author alteredq / http://alteredqualia.com/
 * @author mrdoob / http://mrdoob.com/
 */

var _Math = {

	DEG2RAD: Math.PI / 180,
	RAD2DEG: 180 / Math.PI,

	generateUUID: function () {

		// http://www.broofa.com/Tools/Math.uuid.htm

		var chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'.split( '' );
		var uuid = new Array( 36 );
		var rnd = 0, r;

		return function generateUUID() {

			for ( var i = 0; i < 36; i ++ ) {

				if ( i === 8 || i === 13 || i === 18 || i === 23 ) {

					uuid[ i ] = '-';

				} else if ( i === 14 ) {

					uuid[ i ] = '4';

				} else {

					if ( rnd <= 0x02 ) rnd = 0x2000000 + ( Math.random() * 0x1000000 ) | 0;
					r = rnd & 0xf;
					rnd = rnd >> 4;
					uuid[ i ] = chars[ ( i === 19 ) ? ( r & 0x3 ) | 0x8 : r ];

				}

			}

			return uuid.join( '' );

		};

	}(),

	clamp: function ( value, min, max ) {

		return Math.max( min, Math.min( max, value ) );

	},

	// compute euclidian modulo of m % n
	// https://en.wikipedia.org/wiki/Modulo_operation

	euclideanModulo: function ( n, m ) {

		return ( ( n % m ) + m ) % m;

	},

	// Linear mapping from range <a1, a2> to range <b1, b2>

	mapLinear: function ( x, a1, a2, b1, b2 ) {

		return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );

	},

	// https://en.wikipedia.org/wiki/Linear_interpolation

	lerp: function ( x, y, t ) {

		return ( 1 - t ) * x + t * y;

	},

	// http://en.wikipedia.org/wiki/Smoothstep

	smoothstep: function ( x, min, max ) {

		if ( x <= min ) return 0;
		if ( x >= max ) return 1;

		x = ( x - min ) / ( max - min );

		return x * x * ( 3 - 2 * x );

	},

	smootherstep: function ( x, min, max ) {

		if ( x <= min ) return 0;
		if ( x >= max ) return 1;

		x = ( x - min ) / ( max - min );

		return x * x * x * ( x * ( x * 6 - 15 ) + 10 );

	},

	// Random integer from <low, high> interval

	randInt: function ( low, high ) {

		return low + Math.floor( Math.random() * ( high - low + 1 ) );

	},

	// Random float from <low, high> interval

	randFloat: function ( low, high ) {

		return low + Math.random() * ( high - low );

	},

	// Random float from <-range/2, range/2> interval

	randFloatSpread: function ( range ) {

		return range * ( 0.5 - Math.random() );

	},

	degToRad: function ( degrees ) {

		return degrees * _Math.DEG2RAD;

	},

	radToDeg: function ( radians ) {

		return radians * _Math.RAD2DEG;

	},

	isPowerOfTwo: function ( value ) {

		return ( value & ( value - 1 ) ) === 0 && value !== 0;

	},

	nearestPowerOfTwo: function ( value ) {

		return Math.pow( 2, Math.round( Math.log( value ) / Math.LN2 ) );

	},

	nextPowerOfTwo: function ( value ) {

		value --;
		value |= value >> 1;
		value |= value >> 2;
		value |= value >> 4;
		value |= value >> 8;
		value |= value >> 16;
		value ++;

		return value;

	}

};

/**
 * @author mrdoob / http://mrdoob.com/
 * @author supereggbert / http://www.paulbrunt.co.uk/
 * @author philogb / http://blog.thejit.org/
 * @author jordi_ros / http://plattsoft.com
 * @author D1plo1d / http://github.com/D1plo1d
 * @author alteredq / http://alteredqualia.com/
 * @author mikael emtinger / http://gomo.se/
 * @author timknip / http://www.floorplanner.com/
 * @author bhouston / http://clara.io
 * @author WestLangley / http://github.com/WestLangley
 */

function Matrix4() {

	this.elements = [

		1, 0, 0, 0,
		0, 1, 0, 0,
		0, 0, 1, 0,
		0, 0, 0, 1

	];

	if ( arguments.length > 0 ) {

		console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' );

	}

}

Object.assign( Matrix4.prototype, {

	isMatrix4: true,

	set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {

		var te = this.elements;

		te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
		te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
		te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
		te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;

		return this;

	},

	identity: function () {

		this.set(

			1, 0, 0, 0,
			0, 1, 0, 0,
			0, 0, 1, 0,
			0, 0, 0, 1

		);

		return this;

	},

	clone: function () {

		return new Matrix4().fromArray( this.elements );

	},

	copy: function ( m ) {

		var te = this.elements;
		var me = m.elements;

		te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ];
		te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ];
		te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ];
		te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ];

		return this;

	},

	copyPosition: function ( m ) {

		var te = this.elements, me = m.elements;

		te[ 12 ] = me[ 12 ];
		te[ 13 ] = me[ 13 ];
		te[ 14 ] = me[ 14 ];

		return this;

	},

	extractBasis: function ( xAxis, yAxis, zAxis ) {

		xAxis.setFromMatrixColumn( this, 0 );
		yAxis.setFromMatrixColumn( this, 1 );
		zAxis.setFromMatrixColumn( this, 2 );

		return this;

	},

	makeBasis: function ( xAxis, yAxis, zAxis ) {

		this.set(
			xAxis.x, yAxis.x, zAxis.x, 0,
			xAxis.y, yAxis.y, zAxis.y, 0,
			xAxis.z, yAxis.z, zAxis.z, 0,
			0,       0,       0,       1
		);

		return this;

	},

	extractRotation: function () {

		var v1 = new Vector3();

		return function extractRotation( m ) {

			var te = this.elements;
			var me = m.elements;

			var scaleX = 1 / v1.setFromMatrixColumn( m, 0 ).length();
			var scaleY = 1 / v1.setFromMatrixColumn( m, 1 ).length();
			var scaleZ = 1 / v1.setFromMatrixColumn( m, 2 ).length();

			te[ 0 ] = me[ 0 ] * scaleX;
			te[ 1 ] = me[ 1 ] * scaleX;
			te[ 2 ] = me[ 2 ] * scaleX;

			te[ 4 ] = me[ 4 ] * scaleY;
			te[ 5 ] = me[ 5 ] * scaleY;
			te[ 6 ] = me[ 6 ] * scaleY;

			te[ 8 ] = me[ 8 ] * scaleZ;
			te[ 9 ] = me[ 9 ] * scaleZ;
			te[ 10 ] = me[ 10 ] * scaleZ;

			return this;

		};

	}(),

	makeRotationFromEuler: function ( euler ) {

		if ( ! ( euler && euler.isEuler ) ) {

			console.error( 'THREE.Matrix: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );

		}

		var te = this.elements;

		var x = euler.x, y = euler.y, z = euler.z;
		var a = Math.cos( x ), b = Math.sin( x );
		var c = Math.cos( y ), d = Math.sin( y );
		var e = Math.cos( z ), f = Math.sin( z );

		if ( euler.order === 'XYZ' ) {

			var ae = a * e, af = a * f, be = b * e, bf = b * f;

			te[ 0 ] = c * e;
			te[ 4 ] = - c * f;
			te[ 8 ] = d;

			te[ 1 ] = af + be * d;
			te[ 5 ] = ae - bf * d;
			te[ 9 ] = - b * c;

			te[ 2 ] = bf - ae * d;
			te[ 6 ] = be + af * d;
			te[ 10 ] = a * c;

		} else if ( euler.order === 'YXZ' ) {

			var ce = c * e, cf = c * f, de = d * e, df = d * f;

			te[ 0 ] = ce + df * b;
			te[ 4 ] = de * b - cf;
			te[ 8 ] = a * d;

			te[ 1 ] = a * f;
			te[ 5 ] = a * e;
			te[ 9 ] = - b;

			te[ 2 ] = cf * b - de;
			te[ 6 ] = df + ce * b;
			te[ 10 ] = a * c;

		} else if ( euler.order === 'ZXY' ) {

			var ce = c * e, cf = c * f, de = d * e, df = d * f;

			te[ 0 ] = ce - df * b;
			te[ 4 ] = - a * f;
			te[ 8 ] = de + cf * b;

			te[ 1 ] = cf + de * b;
			te[ 5 ] = a * e;
			te[ 9 ] = df - ce * b;

			te[ 2 ] = - a * d;
			te[ 6 ] = b;
			te[ 10 ] = a * c;

		} else if ( euler.order === 'ZYX' ) {

			var ae = a * e, af = a * f, be = b * e, bf = b * f;

			te[ 0 ] = c * e;
			te[ 4 ] = be * d - af;
			te[ 8 ] = ae * d + bf;

			te[ 1 ] = c * f;
			te[ 5 ] = bf * d + ae;
			te[ 9 ] = af * d - be;

			te[ 2 ] = - d;
			te[ 6 ] = b * c;
			te[ 10 ] = a * c;

		} else if ( euler.order === 'YZX' ) {

			var ac = a * c, ad = a * d, bc = b * c, bd = b * d;

			te[ 0 ] = c * e;
			te[ 4 ] = bd - ac * f;
			te[ 8 ] = bc * f + ad;

			te[ 1 ] = f;
			te[ 5 ] = a * e;
			te[ 9 ] = - b * e;

			te[ 2 ] = - d * e;
			te[ 6 ] = ad * f + bc;
			te[ 10 ] = ac - bd * f;

		} else if ( euler.order === 'XZY' ) {

			var ac = a * c, ad = a * d, bc = b * c, bd = b * d;

			te[ 0 ] = c * e;
			te[ 4 ] = - f;
			te[ 8 ] = d * e;

			te[ 1 ] = ac * f + bd;
			te[ 5 ] = a * e;
			te[ 9 ] = ad * f - bc;

			te[ 2 ] = bc * f - ad;
			te[ 6 ] = b * e;
			te[ 10 ] = bd * f + ac;

		}

		// last column
		te[ 3 ] = 0;
		te[ 7 ] = 0;
		te[ 11 ] = 0;

		// bottom row
		te[ 12 ] = 0;
		te[ 13 ] = 0;
		te[ 14 ] = 0;
		te[ 15 ] = 1;

		return this;

	},

	makeRotationFromQuaternion: function ( q ) {

		var te = this.elements;

		var x = q._x, y = q._y, z = q._z, w = q._w;
		var x2 = x + x, y2 = y + y, z2 = z + z;
		var xx = x * x2, xy = x * y2, xz = x * z2;
		var yy = y * y2, yz = y * z2, zz = z * z2;
		var wx = w * x2, wy = w * y2, wz = w * z2;

		te[ 0 ] = 1 - ( yy + zz );
		te[ 4 ] = xy - wz;
		te[ 8 ] = xz + wy;

		te[ 1 ] = xy + wz;
		te[ 5 ] = 1 - ( xx + zz );
		te[ 9 ] = yz - wx;

		te[ 2 ] = xz - wy;
		te[ 6 ] = yz + wx;
		te[ 10 ] = 1 - ( xx + yy );

		// last column
		te[ 3 ] = 0;
		te[ 7 ] = 0;
		te[ 11 ] = 0;

		// bottom row
		te[ 12 ] = 0;
		te[ 13 ] = 0;
		te[ 14 ] = 0;
		te[ 15 ] = 1;

		return this;

	},

	lookAt: function () {

		var x = new Vector3();
		var y = new Vector3();
		var z = new Vector3();

		return function lookAt( eye, target, up ) {

			var te = this.elements;

			z.subVectors( eye, target );

			if ( z.lengthSq() === 0 ) {

				// eye and target are in the same position

				z.z = 1;

			}

			z.normalize();
			x.crossVectors( up, z );

			if ( x.lengthSq() === 0 ) {

				// up and z are parallel

				if ( Math.abs( up.z ) === 1 ) {

					z.x += 0.0001;

				} else {

					z.z += 0.0001;

				}

				z.normalize();
				x.crossVectors( up, z );

			}

			x.normalize();
			y.crossVectors( z, x );

			te[ 0 ] = x.x; te[ 4 ] = y.x; te[ 8 ] = z.x;
			te[ 1 ] = x.y; te[ 5 ] = y.y; te[ 9 ] = z.y;
			te[ 2 ] = x.z; te[ 6 ] = y.z; te[ 10 ] = z.z;

			return this;

		};

	}(),

	multiply: function ( m, n ) {

		if ( n !== undefined ) {

			console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' );
			return this.multiplyMatrices( m, n );

		}

		return this.multiplyMatrices( this, m );

	},

	premultiply: function ( m ) {

		return this.multiplyMatrices( m, this );

	},

	multiplyMatrices: function ( a, b ) {

		var ae = a.elements;
		var be = b.elements;
		var te = this.elements;

		var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
		var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
		var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
		var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];

		var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
		var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
		var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
		var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];

		te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
		te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
		te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
		te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;

		te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
		te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
		te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
		te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;

		te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
		te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
		te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
		te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;

		te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
		te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
		te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
		te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;

		return this;

	},

	multiplyScalar: function ( s ) {

		var te = this.elements;

		te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
		te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
		te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
		te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;

		return this;

	},

	applyToBufferAttribute: function () {

		var v1 = new Vector3();

		return function applyToBufferAttribute( attribute ) {

			for ( var i = 0, l = attribute.count; i < l; i ++ ) {

				v1.x = attribute.getX( i );
				v1.y = attribute.getY( i );
				v1.z = attribute.getZ( i );

				v1.applyMatrix4( this );

				attribute.setXYZ( i, v1.x, v1.y, v1.z );

			}

			return attribute;

		};

	}(),

	determinant: function () {

		var te = this.elements;

		var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
		var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
		var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
		var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];

		//TODO: make this more efficient
		//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )

		return (
			n41 * (
				+ n14 * n23 * n32
				 - n13 * n24 * n32
				 - n14 * n22 * n33
				 + n12 * n24 * n33
				 + n13 * n22 * n34
				 - n12 * n23 * n34
			) +
			n42 * (
				+ n11 * n23 * n34
				 - n11 * n24 * n33
				 + n14 * n21 * n33
				 - n13 * n21 * n34
				 + n13 * n24 * n31
				 - n14 * n23 * n31
			) +
			n43 * (
				+ n11 * n24 * n32
				 - n11 * n22 * n34
				 - n14 * n21 * n32
				 + n12 * n21 * n34
				 + n14 * n22 * n31
				 - n12 * n24 * n31
			) +
			n44 * (
				- n13 * n22 * n31
				 - n11 * n23 * n32
				 + n11 * n22 * n33
				 + n13 * n21 * n32
				 - n12 * n21 * n33
				 + n12 * n23 * n31
			)

		);

	},

	transpose: function () {

		var te = this.elements;
		var tmp;

		tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
		tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
		tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;

		tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
		tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
		tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;

		return this;

	},

	setPosition: function ( v ) {

		var te = this.elements;

		te[ 12 ] = v.x;
		te[ 13 ] = v.y;
		te[ 14 ] = v.z;

		return this;

	},

	getInverse: function ( m, throwOnDegenerate ) {

		// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
		var te = this.elements,
			me = m.elements,

			n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ],
			n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ],
			n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ],
			n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ],

			t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
			t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
			t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
			t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;

		var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;

		if ( det === 0 ) {

			var msg = "THREE.Matrix4.getInverse(): can't invert matrix, determinant is 0";

			if ( throwOnDegenerate === true ) {

				throw new Error( msg );

			} else {

				console.warn( msg );

			}

			return this.identity();

		}

		var detInv = 1 / det;

		te[ 0 ] = t11 * detInv;
		te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv;
		te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv;
		te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv;

		te[ 4 ] = t12 * detInv;
		te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv;
		te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv;
		te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv;

		te[ 8 ] = t13 * detInv;
		te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv;
		te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv;
		te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv;

		te[ 12 ] = t14 * detInv;
		te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv;
		te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv;
		te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv;

		return this;

	},

	scale: function ( v ) {

		var te = this.elements;
		var x = v.x, y = v.y, z = v.z;

		te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
		te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
		te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
		te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;

		return this;

	},

	getMaxScaleOnAxis: function () {

		var te = this.elements;

		var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];
		var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
		var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];

		return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );

	},

	makeTranslation: function ( x, y, z ) {

		this.set(

			1, 0, 0, x,
			0, 1, 0, y,
			0, 0, 1, z,
			0, 0, 0, 1

		);

		return this;

	},

	makeRotationX: function ( theta ) {

		var c = Math.cos( theta ), s = Math.sin( theta );

		this.set(

			1, 0,  0, 0,
			0, c, - s, 0,
			0, s,  c, 0,
			0, 0,  0, 1

		);

		return this;

	},

	makeRotationY: function ( theta ) {

		var c = Math.cos( theta ), s = Math.sin( theta );

		this.set(

			 c, 0, s, 0,
			 0, 1, 0, 0,
			- s, 0, c, 0,
			 0, 0, 0, 1

		);

		return this;

	},

	makeRotationZ: function ( theta ) {

		var c = Math.cos( theta ), s = Math.sin( theta );

		this.set(

			c, - s, 0, 0,
			s,  c, 0, 0,
			0,  0, 1, 0,
			0,  0, 0, 1

		);

		return this;

	},

	makeRotationAxis: function ( axis, angle ) {

		// Based on http://www.gamedev.net/reference/articles/article1199.asp

		var c = Math.cos( angle );
		var s = Math.sin( angle );
		var t = 1 - c;
		var x = axis.x, y = axis.y, z = axis.z;
		var tx = t * x, ty = t * y;

		this.set(

			tx * x + c, tx * y - s * z, tx * z + s * y, 0,
			tx * y + s * z, ty * y + c, ty * z - s * x, 0,
			tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
			0, 0, 0, 1

		);

		 return this;

	},

	makeScale: function ( x, y, z ) {

		this.set(

			x, 0, 0, 0,
			0, y, 0, 0,
			0, 0, z, 0,
			0, 0, 0, 1

		);

		return this;

	},

	makeShear: function ( x, y, z ) {

		this.set(

			1, y, z, 0,
			x, 1, z, 0,
			x, y, 1, 0,
			0, 0, 0, 1

		);

		return this;

	},

	compose: function ( position, quaternion, scale ) {

		this.makeRotationFromQuaternion( quaternion );
		this.scale( scale );
		this.setPosition( position );

		return this;

	},

	decompose: function () {

		var vector = new Vector3();
		var matrix = new Matrix4();

		return function decompose( position, quaternion, scale ) {

			var te = this.elements;

			var sx = vector.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();
			var sy = vector.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();
			var sz = vector.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();

			// if determine is negative, we need to invert one scale
			var det = this.determinant();
			if ( det < 0 ) sx = - sx;

			position.x = te[ 12 ];
			position.y = te[ 13 ];
			position.z = te[ 14 ];

			// scale the rotation part
			matrix.copy( this );

			var invSX = 1 / sx;
			var invSY = 1 / sy;
			var invSZ = 1 / sz;

			matrix.elements[ 0 ] *= invSX;
			matrix.elements[ 1 ] *= invSX;
			matrix.elements[ 2 ] *= invSX;

			matrix.elements[ 4 ] *= invSY;
			matrix.elements[ 5 ] *= invSY;
			matrix.elements[ 6 ] *= invSY;

			matrix.elements[ 8 ] *= invSZ;
			matrix.elements[ 9 ] *= invSZ;
			matrix.elements[ 10 ] *= invSZ;

			quaternion.setFromRotationMatrix( matrix );

			scale.x = sx;
			scale.y = sy;
			scale.z = sz;

			return this;

		};

	}(),

	makePerspective: function ( left, right, top, bottom, near, far ) {

		if ( far === undefined ) {

			console.warn( 'THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.' );

		}

		var te = this.elements;
		var x = 2 * near / ( right - left );
		var y = 2 * near / ( top - bottom );

		var a = ( right + left ) / ( right - left );
		var b = ( top + bottom ) / ( top - bottom );
		var c = - ( far + near ) / ( far - near );
		var d = - 2 * far * near / ( far - near );

		te[ 0 ] = x;	te[ 4 ] = 0;	te[ 8 ] = a;	te[ 12 ] = 0;
		te[ 1 ] = 0;	te[ 5 ] = y;	te[ 9 ] = b;	te[ 13 ] = 0;
		te[ 2 ] = 0;	te[ 6 ] = 0;	te[ 10 ] = c;	te[ 14 ] = d;
		te[ 3 ] = 0;	te[ 7 ] = 0;	te[ 11 ] = - 1;	te[ 15 ] = 0;

		return this;

	},

	makeOrthographic: function ( left, right, top, bottom, near, far ) {

		var te = this.elements;
		var w = 1.0 / ( right - left );
		var h = 1.0 / ( top - bottom );
		var p = 1.0 / ( far - near );

		var x = ( right + left ) * w;
		var y = ( top + bottom ) * h;
		var z = ( far + near ) * p;

		te[ 0 ] = 2 * w;	te[ 4 ] = 0;	te[ 8 ] = 0;	te[ 12 ] = - x;
		te[ 1 ] = 0;	te[ 5 ] = 2 * h;	te[ 9 ] = 0;	te[ 13 ] = - y;
		te[ 2 ] = 0;	te[ 6 ] = 0;	te[ 10 ] = - 2 * p;	te[ 14 ] = - z;
		te[ 3 ] = 0;	te[ 7 ] = 0;	te[ 11 ] = 0;	te[ 15 ] = 1;

		return this;

	},

	equals: function ( matrix ) {

		var te = this.elements;
		var me = matrix.elements;

		for ( var i = 0; i < 16; i ++ ) {

			if ( te[ i ] !== me[ i ] ) return false;

		}

		return true;

	},

	fromArray: function ( array, offset ) {

		if ( offset === undefined ) offset = 0;

		for ( var i = 0; i < 16; i ++ ) {

			this.elements[ i ] = array[ i + offset ];

		}

		return this;

	},

	toArray: function ( array, offset ) {

		if ( array === undefined ) array = [];
		if ( offset === undefined ) offset = 0;

		var te = this.elements;

		array[ offset ] = te[ 0 ];
		array[ offset + 1 ] = te[ 1 ];
		array[ offset + 2 ] = te[ 2 ];
		array[ offset + 3 ] = te[ 3 ];

		array[ offset + 4 ] = te[ 4 ];
		array[ offset + 5 ] = te[ 5 ];
		array[ offset + 6 ] = te[ 6 ];
		array[ offset + 7 ] = te[ 7 ];

		array[ offset + 8 ] = te[ 8 ];
		array[ offset + 9 ] = te[ 9 ];
		array[ offset + 10 ] = te[ 10 ];
		array[ offset + 11 ] = te[ 11 ];

		array[ offset + 12 ] = te[ 12 ];
		array[ offset + 13 ] = te[ 13 ];
		array[ offset + 14 ] = te[ 14 ];
		array[ offset + 15 ] = te[ 15 ];

		return array;

	}

} );

/**
 * @author mikael emtinger / http://gomo.se/
 * @author alteredq / http://alteredqualia.com/
 * @author WestLangley / http://github.com/WestLangley
 * @author bhouston / http://clara.io
 */

function Quaternion( x, y, z, w ) {

	this._x = x || 0;
	this._y = y || 0;
	this._z = z || 0;
	this._w = ( w !== undefined ) ? w : 1;

}

Object.assign( Quaternion, {

	slerp: function ( qa, qb, qm, t ) {

		return qm.copy( qa ).slerp( qb, t );

	},

	slerpFlat: function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) {

		// fuzz-free, array-based Quaternion SLERP operation

		var x0 = src0[ srcOffset0 + 0 ],
			y0 = src0[ srcOffset0 + 1 ],
			z0 = src0[ srcOffset0 + 2 ],
			w0 = src0[ srcOffset0 + 3 ],

			x1 = src1[ srcOffset1 + 0 ],
			y1 = src1[ srcOffset1 + 1 ],
			z1 = src1[ srcOffset1 + 2 ],
			w1 = src1[ srcOffset1 + 3 ];

		if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) {

			var s = 1 - t,

				cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,

				dir = ( cos >= 0 ? 1 : - 1 ),
				sqrSin = 1 - cos * cos;

			// Skip the Slerp for tiny steps to avoid numeric problems:
			if ( sqrSin > Number.EPSILON ) {

				var sin = Math.sqrt( sqrSin ),
					len = Math.atan2( sin, cos * dir );

				s = Math.sin( s * len ) / sin;
				t = Math.sin( t * len ) / sin;

			}

			var tDir = t * dir;

			x0 = x0 * s + x1 * tDir;
			y0 = y0 * s + y1 * tDir;
			z0 = z0 * s + z1 * tDir;
			w0 = w0 * s + w1 * tDir;

			// Normalize in case we just did a lerp:
			if ( s === 1 - t ) {

				var f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 );

				x0 *= f;
				y0 *= f;
				z0 *= f;
				w0 *= f;

			}

		}

		dst[ dstOffset ] = x0;
		dst[ dstOffset + 1 ] = y0;
		dst[ dstOffset + 2 ] = z0;
		dst[ dstOffset + 3 ] = w0;

	}

} );

Object.defineProperties( Quaternion.prototype, {

	x: {

		get: function () {

			return this._x;

		},

		set: function ( value ) {

			this._x = value;
			this.onChangeCallback();

		}

	},

	y: {

		get: function () {

			return this._y;

		},

		set: function ( value ) {

			this._y = value;
			this.onChangeCallback();

		}

	},

	z: {

		get: function () {

			return this._z;

		},

		set: function ( value ) {

			this._z = value;
			this.onChangeCallback();

		}

	},

	w: {

		get: function () {

			return this._w;

		},

		set: function ( value ) {

			this._w = value;
			this.onChangeCallback();

		}

	}

} );

Object.assign( Quaternion.prototype, {

	set: function ( x, y, z, w ) {

		this._x = x;
		this._y = y;
		this._z = z;
		this._w = w;

		this.onChangeCallback();

		return this;

	},

	clone: function () {

		return new this.constructor( this._x, this._y, this._z, this._w );

	},

	copy: function ( quaternion ) {

		this._x = quaternion.x;
		this._y = quaternion.y;
		this._z = quaternion.z;
		this._w = quaternion.w;

		this.onChangeCallback();

		return this;

	},

	setFromEuler: function ( euler, update ) {

		if ( ! ( euler && euler.isEuler ) ) {

			throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' );

		}

		var x = euler._x, y = euler._y, z = euler._z, order = euler.order;

		// http://www.mathworks.com/matlabcentral/fileexchange/
		// 	20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
		//	content/SpinCalc.m

		var cos = Math.cos;
		var sin = Math.sin;

		var c1 = cos( x / 2 );
		var c2 = cos( y / 2 );
		var c3 = cos( z / 2 );

		var s1 = sin( x / 2 );
		var s2 = sin( y / 2 );
		var s3 = sin( z / 2 );

		if ( order === 'XYZ' ) {

			this._x = s1 * c2 * c3 + c1 * s2 * s3;
			this._y = c1 * s2 * c3 - s1 * c2 * s3;
			this._z = c1 * c2 * s3 + s1 * s2 * c3;
			this._w = c1 * c2 * c3 - s1 * s2 * s3;

		} else if ( order === 'YXZ' ) {

			this._x = s1 * c2 * c3 + c1 * s2 * s3;
			this._y = c1 * s2 * c3 - s1 * c2 * s3;
			this._z = c1 * c2 * s3 - s1 * s2 * c3;
			this._w = c1 * c2 * c3 + s1 * s2 * s3;

		} else if ( order === 'ZXY' ) {

			this._x = s1 * c2 * c3 - c1 * s2 * s3;
			this._y = c1 * s2 * c3 + s1 * c2 * s3;
			this._z = c1 * c2 * s3 + s1 * s2 * c3;
			this._w = c1 * c2 * c3 - s1 * s2 * s3;

		} else if ( order === 'ZYX' ) {

			this._x = s1 * c2 * c3 - c1 * s2 * s3;
			this._y = c1 * s2 * c3 + s1 * c2 * s3;
			this._z = c1 * c2 * s3 - s1 * s2 * c3;
			this._w = c1 * c2 * c3 + s1 * s2 * s3;

		} else if ( order === 'YZX' ) {

			this._x = s1 * c2 * c3 + c1 * s2 * s3;
			this._y = c1 * s2 * c3 + s1 * c2 * s3;
			this._z = c1 * c2 * s3 - s1 * s2 * c3;
			this._w = c1 * c2 * c3 - s1 * s2 * s3;

		} else if ( order === 'XZY' ) {

			this._x = s1 * c2 * c3 - c1 * s2 * s3;
			this._y = c1 * s2 * c3 - s1 * c2 * s3;
			this._z = c1 * c2 * s3 + s1 * s2 * c3;
			this._w = c1 * c2 * c3 + s1 * s2 * s3;

		}

		if ( update !== false ) this.onChangeCallback();

		return this;

	},

	setFromAxisAngle: function ( axis, angle ) {

		// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm

		// assumes axis is normalized

		var halfAngle = angle / 2, s = Math.sin( halfAngle );

		this._x = axis.x * s;
		this._y = axis.y * s;
		this._z = axis.z * s;
		this._w = Math.cos( halfAngle );

		this.onChangeCallback();

		return this;

	},

	setFromRotationMatrix: function ( m ) {

		// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm

		// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

		var te = m.elements,

			m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
			m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
			m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],

			trace = m11 + m22 + m33,
			s;

		if ( trace > 0 ) {

			s = 0.5 / Math.sqrt( trace + 1.0 );

			this._w = 0.25 / s;
			this._x = ( m32 - m23 ) * s;
			this._y = ( m13 - m31 ) * s;
			this._z = ( m21 - m12 ) * s;

		} else if ( m11 > m22 && m11 > m33 ) {

			s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );

			this._w = ( m32 - m23 ) / s;
			this._x = 0.25 * s;
			this._y = ( m12 + m21 ) / s;
			this._z = ( m13 + m31 ) / s;

		} else if ( m22 > m33 ) {

			s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );

			this._w = ( m13 - m31 ) / s;
			this._x = ( m12 + m21 ) / s;
			this._y = 0.25 * s;
			this._z = ( m23 + m32 ) / s;

		} else {

			s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );

			this._w = ( m21 - m12 ) / s;
			this._x = ( m13 + m31 ) / s;
			this._y = ( m23 + m32 ) / s;
			this._z = 0.25 * s;

		}

		this.onChangeCallback();

		return this;

	},

	setFromUnitVectors: function () {

		// assumes direction vectors vFrom and vTo are normalized

		var v1 = new Vector3();
		var r;

		var EPS = 0.000001;

		return function setFromUnitVectors( vFrom, vTo ) {

			if ( v1 === undefined ) v1 = new Vector3();

			r = vFrom.dot( vTo ) + 1;

			if ( r < EPS ) {

				r = 0;

				if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) {

					v1.set( - vFrom.y, vFrom.x, 0 );

				} else {

					v1.set( 0, - vFrom.z, vFrom.y );

				}

			} else {

				v1.crossVectors( vFrom, vTo );

			}

			this._x = v1.x;
			this._y = v1.y;
			this._z = v1.z;
			this._w = r;

			return this.normalize();

		};

	}(),

	inverse: function () {

		return this.conjugate().normalize();

	},

	conjugate: function () {

		this._x *= - 1;
		this._y *= - 1;
		this._z *= - 1;

		this.onChangeCallback();

		return this;

	},

	dot: function ( v ) {

		return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;

	},

	lengthSq: function () {

		return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;

	},

	length: function () {

		return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w );

	},

	normalize: function () {

		var l = this.length();

		if ( l === 0 ) {

			this._x = 0;
			this._y = 0;
			this._z = 0;
			this._w = 1;

		} else {

			l = 1 / l;

			this._x = this._x * l;
			this._y = this._y * l;
			this._z = this._z * l;
			this._w = this._w * l;

		}

		this.onChangeCallback();

		return this;

	},

	multiply: function ( q, p ) {

		if ( p !== undefined ) {

			console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' );
			return this.multiplyQuaternions( q, p );

		}

		return this.multiplyQuaternions( this, q );

	},

	premultiply: function ( q ) {

		return this.multiplyQuaternions( q, this );

	},

	multiplyQuaternions: function ( a, b ) {

		// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm

		var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
		var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;

		this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
		this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
		this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
		this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;

		this.onChangeCallback();

		return this;

	},

	slerp: function ( qb, t ) {

		if ( t === 0 ) return this;
		if ( t === 1 ) return this.copy( qb );

		var x = this._x, y = this._y, z = this._z, w = this._w;

		// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/

		var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;

		if ( cosHalfTheta < 0 ) {

			this._w = - qb._w;
			this._x = - qb._x;
			this._y = - qb._y;
			this._z = - qb._z;

			cosHalfTheta = - cosHalfTheta;

		} else {

			this.copy( qb );

		}

		if ( cosHalfTheta >= 1.0 ) {

			this._w = w;
			this._x = x;
			this._y = y;
			this._z = z;

			return this;

		}

		var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta );

		if ( Math.abs( sinHalfTheta ) < 0.001 ) {

			this._w = 0.5 * ( w + this._w );
			this._x = 0.5 * ( x + this._x );
			this._y = 0.5 * ( y + this._y );
			this._z = 0.5 * ( z + this._z );

			return this;

		}

		var halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta );
		var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
			ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;

		this._w = ( w * ratioA + this._w * ratioB );
		this._x = ( x * ratioA + this._x * ratioB );
		this._y = ( y * ratioA + this._y * ratioB );
		this._z = ( z * ratioA + this._z * ratioB );

		this.onChangeCallback();

		return this;

	},

	equals: function ( quaternion ) {

		return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w );

	},

	fromArray: function ( array, offset ) {

		if ( offset === undefined ) offset = 0;

		this._x = array[ offset ];
		this._y = array[ offset + 1 ];
		this._z = array[ offset + 2 ];
		this._w = array[ offset + 3 ];

		this.onChangeCallback();

		return this;

	},

	toArray: function ( array, offset ) {

		if ( array === undefined ) array = [];
		if ( offset === undefined ) offset = 0;

		array[ offset ] = this._x;
		array[ offset + 1 ] = this._y;
		array[ offset + 2 ] = this._z;
		array[ offset + 3 ] = this._w;

		return array;

	},

	onChange: function ( callback ) {

		this.onChangeCallback = callback;

		return this;

	},

	onChangeCallback: function () {}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 * @author kile / http://kile.stravaganza.org/
 * @author philogb / http://blog.thejit.org/
 * @author mikael emtinger / http://gomo.se/
 * @author egraether / http://egraether.com/
 * @author WestLangley / http://github.com/WestLangley
 */

function Vector3( x, y, z ) {

	this.x = x || 0;
	this.y = y || 0;
	this.z = z || 0;

}

Object.assign( Vector3.prototype, {

	isVector3: true,

	set: function ( x, y, z ) {

		this.x = x;
		this.y = y;
		this.z = z;

		return this;

	},

	setScalar: function ( scalar ) {

		this.x = scalar;
		this.y = scalar;
		this.z = scalar;

		return this;

	},

	setX: function ( x ) {

		this.x = x;

		return this;

	},

	setY: function ( y ) {

		this.y = y;

		return this;

	},

	setZ: function ( z ) {

		this.z = z;

		return this;

	},

	setComponent: function ( index, value ) {

		switch ( index ) {

			case 0: this.x = value; break;
			case 1: this.y = value; break;
			case 2: this.z = value; break;
			default: throw new Error( 'index is out of range: ' + index );

		}

		return this;

	},

	getComponent: function ( index ) {

		switch ( index ) {

			case 0: return this.x;
			case 1: return this.y;
			case 2: return this.z;
			default: throw new Error( 'index is out of range: ' + index );

		}

	},

	clone: function () {

		return new this.constructor( this.x, this.y, this.z );

	},

	copy: function ( v ) {

		this.x = v.x;
		this.y = v.y;
		this.z = v.z;

		return this;

	},

	add: function ( v, w ) {

		if ( w !== undefined ) {

			console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
			return this.addVectors( v, w );

		}

		this.x += v.x;
		this.y += v.y;
		this.z += v.z;

		return this;

	},

	addScalar: function ( s ) {

		this.x += s;
		this.y += s;
		this.z += s;

		return this;

	},

	addVectors: function ( a, b ) {

		this.x = a.x + b.x;
		this.y = a.y + b.y;
		this.z = a.z + b.z;

		return this;

	},

	addScaledVector: function ( v, s ) {

		this.x += v.x * s;
		this.y += v.y * s;
		this.z += v.z * s;

		return this;

	},

	sub: function ( v, w ) {

		if ( w !== undefined ) {

			console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
			return this.subVectors( v, w );

		}

		this.x -= v.x;
		this.y -= v.y;
		this.z -= v.z;

		return this;

	},

	subScalar: function ( s ) {

		this.x -= s;
		this.y -= s;
		this.z -= s;

		return this;

	},

	subVectors: function ( a, b ) {

		this.x = a.x - b.x;
		this.y = a.y - b.y;
		this.z = a.z - b.z;

		return this;

	},

	multiply: function ( v, w ) {

		if ( w !== undefined ) {

			console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' );
			return this.multiplyVectors( v, w );

		}

		this.x *= v.x;
		this.y *= v.y;
		this.z *= v.z;

		return this;

	},

	multiplyScalar: function ( scalar ) {

		this.x *= scalar;
		this.y *= scalar;
		this.z *= scalar;

		return this;

	},

	multiplyVectors: function ( a, b ) {

		this.x = a.x * b.x;
		this.y = a.y * b.y;
		this.z = a.z * b.z;

		return this;

	},

	applyEuler: function () {

		var quaternion = new Quaternion();

		return function applyEuler( euler ) {

			if ( ! ( euler && euler.isEuler ) ) {

				console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' );

			}

			return this.applyQuaternion( quaternion.setFromEuler( euler ) );

		};

	}(),

	applyAxisAngle: function () {

		var quaternion = new Quaternion();

		return function applyAxisAngle( axis, angle ) {

			return this.applyQuaternion( quaternion.setFromAxisAngle( axis, angle ) );

		};

	}(),

	applyMatrix3: function ( m ) {

		var x = this.x, y = this.y, z = this.z;
		var e = m.elements;

		this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z;
		this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z;
		this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z;

		return this;

	},

	applyMatrix4: function ( m ) {

		var x = this.x, y = this.y, z = this.z;
		var e = m.elements;

		var w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] );

		this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ]  * z + e[ 12 ] ) * w;
		this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ]  * z + e[ 13 ] ) * w;
		this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w;

		return this;

	},

	applyQuaternion: function ( q ) {

		var x = this.x, y = this.y, z = this.z;
		var qx = q.x, qy = q.y, qz = q.z, qw = q.w;

		// calculate quat * vector

		var ix =  qw * x + qy * z - qz * y;
		var iy =  qw * y + qz * x - qx * z;
		var iz =  qw * z + qx * y - qy * x;
		var iw = - qx * x - qy * y - qz * z;

		// calculate result * inverse quat

		this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy;
		this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz;
		this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx;

		return this;

	},

	project: function () {

		var matrix = new Matrix4();

		return function project( camera ) {

			matrix.multiplyMatrices( camera.projectionMatrix, matrix.getInverse( camera.matrixWorld ) );
			return this.applyMatrix4( matrix );

		};

	}(),

	unproject: function () {

		var matrix = new Matrix4();

		return function unproject( camera ) {

			matrix.multiplyMatrices( camera.matrixWorld, matrix.getInverse( camera.projectionMatrix ) );
			return this.applyMatrix4( matrix );

		};

	}(),

	transformDirection: function ( m ) {

		// input: THREE.Matrix4 affine matrix
		// vector interpreted as a direction

		var x = this.x, y = this.y, z = this.z;
		var e = m.elements;

		this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ]  * z;
		this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ]  * z;
		this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;

		return this.normalize();

	},

	divide: function ( v ) {

		this.x /= v.x;
		this.y /= v.y;
		this.z /= v.z;

		return this;

	},

	divideScalar: function ( scalar ) {

		return this.multiplyScalar( 1 / scalar );

	},

	min: function ( v ) {

		this.x = Math.min( this.x, v.x );
		this.y = Math.min( this.y, v.y );
		this.z = Math.min( this.z, v.z );

		return this;

	},

	max: function ( v ) {

		this.x = Math.max( this.x, v.x );
		this.y = Math.max( this.y, v.y );
		this.z = Math.max( this.z, v.z );

		return this;

	},

	clamp: function ( min, max ) {

		// assumes min < max, componentwise

		this.x = Math.max( min.x, Math.min( max.x, this.x ) );
		this.y = Math.max( min.y, Math.min( max.y, this.y ) );
		this.z = Math.max( min.z, Math.min( max.z, this.z ) );

		return this;

	},

	clampScalar: function () {

		var min = new Vector3();
		var max = new Vector3();

		return function clampScalar( minVal, maxVal ) {

			min.set( minVal, minVal, minVal );
			max.set( maxVal, maxVal, maxVal );

			return this.clamp( min, max );

		};

	}(),

	clampLength: function ( min, max ) {

		var length = this.length();

		return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );

	},

	floor: function () {

		this.x = Math.floor( this.x );
		this.y = Math.floor( this.y );
		this.z = Math.floor( this.z );

		return this;

	},

	ceil: function () {

		this.x = Math.ceil( this.x );
		this.y = Math.ceil( this.y );
		this.z = Math.ceil( this.z );

		return this;

	},

	round: function () {

		this.x = Math.round( this.x );
		this.y = Math.round( this.y );
		this.z = Math.round( this.z );

		return this;

	},

	roundToZero: function () {

		this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
		this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
		this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );

		return this;

	},

	negate: function () {

		this.x = - this.x;
		this.y = - this.y;
		this.z = - this.z;

		return this;

	},

	dot: function ( v ) {

		return this.x * v.x + this.y * v.y + this.z * v.z;

	},

	// TODO lengthSquared?

	lengthSq: function () {

		return this.x * this.x + this.y * this.y + this.z * this.z;

	},

	length: function () {

		return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );

	},

	lengthManhattan: function () {

		return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );

	},

	normalize: function () {

		return this.divideScalar( this.length() || 1 );

	},

	setLength: function ( length ) {

		return this.normalize().multiplyScalar( length );

	},

	lerp: function ( v, alpha ) {

		this.x += ( v.x - this.x ) * alpha;
		this.y += ( v.y - this.y ) * alpha;
		this.z += ( v.z - this.z ) * alpha;

		return this;

	},

	lerpVectors: function ( v1, v2, alpha ) {

		return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );

	},

	cross: function ( v, w ) {

		if ( w !== undefined ) {

			console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' );
			return this.crossVectors( v, w );

		}

		var x = this.x, y = this.y, z = this.z;

		this.x = y * v.z - z * v.y;
		this.y = z * v.x - x * v.z;
		this.z = x * v.y - y * v.x;

		return this;

	},

	crossVectors: function ( a, b ) {

		var ax = a.x, ay = a.y, az = a.z;
		var bx = b.x, by = b.y, bz = b.z;

		this.x = ay * bz - az * by;
		this.y = az * bx - ax * bz;
		this.z = ax * by - ay * bx;

		return this;

	},

	projectOnVector: function ( vector ) {

		var scalar = vector.dot( this ) / vector.lengthSq();

		return this.copy( vector ).multiplyScalar( scalar );

	},

	projectOnPlane: function () {

		var v1 = new Vector3();

		return function projectOnPlane( planeNormal ) {

			v1.copy( this ).projectOnVector( planeNormal );

			return this.sub( v1 );

		};

	}(),

	reflect: function () {

		// reflect incident vector off plane orthogonal to normal
		// normal is assumed to have unit length

		var v1 = new Vector3();

		return function reflect( normal ) {

			return this.sub( v1.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) );

		};

	}(),

	angleTo: function ( v ) {

		var theta = this.dot( v ) / ( Math.sqrt( this.lengthSq() * v.lengthSq() ) );

		// clamp, to handle numerical problems

		return Math.acos( _Math.clamp( theta, - 1, 1 ) );

	},

	distanceTo: function ( v ) {

		return Math.sqrt( this.distanceToSquared( v ) );

	},

	distanceToSquared: function ( v ) {

		var dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z;

		return dx * dx + dy * dy + dz * dz;

	},

	distanceToManhattan: function ( v ) {

		return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z );

	},

	setFromSpherical: function ( s ) {

		var sinPhiRadius = Math.sin( s.phi ) * s.radius;

		this.x = sinPhiRadius * Math.sin( s.theta );
		this.y = Math.cos( s.phi ) * s.radius;
		this.z = sinPhiRadius * Math.cos( s.theta );

		return this;

	},

	setFromCylindrical: function ( c ) {

		this.x = c.radius * Math.sin( c.theta );
		this.y = c.y;
		this.z = c.radius * Math.cos( c.theta );

		return this;

	},

	setFromMatrixPosition: function ( m ) {

		var e = m.elements;

		this.x = e[ 12 ];
		this.y = e[ 13 ];
		this.z = e[ 14 ];

		return this;

	},

	setFromMatrixScale: function ( m ) {

		var sx = this.setFromMatrixColumn( m, 0 ).length();
		var sy = this.setFromMatrixColumn( m, 1 ).length();
		var sz = this.setFromMatrixColumn( m, 2 ).length();

		this.x = sx;
		this.y = sy;
		this.z = sz;

		return this;

	},

	setFromMatrixColumn: function ( m, index ) {

		return this.fromArray( m.elements, index * 4 );

	},

	equals: function ( v ) {

		return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );

	},

	fromArray: function ( array, offset ) {

		if ( offset === undefined ) offset = 0;

		this.x = array[ offset ];
		this.y = array[ offset + 1 ];
		this.z = array[ offset + 2 ];

		return this;

	},

	toArray: function ( array, offset ) {

		if ( array === undefined ) array = [];
		if ( offset === undefined ) offset = 0;

		array[ offset ] = this.x;
		array[ offset + 1 ] = this.y;
		array[ offset + 2 ] = this.z;

		return array;

	},

	fromBufferAttribute: function ( attribute, index, offset ) {

		if ( offset !== undefined ) {

			console.warn( 'THREE.Vector3: offset has been removed from .fromBufferAttribute().' );

		}

		this.x = attribute.getX( index );
		this.y = attribute.getY( index );
		this.z = attribute.getZ( index );

		return this;

	}

} );

var VERSION = '1.2.2';

var MATERIAL_LINE       = 1;
var MATERIAL_SURFACE    = 2;

var CAMERA_ORTHOGRAPHIC = 1;
var CAMERA_PERSPECTIVE  = 2;
var CAMERA_OFFSET       = 600;

// preset camera views

var VIEW_NONE           = 0;
var VIEW_PLAN           = 1;
var VIEW_ELEVATION_N    = 2;
var VIEW_ELEVATION_S    = 3;
var VIEW_ELEVATION_E    = 4;
var VIEW_ELEVATION_W    = 5;

// mouse selection operation mode

var MOUSE_MODE_NORMAL     = 0;
var MOUSE_MODE_ROUTE_EDIT = 1;
// shading types

var SHADING_HEIGHT       = 1;
var SHADING_LENGTH       = 2;
var SHADING_INCLINATION  = 3;
var SHADING_CURSOR       = 4;
var SHADING_SINGLE       = 5;
var SHADING_SURVEY       = 6;
var SHADING_OVERLAY      = 7;
var SHADING_SHADED       = 8;
var SHADING_DEPTH        = 9;
var SHADING_PATH         = 10;
var SHADING_DEPTH_CURSOR = 11;

// layer tags for scene objects

var LEG_CAVE              = 1;
var LEG_SPLAY             = 2;
var LEG_SURFACE           = 3;
var FEATURE_BOX           = 4;
var FEATURE_SELECTED_BOX  = 5;
var FEATURE_ENTRANCES     = 6;
var FEATURE_TERRAIN       = 7;
var FEATURE_STATIONS      = 8;
var FEATURE_TRACES        = 9;

var FACE_WALLS            = 10;
var FACE_SCRAPS           = 11;

var LABEL_STATION         = 12;

// flags in legs exported by Cave models

var NORMAL  = 0;
var SURFACE = 1;
var SPLAY   = 2;
var DIVING  = 3;

var STATION_NORMAL = 0;
var STATION_ENTRANCE = 1;

var upAxis = new Vector3( 0, 0, 1 );

// EOF

var environment = new Map();

function setEnvironment ( envs ) {

	if ( envs === undefined ) return;

	var pName;

	for ( pName in envs ) {

		environment.set ( pName , envs[ pName ] );

	}

}

function getEnvironmentValue ( item, defaultValue ) {

	if ( environment.has( item ) ) {

		return environment.get( item );

	} else {

		return defaultValue;

	}

}

function replaceExtension( fileName, newExtention ) {

	return fileName.split( '.' ).shift() + '.' + newExtention;

}

// polyfill padStart for IE11 - now supported for Chrome, FireFox and Edge

if ( ! String.prototype.padStart ) {

	String.prototype.padStart = function padStart( targetLength, padString ) {

		targetLength = targetLength >> 0; //floor if number or convert non-number to 0;
		padString = String( padString || ' ' );

		if (this.length > targetLength) {

			return String( this );

		} else {

			targetLength = targetLength - this.length;

			if ( targetLength > padString.length ) {

				padString += padString.repeat( targetLength / padString.length ); //append to original to ensure we are longer than needed

			}

			return padString.slice( 0, targetLength ) + String( this );

		}

	};

}

if ( ! String.prototype.repeat ) {

	String.prototype.repeat = function( count ) {

		if ( this == null ) throw new TypeError( 'can\'t convert ' + this + ' to object' );

		var str = '' + this;

		count = +count;

		if ( count != count ) count = 0;

		if ( count < 0 ) throw new RangeError( 'repeat count must be non-negative' );

		if ( count == Infinity ) throw new RangeError( 'repeat count must be less than infinity' );

		count = Math.floor( count );

		if ( str.length == 0 || count == 0 ) return '';

		// Ensuring count is a 31-bit integer allows us to heavily optimize the
		// main part. But anyway, most current (August 2014) browsers can't handle
		// strings 1 << 28 chars or longer, so:

		if ( str.length * count >= 1 << 28 ) throw new RangeError('repeat count must not overflow maximum string size');

		var rpt = '';

		for (;;) {

			if ( ( count & 1) == 1 ) rpt += str;

			count >>>= 1;

			if ( count == 0 ) break;

			str += str;

		}

		// Could we try:
		// return Array(count + 1).join(this);

		return rpt;

	};

}




// EOF

function HudObject () {}

HudObject.stdWidth  = 40;
HudObject.stdMargin = 5;

HudObject.prototype.removeDomObjects = function () {

	var obj;

	for ( var i = 0, l = this.domObjects.length; i < l; i++ ) {

		obj = this.domObjects[ i ];

		obj.parentElement.removeChild( obj );

	}

	this.domObjects = [];

};

HudObject.prototype.setVisibility = function ( visible ) {

	var style;

	this.visible = visible;

	style = ( visible ? 'block' : 'none' );

	for ( var i = 0, l = this.domObjects.length; i < l; i++ ) {

		this.domObjects[ i ].style.display = style;

	}

};



// EOF

/**
 * @author mrdoob / http://mrdoob.com/
 */

var ColorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF,
	'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2,
	'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50,
	'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B,
	'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B,
	'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F,
	'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3,
	'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222,
	'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700,
	'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4,
	'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00,
	'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3,
	'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA,
	'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32,
	'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3,
	'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC,
	'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD,
	'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6,
	'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9,
	'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F,
	'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE,
	'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA,
	'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0,
	'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 };

function Color( r, g, b ) {

	if ( g === undefined && b === undefined ) {

		// r is THREE.Color, hex or string
		return this.set( r );

	}

	return this.setRGB( r, g, b );

}

Object.assign( Color.prototype, {

	isColor: true,

	r: 1, g: 1, b: 1,

	set: function ( value ) {

		if ( value && value.isColor ) {

			this.copy( value );

		} else if ( typeof value === 'number' ) {

			this.setHex( value );

		} else if ( typeof value === 'string' ) {

			this.setStyle( value );

		}

		return this;

	},

	setScalar: function ( scalar ) {

		this.r = scalar;
		this.g = scalar;
		this.b = scalar;

		return this;

	},

	setHex: function ( hex ) {

		hex = Math.floor( hex );

		this.r = ( hex >> 16 & 255 ) / 255;
		this.g = ( hex >> 8 & 255 ) / 255;
		this.b = ( hex & 255 ) / 255;

		return this;

	},

	setRGB: function ( r, g, b ) {

		this.r = r;
		this.g = g;
		this.b = b;

		return this;

	},

	setHSL: function () {

		function hue2rgb( p, q, t ) {

			if ( t < 0 ) t += 1;
			if ( t > 1 ) t -= 1;
			if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t;
			if ( t < 1 / 2 ) return q;
			if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t );
			return p;

		}

		return function setHSL( h, s, l ) {

			// h,s,l ranges are in 0.0 - 1.0
			h = _Math.euclideanModulo( h, 1 );
			s = _Math.clamp( s, 0, 1 );
			l = _Math.clamp( l, 0, 1 );

			if ( s === 0 ) {

				this.r = this.g = this.b = l;

			} else {

				var p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s );
				var q = ( 2 * l ) - p;

				this.r = hue2rgb( q, p, h + 1 / 3 );
				this.g = hue2rgb( q, p, h );
				this.b = hue2rgb( q, p, h - 1 / 3 );

			}

			return this;

		};

	}(),

	setStyle: function ( style ) {

		function handleAlpha( string ) {

			if ( string === undefined ) return;

			if ( parseFloat( string ) < 1 ) {

				console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' );

			}

		}


		var m;

		if ( m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec( style ) ) {

			// rgb / hsl

			var color;
			var name = m[ 1 ];
			var components = m[ 2 ];

			switch ( name ) {

				case 'rgb':
				case 'rgba':

					if ( color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {

						// rgb(255,0,0) rgba(255,0,0,0.5)
						this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255;
						this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255;
						this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255;

						handleAlpha( color[ 5 ] );

						return this;

					}

					if ( color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {

						// rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
						this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100;
						this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100;
						this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100;

						handleAlpha( color[ 5 ] );

						return this;

					}

					break;

				case 'hsl':
				case 'hsla':

					if ( color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {

						// hsl(120,50%,50%) hsla(120,50%,50%,0.5)
						var h = parseFloat( color[ 1 ] ) / 360;
						var s = parseInt( color[ 2 ], 10 ) / 100;
						var l = parseInt( color[ 3 ], 10 ) / 100;

						handleAlpha( color[ 5 ] );

						return this.setHSL( h, s, l );

					}

					break;

			}

		} else if ( m = /^\#([A-Fa-f0-9]+)$/.exec( style ) ) {

			// hex color

			var hex = m[ 1 ];
			var size = hex.length;

			if ( size === 3 ) {

				// #ff0
				this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255;
				this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255;
				this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255;

				return this;

			} else if ( size === 6 ) {

				// #ff0000
				this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255;
				this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255;
				this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255;

				return this;

			}

		}

		if ( style && style.length > 0 ) {

			// color keywords
			var hex = ColorKeywords[ style ];

			if ( hex !== undefined ) {

				// red
				this.setHex( hex );

			} else {

				// unknown color
				console.warn( 'THREE.Color: Unknown color ' + style );

			}

		}

		return this;

	},

	clone: function () {

		return new this.constructor( this.r, this.g, this.b );

	},

	copy: function ( color ) {

		this.r = color.r;
		this.g = color.g;
		this.b = color.b;

		return this;

	},

	copyGammaToLinear: function ( color, gammaFactor ) {

		if ( gammaFactor === undefined ) gammaFactor = 2.0;

		this.r = Math.pow( color.r, gammaFactor );
		this.g = Math.pow( color.g, gammaFactor );
		this.b = Math.pow( color.b, gammaFactor );

		return this;

	},

	copyLinearToGamma: function ( color, gammaFactor ) {

		if ( gammaFactor === undefined ) gammaFactor = 2.0;

		var safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0;

		this.r = Math.pow( color.r, safeInverse );
		this.g = Math.pow( color.g, safeInverse );
		this.b = Math.pow( color.b, safeInverse );

		return this;

	},

	convertGammaToLinear: function () {

		var r = this.r, g = this.g, b = this.b;

		this.r = r * r;
		this.g = g * g;
		this.b = b * b;

		return this;

	},

	convertLinearToGamma: function () {

		this.r = Math.sqrt( this.r );
		this.g = Math.sqrt( this.g );
		this.b = Math.sqrt( this.b );

		return this;

	},

	getHex: function () {

		return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0;

	},

	getHexString: function () {

		return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 );

	},

	getHSL: function ( optionalTarget ) {

		// h,s,l ranges are in 0.0 - 1.0

		var hsl = optionalTarget || { h: 0, s: 0, l: 0 };

		var r = this.r, g = this.g, b = this.b;

		var max = Math.max( r, g, b );
		var min = Math.min( r, g, b );

		var hue, saturation;
		var lightness = ( min + max ) / 2.0;

		if ( min === max ) {

			hue = 0;
			saturation = 0;

		} else {

			var delta = max - min;

			saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min );

			switch ( max ) {

				case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break;
				case g: hue = ( b - r ) / delta + 2; break;
				case b: hue = ( r - g ) / delta + 4; break;

			}

			hue /= 6;

		}

		hsl.h = hue;
		hsl.s = saturation;
		hsl.l = lightness;

		return hsl;

	},

	getStyle: function () {

		return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')';

	},

	offsetHSL: function ( h, s, l ) {

		var hsl = this.getHSL();

		hsl.h += h; hsl.s += s; hsl.l += l;

		this.setHSL( hsl.h, hsl.s, hsl.l );

		return this;

	},

	add: function ( color ) {

		this.r += color.r;
		this.g += color.g;
		this.b += color.b;

		return this;

	},

	addColors: function ( color1, color2 ) {

		this.r = color1.r + color2.r;
		this.g = color1.g + color2.g;
		this.b = color1.b + color2.b;

		return this;

	},

	addScalar: function ( s ) {

		this.r += s;
		this.g += s;
		this.b += s;

		return this;

	},

	sub: function( color ) {

		this.r = Math.max( 0, this.r - color.r );
		this.g = Math.max( 0, this.g - color.g );
		this.b = Math.max( 0, this.b - color.b );

		return this;

	},

	multiply: function ( color ) {

		this.r *= color.r;
		this.g *= color.g;
		this.b *= color.b;

		return this;

	},

	multiplyScalar: function ( s ) {

		this.r *= s;
		this.g *= s;
		this.b *= s;

		return this;

	},

	lerp: function ( color, alpha ) {

		this.r += ( color.r - this.r ) * alpha;
		this.g += ( color.g - this.g ) * alpha;
		this.b += ( color.b - this.b ) * alpha;

		return this;

	},

	equals: function ( c ) {

		return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b );

	},

	fromArray: function ( array, offset ) {

		if ( offset === undefined ) offset = 0;

		this.r = array[ offset ];
		this.g = array[ offset + 1 ];
		this.b = array[ offset + 2 ];

		return this;

	},

	toArray: function ( array, offset ) {

		if ( array === undefined ) array = [];
		if ( offset === undefined ) offset = 0;

		array[ offset ] = this.r;
		array[ offset + 1 ] = this.g;
		array[ offset + 2 ] = this.b;

		return array;

	},

	toJSON: function () {

		return this.getHex();

	}

} );

var gradientColours = [[235,99,111],[235,99,112],[234,99,113],[234,100,114],[233,100,114],[233,100,115],[232,100,116],[232,101,117],[231,101,118],[231,101,119],[230,101,119],[230,101,120],[230,102,121],[229,102,122],[229,102,123],[228,102,124],[228,103,124],[227,103,125],[227,103,126],[226,103,127],[226,103,128],[226,104,129],[225,104,129],[225,104,130],[224,104,131],[224,104,132],[223,105,133],[223,105,134],[222,105,134],[222,105,135],[221,106,136],[221,106,137],[221,106,138],[220,106,139],[220,106,139],[219,107,140],[219,107,141],[218,107,142],[218,107,143],[217,108,144],[217,108,144],[216,108,145],[216,108,146],[216,108,147],[215,109,148],[215,109,149],[214,109,149],[214,109,150],[213,110,151],[213,110,152],[212,110,153],[212,110,154],[211,110,154],[211,111,155],[211,111,156],[210,111,157],[210,111,158],[209,111,159],[209,112,159],[208,112,160],[208,112,161],[207,112,162],[207,113,163],[207,113,164],[206,113,164],[206,113,165],[205,113,166],[205,114,167],[204,114,168],[204,114,169],[203,114,169],[203,115,170],[202,115,171],[202,115,172],[201,115,172],[200,116,173],[199,116,173],[198,116,173],[197,117,174],[196,117,174],[194,118,174],[193,118,175],[192,118,175],[191,119,176],[190,119,176],[189,119,176],[188,120,177],[187,120,177],[186,121,177],[185,121,178],[184,121,178],[183,122,178],[181,122,179],[180,122,179],[179,123,179],[178,123,180],[177,124,180],[176,124,181],[175,124,181],[174,125,181],[173,125,182],[172,125,182],[171,126,182],[170,126,183],[168,126,183],[167,127,183],[166,127,184],[165,128,184],[164,128,184],[163,128,185],[162,129,185],[161,129,186],[160,129,186],[159,130,186],[158,130,187],[157,131,187],[155,131,187],[154,131,188],[153,132,188],[152,132,188],[151,132,189],[150,133,189],[149,133,189],[148,133,190],[147,134,190],[146,134,191],[145,135,191],[144,135,191],[142,135,192],[141,136,192],[140,136,192],[139,136,193],[138,137,193],[137,137,193],[136,138,194],[135,138,194],[134,138,194],[133,139,195],[132,139,195],[131,139,196],[129,140,196],[128,140,196],[127,141,197],[126,141,197],[125,141,197],[124,142,198],[123,142,198],[122,142,198],[120,142,197],[119,143,197],[117,143,197],[116,143,197],[114,143,196],[113,144,196],[111,144,196],[110,144,195],[108,144,195],[107,144,195],[105,145,195],[104,145,194],[102,145,194],[101,145,194],[100,146,193],[98,146,193],[97,146,193],[95,146,193],[94,146,192],[92,147,192],[91,147,192],[89,147,191],[88,147,191],[86,147,191],[85,148,191],[83,148,190],[82,148,190],[80,148,190],[79,149,189],[78,149,189],[76,149,189],[75,149,189],[73,149,188],[72,150,188],[70,150,188],[69,150,187],[67,150,187],[66,151,187],[64,151,186],[63,151,186],[61,151,186],[60,151,186],[59,152,185],[57,152,185],[56,152,185],[54,152,184],[53,153,184],[51,153,184],[50,153,184],[48,153,183],[47,153,183],[45,154,183],[44,154,182],[42,154,182],[41,154,182],[39,154,182],[38,155,181],[37,155,181],[35,155,181],[34,155,180],[32,156,180],[31,156,180],[29,156,180],[28,156,179],[26,156,179],[25,157,179],[23,157,178],[22,157,178],[20,157,178],[19,158,178],[17,158,177],[16,158,177],[16,158,176],[17,158,176],[17,158,175],[18,158,174],[18,158,174],[19,158,173],[19,158,172],[20,158,171],[20,158,171],[21,158,170],[21,158,169],[22,158,169],[22,159,168],[23,159,167],[23,159,167],[23,159,166],[24,159,165],[24,159,164],[25,159,164],[25,159,163],[26,159,162],[26,159,162],[27,159,161],[27,159,160],[28,159,160],[28,159,159],[29,159,158],[29,159,157],[30,159,157],[30,159,156],[30,159,155],[31,159,155],[31,159,154],[32,159,153],[32,159,153],[33,159,152],[33,160,151],[34,160,150],[34,160,150],[35,160,149],[35,160,148],[36,160,148],[36,160,147],[36,160,146],[37,160,146],[37,160,145],[38,160,144],[38,160,143],[39,160,143],[39,160,142],[40,160,141],[40,160,141],[41,160,140],[41,160,139],[42,160,139],[42,160,138],[43,160,137],[43,160,136],[43,160,136],[44,160,135],[44,161,134],[45,161,134],[45,161,133],[46,161,132],[46,161,132],[47,161,131],[47,161,130],[48,161,129],[48,161,129],[49,161,128],[49,161,127],[50,161,127],[50,161,126],[51,161,125],[52,161,125],[53,161,124],[54,161,123],[55,161,123],[56,161,122],[56,160,121],[57,160,121],[58,160,120],[59,160,120],[60,160,119],[61,160,118],[62,160,118],[63,160,117],[64,160,116],[65,160,116],[66,160,115],[67,160,114],[67,159,114],[68,159,113],[69,159,112],[70,159,112],[71,159,111],[72,159,111],[73,159,110],[74,159,109],[75,159,109],[76,159,108],[77,159,107],[78,159,107],[78,158,106],[79,158,105],[80,158,105],[81,158,104],[82,158,103],[83,158,103],[84,158,102],[85,158,102],[86,158,101],[87,158,100],[88,158,100],[89,158,99],[89,157,98],[90,157,98],[91,157,97],[92,157,96],[93,157,96],[94,157,95],[95,157,94],[96,157,94],[97,157,93],[98,157,93],[99,157,92],[100,157,91],[100,156,91],[101,156,90],[102,156,89],[103,156,89],[104,156,88],[105,156,87],[106,156,87],[107,156,86],[108,156,85],[109,156,85],[110,156,84],[111,156,84],[111,155,83],[112,155,82],[113,155,82],[114,155,81],[115,155,80],[116,155,80],[117,155,79],[118,155,79],[118,155,79],[119,154,78],[120,154,78],[121,154,78],[121,154,78],[122,154,78],[123,153,77],[123,153,77],[124,153,77],[125,153,77],[126,153,77],[126,152,77],[127,152,76],[128,152,76],[128,152,76],[129,152,76],[130,151,76],[131,151,75],[131,151,75],[132,151,75],[133,150,75],[133,150,75],[134,150,74],[135,150,74],[136,150,74],[136,149,74],[137,149,74],[138,149,73],[138,149,73],[139,149,73],[140,148,73],[141,148,73],[141,148,72],[142,148,72],[143,148,72],[143,147,72],[144,147,72],[145,147,72],[145,147,71],[146,147,71],[147,146,71],[148,146,71],[148,146,71],[149,146,70],[150,146,70],[150,145,70],[151,145,70],[152,145,70],[153,145,69],[153,145,69],[154,144,69],[155,144,69],[155,144,69],[156,144,68],[157,143,68],[158,143,68],[158,143,68],[159,143,68],[160,143,67],[160,142,67],[161,142,67],[162,142,67],[163,142,67],[163,142,67],[164,141,66],[165,141,66],[165,141,66],[166,141,66],[167,141,66],[168,140,65],[168,140,65],[169,140,65],[169,140,65],[170,140,66],[170,139,66],[171,139,66],[171,139,67],[172,139,67],[172,139,67],[172,138,68],[173,138,68],[173,138,68],[174,138,69],[174,138,69],[175,137,69],[175,137,70],[175,137,70],[176,137,70],[176,137,71],[177,136,71],[177,136,71],[177,136,72],[178,136,72],[178,135,72],[179,135,73],[179,135,73],[180,135,73],[180,135,74],[180,134,74],[181,134,74],[181,134,75],[182,134,75],[182,134,75],[183,133,76],[183,133,76],[183,133,76],[184,133,77],[184,133,77],[185,132,77],[185,132,77],[186,132,78],[186,132,78],[186,132,78],[187,131,79],[187,131,79],[188,131,79],[188,131,80],[189,131,80],[189,130,80],[189,130,81],[190,130,81],[190,130,81],[191,130,82],[191,129,82],[192,129,82],[192,129,83],[192,129,83],[193,128,83],[193,128,84],[194,128,84],[194,128,84],[194,128,85],[195,127,85],[195,127,85],[196,127,86],[196,127,86],[197,127,86],[197,126,87],[197,126,87],[198,126,87],[198,126,88],[199,126,88],[199,125,88],[200,125,89],[200,125,89]];
var depthColours = [[255,255,204],[255,255,203],[255,255,203],[255,254,202],[255,254,202],[255,254,201],[255,254,200],[255,253,200],[255,253,199],[255,253,199],[255,253,198],[255,252,197],[255,252,197],[255,252,196],[255,252,196],[255,251,195],[255,251,194],[255,251,194],[255,251,193],[255,250,193],[255,250,192],[255,250,191],[255,250,191],[255,249,190],[255,249,190],[255,249,189],[255,249,188],[255,248,188],[255,248,187],[255,248,187],[255,248,186],[255,247,185],[255,247,185],[255,247,184],[255,247,184],[255,246,183],[255,246,182],[255,246,182],[255,246,181],[255,245,180],[255,245,180],[255,245,179],[255,245,179],[255,244,178],[255,244,177],[255,244,177],[255,244,176],[255,243,176],[255,243,175],[255,243,174],[255,243,174],[255,242,173],[255,242,173],[255,242,172],[255,242,171],[255,241,171],[255,241,170],[255,241,170],[255,241,169],[255,240,168],[255,240,168],[255,240,167],[255,240,167],[255,239,166],[255,239,165],[255,239,165],[255,239,164],[255,238,164],[255,238,163],[255,238,162],[255,238,162],[255,237,161],[255,237,161],[255,237,160],[255,237,159],[255,236,159],[255,236,158],[255,236,158],[255,236,157],[255,235,157],[255,235,156],[255,235,155],[255,235,155],[255,234,154],[255,234,154],[255,234,153],[255,233,153],[255,233,152],[255,233,151],[255,233,151],[255,232,150],[255,232,150],[255,232,149],[255,232,148],[255,231,148],[255,231,147],[255,231,147],[255,230,146],[255,230,146],[255,230,145],[255,230,144],[255,229,144],[255,229,143],[255,229,143],[255,229,142],[255,228,142],[255,228,141],[255,228,140],[255,227,140],[255,227,139],[254,227,139],[254,227,138],[254,226,138],[254,226,137],[254,226,136],[254,225,136],[254,225,135],[254,225,135],[254,225,134],[254,224,134],[254,224,133],[254,224,132],[254,224,132],[254,223,131],[254,223,131],[254,223,130],[254,222,130],[254,222,129],[254,222,128],[254,222,128],[254,221,127],[254,221,127],[254,221,126],[254,221,125],[254,220,125],[254,220,124],[254,220,124],[254,219,123],[254,219,123],[254,219,122],[254,219,121],[254,218,121],[254,218,120],[254,218,120],[254,218,119],[254,217,119],[254,217,118],[254,216,117],[254,216,117],[254,215,116],[254,215,116],[254,214,115],[254,214,115],[254,213,114],[254,213,113],[254,212,113],[254,212,112],[254,211,112],[254,211,111],[254,210,111],[254,210,110],[254,209,109],[254,208,109],[254,208,108],[254,207,108],[254,207,107],[254,206,106],[254,206,106],[254,205,105],[254,205,105],[254,204,104],[254,204,104],[254,203,103],[254,203,102],[254,202,102],[254,202,101],[254,201,101],[254,200,100],[254,200,100],[254,199,99],[254,199,98],[254,198,98],[254,198,97],[254,197,97],[254,197,96],[254,196,96],[254,196,95],[254,195,94],[254,195,94],[254,194,93],[254,193,93],[254,193,92],[254,192,92],[254,192,91],[254,191,90],[254,191,90],[254,190,89],[254,190,89],[254,189,88],[254,189,88],[254,188,87],[254,188,86],[254,187,86],[254,187,85],[254,186,85],[254,185,84],[254,185,83],[254,184,83],[254,184,82],[254,183,82],[254,183,81],[254,182,81],[254,182,80],[254,181,79],[254,181,79],[254,180,78],[254,180,78],[254,179,77],[254,179,77],[254,178,76],[254,177,76],[254,177,76],[254,176,75],[254,176,75],[254,175,75],[254,175,75],[254,174,74],[254,174,74],[254,173,74],[254,173,74],[254,172,74],[254,172,73],[254,171,73],[254,171,73],[254,170,73],[254,170,72],[254,169,72],[254,169,72],[254,168,72],[254,168,72],[254,167,71],[254,167,71],[254,166,71],[254,166,71],[254,165,71],[254,165,70],[254,164,70],[254,164,70],[254,163,70],[254,163,69],[254,162,69],[254,162,69],[254,161,69],[254,161,69],[254,160,68],[254,160,68],[253,159,68],[253,159,68],[253,158,67],[253,158,67],[253,157,67],[253,157,67],[253,156,67],[253,156,66],[253,155,66],[253,155,66],[253,154,66],[253,154,65],[253,153,65],[253,153,65],[253,152,65],[253,152,65],[253,151,64],[253,151,64],[253,150,64],[253,150,64],[253,149,64],[253,149,63],[253,148,63],[253,148,63],[253,147,63],[253,147,62],[253,146,62],[253,146,62],[253,145,62],[253,145,62],[253,144,61],[253,144,61],[253,143,61],[253,143,61],[253,142,60],[253,142,60],[253,141,60],[253,140,60],[253,139,60],[253,138,59],[253,138,59],[253,137,59],[253,136,59],[253,135,58],[253,134,58],[253,133,58],[253,132,58],[253,132,57],[253,131,57],[253,130,57],[253,129,57],[253,128,56],[253,127,56],[253,126,56],[253,125,56],[253,125,55],[253,124,55],[253,123,55],[253,122,55],[253,121,54],[253,120,54],[253,119,54],[253,119,54],[253,118,53],[253,117,53],[253,116,53],[253,115,53],[253,114,52],[253,113,52],[253,113,52],[253,112,52],[253,111,51],[253,110,51],[252,109,51],[252,108,51],[252,107,50],[252,106,50],[252,106,50],[252,105,50],[252,104,49],[252,103,49],[252,102,49],[252,101,49],[252,100,48],[252,100,48],[252,99,48],[252,98,48],[252,97,47],[252,96,47],[252,95,47],[252,94,47],[252,94,46],[252,93,46],[252,92,46],[252,91,46],[252,90,45],[252,89,45],[252,88,45],[252,87,45],[252,87,44],[252,86,44],[252,85,44],[252,84,44],[252,83,43],[252,82,43],[252,81,43],[252,81,43],[252,80,42],[252,79,42],[252,78,42],[252,77,42],[251,77,42],[251,76,41],[251,75,41],[250,74,41],[250,74,41],[250,73,41],[249,72,40],[249,72,40],[249,71,40],[248,70,40],[248,69,40],[248,69,40],[247,68,39],[247,67,39],[247,67,39],[246,66,39],[246,65,39],[245,64,38],[245,64,38],[245,63,38],[244,62,38],[244,62,38],[244,61,37],[243,60,37],[243,59,37],[243,59,37],[242,58,37],[242,57,36],[242,57,36],[241,56,36],[241,55,36],[241,54,36],[240,54,35],[240,53,35],[240,52,35],[239,52,35],[239,51,35],[239,50,35],[238,50,34],[238,49,34],[238,48,34],[237,47,34],[237,47,34],[237,46,33],[236,45,33],[236,45,33],[236,44,33],[235,43,33],[235,42,32],[235,42,32],[234,41,32],[234,40,32],[234,40,32],[233,39,31],[233,38,31],[232,37,31],[232,37,31],[232,36,31],[231,35,30],[231,35,30],[231,34,30],[230,33,30],[230,32,30],[230,32,30],[229,31,29],[229,30,29],[229,30,29],[228,29,29],[228,28,29],[228,27,28],[227,27,28],[227,26,28],[226,26,28],[226,25,28],[225,25,28],[224,25,29],[224,24,29],[223,24,29],[222,24,29],[222,23,29],[221,23,29],[220,22,29],[219,22,30],[219,22,30],[218,21,30],[217,21,30],[217,21,30],[216,20,30],[215,20,30],[215,20,30],[214,19,31],[213,19,31],[213,19,31],[212,18,31],[211,18,31],[211,17,31],[210,17,31],[209,17,32],[209,16,32],[208,16,32],[207,16,32],[206,15,32],[206,15,32],[205,15,32],[204,14,33],[204,14,33],[203,14,33],[202,13,33],[202,13,33],[201,12,33],[200,12,33],[200,12,33],[199,11,34],[198,11,34],[198,11,34],[197,10,34],[196,10,34],[195,10,34],[195,9,34],[194,9,35],[193,9,35],[193,8,35],[192,8,35],[191,7,35],[191,7,35],[190,7,35],[189,6,36],[189,6,36],[188,6,36],[187,5,36],[187,5,36],[186,5,36],[185,4,36],[185,4,36],[184,4,37],[183,3,37],[182,3,37],[182,2,37],[181,2,37],[180,2,37],[180,1,37],[179,1,38],[178,1,38],[178,0,38],[177,0,38]];
var inclinationColours = [[255,255,0],[253,254,2],[251,253,4],[249,252,5],[247,251,7],[245,250,9],[243,249,11],[241,249,13],[239,248,14],[237,247,16],[235,246,18],[233,245,20],[231,244,22],[229,243,23],[227,242,25],[225,241,27],[223,240,29],[221,239,31],[219,238,32],[217,237,34],[215,237,36],[213,236,38],[211,235,40],[209,234,41],[207,233,43],[205,232,45],[203,231,47],[201,230,49],[199,229,50],[197,228,52],[195,227,54],[193,226,56],[191,226,58],[189,225,60],[187,224,61],[185,223,63],[183,222,65],[181,221,67],[179,220,69],[177,219,70],[175,218,72],[173,217,74],[171,216,76],[169,215,78],[167,214,79],[165,214,81],[163,213,83],[161,212,85],[159,211,87],[157,210,88],[155,209,90],[153,208,92],[151,207,94],[149,206,96],[147,205,97],[145,204,99],[143,203,101],[141,202,103],[139,202,105],[137,201,106],[135,200,108],[133,199,110],[131,198,112],[129,197,114],[126,196,115],[124,195,117],[122,194,119],[120,193,121],[118,192,123],[116,191,124],[114,191,126],[112,190,128],[110,189,130],[108,188,132],[106,187,133],[104,186,135],[102,185,137],[100,184,139],[98,183,141],[96,182,142],[94,181,144],[92,180,146],[90,179,148],[88,179,150],[86,178,151],[84,177,153],[82,176,155],[80,175,157],[78,174,159],[76,173,160],[74,172,162],[72,171,164],[70,170,166],[68,169,168],[66,168,169],[64,167,171],[62,167,173],[60,166,175],[58,165,177],[56,164,179],[54,163,180],[52,162,182],[50,161,184],[48,160,186],[46,159,188],[44,158,189],[42,157,191],[40,156,193],[38,156,195],[36,155,197],[34,154,198],[32,153,200],[30,152,202],[28,151,204],[26,150,206],[24,149,207],[22,148,209],[20,147,211],[18,146,213],[16,145,215],[14,144,216],[12,144,218],[10,143,220],[8,142,222],[6,141,224],[4,140,225],[2,139,227],[0,138,229]];
var terrainColours = [[50,205,50],[52,205,52],[53,206,53],[55,206,55],[56,207,56],[58,207,58],[60,207,60],[61,208,61],[63,208,63],[65,209,65],[66,209,66],[68,209,68],[69,210,69],[71,210,71],[73,211,73],[74,211,74],[76,211,76],[77,212,77],[79,212,79],[81,212,81],[82,213,82],[84,213,84],[86,214,86],[87,214,87],[89,214,89],[90,215,90],[92,215,92],[94,216,94],[95,216,95],[97,216,97],[98,217,98],[100,217,100],[102,218,102],[103,218,103],[105,218,105],[106,219,106],[108,219,108],[110,220,110],[111,220,111],[113,220,113],[115,221,115],[116,221,116],[118,222,118],[119,222,119],[121,222,121],[123,223,123],[124,223,124],[126,224,126],[127,224,127],[129,224,129],[131,225,131],[132,225,132],[134,225,134],[136,226,136],[137,226,137],[139,227,139],[140,227,140],[142,227,142],[144,228,144],[145,228,145],[147,229,147],[148,229,148],[150,229,150],[152,230,152],[153,230,153],[155,231,155],[157,231,157],[158,231,158],[160,232,160],[161,232,161],[163,233,163],[165,233,165],[166,233,166],[168,234,168],[169,234,169],[171,235,171],[173,235,173],[174,235,174],[176,236,176],[178,236,178],[179,236,179],[181,237,181],[182,237,182],[184,238,184],[186,238,186],[187,238,187],[189,239,189],[190,239,190],[192,240,192],[194,240,194],[195,240,195],[197,241,197],[199,241,199],[200,242,200],[202,242,202],[203,242,203],[205,243,205],[207,243,207],[208,244,208],[210,244,210],[211,244,211],[213,245,213],[215,245,215],[216,246,216],[218,246,218],[219,246,219],[221,247,221],[223,247,223],[224,248,224],[226,248,226],[228,248,228],[229,249,229],[231,249,231],[232,249,232],[234,250,234],[236,250,236],[237,251,237],[239,251,239],[240,251,240],[242,252,242],[244,252,244],[245,253,245],[247,253,247],[249,253,249],[250,254,250],[252,254,252],[253,255,253],[255,255,255]];
var surveyColours = [[0xa6,0xce,0xe3],[0x1f,0x78,0xb4],[0xb2,0xdf,0x8a],[0x33,0xa0,0x2c],[0xfb,0x9a,0x99],[0xe3,0x1a,0x1c],[0xfd,0xbf,0x6f],[0xff,0x7f,0x00],[0xca,0xb2,0xd6],[0x6a,0x3d,0x9a],[0xff,0xff,0x99]];
var spectrumColours = [[100,60,60],[100,63,60],[100,66,60],[100,68,60],[100,71,60],[100,73,60],[100,76,60],[100,79,60],[100,81,60],[100,84,60],[100,86,60],[100,89,60],[100,92,60],[100,94,60],[100,97,60],[99,100,60],[97,100,60],[94,100,60],[92,100,60],[89,100,60],[86,100,60],[84,100,60],[81,100,60],[79,100,60],[76,100,60],[73,100,60],[71,100,60],[68,100,60],[65,100,60],[63,100,60],[60,100,60],[60,100,63],[60,100,66],[60,100,68],[60,100,71],[60,100,73],[60,100,76],[60,100,79],[60,100,81],[60,100,84],[60,100,86],[60,100,89],[60,100,92],[60,100,94],[60,100,97],[60,99,100],[60,97,100],[60,94,100],[60,92,100],[60,89,100],[60,86,100],[60,84,100],[60,81,100],[60,79,100],[60,76,100],[60,73,100],[60,71,100],[60,68,100],[60,65,100],[60,63,100],[60,60,100],[63,60,100],[66,60,100],[68,60,100],[71,60,100],[73,60,100],[76,60,100],[79,60,100],[81,60,100],[84,60,100],[87,60,100],[89,60,100],[92,60,100],[94,60,100],[97,60,100],[100,60,99],[100,60,97],[100,60,94],[100,60,92],[100,60,89],[100,60,86],[100,60,84],[100,60,81],[100,60,78],[100,60,76],[100,60,73],[100,60,71],[100,60,68],[100,60,65],[100,60,63],[100,60,60],[100,63,60],[100,66,60],[100,68,60],[100,71,60],[100,73,60],[100,76,60],[100,79,60],[100,81,60],[100,84,60],[100,87,60],[100,89,60],[100,92,60],[100,94,60],[100,97,60],[99,100,60],[97,100,60],[94,100,60],[92,100,60],[89,100,60],[86,100,60],[84,100,60],[81,100,60],[78,100,60],[76,100,60],[73,100,60],[71,100,60],[68,100,60],[65,100,60],[63,100,60],[60,100,60],[60,100,63],[60,100,66],[60,100,68],[60,100,71],[60,100,74],[60,100,76],[60,100,79]];

var Colours = {
	inclination: inclinationColours,
	terrain:     terrainColours,
	gradient:    gradientColours,
	survey:      surveyColours,
	depth:       depthColours,
	spectrum:    spectrumColours
};

/**
 * https://github.com/mrdoob/eventdispatcher.js/
 */

function EventDispatcher() {}

Object.assign( EventDispatcher.prototype, {

	addEventListener: function ( type, listener ) {

		if ( this._listeners === undefined ) this._listeners = {};

		var listeners = this._listeners;

		if ( listeners[ type ] === undefined ) {

			listeners[ type ] = [];

		}

		if ( listeners[ type ].indexOf( listener ) === - 1 ) {

			listeners[ type ].push( listener );

		}

	},

	hasEventListener: function ( type, listener ) {

		if ( this._listeners === undefined ) return false;

		var listeners = this._listeners;

		return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1;

	},

	removeEventListener: function ( type, listener ) {

		if ( this._listeners === undefined ) return;

		var listeners = this._listeners;
		var listenerArray = listeners[ type ];

		if ( listenerArray !== undefined ) {

			var index = listenerArray.indexOf( listener );

			if ( index !== - 1 ) {

				listenerArray.splice( index, 1 );

			}

		}

	},

	dispatchEvent: function ( event ) {

		if ( this._listeners === undefined ) return;

		var listeners = this._listeners;
		var listenerArray = listeners[ event.type ];

		if ( listenerArray !== undefined ) {

			event.target = this;

			var array = listenerArray.slice( 0 );

			for ( var i = 0, l = array.length; i < l; i ++ ) {

				array[ i ].call( this, event );

			}

		}

	}

} );

var REVISION = '86';
var MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2 };
var CullFaceNone = 0;
var CullFaceBack = 1;
var CullFaceFront = 2;

var FrontFaceDirectionCW = 0;


var PCFShadowMap = 1;
var PCFSoftShadowMap = 2;
var FrontSide = 0;
var BackSide = 1;
var DoubleSide = 2;
var FlatShading = 1;
var SmoothShading = 2;
var NoColors = 0;
var FaceColors = 1;
var VertexColors = 2;
var NoBlending = 0;
var NormalBlending = 1;
var AdditiveBlending = 2;
var SubtractiveBlending = 3;
var MultiplyBlending = 4;
var CustomBlending = 5;
var AddEquation = 100;
var SubtractEquation = 101;
var ReverseSubtractEquation = 102;
var MinEquation = 103;
var MaxEquation = 104;
var ZeroFactor = 200;
var OneFactor = 201;
var SrcColorFactor = 202;
var OneMinusSrcColorFactor = 203;
var SrcAlphaFactor = 204;
var OneMinusSrcAlphaFactor = 205;
var DstAlphaFactor = 206;
var OneMinusDstAlphaFactor = 207;
var DstColorFactor = 208;
var OneMinusDstColorFactor = 209;
var SrcAlphaSaturateFactor = 210;
var NeverDepth = 0;
var AlwaysDepth = 1;
var LessDepth = 2;
var LessEqualDepth = 3;
var EqualDepth = 4;
var GreaterEqualDepth = 5;
var GreaterDepth = 6;
var NotEqualDepth = 7;
var MultiplyOperation = 0;
var MixOperation = 1;
var AddOperation = 2;
var NoToneMapping = 0;
var LinearToneMapping = 1;
var ReinhardToneMapping = 2;
var Uncharted2ToneMapping = 3;
var CineonToneMapping = 4;
var UVMapping = 300;
var CubeReflectionMapping = 301;
var CubeRefractionMapping = 302;
var EquirectangularReflectionMapping = 303;
var EquirectangularRefractionMapping = 304;
var SphericalReflectionMapping = 305;
var CubeUVReflectionMapping = 306;
var CubeUVRefractionMapping = 307;
var RepeatWrapping = 1000;
var ClampToEdgeWrapping = 1001;
var MirroredRepeatWrapping = 1002;
var NearestFilter = 1003;
var NearestMipMapNearestFilter = 1004;
var NearestMipMapLinearFilter = 1005;
var LinearFilter = 1006;
var LinearMipMapNearestFilter = 1007;
var LinearMipMapLinearFilter = 1008;
var UnsignedByteType = 1009;
var ByteType = 1010;
var ShortType = 1011;
var UnsignedShortType = 1012;
var IntType = 1013;
var UnsignedIntType = 1014;
var FloatType = 1015;
var HalfFloatType = 1016;
var UnsignedShort4444Type = 1017;
var UnsignedShort5551Type = 1018;
var UnsignedShort565Type = 1019;
var UnsignedInt248Type = 1020;
var AlphaFormat = 1021;
var RGBFormat = 1022;
var RGBAFormat = 1023;
var LuminanceFormat = 1024;
var LuminanceAlphaFormat = 1025;

var DepthFormat = 1026;
var DepthStencilFormat = 1027;
var RGB_S3TC_DXT1_Format = 2001;
var RGBA_S3TC_DXT1_Format = 2002;
var RGBA_S3TC_DXT3_Format = 2003;
var RGBA_S3TC_DXT5_Format = 2004;
var RGB_PVRTC_4BPPV1_Format = 2100;
var RGB_PVRTC_2BPPV1_Format = 2101;
var RGBA_PVRTC_4BPPV1_Format = 2102;
var RGBA_PVRTC_2BPPV1_Format = 2103;
var RGB_ETC1_Format = 2151;
var LoopOnce = 2200;
var LoopRepeat = 2201;
var LoopPingPong = 2202;
var InterpolateDiscrete = 2300;
var InterpolateLinear = 2301;
var InterpolateSmooth = 2302;
var ZeroCurvatureEnding = 2400;
var ZeroSlopeEnding = 2401;
var WrapAroundEnding = 2402;
var TrianglesDrawMode = 0;
var TriangleStripDrawMode = 1;
var TriangleFanDrawMode = 2;
var LinearEncoding = 3000;
var sRGBEncoding = 3001;
var GammaEncoding = 3007;
var RGBEEncoding = 3002;

var RGBM7Encoding = 3004;
var RGBM16Encoding = 3005;
var RGBDEncoding = 3006;
var BasicDepthPacking = 3200;
var RGBADepthPacking = 3201;

/**
 * @author mrdoob / http://mrdoob.com/
 * @author philogb / http://blog.thejit.org/
 * @author egraether / http://egraether.com/
 * @author zz85 / http://www.lab4games.net/zz85/blog
 */

function Vector2( x, y ) {

	this.x = x || 0;
	this.y = y || 0;

}

Object.defineProperties( Vector2.prototype, {

	"width" : {

		get: function () {

			return this.x;

		},

		set: function ( value ) {

			this.x = value;

		}

	},

	"height" : {

		get: function () {

			return this.y;

		},

		set: function ( value ) {

			this.y = value;

		}

	}

} );

Object.assign( Vector2.prototype, {

	isVector2: true,

	set: function ( x, y ) {

		this.x = x;
		this.y = y;

		return this;

	},

	setScalar: function ( scalar ) {

		this.x = scalar;
		this.y = scalar;

		return this;

	},

	setX: function ( x ) {

		this.x = x;

		return this;

	},

	setY: function ( y ) {

		this.y = y;

		return this;

	},

	setComponent: function ( index, value ) {

		switch ( index ) {

			case 0: this.x = value; break;
			case 1: this.y = value; break;
			default: throw new Error( 'index is out of range: ' + index );

		}

		return this;

	},

	getComponent: function ( index ) {

		switch ( index ) {

			case 0: return this.x;
			case 1: return this.y;
			default: throw new Error( 'index is out of range: ' + index );

		}

	},

	clone: function () {

		return new this.constructor( this.x, this.y );

	},

	copy: function ( v ) {

		this.x = v.x;
		this.y = v.y;

		return this;

	},

	add: function ( v, w ) {

		if ( w !== undefined ) {

			console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
			return this.addVectors( v, w );

		}

		this.x += v.x;
		this.y += v.y;

		return this;

	},

	addScalar: function ( s ) {

		this.x += s;
		this.y += s;

		return this;

	},

	addVectors: function ( a, b ) {

		this.x = a.x + b.x;
		this.y = a.y + b.y;

		return this;

	},

	addScaledVector: function ( v, s ) {

		this.x += v.x * s;
		this.y += v.y * s;

		return this;

	},

	sub: function ( v, w ) {

		if ( w !== undefined ) {

			console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
			return this.subVectors( v, w );

		}

		this.x -= v.x;
		this.y -= v.y;

		return this;

	},

	subScalar: function ( s ) {

		this.x -= s;
		this.y -= s;

		return this;

	},

	subVectors: function ( a, b ) {

		this.x = a.x - b.x;
		this.y = a.y - b.y;

		return this;

	},

	multiply: function ( v ) {

		this.x *= v.x;
		this.y *= v.y;

		return this;

	},

	multiplyScalar: function ( scalar ) {

		this.x *= scalar;
		this.y *= scalar;

		return this;

	},

	divide: function ( v ) {

		this.x /= v.x;
		this.y /= v.y;

		return this;

	},

	divideScalar: function ( scalar ) {

		return this.multiplyScalar( 1 / scalar );

	},

	min: function ( v ) {

		this.x = Math.min( this.x, v.x );
		this.y = Math.min( this.y, v.y );

		return this;

	},

	max: function ( v ) {

		this.x = Math.max( this.x, v.x );
		this.y = Math.max( this.y, v.y );

		return this;

	},

	clamp: function ( min, max ) {

		// assumes min < max, componentwise

		this.x = Math.max( min.x, Math.min( max.x, this.x ) );
		this.y = Math.max( min.y, Math.min( max.y, this.y ) );

		return this;

	},

	clampScalar: function () {

		var min = new Vector2();
		var max = new Vector2();

		return function clampScalar( minVal, maxVal ) {

			min.set( minVal, minVal );
			max.set( maxVal, maxVal );

			return this.clamp( min, max );

		};

	}(),

	clampLength: function ( min, max ) {

		var length = this.length();

		return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );

	},

	floor: function () {

		this.x = Math.floor( this.x );
		this.y = Math.floor( this.y );

		return this;

	},

	ceil: function () {

		this.x = Math.ceil( this.x );
		this.y = Math.ceil( this.y );

		return this;

	},

	round: function () {

		this.x = Math.round( this.x );
		this.y = Math.round( this.y );

		return this;

	},

	roundToZero: function () {

		this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
		this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );

		return this;

	},

	negate: function () {

		this.x = - this.x;
		this.y = - this.y;

		return this;

	},

	dot: function ( v ) {

		return this.x * v.x + this.y * v.y;

	},

	lengthSq: function () {

		return this.x * this.x + this.y * this.y;

	},

	length: function () {

		return Math.sqrt( this.x * this.x + this.y * this.y );

	},

	lengthManhattan: function() {

		return Math.abs( this.x ) + Math.abs( this.y );

	},

	normalize: function () {

		return this.divideScalar( this.length() || 1 );

	},

	angle: function () {

		// computes the angle in radians with respect to the positive x-axis

		var angle = Math.atan2( this.y, this.x );

		if ( angle < 0 ) angle += 2 * Math.PI;

		return angle;

	},

	distanceTo: function ( v ) {

		return Math.sqrt( this.distanceToSquared( v ) );

	},

	distanceToSquared: function ( v ) {

		var dx = this.x - v.x, dy = this.y - v.y;
		return dx * dx + dy * dy;

	},

	distanceToManhattan: function ( v ) {

		return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y );

	},

	setLength: function ( length ) {

		return this.normalize().multiplyScalar( length );

	},

	lerp: function ( v, alpha ) {

		this.x += ( v.x - this.x ) * alpha;
		this.y += ( v.y - this.y ) * alpha;

		return this;

	},

	lerpVectors: function ( v1, v2, alpha ) {

		return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );

	},

	equals: function ( v ) {

		return ( ( v.x === this.x ) && ( v.y === this.y ) );

	},

	fromArray: function ( array, offset ) {

		if ( offset === undefined ) offset = 0;

		this.x = array[ offset ];
		this.y = array[ offset + 1 ];

		return this;

	},

	toArray: function ( array, offset ) {

		if ( array === undefined ) array = [];
		if ( offset === undefined ) offset = 0;

		array[ offset ] = this.x;
		array[ offset + 1 ] = this.y;

		return array;

	},

	fromBufferAttribute: function ( attribute, index, offset ) {

		if ( offset !== undefined ) {

			console.warn( 'THREE.Vector2: offset has been removed from .fromBufferAttribute().' );

		}

		this.x = attribute.getX( index );
		this.y = attribute.getY( index );

		return this;

	},

	rotateAround: function ( center, angle ) {

		var c = Math.cos( angle ), s = Math.sin( angle );

		var x = this.x - center.x;
		var y = this.y - center.y;

		this.x = x * c - y * s + center.x;
		this.y = x * s + y * c + center.y;

		return this;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 * @author alteredq / http://alteredqualia.com/
 * @author szimek / https://github.com/szimek/
 */

var textureId = 0;

function Texture( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {

	Object.defineProperty( this, 'id', { value: textureId ++ } );

	this.uuid = _Math.generateUUID();

	this.name = '';

	this.image = image !== undefined ? image : Texture.DEFAULT_IMAGE;
	this.mipmaps = [];

	this.mapping = mapping !== undefined ? mapping : Texture.DEFAULT_MAPPING;

	this.wrapS = wrapS !== undefined ? wrapS : ClampToEdgeWrapping;
	this.wrapT = wrapT !== undefined ? wrapT : ClampToEdgeWrapping;

	this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;
	this.minFilter = minFilter !== undefined ? minFilter : LinearMipMapLinearFilter;

	this.anisotropy = anisotropy !== undefined ? anisotropy : 1;

	this.format = format !== undefined ? format : RGBAFormat;
	this.type = type !== undefined ? type : UnsignedByteType;

	this.offset = new Vector2( 0, 0 );
	this.repeat = new Vector2( 1, 1 );

	this.generateMipmaps = true;
	this.premultiplyAlpha = false;
	this.flipY = true;
	this.unpackAlignment = 4;	// valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)

	// Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
	//
	// Also changing the encoding after already used by a Material will not automatically make the Material
	// update.  You need to explicitly call Material.needsUpdate to trigger it to recompile.
	this.encoding = encoding !== undefined ? encoding : LinearEncoding;

	this.version = 0;
	this.onUpdate = null;

}

Texture.DEFAULT_IMAGE = undefined;
Texture.DEFAULT_MAPPING = UVMapping;

Object.defineProperty( Texture.prototype, "needsUpdate", {

	set: function ( value ) {

		if ( value === true ) this.version ++;

	}

} );

Object.assign( Texture.prototype, EventDispatcher.prototype, {

	constructor: Texture,

	isTexture: true,

	clone: function () {

		return new this.constructor().copy( this );

	},

	copy: function ( source ) {

		this.name = source.name;

		this.image = source.image;
		this.mipmaps = source.mipmaps.slice( 0 );

		this.mapping = source.mapping;

		this.wrapS = source.wrapS;
		this.wrapT = source.wrapT;

		this.magFilter = source.magFilter;
		this.minFilter = source.minFilter;

		this.anisotropy = source.anisotropy;

		this.format = source.format;
		this.type = source.type;

		this.offset.copy( source.offset );
		this.repeat.copy( source.repeat );

		this.generateMipmaps = source.generateMipmaps;
		this.premultiplyAlpha = source.premultiplyAlpha;
		this.flipY = source.flipY;
		this.unpackAlignment = source.unpackAlignment;
		this.encoding = source.encoding;

		return this;

	},

	toJSON: function ( meta ) {

		if ( meta.textures[ this.uuid ] !== undefined ) {

			return meta.textures[ this.uuid ];

		}

		function getDataURL( image ) {

			var canvas;

			if ( image.toDataURL !== undefined ) {

				canvas = image;

			} else {

				canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );
				canvas.width = image.width;
				canvas.height = image.height;

				canvas.getContext( '2d' ).drawImage( image, 0, 0, image.width, image.height );

			}

			if ( canvas.width > 2048 || canvas.height > 2048 ) {

				return canvas.toDataURL( 'image/jpeg', 0.6 );

			} else {

				return canvas.toDataURL( 'image/png' );

			}

		}

		var output = {
			metadata: {
				version: 4.5,
				type: 'Texture',
				generator: 'Texture.toJSON'
			},

			uuid: this.uuid,
			name: this.name,

			mapping: this.mapping,

			repeat: [ this.repeat.x, this.repeat.y ],
			offset: [ this.offset.x, this.offset.y ],
			wrap: [ this.wrapS, this.wrapT ],

			minFilter: this.minFilter,
			magFilter: this.magFilter,
			anisotropy: this.anisotropy,

			flipY: this.flipY
		};

		if ( this.image !== undefined ) {

			// TODO: Move to THREE.Image

			var image = this.image;

			if ( image.uuid === undefined ) {

				image.uuid = _Math.generateUUID(); // UGH

			}

			if ( meta.images[ image.uuid ] === undefined ) {

				meta.images[ image.uuid ] = {
					uuid: image.uuid,
					url: getDataURL( image )
				};

			}

			output.image = image.uuid;

		}

		meta.textures[ this.uuid ] = output;

		return output;

	},

	dispose: function () {

		this.dispatchEvent( { type: 'dispose' } );

	},

	transformUv: function ( uv ) {

		if ( this.mapping !== UVMapping ) return;

		uv.multiply( this.repeat );
		uv.add( this.offset );

		if ( uv.x < 0 || uv.x > 1 ) {

			switch ( this.wrapS ) {

				case RepeatWrapping:

					uv.x = uv.x - Math.floor( uv.x );
					break;

				case ClampToEdgeWrapping:

					uv.x = uv.x < 0 ? 0 : 1;
					break;

				case MirroredRepeatWrapping:

					if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) {

						uv.x = Math.ceil( uv.x ) - uv.x;

					} else {

						uv.x = uv.x - Math.floor( uv.x );

					}
					break;

			}

		}

		if ( uv.y < 0 || uv.y > 1 ) {

			switch ( this.wrapT ) {

				case RepeatWrapping:

					uv.y = uv.y - Math.floor( uv.y );
					break;

				case ClampToEdgeWrapping:

					uv.y = uv.y < 0 ? 0 : 1;
					break;

				case MirroredRepeatWrapping:

					if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) {

						uv.y = Math.ceil( uv.y ) - uv.y;

					} else {

						uv.y = uv.y - Math.floor( uv.y );

					}
					break;

			}

		}

		if ( this.flipY ) {

			uv.y = 1 - uv.y;

		}

	}

} );

/**
 * @author alteredq / http://alteredqualia.com/
 */

function DataTexture( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {

	Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );

	this.image = { data: data, width: width, height: height };

	this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
	this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;

	this.generateMipmaps = false;
	this.flipY = false;
	this.unpackAlignment = 1;

}

DataTexture.prototype = Object.create( Texture.prototype );
DataTexture.prototype.constructor = DataTexture;

DataTexture.prototype.isDataTexture = true;

// define colors to share THREE.Color objects

var caches = {
	'colors': [],
	'texture' : []
};

function createTexture ( scale ) {

	var l = scale.length;
	var data = new Uint8Array( l * 3 );

	for ( var i = 0; i < l; ) {

		var c = scale[ l - ++i ];
		var offset = i * 3;

		data[ offset ]     = c[0];
		data[ offset + 1 ] = c[1];
		data[ offset + 2 ] = c[2];

	}

	var texture = new DataTexture( data, l, 1, RGBFormat, UnsignedByteType );

	texture.needsUpdate = true;

	return texture;

}

function createColors ( scale ) {

	var cache = [];
	var c;

	for ( var i = 0, l = scale.length; i < l; i++ ) {

		c = scale[ i ];

		cache[ i ] = new Color( c[ 0 ] / 255, c[ 1 ] / 255, c[ 2 ] / 255 );

	}

	return cache;

}

function getCacheEntry( cacheName, createFunc, name ) {

	var cache = caches[ cacheName ];
	var entry = cache[ name ];

	if ( entry === undefined ) {

		var scale = Colours[ name ];

		if ( scale === undefined ) console.error( 'unknown colour scale requested ' + name );

		entry = createFunc( scale );
		cache[ name ] = entry;

	}

	return entry;

}

function getTexture( name ) {

	return getCacheEntry( 'texture', createTexture, name );

}

function getColors( name ) {

	return getCacheEntry( 'colors', createColors, name );

}

var ColourCache = {
	getTexture: getTexture,
	getColors: getColors,
	red:       new Color( 0xff0000 ),
	yellow:    new Color( 0xffff00 ),
	green:     new Color( 0x00ff00 ),
	white:     new Color( 0xffffff ),
	grey:      new Color( 0x444444 ),
	lightGrey: new Color( 0x888888 ),
	hudBlue:   new Color( 0x106f8d ),
	hudRed:    new Color( 0x802100 )
};

/**
 * @author supereggbert / http://www.paulbrunt.co.uk/
 * @author philogb / http://blog.thejit.org/
 * @author mikael emtinger / http://gomo.se/
 * @author egraether / http://egraether.com/
 * @author WestLangley / http://github.com/WestLangley
 */

function Vector4( x, y, z, w ) {

	this.x = x || 0;
	this.y = y || 0;
	this.z = z || 0;
	this.w = ( w !== undefined ) ? w : 1;

}

Object.assign( Vector4.prototype, {

	isVector4: true,

	set: function ( x, y, z, w ) {

		this.x = x;
		this.y = y;
		this.z = z;
		this.w = w;

		return this;

	},

	setScalar: function ( scalar ) {

		this.x = scalar;
		this.y = scalar;
		this.z = scalar;
		this.w = scalar;

		return this;

	},

	setX: function ( x ) {

		this.x = x;

		return this;

	},

	setY: function ( y ) {

		this.y = y;

		return this;

	},

	setZ: function ( z ) {

		this.z = z;

		return this;

	},

	setW: function ( w ) {

		this.w = w;

		return this;

	},

	setComponent: function ( index, value ) {

		switch ( index ) {

			case 0: this.x = value; break;
			case 1: this.y = value; break;
			case 2: this.z = value; break;
			case 3: this.w = value; break;
			default: throw new Error( 'index is out of range: ' + index );

		}

		return this;

	},

	getComponent: function ( index ) {

		switch ( index ) {

			case 0: return this.x;
			case 1: return this.y;
			case 2: return this.z;
			case 3: return this.w;
			default: throw new Error( 'index is out of range: ' + index );

		}

	},

	clone: function () {

		return new this.constructor( this.x, this.y, this.z, this.w );

	},

	copy: function ( v ) {

		this.x = v.x;
		this.y = v.y;
		this.z = v.z;
		this.w = ( v.w !== undefined ) ? v.w : 1;

		return this;

	},

	add: function ( v, w ) {

		if ( w !== undefined ) {

			console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
			return this.addVectors( v, w );

		}

		this.x += v.x;
		this.y += v.y;
		this.z += v.z;
		this.w += v.w;

		return this;

	},

	addScalar: function ( s ) {

		this.x += s;
		this.y += s;
		this.z += s;
		this.w += s;

		return this;

	},

	addVectors: function ( a, b ) {

		this.x = a.x + b.x;
		this.y = a.y + b.y;
		this.z = a.z + b.z;
		this.w = a.w + b.w;

		return this;

	},

	addScaledVector: function ( v, s ) {

		this.x += v.x * s;
		this.y += v.y * s;
		this.z += v.z * s;
		this.w += v.w * s;

		return this;

	},

	sub: function ( v, w ) {

		if ( w !== undefined ) {

			console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
			return this.subVectors( v, w );

		}

		this.x -= v.x;
		this.y -= v.y;
		this.z -= v.z;
		this.w -= v.w;

		return this;

	},

	subScalar: function ( s ) {

		this.x -= s;
		this.y -= s;
		this.z -= s;
		this.w -= s;

		return this;

	},

	subVectors: function ( a, b ) {

		this.x = a.x - b.x;
		this.y = a.y - b.y;
		this.z = a.z - b.z;
		this.w = a.w - b.w;

		return this;

	},

	multiplyScalar: function ( scalar ) {

		this.x *= scalar;
		this.y *= scalar;
		this.z *= scalar;
		this.w *= scalar;

		return this;

	},

	applyMatrix4: function ( m ) {

		var x = this.x, y = this.y, z = this.z, w = this.w;
		var e = m.elements;

		this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w;
		this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w;
		this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w;
		this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;

		return this;

	},

	divideScalar: function ( scalar ) {

		return this.multiplyScalar( 1 / scalar );

	},

	setAxisAngleFromQuaternion: function ( q ) {

		// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm

		// q is assumed to be normalized

		this.w = 2 * Math.acos( q.w );

		var s = Math.sqrt( 1 - q.w * q.w );

		if ( s < 0.0001 ) {

			 this.x = 1;
			 this.y = 0;
			 this.z = 0;

		} else {

			 this.x = q.x / s;
			 this.y = q.y / s;
			 this.z = q.z / s;

		}

		return this;

	},

	setAxisAngleFromRotationMatrix: function ( m ) {

		// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm

		// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

		var angle, x, y, z,		// variables for result
			epsilon = 0.01,		// margin to allow for rounding errors
			epsilon2 = 0.1,		// margin to distinguish between 0 and 180 degrees

			te = m.elements,

			m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
			m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
			m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];

		if ( ( Math.abs( m12 - m21 ) < epsilon ) &&
		     ( Math.abs( m13 - m31 ) < epsilon ) &&
		     ( Math.abs( m23 - m32 ) < epsilon ) ) {

			// singularity found
			// first check for identity matrix which must have +1 for all terms
			// in leading diagonal and zero in other terms

			if ( ( Math.abs( m12 + m21 ) < epsilon2 ) &&
			     ( Math.abs( m13 + m31 ) < epsilon2 ) &&
			     ( Math.abs( m23 + m32 ) < epsilon2 ) &&
			     ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {

				// this singularity is identity matrix so angle = 0

				this.set( 1, 0, 0, 0 );

				return this; // zero angle, arbitrary axis

			}

			// otherwise this singularity is angle = 180

			angle = Math.PI;

			var xx = ( m11 + 1 ) / 2;
			var yy = ( m22 + 1 ) / 2;
			var zz = ( m33 + 1 ) / 2;
			var xy = ( m12 + m21 ) / 4;
			var xz = ( m13 + m31 ) / 4;
			var yz = ( m23 + m32 ) / 4;

			if ( ( xx > yy ) && ( xx > zz ) ) {

				// m11 is the largest diagonal term

				if ( xx < epsilon ) {

					x = 0;
					y = 0.707106781;
					z = 0.707106781;

				} else {

					x = Math.sqrt( xx );
					y = xy / x;
					z = xz / x;

				}

			} else if ( yy > zz ) {

				// m22 is the largest diagonal term

				if ( yy < epsilon ) {

					x = 0.707106781;
					y = 0;
					z = 0.707106781;

				} else {

					y = Math.sqrt( yy );
					x = xy / y;
					z = yz / y;

				}

			} else {

				// m33 is the largest diagonal term so base result on this

				if ( zz < epsilon ) {

					x = 0.707106781;
					y = 0.707106781;
					z = 0;

				} else {

					z = Math.sqrt( zz );
					x = xz / z;
					y = yz / z;

				}

			}

			this.set( x, y, z, angle );

			return this; // return 180 deg rotation

		}

		// as we have reached here there are no singularities so we can handle normally

		var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) +
		                   ( m13 - m31 ) * ( m13 - m31 ) +
		                   ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize

		if ( Math.abs( s ) < 0.001 ) s = 1;

		// prevent divide by zero, should not happen if matrix is orthogonal and should be
		// caught by singularity test above, but I've left it in just in case

		this.x = ( m32 - m23 ) / s;
		this.y = ( m13 - m31 ) / s;
		this.z = ( m21 - m12 ) / s;
		this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );

		return this;

	},

	min: function ( v ) {

		this.x = Math.min( this.x, v.x );
		this.y = Math.min( this.y, v.y );
		this.z = Math.min( this.z, v.z );
		this.w = Math.min( this.w, v.w );

		return this;

	},

	max: function ( v ) {

		this.x = Math.max( this.x, v.x );
		this.y = Math.max( this.y, v.y );
		this.z = Math.max( this.z, v.z );
		this.w = Math.max( this.w, v.w );

		return this;

	},

	clamp: function ( min, max ) {

		// assumes min < max, componentwise

		this.x = Math.max( min.x, Math.min( max.x, this.x ) );
		this.y = Math.max( min.y, Math.min( max.y, this.y ) );
		this.z = Math.max( min.z, Math.min( max.z, this.z ) );
		this.w = Math.max( min.w, Math.min( max.w, this.w ) );

		return this;

	},

	clampScalar: function () {

		var min, max;

		return function clampScalar( minVal, maxVal ) {

			if ( min === undefined ) {

				min = new Vector4();
				max = new Vector4();

			}

			min.set( minVal, minVal, minVal, minVal );
			max.set( maxVal, maxVal, maxVal, maxVal );

			return this.clamp( min, max );

		};

	}(),

	clampLength: function ( min, max ) {

		var length = this.length();

		return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );

	},

	floor: function () {

		this.x = Math.floor( this.x );
		this.y = Math.floor( this.y );
		this.z = Math.floor( this.z );
		this.w = Math.floor( this.w );

		return this;

	},

	ceil: function () {

		this.x = Math.ceil( this.x );
		this.y = Math.ceil( this.y );
		this.z = Math.ceil( this.z );
		this.w = Math.ceil( this.w );

		return this;

	},

	round: function () {

		this.x = Math.round( this.x );
		this.y = Math.round( this.y );
		this.z = Math.round( this.z );
		this.w = Math.round( this.w );

		return this;

	},

	roundToZero: function () {

		this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
		this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
		this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
		this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w );

		return this;

	},

	negate: function () {

		this.x = - this.x;
		this.y = - this.y;
		this.z = - this.z;
		this.w = - this.w;

		return this;

	},

	dot: function ( v ) {

		return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;

	},

	lengthSq: function () {

		return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;

	},

	length: function () {

		return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );

	},

	lengthManhattan: function () {

		return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );

	},

	normalize: function () {

		return this.divideScalar( this.length() || 1 );

	},

	setLength: function ( length ) {

		return this.normalize().multiplyScalar( length );

	},

	lerp: function ( v, alpha ) {

		this.x += ( v.x - this.x ) * alpha;
		this.y += ( v.y - this.y ) * alpha;
		this.z += ( v.z - this.z ) * alpha;
		this.w += ( v.w - this.w ) * alpha;

		return this;

	},

	lerpVectors: function ( v1, v2, alpha ) {

		return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );

	},

	equals: function ( v ) {

		return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );

	},

	fromArray: function ( array, offset ) {

		if ( offset === undefined ) offset = 0;

		this.x = array[ offset ];
		this.y = array[ offset + 1 ];
		this.z = array[ offset + 2 ];
		this.w = array[ offset + 3 ];

		return this;

	},

	toArray: function ( array, offset ) {

		if ( array === undefined ) array = [];
		if ( offset === undefined ) offset = 0;

		array[ offset ] = this.x;
		array[ offset + 1 ] = this.y;
		array[ offset + 2 ] = this.z;
		array[ offset + 3 ] = this.w;

		return array;

	},

	fromBufferAttribute: function ( attribute, index, offset ) {

		if ( offset !== undefined ) {

			console.warn( 'THREE.Vector4: offset has been removed from .fromBufferAttribute().' );

		}

		this.x = attribute.getX( index );
		this.y = attribute.getY( index );
		this.z = attribute.getZ( index );
		this.w = attribute.getW( index );

		return this;

	}

} );

/**
 * @author szimek / https://github.com/szimek/
 * @author alteredq / http://alteredqualia.com/
 * @author Marius Kintel / https://github.com/kintel
 */

/*
 In options, we can specify:
 * Texture parameters for an auto-generated target texture
 * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
*/
function WebGLRenderTarget( width, height, options ) {

	this.uuid = _Math.generateUUID();

	this.width = width;
	this.height = height;

	this.scissor = new Vector4( 0, 0, width, height );
	this.scissorTest = false;

	this.viewport = new Vector4( 0, 0, width, height );

	options = options || {};

	if ( options.minFilter === undefined ) options.minFilter = LinearFilter;

	this.texture = new Texture( undefined, undefined, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding );

	this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
	this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true;
	this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;

}

Object.assign( WebGLRenderTarget.prototype, EventDispatcher.prototype, {

	isWebGLRenderTarget: true,

	setSize: function ( width, height ) {

		if ( this.width !== width || this.height !== height ) {

			this.width = width;
			this.height = height;

			this.dispose();

		}

		this.viewport.set( 0, 0, width, height );
		this.scissor.set( 0, 0, width, height );

	},

	clone: function () {

		return new this.constructor().copy( this );

	},

	copy: function ( source ) {

		this.width = source.width;
		this.height = source.height;

		this.viewport.copy( source.viewport );

		this.texture = source.texture.clone();

		this.depthBuffer = source.depthBuffer;
		this.stencilBuffer = source.stencilBuffer;
		this.depthTexture = source.depthTexture;

		return this;

	},

	dispose: function () {

		this.dispatchEvent( { type: 'dispose' } );

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function CubeTexture( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {

	images = images !== undefined ? images : [];
	mapping = mapping !== undefined ? mapping : CubeReflectionMapping;

	Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );

	this.flipY = false;

}

CubeTexture.prototype = Object.create( Texture.prototype );
CubeTexture.prototype.constructor = CubeTexture;

CubeTexture.prototype.isCubeTexture = true;

Object.defineProperty( CubeTexture.prototype, 'images', {

	get: function () {

		return this.image;

	},

	set: function ( value ) {

		this.image = value;

	}

} );

/**
 * @author tschw
 *
 * Uniforms of a program.
 * Those form a tree structure with a special top-level container for the root,
 * which you get by calling 'new WebGLUniforms( gl, program, renderer )'.
 *
 *
 * Properties of inner nodes including the top-level container:
 *
 * .seq - array of nested uniforms
 * .map - nested uniforms by name
 *
 *
 * Methods of all nodes except the top-level container:
 *
 * .setValue( gl, value, [renderer] )
 *
 * 		uploads a uniform value(s)
 *  	the 'renderer' parameter is needed for sampler uniforms
 *
 *
 * Static methods of the top-level container (renderer factorizations):
 *
 * .upload( gl, seq, values, renderer )
 *
 * 		sets uniforms in 'seq' to 'values[id].value'
 *
 * .seqWithValue( seq, values ) : filteredSeq
 *
 * 		filters 'seq' entries with corresponding entry in values
 *
 *
 * Methods of the top-level container (renderer factorizations):
 *
 * .setValue( gl, name, value )
 *
 * 		sets uniform with  name 'name' to 'value'
 *
 * .set( gl, obj, prop )
 *
 * 		sets uniform from object and property with same name than uniform
 *
 * .setOptional( gl, obj, prop )
 *
 * 		like .set for an optional property of the object
 *
 */

var emptyTexture = new Texture();
var emptyCubeTexture = new CubeTexture();

// --- Base for inner nodes (including the root) ---

function UniformContainer() {

	this.seq = [];
	this.map = {};

}

// --- Utilities ---

// Array Caches (provide typed arrays for temporary by size)

var arrayCacheF32 = [];
var arrayCacheI32 = [];

// Float32Array caches used for uploading Matrix uniforms

var mat4array = new Float32Array( 16 );
var mat3array = new Float32Array( 9 );

// Flattening for arrays of vectors and matrices

function flatten( array, nBlocks, blockSize ) {

	var firstElem = array[ 0 ];

	if ( firstElem <= 0 || firstElem > 0 ) return array;
	// unoptimized: ! isNaN( firstElem )
	// see http://jacksondunstan.com/articles/983

	var n = nBlocks * blockSize,
		r = arrayCacheF32[ n ];

	if ( r === undefined ) {

		r = new Float32Array( n );
		arrayCacheF32[ n ] = r;

	}

	if ( nBlocks !== 0 ) {

		firstElem.toArray( r, 0 );

		for ( var i = 1, offset = 0; i !== nBlocks; ++ i ) {

			offset += blockSize;
			array[ i ].toArray( r, offset );

		}

	}

	return r;

}

// Texture unit allocation

function allocTexUnits( renderer, n ) {

	var r = arrayCacheI32[ n ];

	if ( r === undefined ) {

		r = new Int32Array( n );
		arrayCacheI32[ n ] = r;

	}

	for ( var i = 0; i !== n; ++ i )
		r[ i ] = renderer.allocTextureUnit();

	return r;

}

// --- Setters ---

// Note: Defining these methods externally, because they come in a bunch
// and this way their names minify.

// Single scalar

function setValue1f( gl, v ) { gl.uniform1f( this.addr, v ); }
function setValue1i( gl, v ) { gl.uniform1i( this.addr, v ); }

// Single float vector (from flat array or THREE.VectorN)

function setValue2fv( gl, v ) {

	if ( v.x === undefined ) gl.uniform2fv( this.addr, v );
	else gl.uniform2f( this.addr, v.x, v.y );

}

function setValue3fv( gl, v ) {

	if ( v.x !== undefined )
		gl.uniform3f( this.addr, v.x, v.y, v.z );
	else if ( v.r !== undefined )
		gl.uniform3f( this.addr, v.r, v.g, v.b );
	else
		gl.uniform3fv( this.addr, v );

}

function setValue4fv( gl, v ) {

	if ( v.x === undefined ) gl.uniform4fv( this.addr, v );
	else gl.uniform4f( this.addr, v.x, v.y, v.z, v.w );

}

// Single matrix (from flat array or MatrixN)

function setValue2fm( gl, v ) {

	gl.uniformMatrix2fv( this.addr, false, v.elements || v );

}

function setValue3fm( gl, v ) {

	if ( v.elements === undefined ) {

		gl.uniformMatrix3fv( this.addr, false, v );

	} else {

		mat3array.set( v.elements );
		gl.uniformMatrix3fv( this.addr, false, mat3array );

	}

}

function setValue4fm( gl, v ) {

	if ( v.elements === undefined ) {

		gl.uniformMatrix4fv( this.addr, false, v );

	} else {

		mat4array.set( v.elements );
		gl.uniformMatrix4fv( this.addr, false, mat4array );

	}

}

// Single texture (2D / Cube)

function setValueT1( gl, v, renderer ) {

	var unit = renderer.allocTextureUnit();
	gl.uniform1i( this.addr, unit );
	renderer.setTexture2D( v || emptyTexture, unit );

}

function setValueT6( gl, v, renderer ) {

	var unit = renderer.allocTextureUnit();
	gl.uniform1i( this.addr, unit );
	renderer.setTextureCube( v || emptyCubeTexture, unit );

}

// Integer / Boolean vectors or arrays thereof (always flat arrays)

function setValue2iv( gl, v ) { gl.uniform2iv( this.addr, v ); }
function setValue3iv( gl, v ) { gl.uniform3iv( this.addr, v ); }
function setValue4iv( gl, v ) { gl.uniform4iv( this.addr, v ); }

// Helper to pick the right setter for the singular case

function getSingularSetter( type ) {

	switch ( type ) {

		case 0x1406: return setValue1f; // FLOAT
		case 0x8b50: return setValue2fv; // _VEC2
		case 0x8b51: return setValue3fv; // _VEC3
		case 0x8b52: return setValue4fv; // _VEC4

		case 0x8b5a: return setValue2fm; // _MAT2
		case 0x8b5b: return setValue3fm; // _MAT3
		case 0x8b5c: return setValue4fm; // _MAT4

		case 0x8b5e: case 0x8d66: return setValueT1; // SAMPLER_2D, SAMPLER_EXTERNAL_OES
		case 0x8b60: return setValueT6; // SAMPLER_CUBE

		case 0x1404: case 0x8b56: return setValue1i; // INT, BOOL
		case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2
		case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3
		case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4

	}

}

// Array of scalars

function setValue1fv( gl, v ) { gl.uniform1fv( this.addr, v ); }
function setValue1iv( gl, v ) { gl.uniform1iv( this.addr, v ); }

// Array of vectors (flat or from THREE classes)

function setValueV2a( gl, v ) {

	gl.uniform2fv( this.addr, flatten( v, this.size, 2 ) );

}

function setValueV3a( gl, v ) {

	gl.uniform3fv( this.addr, flatten( v, this.size, 3 ) );

}

function setValueV4a( gl, v ) {

	gl.uniform4fv( this.addr, flatten( v, this.size, 4 ) );

}

// Array of matrices (flat or from THREE clases)

function setValueM2a( gl, v ) {

	gl.uniformMatrix2fv( this.addr, false, flatten( v, this.size, 4 ) );

}

function setValueM3a( gl, v ) {

	gl.uniformMatrix3fv( this.addr, false, flatten( v, this.size, 9 ) );

}

function setValueM4a( gl, v ) {

	gl.uniformMatrix4fv( this.addr, false, flatten( v, this.size, 16 ) );

}

// Array of textures (2D / Cube)

function setValueT1a( gl, v, renderer ) {

	var n = v.length,
		units = allocTexUnits( renderer, n );

	gl.uniform1iv( this.addr, units );

	for ( var i = 0; i !== n; ++ i ) {

		renderer.setTexture2D( v[ i ] || emptyTexture, units[ i ] );

	}

}

function setValueT6a( gl, v, renderer ) {

	var n = v.length,
		units = allocTexUnits( renderer, n );

	gl.uniform1iv( this.addr, units );

	for ( var i = 0; i !== n; ++ i ) {

		renderer.setTextureCube( v[ i ] || emptyCubeTexture, units[ i ] );

	}

}

// Helper to pick the right setter for a pure (bottom-level) array

function getPureArraySetter( type ) {

	switch ( type ) {

		case 0x1406: return setValue1fv; // FLOAT
		case 0x8b50: return setValueV2a; // _VEC2
		case 0x8b51: return setValueV3a; // _VEC3
		case 0x8b52: return setValueV4a; // _VEC4

		case 0x8b5a: return setValueM2a; // _MAT2
		case 0x8b5b: return setValueM3a; // _MAT3
		case 0x8b5c: return setValueM4a; // _MAT4

		case 0x8b5e: return setValueT1a; // SAMPLER_2D
		case 0x8b60: return setValueT6a; // SAMPLER_CUBE

		case 0x1404: case 0x8b56: return setValue1iv; // INT, BOOL
		case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2
		case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3
		case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4

	}

}

// --- Uniform Classes ---

function SingleUniform( id, activeInfo, addr ) {

	this.id = id;
	this.addr = addr;
	this.setValue = getSingularSetter( activeInfo.type );

	// this.path = activeInfo.name; // DEBUG

}

function PureArrayUniform( id, activeInfo, addr ) {

	this.id = id;
	this.addr = addr;
	this.size = activeInfo.size;
	this.setValue = getPureArraySetter( activeInfo.type );

	// this.path = activeInfo.name; // DEBUG

}

function StructuredUniform( id ) {

	this.id = id;

	UniformContainer.call( this ); // mix-in

}

StructuredUniform.prototype.setValue = function ( gl, value ) {

	// Note: Don't need an extra 'renderer' parameter, since samplers
	// are not allowed in structured uniforms.

	var seq = this.seq;

	for ( var i = 0, n = seq.length; i !== n; ++ i ) {

		var u = seq[ i ];
		u.setValue( gl, value[ u.id ] );

	}

};

// --- Top-level ---

// Parser - builds up the property tree from the path strings

var RePathPart = /([\w\d_]+)(\])?(\[|\.)?/g;

// extracts
// 	- the identifier (member name or array index)
//  - followed by an optional right bracket (found when array index)
//  - followed by an optional left bracket or dot (type of subscript)
//
// Note: These portions can be read in a non-overlapping fashion and
// allow straightforward parsing of the hierarchy that WebGL encodes
// in the uniform names.

function addUniform( container, uniformObject ) {

	container.seq.push( uniformObject );
	container.map[ uniformObject.id ] = uniformObject;

}

function parseUniform( activeInfo, addr, container ) {

	var path = activeInfo.name,
		pathLength = path.length;

	// reset RegExp object, because of the early exit of a previous run
	RePathPart.lastIndex = 0;

	for ( ; ; ) {

		var match = RePathPart.exec( path ),
			matchEnd = RePathPart.lastIndex,

			id = match[ 1 ],
			idIsIndex = match[ 2 ] === ']',
			subscript = match[ 3 ];

		if ( idIsIndex ) id = id | 0; // convert to integer

		if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) {

			// bare name or "pure" bottom-level array "[0]" suffix

			addUniform( container, subscript === undefined ?
					new SingleUniform( id, activeInfo, addr ) :
					new PureArrayUniform( id, activeInfo, addr ) );

			break;

		} else {

			// step into inner node / create it in case it doesn't exist

			var map = container.map, next = map[ id ];

			if ( next === undefined ) {

				next = new StructuredUniform( id );
				addUniform( container, next );

			}

			container = next;

		}

	}

}

// Root Container

function WebGLUniforms( gl, program, renderer ) {

	UniformContainer.call( this );

	this.renderer = renderer;

	var n = gl.getProgramParameter( program, gl.ACTIVE_UNIFORMS );

	for ( var i = 0; i < n; ++ i ) {

		var info = gl.getActiveUniform( program, i ),
			path = info.name,
			addr = gl.getUniformLocation( program, path );

		parseUniform( info, addr, this );

	}

}

WebGLUniforms.prototype.setValue = function ( gl, name, value ) {

	var u = this.map[ name ];

	if ( u !== undefined ) u.setValue( gl, value, this.renderer );

};

WebGLUniforms.prototype.setOptional = function ( gl, object, name ) {

	var v = object[ name ];

	if ( v !== undefined ) this.setValue( gl, name, v );

};


// Static interface

WebGLUniforms.upload = function ( gl, seq, values, renderer ) {

	for ( var i = 0, n = seq.length; i !== n; ++ i ) {

		var u = seq[ i ],
			v = values[ u.id ];

		if ( v.needsUpdate !== false ) {

			// note: always updating when .needsUpdate is undefined
			u.setValue( gl, v.value, renderer );

		}

	}

};

WebGLUniforms.seqWithValue = function ( seq, values ) {

	var r = [];

	for ( var i = 0, n = seq.length; i !== n; ++ i ) {

		var u = seq[ i ];
		if ( u.id in values ) r.push( u );

	}

	return r;

};

/**
 * Uniforms library for shared webgl shaders
 */

var UniformsLib = {

	common: {

		diffuse: { value: new Color( 0xeeeeee ) },
		opacity: { value: 1.0 },

		map: { value: null },
		offsetRepeat: { value: new Vector4( 0, 0, 1, 1 ) },

		specularMap: { value: null },
		alphaMap: { value: null },

		envMap: { value: null },
		flipEnvMap: { value: - 1 },
		reflectivity: { value: 1.0 },
		refractionRatio: { value: 0.98 }

	},

	aomap: {

		aoMap: { value: null },
		aoMapIntensity: { value: 1 }

	},

	lightmap: {

		lightMap: { value: null },
		lightMapIntensity: { value: 1 }

	},

	emissivemap: {

		emissiveMap: { value: null }

	},

	bumpmap: {

		bumpMap: { value: null },
		bumpScale: { value: 1 }

	},

	normalmap: {

		normalMap: { value: null },
		normalScale: { value: new Vector2( 1, 1 ) }

	},

	displacementmap: {

		displacementMap: { value: null },
		displacementScale: { value: 1 },
		displacementBias: { value: 0 }

	},

	roughnessmap: {

		roughnessMap: { value: null }

	},

	metalnessmap: {

		metalnessMap: { value: null }

	},

	gradientmap: {

		gradientMap: { value: null }

	},

	fog: {

		fogDensity: { value: 0.00025 },
		fogNear: { value: 1 },
		fogFar: { value: 2000 },
		fogColor: { value: new Color( 0xffffff ) }

	},

	lights: {

		ambientLightColor: { value: [] },

		directionalLights: { value: [], properties: {
			direction: {},
			color: {},

			shadow: {},
			shadowBias: {},
			shadowRadius: {},
			shadowMapSize: {}
		} },

		directionalShadowMap: { value: [] },
		directionalShadowMatrix: { value: [] },

		spotLights: { value: [], properties: {
			color: {},
			position: {},
			direction: {},
			distance: {},
			coneCos: {},
			penumbraCos: {},
			decay: {},

			shadow: {},
			shadowBias: {},
			shadowRadius: {},
			shadowMapSize: {}
		} },

		spotShadowMap: { value: [] },
		spotShadowMatrix: { value: [] },

		pointLights: { value: [], properties: {
			color: {},
			position: {},
			decay: {},
			distance: {},

			shadow: {},
			shadowBias: {},
			shadowRadius: {},
			shadowMapSize: {}
		} },

		pointShadowMap: { value: [] },
		pointShadowMatrix: { value: [] },

		hemisphereLights: { value: [], properties: {
			direction: {},
			skyColor: {},
			groundColor: {}
		} },

		// TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src
		rectAreaLights: { value: [], properties: {
			color: {},
			position: {},
			width: {},
			height: {}
		} }

	},

	points: {

		diffuse: { value: new Color( 0xeeeeee ) },
		opacity: { value: 1.0 },
		size: { value: 1.0 },
		scale: { value: 1.0 },
		map: { value: null },
		offsetRepeat: { value: new Vector4( 0, 0, 1, 1 ) }

	}

};

/**
 * Uniform Utilities
 */

var UniformsUtils = {

	merge: function ( uniforms ) {

		var merged = {};

		for ( var u = 0; u < uniforms.length; u ++ ) {

			var tmp = this.clone( uniforms[ u ] );

			for ( var p in tmp ) {

				merged[ p ] = tmp[ p ];

			}

		}

		return merged;

	},

	clone: function ( uniforms_src ) {

		var uniforms_dst = {};

		for ( var u in uniforms_src ) {

			uniforms_dst[ u ] = {};

			for ( var p in uniforms_src[ u ] ) {

				var parameter_src = uniforms_src[ u ][ p ];

				if ( parameter_src && ( parameter_src.isColor ||
					parameter_src.isMatrix3 || parameter_src.isMatrix4 ||
					parameter_src.isVector2 || parameter_src.isVector3 || parameter_src.isVector4 ||
					parameter_src.isTexture ) ) {

					uniforms_dst[ u ][ p ] = parameter_src.clone();

				} else if ( Array.isArray( parameter_src ) ) {

					uniforms_dst[ u ][ p ] = parameter_src.slice();

				} else {

					uniforms_dst[ u ][ p ] = parameter_src;

				}

			}

		}

		return uniforms_dst;

	}

};

var alphamap_fragment = "#ifdef USE_ALPHAMAP\r\n\r\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\r\n\r\n#endif\r\n";

var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\r\n\r\n\tuniform sampler2D alphaMap;\r\n\r\n#endif\r\n";

var alphatest_fragment = "#ifdef ALPHATEST\r\n\r\n\tif ( diffuseColor.a < ALPHATEST ) discard;\r\n\r\n#endif\r\n";

var aomap_fragment = "#ifdef USE_AOMAP\r\n\r\n\t// reads channel R, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\r\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\r\n\r\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\r\n\r\n\t#if defined( USE_ENVMAP ) && defined( PHYSICAL )\r\n\r\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\r\n\r\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\r\n\r\n\t#endif\r\n\r\n#endif\r\n";

var aomap_pars_fragment = "#ifdef USE_AOMAP\r\n\r\n\tuniform sampler2D aoMap;\r\n\tuniform float aoMapIntensity;\r\n\r\n#endif";

var begin_vertex = "\r\nvec3 transformed = vec3( position );\r\n";

var beginnormal_vertex = "\r\nvec3 objectNormal = vec3( normal );\r\n";

var bsdfs = "float punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\r\n\r\n\tif( decayExponent > 0.0 ) {\r\n\r\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\r\n\r\n\t\t// based upon Frostbite 3 Moving to Physically-based Rendering\r\n\t\t// page 32, equation 26: E[window1]\r\n\t\t// http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr_v2.pdf\r\n\t\t// this is intended to be used on spot and point lights who are represented as luminous intensity\r\n\t\t// but who must be converted to luminous irradiance for surface lighting calculation\r\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\r\n\t\tfloat maxDistanceCutoffFactor = pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\r\n\t\treturn distanceFalloff * maxDistanceCutoffFactor;\r\n\r\n#else\r\n\r\n\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\r\n\r\n#endif\r\n\r\n\t}\r\n\r\n\treturn 1.0;\r\n\r\n}\r\n\r\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\r\n\r\n\treturn RECIPROCAL_PI * diffuseColor;\r\n\r\n} // validated\r\n\r\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\r\n\r\n\t// Original approximation by Christophe Schlick '94\r\n\t// float fresnel = pow( 1.0 - dotLH, 5.0 );\r\n\r\n\t// Optimized variant (presented by Epic at SIGGRAPH '13)\r\n\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\r\n\r\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\r\n\r\n} // validated\r\n\r\n// Microfacet Models for Refraction through Rough Surfaces - equation (34)\r\n// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html\r\n// alpha is \"roughness squared\" in Disney’s reparameterization\r\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\r\n\r\n\t// geometry term = G(l)⋅G(v) / 4(n⋅l)(n⋅v)\r\n\r\n\tfloat a2 = pow2( alpha );\r\n\r\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\r\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\r\n\r\n\treturn 1.0 / ( gl * gv );\r\n\r\n} // validated\r\n\r\n// Moving Frostbite to Physically Based Rendering 2.0 - page 12, listing 2\r\n// http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr_v2.pdf\r\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\r\n\r\n\tfloat a2 = pow2( alpha );\r\n\r\n\t// dotNL and dotNV are explicitly swapped. This is not a mistake.\r\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\r\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\r\n\r\n\treturn 0.5 / max( gv + gl, EPSILON );\r\n}\r\n\r\n// Microfacet Models for Refraction through Rough Surfaces - equation (33)\r\n// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html\r\n// alpha is \"roughness squared\" in Disney’s reparameterization\r\nfloat D_GGX( const in float alpha, const in float dotNH ) {\r\n\r\n\tfloat a2 = pow2( alpha );\r\n\r\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0; // avoid alpha = 0 with dotNH = 1\r\n\r\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\r\n\r\n}\r\n\r\n// GGX Distribution, Schlick Fresnel, GGX-Smith Visibility\r\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\r\n\r\n\tfloat alpha = pow2( roughness ); // UE4's roughness\r\n\r\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\r\n\r\n\tfloat dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );\r\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\r\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\r\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\r\n\r\n\tvec3 F = F_Schlick( specularColor, dotLH );\r\n\r\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\r\n\r\n\tfloat D = D_GGX( alpha, dotNH );\r\n\r\n\treturn F * ( G * D );\r\n\r\n} // validated\r\n\r\n// Rect Area Light\r\n\r\n// Area light computation code adapted from:\r\n// Real-Time Polygonal-Light Shading with Linearly Transformed Cosines\r\n// By: Eric Heitz, Jonathan Dupuy, Stephen Hill and David Neubelt\r\n// https://drive.google.com/file/d/0BzvWIdpUpRx_d09ndGVjNVJzZjA/view\r\n// https://eheitzresearch.wordpress.com/415-2/\r\n// http://blog.selfshadow.com/sandbox/ltc.html\r\n\r\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\r\n\r\n\tconst float LUT_SIZE  = 64.0;\r\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\r\n\tconst float LUT_BIAS  = 0.5 / LUT_SIZE;\r\n\r\n\tfloat theta = acos( dot( N, V ) );\r\n\r\n\t// Parameterization of texture:\r\n\t// sqrt(roughness) -> [0,1]\r\n\t// theta -> [0, PI/2]\r\n\tvec2 uv = vec2(\r\n\t\tsqrt( saturate( roughness ) ),\r\n\t\tsaturate( theta / ( 0.5 * PI ) ) );\r\n\r\n\t// Ensure we don't have nonlinearities at the look-up table's edges\r\n\t// see: http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter24.html\r\n\t//      \"Shader Analysis\" section\r\n\tuv = uv * LUT_SCALE + LUT_BIAS;\r\n\r\n\treturn uv;\r\n\r\n}\r\n\r\n// Real-Time Area Lighting: a Journey from Research to Production\r\n// By: Stephen Hill & Eric Heitz\r\n// http://advances.realtimerendering.com/s2016/s2016_ltc_rnd.pdf\r\n// An approximation for the form factor of a clipped rectangle.\r\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\r\n\r\n\tfloat l = length( f );\r\n\r\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\r\n\r\n}\r\n\r\n// Real-Time Polygonal-Light Shading with Linearly Transformed Cosines\r\n// also Real-Time Area Lighting: a Journey from Research to Production\r\n// http://advances.realtimerendering.com/s2016/s2016_ltc_rnd.pdf\r\n// Normalization by 2*PI is incorporated in this function itself.\r\n// theta/sin(theta) is approximated by rational polynomial\r\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\r\n\r\n\tfloat x = dot( v1, v2 );\r\n\r\n\tfloat y = abs( x );\r\n\tfloat a = 0.86267 + (0.49788 + 0.01436 * y ) * y;\r\n\tfloat b = 3.45068 + (4.18814 + y) * y;\r\n\tfloat v = a / b;\r\n\r\n\tfloat theta_sintheta = (x > 0.0) ? v : 0.5 * inversesqrt( 1.0 - x * x ) - v;\r\n\r\n\treturn cross( v1, v2 ) * theta_sintheta;\r\n\r\n}\r\n\r\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\r\n\r\n\t// bail if point is on back side of plane of light\r\n\t// assumes ccw winding order of light vertices\r\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\r\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\r\n\tvec3 lightNormal = cross( v1, v2 );\r\n\r\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\r\n\r\n\t// construct orthonormal basis around N\r\n\tvec3 T1, T2;\r\n\tT1 = normalize( V - N * dot( V, N ) );\r\n\tT2 = - cross( N, T1 ); // negated from paper; possibly due to a different assumed handedness of world coordinate system\r\n\r\n\t// compute transform\r\n\tmat3 mat = mInv * transpose( mat3( T1, T2, N ) );\r\n\r\n\t// transform rect\r\n\tvec3 coords[ 4 ];\r\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\r\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\r\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\r\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\r\n\r\n\t// project rect onto sphere\r\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\r\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\r\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\r\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\r\n\r\n\t// calculate vector form factor\r\n\tvec3 vectorFormFactor = vec3( 0.0 );\r\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\r\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\r\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\r\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\r\n\r\n\t// adjust for horizon clipping\r\n\tvec3 result = vec3( LTC_ClippedSphereFormFactor( vectorFormFactor ) );\r\n\r\n\treturn result;\r\n\r\n}\r\n\r\n// End Rect Area Light\r\n\r\n// ref: https://www.unrealengine.com/blog/physically-based-shading-on-mobile - environmentBRDF for GGX on mobile\r\nvec3 BRDF_Specular_GGX_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\r\n\r\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\r\n\r\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\r\n\r\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\r\n\r\n\tvec4 r = roughness * c0 + c1;\r\n\r\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\r\n\r\n\tvec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;\r\n\r\n\treturn specularColor * AB.x + AB.y;\r\n\r\n} // validated\r\n\r\n\r\nfloat G_BlinnPhong_Implicit( ) {\r\n\r\n\t// geometry term is (n dot l)(n dot v) / 4(n dot l)(n dot v)\r\n\treturn 0.25;\r\n\r\n}\r\n\r\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\r\n\r\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\r\n\r\n}\r\n\r\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\r\n\r\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\r\n\r\n\t//float dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );\r\n\t//float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\r\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\r\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\r\n\r\n\tvec3 F = F_Schlick( specularColor, dotLH );\r\n\r\n\tfloat G = G_BlinnPhong_Implicit( );\r\n\r\n\tfloat D = D_BlinnPhong( shininess, dotNH );\r\n\r\n\treturn F * ( G * D );\r\n\r\n} // validated\r\n\r\n// source: http://simonstechblog.blogspot.ca/2011/12/microfacet-brdf.html\r\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\r\n\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\r\n}\r\n\r\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\r\n\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\r\n}\r\n";

var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\r\n\r\n\tuniform sampler2D bumpMap;\r\n\tuniform float bumpScale;\r\n\r\n\t// Derivative maps - bump mapping unparametrized surfaces by Morten Mikkelsen\r\n\t// http://mmikkelsen3d.blogspot.sk/2011/07/derivative-maps.html\r\n\r\n\t// Evaluate the derivative of the height w.r.t. screen-space using forward differencing (listing 2)\r\n\r\n\tvec2 dHdxy_fwd() {\r\n\r\n\t\tvec2 dSTdx = dFdx( vUv );\r\n\t\tvec2 dSTdy = dFdy( vUv );\r\n\r\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\r\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\r\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\r\n\r\n\t\treturn vec2( dBx, dBy );\r\n\r\n\t}\r\n\r\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\r\n\r\n\t\t// Workaround for Adreno 3XX dFd*( vec3 ) bug. See #9988\r\n\r\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\r\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\r\n\t\tvec3 vN = surf_norm;\t\t// normalized\r\n\r\n\t\tvec3 R1 = cross( vSigmaY, vN );\r\n\t\tvec3 R2 = cross( vN, vSigmaX );\r\n\r\n\t\tfloat fDet = dot( vSigmaX, R1 );\r\n\r\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\r\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\r\n\r\n\t}\r\n\r\n#endif\r\n";

var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\r\n\r\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; ++ i ) {\r\n\r\n\t\tvec4 plane = clippingPlanes[ i ];\r\n\t\tif ( dot( vViewPosition, plane.xyz ) > plane.w ) discard;\r\n\r\n\t}\r\n\t\t\r\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\r\n\r\n\t\tbool clipped = true;\r\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; ++ i ) {\r\n\t\t\tvec4 plane = clippingPlanes[ i ];\r\n\t\t\tclipped = ( dot( vViewPosition, plane.xyz ) > plane.w ) && clipped;\r\n\t\t}\r\n\r\n\t\tif ( clipped ) discard;\r\n\t\r\n\t#endif\r\n\r\n#endif\r\n";

var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\r\n\r\n\t#if ! defined( PHYSICAL ) && ! defined( PHONG )\r\n\t\tvarying vec3 vViewPosition;\r\n\t#endif\r\n\r\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\r\n\r\n#endif\r\n";

var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\r\n\tvarying vec3 vViewPosition;\r\n#endif\r\n";

var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\r\n\tvViewPosition = - mvPosition.xyz;\r\n#endif\r\n\r\n";

var color_fragment = "#ifdef USE_COLOR\r\n\r\n\tdiffuseColor.rgb *= vColor;\r\n\r\n#endif";

var color_pars_fragment = "#ifdef USE_COLOR\r\n\r\n\tvarying vec3 vColor;\r\n\r\n#endif\r\n";

var color_pars_vertex = "#ifdef USE_COLOR\r\n\r\n\tvarying vec3 vColor;\r\n\r\n#endif";

var color_vertex = "#ifdef USE_COLOR\r\n\r\n\tvColor.xyz = color.xyz;\r\n\r\n#endif";

var common = "#define PI 3.14159265359\r\n#define PI2 6.28318530718\r\n#define PI_HALF 1.5707963267949\r\n#define RECIPROCAL_PI 0.31830988618\r\n#define RECIPROCAL_PI2 0.15915494\r\n#define LOG2 1.442695\r\n#define EPSILON 1e-6\r\n\r\n#define saturate(a) clamp( a, 0.0, 1.0 )\r\n#define whiteCompliment(a) ( 1.0 - saturate( a ) )\r\n\r\nfloat pow2( const in float x ) { return x*x; }\r\nfloat pow3( const in float x ) { return x*x*x; }\r\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\r\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\r\n// expects values in the range of [0,1]x[0,1], returns values in the [0,1] range.\r\n// do not collapse into a single function per: http://byteblacksmith.com/improvements-to-the-canonical-one-liner-glsl-rand-for-opengl-es-2-0/\r\nhighp float rand( const in vec2 uv ) {\r\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\r\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\r\n\treturn fract(sin(sn) * c);\r\n}\r\n\r\nstruct IncidentLight {\r\n\tvec3 color;\r\n\tvec3 direction;\r\n\tbool visible;\r\n};\r\n\r\nstruct ReflectedLight {\r\n\tvec3 directDiffuse;\r\n\tvec3 directSpecular;\r\n\tvec3 indirectDiffuse;\r\n\tvec3 indirectSpecular;\r\n};\r\n\r\nstruct GeometricContext {\r\n\tvec3 position;\r\n\tvec3 normal;\r\n\tvec3 viewDir;\r\n};\r\n\r\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\r\n\r\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\r\n\r\n}\r\n\r\n// http://en.wikibooks.org/wiki/GLSL_Programming/Applying_Matrix_Transformations\r\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\r\n\r\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\r\n\r\n}\r\n\r\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\r\n\r\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\r\n\r\n\treturn - distance * planeNormal + point;\r\n\r\n}\r\n\r\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\r\n\r\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\r\n\r\n}\r\n\r\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\r\n\r\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\r\n\r\n}\r\n\r\nmat3 transpose( const in mat3 v ) {\r\n\r\n\tmat3 tmp;\r\n\ttmp[0] = vec3(v[0].x, v[1].x, v[2].x);\r\n\ttmp[1] = vec3(v[0].y, v[1].y, v[2].y);\r\n\ttmp[2] = vec3(v[0].z, v[1].z, v[2].z);\r\n\r\n\treturn tmp;\r\n\r\n}\r\n";

var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\r\n\r\n#define cubeUV_textureSize (1024.0)\r\n\r\nint getFaceFromDirection(vec3 direction) {\r\n\tvec3 absDirection = abs(direction);\r\n\tint face = -1;\r\n\tif( absDirection.x > absDirection.z ) {\r\n\t\tif(absDirection.x > absDirection.y )\r\n\t\t\tface = direction.x > 0.0 ? 0 : 3;\r\n\t\telse\r\n\t\t\tface = direction.y > 0.0 ? 1 : 4;\r\n\t}\r\n\telse {\r\n\t\tif(absDirection.z > absDirection.y )\r\n\t\t\tface = direction.z > 0.0 ? 2 : 5;\r\n\t\telse\r\n\t\t\tface = direction.y > 0.0 ? 1 : 4;\r\n\t}\r\n\treturn face;\r\n}\r\n#define cubeUV_maxLods1  (log2(cubeUV_textureSize*0.25) - 1.0)\r\n#define cubeUV_rangeClamp (exp2((6.0 - 1.0) * 2.0))\r\n\r\nvec2 MipLevelInfo( vec3 vec, float roughnessLevel, float roughness ) {\r\n\tfloat scale = exp2(cubeUV_maxLods1 - roughnessLevel);\r\n\tfloat dxRoughness = dFdx(roughness);\r\n\tfloat dyRoughness = dFdy(roughness);\r\n\tvec3 dx = dFdx( vec * scale * dxRoughness );\r\n\tvec3 dy = dFdy( vec * scale * dyRoughness );\r\n\tfloat d = max( dot( dx, dx ), dot( dy, dy ) );\r\n\t// Clamp the value to the max mip level counts. hard coded to 6 mips\r\n\td = clamp(d, 1.0, cubeUV_rangeClamp);\r\n\tfloat mipLevel = 0.5 * log2(d);\r\n\treturn vec2(floor(mipLevel), fract(mipLevel));\r\n}\r\n\r\n#define cubeUV_maxLods2 (log2(cubeUV_textureSize*0.25) - 2.0)\r\n#define cubeUV_rcpTextureSize (1.0 / cubeUV_textureSize)\r\n\r\nvec2 getCubeUV(vec3 direction, float roughnessLevel, float mipLevel) {\r\n\tmipLevel = roughnessLevel > cubeUV_maxLods2 - 3.0 ? 0.0 : mipLevel;\r\n\tfloat a = 16.0 * cubeUV_rcpTextureSize;\r\n\r\n\tvec2 exp2_packed = exp2( vec2( roughnessLevel, mipLevel ) );\r\n\tvec2 rcp_exp2_packed = vec2( 1.0 ) / exp2_packed;\r\n\t// float powScale = exp2(roughnessLevel + mipLevel);\r\n\tfloat powScale = exp2_packed.x * exp2_packed.y;\r\n\t// float scale =  1.0 / exp2(roughnessLevel + 2.0 + mipLevel);\r\n\tfloat scale = rcp_exp2_packed.x * rcp_exp2_packed.y * 0.25;\r\n\t// float mipOffset = 0.75*(1.0 - 1.0/exp2(mipLevel))/exp2(roughnessLevel);\r\n\tfloat mipOffset = 0.75*(1.0 - rcp_exp2_packed.y) * rcp_exp2_packed.x;\r\n\r\n\tbool bRes = mipLevel == 0.0;\r\n\tscale =  bRes && (scale < a) ? a : scale;\r\n\r\n\tvec3 r;\r\n\tvec2 offset;\r\n\tint face = getFaceFromDirection(direction);\r\n\r\n\tfloat rcpPowScale = 1.0 / powScale;\r\n\r\n\tif( face == 0) {\r\n\t\tr = vec3(direction.x, -direction.z, direction.y);\r\n\t\toffset = vec2(0.0+mipOffset,0.75 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\r\n\t}\r\n\telse if( face == 1) {\r\n\t\tr = vec3(direction.y, direction.x, direction.z);\r\n\t\toffset = vec2(scale+mipOffset, 0.75 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\r\n\t}\r\n\telse if( face == 2) {\r\n\t\tr = vec3(direction.z, direction.x, direction.y);\r\n\t\toffset = vec2(2.0*scale+mipOffset, 0.75 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\r\n\t}\r\n\telse if( face == 3) {\r\n\t\tr = vec3(direction.x, direction.z, direction.y);\r\n\t\toffset = vec2(0.0+mipOffset,0.5 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\r\n\t}\r\n\telse if( face == 4) {\r\n\t\tr = vec3(direction.y, direction.x, -direction.z);\r\n\t\toffset = vec2(scale+mipOffset, 0.5 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\r\n\t}\r\n\telse {\r\n\t\tr = vec3(direction.z, -direction.x, direction.y);\r\n\t\toffset = vec2(2.0*scale+mipOffset, 0.5 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\r\n\t}\r\n\tr = normalize(r);\r\n\tfloat texelOffset = 0.5 * cubeUV_rcpTextureSize;\r\n\tvec2 s = ( r.yz / abs( r.x ) + vec2( 1.0 ) ) * 0.5;\r\n\tvec2 base = offset + vec2( texelOffset );\r\n\treturn base + s * ( scale - 2.0 * texelOffset );\r\n}\r\n\r\n#define cubeUV_maxLods3 (log2(cubeUV_textureSize*0.25) - 3.0)\r\n\r\nvec4 textureCubeUV(vec3 reflectedDirection, float roughness ) {\r\n\tfloat roughnessVal = roughness* cubeUV_maxLods3;\r\n\tfloat r1 = floor(roughnessVal);\r\n\tfloat r2 = r1 + 1.0;\r\n\tfloat t = fract(roughnessVal);\r\n\tvec2 mipInfo = MipLevelInfo(reflectedDirection, r1, roughness);\r\n\tfloat s = mipInfo.y;\r\n\tfloat level0 = mipInfo.x;\r\n\tfloat level1 = level0 + 1.0;\r\n\tlevel1 = level1 > 5.0 ? 5.0 : level1;\r\n\r\n\t// round to nearest mipmap if we are not interpolating.\r\n\tlevel0 += min( floor( s + 0.5 ), 5.0 );\r\n\r\n\t// Tri linear interpolation.\r\n\tvec2 uv_10 = getCubeUV(reflectedDirection, r1, level0);\r\n\tvec4 color10 = envMapTexelToLinear(texture2D(envMap, uv_10));\r\n\r\n\tvec2 uv_20 = getCubeUV(reflectedDirection, r2, level0);\r\n\tvec4 color20 = envMapTexelToLinear(texture2D(envMap, uv_20));\r\n\r\n\tvec4 result = mix(color10, color20, t);\r\n\r\n\treturn vec4(result.rgb, 1.0);\r\n}\r\n\r\n#endif\r\n";

var defaultnormal_vertex = "vec3 transformedNormal = normalMatrix * objectNormal;\r\n\r\n#ifdef FLIP_SIDED\r\n\r\n\ttransformedNormal = - transformedNormal;\r\n\r\n#endif\r\n";

var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\r\n\r\n\tuniform sampler2D displacementMap;\r\n\tuniform float displacementScale;\r\n\tuniform float displacementBias;\r\n\r\n#endif\r\n";

var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\r\n\r\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, uv ).x * displacementScale + displacementBias );\r\n\r\n#endif\r\n";

var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\r\n\r\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\r\n\r\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\r\n\r\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\r\n\r\n#endif\r\n";

var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\r\n\r\n\tuniform sampler2D emissiveMap;\r\n\r\n#endif\r\n";

var encodings_fragment = "  gl_FragColor = linearToOutputTexel( gl_FragColor );\r\n";

var encodings_pars_fragment = "// For a discussion of what this is, please read this: http://lousodrome.net/blog/light/2013/05/26/gamma-correct-and-hdr-rendering-in-a-32-bits-buffer/\r\n\r\nvec4 LinearToLinear( in vec4 value ) {\r\n\treturn value;\r\n}\r\n\r\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\r\n\treturn vec4( pow( value.xyz, vec3( gammaFactor ) ), value.w );\r\n}\r\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\r\n\treturn vec4( pow( value.xyz, vec3( 1.0 / gammaFactor ) ), value.w );\r\n}\r\n\r\nvec4 sRGBToLinear( in vec4 value ) {\r\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.w );\r\n}\r\nvec4 LinearTosRGB( in vec4 value ) {\r\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.w );\r\n}\r\n\r\nvec4 RGBEToLinear( in vec4 value ) {\r\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\r\n}\r\nvec4 LinearToRGBE( in vec4 value ) {\r\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\r\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\r\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\r\n//  return vec4( value.brg, ( 3.0 + 128.0 ) / 256.0 );\r\n}\r\n\r\n// reference: http://iwasbeingirony.blogspot.ca/2010/06/difference-between-rgbm-and-rgbd.html\r\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\r\n\treturn vec4( value.xyz * value.w * maxRange, 1.0 );\r\n}\r\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\r\n\tfloat maxRGB = max( value.x, max( value.g, value.b ) );\r\n\tfloat M      = clamp( maxRGB / maxRange, 0.0, 1.0 );\r\n\tM            = ceil( M * 255.0 ) / 255.0;\r\n\treturn vec4( value.rgb / ( M * maxRange ), M );\r\n}\r\n\r\n// reference: http://iwasbeingirony.blogspot.ca/2010/06/difference-between-rgbm-and-rgbd.html\r\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\r\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\r\n}\r\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\r\n\tfloat maxRGB = max( value.x, max( value.g, value.b ) );\r\n\tfloat D      = max( maxRange / maxRGB, 1.0 );\r\n\tD            = min( floor( D ) / 255.0, 1.0 );\r\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\r\n}\r\n\r\n// LogLuv reference: http://graphicrants.blogspot.ca/2009/04/rgbm-color-encoding.html\r\n\r\n// M matrix, for encoding\r\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\r\nvec4 LinearToLogLuv( in vec4 value )  {\r\n\tvec3 Xp_Y_XYZp = value.rgb * cLogLuvM;\r\n\tXp_Y_XYZp = max(Xp_Y_XYZp, vec3(1e-6, 1e-6, 1e-6));\r\n\tvec4 vResult;\r\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\r\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\r\n\tvResult.w = fract(Le);\r\n\tvResult.z = (Le - (floor(vResult.w*255.0))/255.0)/255.0;\r\n\treturn vResult;\r\n}\r\n\r\n// Inverse M matrix, for decoding\r\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\r\nvec4 LogLuvToLinear( in vec4 value ) {\r\n\tfloat Le = value.z * 255.0 + value.w;\r\n\tvec3 Xp_Y_XYZp;\r\n\tXp_Y_XYZp.y = exp2((Le - 127.0) / 2.0);\r\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\r\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\r\n\tvec3 vRGB = Xp_Y_XYZp.rgb * cLogLuvInverseM;\r\n\treturn vec4( max(vRGB, 0.0), 1.0 );\r\n}\r\n";

var envmap_fragment = "#ifdef USE_ENVMAP\r\n\r\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\r\n\r\n\t\tvec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );\r\n\r\n\t\t// Transforming Normal Vectors with the Inverse Transformation\r\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\r\n\r\n\t\t#ifdef ENVMAP_MODE_REFLECTION\r\n\r\n\t\t\tvec3 reflectVec = reflect( cameraToVertex, worldNormal );\r\n\r\n\t\t#else\r\n\r\n\t\t\tvec3 reflectVec = refract( cameraToVertex, worldNormal, refractionRatio );\r\n\r\n\t\t#endif\r\n\r\n\t#else\r\n\r\n\t\tvec3 reflectVec = vReflect;\r\n\r\n\t#endif\r\n\r\n\t#ifdef ENVMAP_TYPE_CUBE\r\n\r\n\t\tvec4 envColor = textureCube( envMap, flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\r\n\r\n\t#elif defined( ENVMAP_TYPE_EQUIREC )\r\n\r\n\t\tvec2 sampleUV;\r\n\t\tsampleUV.y = asin( flipNormal * reflectVec.y ) * RECIPROCAL_PI + 0.5;\r\n\t\tsampleUV.x = atan( flipNormal * reflectVec.z, flipNormal * reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\r\n\t\tvec4 envColor = texture2D( envMap, sampleUV );\r\n\r\n\t#elif defined( ENVMAP_TYPE_SPHERE )\r\n\r\n\t\tvec3 reflectView = flipNormal * normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0, 0.0, 1.0 ) );\r\n\t\tvec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );\r\n\r\n\t#else\r\n\r\n\t\tvec4 envColor = vec4( 0.0 );\r\n\r\n\t#endif\r\n\r\n\tenvColor = envMapTexelToLinear( envColor );\r\n\r\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\r\n\r\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\r\n\r\n\t#elif defined( ENVMAP_BLENDING_MIX )\r\n\r\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\r\n\r\n\t#elif defined( ENVMAP_BLENDING_ADD )\r\n\r\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\r\n\r\n\t#endif\r\n\r\n#endif\r\n";

var envmap_pars_fragment = "#if defined( USE_ENVMAP ) || defined( PHYSICAL )\r\n\tuniform float reflectivity;\r\n\tuniform float envMapIntensity;\r\n#endif\r\n\r\n#ifdef USE_ENVMAP\r\n\r\n\t#if ! defined( PHYSICAL ) && ( defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) )\r\n\t\tvarying vec3 vWorldPosition;\r\n\t#endif\r\n\r\n\t#ifdef ENVMAP_TYPE_CUBE\r\n\t\tuniform samplerCube envMap;\r\n\t#else\r\n\t\tuniform sampler2D envMap;\r\n\t#endif\r\n\tuniform float flipEnvMap;\r\n\r\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( PHYSICAL )\r\n\t\tuniform float refractionRatio;\r\n\t#else\r\n\t\tvarying vec3 vReflect;\r\n\t#endif\r\n\r\n#endif\r\n";

var envmap_pars_vertex = "#ifdef USE_ENVMAP\r\n\r\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\r\n\t\tvarying vec3 vWorldPosition;\r\n\r\n\t#else\r\n\r\n\t\tvarying vec3 vReflect;\r\n\t\tuniform float refractionRatio;\r\n\r\n\t#endif\r\n\r\n#endif\r\n";

var envmap_vertex = "#ifdef USE_ENVMAP\r\n\r\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\r\n\r\n\t\tvWorldPosition = worldPosition.xyz;\r\n\r\n\t#else\r\n\r\n\t\tvec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );\r\n\r\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\r\n\r\n\t\t#ifdef ENVMAP_MODE_REFLECTION\r\n\r\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\r\n\r\n\t\t#else\r\n\r\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\r\n\r\n\t\t#endif\r\n\r\n\t#endif\r\n\r\n#endif\r\n";

var fog_vertex = "\r\n#ifdef USE_FOG\r\nfogDepth = -mvPosition.z;\r\n#endif";

var fog_pars_vertex = "#ifdef USE_FOG\r\n\r\n  varying float fogDepth;\r\n\r\n#endif\r\n";

var fog_fragment = "#ifdef USE_FOG\r\n\r\n\t#ifdef FOG_EXP2\r\n\r\n\t\tfloat fogFactor = whiteCompliment( exp2( - fogDensity * fogDensity * fogDepth * fogDepth * LOG2 ) );\r\n\r\n\t#else\r\n\r\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\r\n\r\n\t#endif\r\n\r\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\r\n\r\n#endif\r\n";

var fog_pars_fragment = "#ifdef USE_FOG\r\n\r\n\tuniform vec3 fogColor;\r\n\tvarying float fogDepth;\r\n\r\n\t#ifdef FOG_EXP2\r\n\r\n\t\tuniform float fogDensity;\r\n\r\n\t#else\r\n\r\n\t\tuniform float fogNear;\r\n\t\tuniform float fogFar;\r\n\r\n\t#endif\r\n\r\n#endif\r\n";

var gradientmap_pars_fragment = "#ifdef TOON\r\n\r\n\tuniform sampler2D gradientMap;\r\n\r\n\tvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\r\n\r\n\t\t// dotNL will be from -1.0 to 1.0\r\n\t\tfloat dotNL = dot( normal, lightDirection );\r\n\t\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\r\n\r\n\t\t#ifdef USE_GRADIENTMAP\r\n\r\n\t\t\treturn texture2D( gradientMap, coord ).rgb;\r\n\r\n\t\t#else\r\n\r\n\t\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\r\n\r\n\t\t#endif\r\n\r\n\r\n\t}\r\n\r\n#endif\r\n";

var lightmap_fragment = "#ifdef USE_LIGHTMAP\r\n\r\n\treflectedLight.indirectDiffuse += PI * texture2D( lightMap, vUv2 ).xyz * lightMapIntensity; // factor of PI should not be present; included here to prevent breakage\r\n\r\n#endif\r\n";

var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\r\n\r\n\tuniform sampler2D lightMap;\r\n\tuniform float lightMapIntensity;\r\n\r\n#endif";

var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\r\n\r\nGeometricContext geometry;\r\ngeometry.position = mvPosition.xyz;\r\ngeometry.normal = normalize( transformedNormal );\r\ngeometry.viewDir = normalize( -mvPosition.xyz );\r\n\r\nGeometricContext backGeometry;\r\nbackGeometry.position = geometry.position;\r\nbackGeometry.normal = -geometry.normal;\r\nbackGeometry.viewDir = geometry.viewDir;\r\n\r\nvLightFront = vec3( 0.0 );\r\n\r\n#ifdef DOUBLE_SIDED\r\n\tvLightBack = vec3( 0.0 );\r\n#endif\r\n\r\nIncidentLight directLight;\r\nfloat dotNL;\r\nvec3 directLightColor_Diffuse;\r\n\r\n#if NUM_POINT_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\r\n\r\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\r\n\r\n\t\tdotNL = dot( geometry.normal, directLight.direction );\r\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\r\n\r\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#ifdef DOUBLE_SIDED\r\n\r\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#endif\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if NUM_SPOT_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\r\n\r\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\r\n\r\n\t\tdotNL = dot( geometry.normal, directLight.direction );\r\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\r\n\r\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#ifdef DOUBLE_SIDED\r\n\r\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#endif\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n\r\n#if NUM_DIR_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\r\n\r\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\r\n\r\n\t\tdotNL = dot( geometry.normal, directLight.direction );\r\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\r\n\r\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#ifdef DOUBLE_SIDED\r\n\r\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#endif\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if NUM_HEMI_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\r\n\r\n\t\tvLightFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\r\n\r\n\t\t#ifdef DOUBLE_SIDED\r\n\r\n\t\t\tvLightBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\r\n\r\n\t\t#endif\r\n\r\n\t}\r\n\r\n#endif\r\n";

var lights_pars = "uniform vec3 ambientLightColor;\r\n\r\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\r\n\r\n\tvec3 irradiance = ambientLightColor;\r\n\r\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\tirradiance *= PI;\r\n\r\n\t#endif\r\n\r\n\treturn irradiance;\r\n\r\n}\r\n\r\n#if NUM_DIR_LIGHTS > 0\r\n\r\n\tstruct DirectionalLight {\r\n\t\tvec3 direction;\r\n\t\tvec3 color;\r\n\r\n\t\tint shadow;\r\n\t\tfloat shadowBias;\r\n\t\tfloat shadowRadius;\r\n\t\tvec2 shadowMapSize;\r\n\t};\r\n\r\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\r\n\r\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\r\n\r\n\t\tdirectLight.color = directionalLight.color;\r\n\t\tdirectLight.direction = directionalLight.direction;\r\n\t\tdirectLight.visible = true;\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n#if NUM_POINT_LIGHTS > 0\r\n\r\n\tstruct PointLight {\r\n\t\tvec3 position;\r\n\t\tvec3 color;\r\n\t\tfloat distance;\r\n\t\tfloat decay;\r\n\r\n\t\tint shadow;\r\n\t\tfloat shadowBias;\r\n\t\tfloat shadowRadius;\r\n\t\tvec2 shadowMapSize;\r\n\t};\r\n\r\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\r\n\r\n\t// directLight is an out parameter as having it as a return value caused compiler errors on some devices\r\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\r\n\r\n\t\tvec3 lVector = pointLight.position - geometry.position;\r\n\t\tdirectLight.direction = normalize( lVector );\r\n\r\n\t\tfloat lightDistance = length( lVector );\r\n\r\n\t\tdirectLight.color = pointLight.color;\r\n\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\r\n\t\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n#if NUM_SPOT_LIGHTS > 0\r\n\r\n\tstruct SpotLight {\r\n\t\tvec3 position;\r\n\t\tvec3 direction;\r\n\t\tvec3 color;\r\n\t\tfloat distance;\r\n\t\tfloat decay;\r\n\t\tfloat coneCos;\r\n\t\tfloat penumbraCos;\r\n\r\n\t\tint shadow;\r\n\t\tfloat shadowBias;\r\n\t\tfloat shadowRadius;\r\n\t\tvec2 shadowMapSize;\r\n\t};\r\n\r\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\r\n\r\n\t// directLight is an out parameter as having it as a return value caused compiler errors on some devices\r\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight  ) {\r\n\r\n\t\tvec3 lVector = spotLight.position - geometry.position;\r\n\t\tdirectLight.direction = normalize( lVector );\r\n\r\n\t\tfloat lightDistance = length( lVector );\r\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\r\n\r\n\t\tif ( angleCos > spotLight.coneCos ) {\r\n\r\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\r\n\r\n\t\t\tdirectLight.color = spotLight.color;\r\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\r\n\t\t\tdirectLight.visible = true;\r\n\r\n\t\t} else {\r\n\r\n\t\t\tdirectLight.color = vec3( 0.0 );\r\n\t\t\tdirectLight.visible = false;\r\n\r\n\t\t}\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n#if NUM_RECT_AREA_LIGHTS > 0\r\n\r\n\tstruct RectAreaLight {\r\n\t\tvec3 color;\r\n\t\tvec3 position;\r\n\t\tvec3 halfWidth;\r\n\t\tvec3 halfHeight;\r\n\t};\r\n\r\n\t// Pre-computed values of LinearTransformedCosine approximation of BRDF\r\n\t// BRDF approximation Texture is 64x64\r\n\tuniform sampler2D ltcMat; // RGBA Float\r\n\tuniform sampler2D ltcMag; // Alpha Float (only has w component)\r\n\r\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\r\n\r\n#endif\r\n\r\n\r\n#if NUM_HEMI_LIGHTS > 0\r\n\r\n\tstruct HemisphereLight {\r\n\t\tvec3 direction;\r\n\t\tvec3 skyColor;\r\n\t\tvec3 groundColor;\r\n\t};\r\n\r\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\r\n\r\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\r\n\r\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\r\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\r\n\r\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\r\n\r\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\t\tirradiance *= PI;\r\n\r\n\t\t#endif\r\n\r\n\t\treturn irradiance;\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n#if defined( USE_ENVMAP ) && defined( PHYSICAL )\r\n\r\n\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\r\n\r\n\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\r\n\r\n\t\t#ifdef ENVMAP_TYPE_CUBE\r\n\r\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\r\n\r\n\t\t\t// TODO: replace with properly filtered cubemaps and access the irradiance LOD level, be it the last LOD level\r\n\t\t\t// of a specular cubemap, or just the default level of a specially created irradiance cubemap.\r\n\r\n\t\t\t#ifdef TEXTURE_LOD_EXT\r\n\r\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\r\n\r\n\t\t\t#else\r\n\r\n\t\t\t\t// force the bias high to get the last LOD level as it is the most blurred.\r\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\r\n\r\n\t\t\t#endif\r\n\r\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\r\n\r\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\r\n\r\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\r\n\t\t\tvec4 envMapColor = textureCubeUV( queryVec, 1.0 );\r\n\r\n\t\t#else\r\n\r\n\t\t\tvec4 envMapColor = vec4( 0.0 );\r\n\r\n\t\t#endif\r\n\r\n\t\treturn PI * envMapColor.rgb * envMapIntensity;\r\n\r\n\t}\r\n\r\n\t// taken from here: http://casual-effects.blogspot.ca/2011/08/plausible-environment-lighting-in-two.html\r\n\tfloat getSpecularMIPLevel( const in float blinnShininessExponent, const in int maxMIPLevel ) {\r\n\r\n\t\t//float envMapWidth = pow( 2.0, maxMIPLevelScalar );\r\n\t\t//float desiredMIPLevel = log2( envMapWidth * sqrt( 3.0 ) ) - 0.5 * log2( pow2( blinnShininessExponent ) + 1.0 );\r\n\r\n\t\tfloat maxMIPLevelScalar = float( maxMIPLevel );\r\n\t\tfloat desiredMIPLevel = maxMIPLevelScalar - 0.79248 - 0.5 * log2( pow2( blinnShininessExponent ) + 1.0 );\r\n\r\n\t\t// clamp to allowable LOD ranges.\r\n\t\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\r\n\r\n\t}\r\n\r\n\tvec3 getLightProbeIndirectRadiance( const in GeometricContext geometry, const in float blinnShininessExponent, const in int maxMIPLevel ) {\r\n\r\n\t\t#ifdef ENVMAP_MODE_REFLECTION\r\n\r\n\t\t\tvec3 reflectVec = reflect( -geometry.viewDir, geometry.normal );\r\n\r\n\t\t#else\r\n\r\n\t\t\tvec3 reflectVec = refract( -geometry.viewDir, geometry.normal, refractionRatio );\r\n\r\n\t\t#endif\r\n\r\n\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\r\n\r\n\t\tfloat specularMIPLevel = getSpecularMIPLevel( blinnShininessExponent, maxMIPLevel );\r\n\r\n\t\t#ifdef ENVMAP_TYPE_CUBE\r\n\r\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\r\n\r\n\t\t\t#ifdef TEXTURE_LOD_EXT\r\n\r\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\r\n\r\n\t\t\t#else\r\n\r\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\r\n\r\n\t\t\t#endif\r\n\r\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\r\n\r\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\r\n\r\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\r\n\t\t\tvec4 envMapColor = textureCubeUV(queryReflectVec, BlinnExponentToGGXRoughness(blinnShininessExponent));\r\n\r\n\t\t#elif defined( ENVMAP_TYPE_EQUIREC )\r\n\r\n\t\t\tvec2 sampleUV;\r\n\t\t\tsampleUV.y = saturate( reflectVec.y * 0.5 + 0.5 );\r\n\t\t\tsampleUV.x = atan( reflectVec.z, reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\r\n\r\n\t\t\t#ifdef TEXTURE_LOD_EXT\r\n\r\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, sampleUV, specularMIPLevel );\r\n\r\n\t\t\t#else\r\n\r\n\t\t\t\tvec4 envMapColor = texture2D( envMap, sampleUV, specularMIPLevel );\r\n\r\n\t\t\t#endif\r\n\r\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\r\n\r\n\t\t#elif defined( ENVMAP_TYPE_SPHERE )\r\n\r\n\t\t\tvec3 reflectView = normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0,0.0,1.0 ) );\r\n\r\n\t\t\t#ifdef TEXTURE_LOD_EXT\r\n\r\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\r\n\r\n\t\t\t#else\r\n\r\n\t\t\t\tvec4 envMapColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\r\n\r\n\t\t\t#endif\r\n\r\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\r\n\r\n\t\t#endif\r\n\r\n\t\treturn envMapColor.rgb * envMapIntensity;\r\n\r\n\t}\r\n\r\n#endif\r\n";

var lights_phong_fragment = "BlinnPhongMaterial material;\r\nmaterial.diffuseColor = diffuseColor.rgb;\r\nmaterial.specularColor = specular;\r\nmaterial.specularShininess = shininess;\r\nmaterial.specularStrength = specularStrength;\r\n";

var lights_phong_pars_fragment = "varying vec3 vViewPosition;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n\r\nstruct BlinnPhongMaterial {\r\n\r\n\tvec3\tdiffuseColor;\r\n\tvec3\tspecularColor;\r\n\tfloat\tspecularShininess;\r\n\tfloat\tspecularStrength;\r\n\r\n};\r\n\r\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\t#ifdef TOON\r\n\r\n\t\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\r\n\r\n\t#else\r\n\r\n\t\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\r\n\t\tvec3 irradiance = dotNL * directLight.color;\r\n\r\n\t#endif\r\n\r\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\tirradiance *= PI; // punctual light\r\n\r\n\t#endif\r\n\r\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\r\n\r\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\r\n\r\n}\r\n\r\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\r\n\r\n}\r\n\r\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\r\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\r\n\r\n#define Material_LightProbeLOD( material )\t(0)\r\n";

var lights_physical_fragment = "PhysicalMaterial material;\r\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\r\nmaterial.specularRoughness = clamp( roughnessFactor, 0.04, 1.0 );\r\n#ifdef STANDARD\r\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\r\n#else\r\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\r\n\tmaterial.clearCoat = saturate( clearCoat ); // Burley clearcoat model\r\n\tmaterial.clearCoatRoughness = clamp( clearCoatRoughness, 0.04, 1.0 );\r\n#endif\r\n";

var lights_physical_pars_fragment = "struct PhysicalMaterial {\r\n\r\n\tvec3\tdiffuseColor;\r\n\tfloat\tspecularRoughness;\r\n\tvec3\tspecularColor;\r\n\r\n\t#ifndef STANDARD\r\n\t\tfloat clearCoat;\r\n\t\tfloat clearCoatRoughness;\r\n\t#endif\r\n\r\n};\r\n\r\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\r\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\r\n\r\n// Clear coat directional hemishperical reflectance (this approximation should be improved)\r\nfloat clearCoatDHRApprox( const in float roughness, const in float dotNL ) {\r\n\r\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\r\n\r\n}\r\n\r\n#if NUM_RECT_AREA_LIGHTS > 0\r\n\r\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\t\tvec3 normal = geometry.normal;\r\n\t\tvec3 viewDir = geometry.viewDir;\r\n\t\tvec3 position = geometry.position;\r\n\t\tvec3 lightPos = rectAreaLight.position;\r\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\r\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\r\n\t\tvec3 lightColor = rectAreaLight.color;\r\n\t\tfloat roughness = material.specularRoughness;\r\n\r\n\t\tvec3 rectCoords[ 4 ];\r\n\t\trectCoords[ 0 ] = lightPos - halfWidth - halfHeight; // counterclockwise\r\n\t\trectCoords[ 1 ] = lightPos + halfWidth - halfHeight;\r\n\t\trectCoords[ 2 ] = lightPos + halfWidth + halfHeight;\r\n\t\trectCoords[ 3 ] = lightPos - halfWidth + halfHeight;\r\n\r\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\r\n\r\n\t\tfloat norm = texture2D( ltcMag, uv ).a;\r\n\r\n\t\tvec4 t = texture2D( ltcMat, uv );\r\n\r\n\t\tmat3 mInv = mat3(\r\n\t\t\tvec3(   1,   0, t.y ),\r\n\t\t\tvec3(   0, t.z,   0 ),\r\n\t\t\tvec3( t.w,   0, t.x )\r\n\t\t);\r\n\r\n\t\treflectedLight.directSpecular += lightColor * material.specularColor * norm * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords ); // no fresnel\r\n\r\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1 ), rectCoords );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\r\n\r\n\tvec3 irradiance = dotNL * directLight.color;\r\n\r\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\tirradiance *= PI; // punctual light\r\n\r\n\t#endif\r\n\r\n\t#ifndef STANDARD\r\n\t\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\r\n\t#else\r\n\t\tfloat clearCoatDHR = 0.0;\r\n\t#endif\r\n\r\n\treflectedLight.directSpecular += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry, material.specularColor, material.specularRoughness );\r\n\r\n\treflectedLight.directDiffuse += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\r\n\r\n\t#ifndef STANDARD\r\n\r\n\t\treflectedLight.directSpecular += irradiance * material.clearCoat * BRDF_Specular_GGX( directLight, geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\r\n\r\n\t#endif\r\n\r\n}\r\n\r\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\r\n\r\n}\r\n\r\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 clearCoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\t#ifndef STANDARD\r\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\r\n\t\tfloat dotNL = dotNV;\r\n\t\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\r\n\t#else\r\n\t\tfloat clearCoatDHR = 0.0;\r\n\t#endif\r\n\r\n\treflectedLight.indirectSpecular += ( 1.0 - clearCoatDHR ) * radiance * BRDF_Specular_GGX_Environment( geometry, material.specularColor, material.specularRoughness );\r\n\r\n\t#ifndef STANDARD\r\n\r\n\t\treflectedLight.indirectSpecular += clearCoatRadiance * material.clearCoat * BRDF_Specular_GGX_Environment( geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\r\n\r\n\t#endif\r\n\r\n}\r\n\r\n#define RE_Direct\t\t\t\tRE_Direct_Physical\r\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\r\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\r\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\r\n\r\n#define Material_BlinnShininessExponent( material )   GGXRoughnessToBlinnExponent( material.specularRoughness )\r\n#define Material_ClearCoat_BlinnShininessExponent( material )   GGXRoughnessToBlinnExponent( material.clearCoatRoughness )\r\n\r\n// ref: http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr_v2.pdf\r\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\r\n\r\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\r\n\r\n}\r\n";

var lights_template = "\r\n\r\nGeometricContext geometry;\r\n\r\ngeometry.position = - vViewPosition;\r\ngeometry.normal = normal;\r\ngeometry.viewDir = normalize( vViewPosition );\r\n\r\nIncidentLight directLight;\r\n\r\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\r\n\r\n\tPointLight pointLight;\r\n\r\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\r\n\r\n\t\tpointLight = pointLights[ i ];\r\n\r\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\r\n\r\n\t\t#ifdef USE_SHADOWMAP\r\n\t\tdirectLight.color *= all( bvec2( pointLight.shadow, directLight.visible ) ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\r\n\t\t#endif\r\n\r\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\r\n\r\n\tSpotLight spotLight;\r\n\r\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\r\n\r\n\t\tspotLight = spotLights[ i ];\r\n\r\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\r\n\r\n\t\t#ifdef USE_SHADOWMAP\r\n\t\tdirectLight.color *= all( bvec2( spotLight.shadow, directLight.visible ) ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\r\n\t\t#endif\r\n\r\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\r\n\r\n\tDirectionalLight directionalLight;\r\n\r\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\r\n\r\n\t\tdirectionalLight = directionalLights[ i ];\r\n\r\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\r\n\r\n\t\t#ifdef USE_SHADOWMAP\r\n\t\tdirectLight.color *= all( bvec2( directionalLight.shadow, directLight.visible ) ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\r\n\t\t#endif\r\n\r\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\r\n\r\n\tRectAreaLight rectAreaLight;\r\n\r\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\r\n\r\n\t\trectAreaLight = rectAreaLights[ i ];\r\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if defined( RE_IndirectDiffuse )\r\n\r\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\r\n\r\n\t#ifdef USE_LIGHTMAP\r\n\r\n\t\tvec3 lightMapIrradiance = texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\r\n\r\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\t\tlightMapIrradiance *= PI; // factor of PI should not be present; included here to prevent breakage\r\n\r\n\t\t#endif\r\n\r\n\t\tirradiance += lightMapIrradiance;\r\n\r\n\t#endif\r\n\r\n\t#if ( NUM_HEMI_LIGHTS > 0 )\r\n\r\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\r\n\r\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\r\n\r\n\t\t}\r\n\r\n\t#endif\r\n\r\n\t#if defined( USE_ENVMAP ) && defined( PHYSICAL ) && defined( ENVMAP_TYPE_CUBE_UV )\r\n\r\n\t\t// TODO, replace 8 with the real maxMIPLevel\r\n\t\tirradiance += getLightProbeIndirectIrradiance( geometry, 8 );\r\n\r\n\t#endif\r\n\r\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\r\n\r\n#endif\r\n\r\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\r\n\r\n\t// TODO, replace 8 with the real maxMIPLevel\r\n\tvec3 radiance = getLightProbeIndirectRadiance( geometry, Material_BlinnShininessExponent( material ), 8 );\r\n\r\n\t#ifndef STANDARD\r\n\t\tvec3 clearCoatRadiance = getLightProbeIndirectRadiance( geometry, Material_ClearCoat_BlinnShininessExponent( material ), 8 );\r\n\t#else\r\n\t\tvec3 clearCoatRadiance = vec3( 0.0 );\r\n\t#endif\r\n\r\n\tRE_IndirectSpecular( radiance, clearCoatRadiance, geometry, material, reflectedLight );\r\n\r\n#endif\r\n";

var logdepthbuf_fragment = "#if defined(USE_LOGDEPTHBUF) && defined(USE_LOGDEPTHBUF_EXT)\r\n\r\n\tgl_FragDepthEXT = log2(vFragDepth) * logDepthBufFC * 0.5;\r\n\r\n#endif";

var logdepthbuf_pars_fragment = "#ifdef USE_LOGDEPTHBUF\r\n\r\n\tuniform float logDepthBufFC;\r\n\r\n\t#ifdef USE_LOGDEPTHBUF_EXT\r\n\r\n\t\tvarying float vFragDepth;\r\n\r\n\t#endif\r\n\r\n#endif\r\n";

var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\r\n\r\n\t#ifdef USE_LOGDEPTHBUF_EXT\r\n\r\n\t\tvarying float vFragDepth;\r\n\r\n\t#endif\r\n\r\n\tuniform float logDepthBufFC;\r\n\r\n#endif";

var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\r\n\r\n\tgl_Position.z = log2(max( EPSILON, gl_Position.w + 1.0 )) * logDepthBufFC;\r\n\r\n\t#ifdef USE_LOGDEPTHBUF_EXT\r\n\r\n\t\tvFragDepth = 1.0 + gl_Position.w;\r\n\r\n\t#else\r\n\r\n\t\tgl_Position.z = (gl_Position.z - 1.0) * gl_Position.w;\r\n\r\n\t#endif\r\n\r\n#endif\r\n";

var map_fragment = "#ifdef USE_MAP\r\n\r\n\tvec4 texelColor = texture2D( map, vUv );\r\n\r\n\ttexelColor = mapTexelToLinear( texelColor );\r\n\tdiffuseColor *= texelColor;\r\n\r\n#endif\r\n";

var map_pars_fragment = "#ifdef USE_MAP\r\n\r\n\tuniform sampler2D map;\r\n\r\n#endif\r\n";

var map_particle_fragment = "#ifdef USE_MAP\r\n\r\n\tvec4 mapTexel = texture2D( map, vec2( gl_PointCoord.x, 1.0 - gl_PointCoord.y ) * offsetRepeat.zw + offsetRepeat.xy );\r\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\r\n\r\n#endif\r\n";

var map_particle_pars_fragment = "#ifdef USE_MAP\r\n\r\n\tuniform vec4 offsetRepeat;\r\n\tuniform sampler2D map;\r\n\r\n#endif\r\n";

var metalnessmap_fragment = "float metalnessFactor = metalness;\r\n\r\n#ifdef USE_METALNESSMAP\r\n\r\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\r\n\r\n\t// reads channel B, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\r\n\tmetalnessFactor *= texelMetalness.b;\r\n\r\n#endif\r\n";

var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\r\n\r\n\tuniform sampler2D metalnessMap;\r\n\r\n#endif";

var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\r\n\r\n\tobjectNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];\r\n\tobjectNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];\r\n\tobjectNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];\r\n\tobjectNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];\r\n\r\n#endif\r\n";

var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\r\n\r\n\t#ifndef USE_MORPHNORMALS\r\n\r\n\tuniform float morphTargetInfluences[ 8 ];\r\n\r\n\t#else\r\n\r\n\tuniform float morphTargetInfluences[ 4 ];\r\n\r\n\t#endif\r\n\r\n#endif";

var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\r\n\r\n\ttransformed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];\r\n\ttransformed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];\r\n\ttransformed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];\r\n\ttransformed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];\r\n\r\n\t#ifndef USE_MORPHNORMALS\r\n\r\n\ttransformed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];\r\n\ttransformed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];\r\n\ttransformed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];\r\n\ttransformed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];\r\n\r\n\t#endif\r\n\r\n#endif\r\n";

var normal_flip = "#ifdef DOUBLE_SIDED\r\n\tfloat flipNormal = ( float( gl_FrontFacing ) * 2.0 - 1.0 );\r\n#else\r\n\tfloat flipNormal = 1.0;\r\n#endif\r\n";

var normal_fragment = "#ifdef FLAT_SHADED\r\n\r\n\t// Workaround for Adreno/Nexus5 not able able to do dFdx( vViewPosition ) ...\r\n\r\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\r\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\r\n\tvec3 normal = normalize( cross( fdx, fdy ) );\r\n\r\n#else\r\n\r\n\tvec3 normal = normalize( vNormal ) * flipNormal;\r\n\r\n#endif\r\n\r\n#ifdef USE_NORMALMAP\r\n\r\n\tnormal = perturbNormal2Arb( -vViewPosition, normal );\r\n\r\n#elif defined( USE_BUMPMAP )\r\n\r\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\r\n\r\n#endif\r\n";

var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\r\n\r\n\tuniform sampler2D normalMap;\r\n\tuniform vec2 normalScale;\r\n\r\n\t// Per-Pixel Tangent Space Normal Mapping\r\n\t// http://hacksoflife.blogspot.ch/2009/11/per-pixel-tangent-space-normal-mapping.html\r\n\r\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm ) {\r\n\r\n\t\t// Workaround for Adreno 3XX dFd*( vec3 ) bug. See #9988\r\n\r\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\r\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\r\n\t\tvec2 st0 = dFdx( vUv.st );\r\n\t\tvec2 st1 = dFdy( vUv.st );\r\n\r\n\t\tvec3 S = normalize( q0 * st1.t - q1 * st0.t );\r\n\t\tvec3 T = normalize( -q0 * st1.s + q1 * st0.s );\r\n\t\tvec3 N = normalize( surf_norm );\r\n\r\n\t\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\r\n\t\tmapN.xy = normalScale * mapN.xy;\r\n\t\tmat3 tsn = mat3( S, T, N );\r\n\t\treturn normalize( tsn * mapN );\r\n\r\n\t}\r\n\r\n#endif\r\n";

var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\r\n\treturn normalize( normal ) * 0.5 + 0.5;\r\n}\r\n\r\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\r\n\treturn 1.0 - 2.0 * rgb.xyz;\r\n}\r\n\r\nconst float PackUpscale = 256. / 255.; // fraction -> 0..1 (including 1)\r\nconst float UnpackDownscale = 255. / 256.; // 0..1 -> fraction (excluding 1)\r\n\r\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256.,  256. );\r\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\r\n\r\nconst float ShiftRight8 = 1. / 256.;\r\n\r\nvec4 packDepthToRGBA( const in float v ) {\r\n\tvec4 r = vec4( fract( v * PackFactors ), v );\r\n\tr.yzw -= r.xyz * ShiftRight8; // tidy overflow\r\n\treturn r * PackUpscale;\r\n}\r\n\r\nfloat unpackRGBAToDepth( const in vec4 v ) {\r\n\treturn dot( v, UnpackFactors );\r\n}\r\n\r\n// NOTE: viewZ/eyeZ is < 0 when in front of the camera per OpenGL conventions\r\n\r\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\r\n\treturn ( viewZ + near ) / ( near - far );\r\n}\r\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\r\n\treturn linearClipZ * ( near - far ) - near;\r\n}\r\n\r\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\r\n\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\r\n}\r\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\r\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\r\n}\r\n";

var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\r\n\r\n\t// Get get normal blending with premultipled, use with CustomBlending, OneFactor, OneMinusSrcAlphaFactor, AddEquation.\r\n\tgl_FragColor.rgb *= gl_FragColor.a;\r\n\r\n#endif\r\n";

var project_vertex = "vec4 mvPosition = modelViewMatrix * vec4( transformed, 1.0 );\r\n\r\ngl_Position = projectionMatrix * mvPosition;\r\n";

var dithering_fragment = "#if defined( DITHERING )\r\n\r\n  gl_FragColor.rgb = dithering( gl_FragColor.rgb );\r\n\r\n#endif\r\n";

var dithering_pars_fragment = "#if defined( DITHERING )\r\n\r\n\t// based on https://www.shadertoy.com/view/MslGR8\r\n\tvec3 dithering( vec3 color ) {\r\n\t\t//Calculate grid position\r\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\r\n\r\n\t\t//Shift the individual colors differently, thus making it even harder to see the dithering pattern\r\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\r\n\r\n\t\t//modify shift acording to grid position.\r\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\r\n\r\n\t\t//shift the color by dither_shift\r\n\t\treturn color + dither_shift_RGB;\r\n\t}\r\n\r\n#endif\r\n";

var roughnessmap_fragment = "float roughnessFactor = roughness;\r\n\r\n#ifdef USE_ROUGHNESSMAP\r\n\r\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\r\n\r\n\t// reads channel G, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\r\n\troughnessFactor *= texelRoughness.g;\r\n\r\n#endif\r\n";

var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\r\n\r\n\tuniform sampler2D roughnessMap;\r\n\r\n#endif";

var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\r\n\r\n\t#if NUM_DIR_LIGHTS > 0\r\n\r\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHTS ];\r\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\t#if NUM_SPOT_LIGHTS > 0\r\n\r\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHTS ];\r\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\t#if NUM_POINT_LIGHTS > 0\r\n\r\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHTS ];\r\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\r\n\r\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\r\n\r\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\r\n\r\n\t}\r\n\r\n\tfloat texture2DShadowLerp( sampler2D depths, vec2 size, vec2 uv, float compare ) {\r\n\r\n\t\tconst vec2 offset = vec2( 0.0, 1.0 );\r\n\r\n\t\tvec2 texelSize = vec2( 1.0 ) / size;\r\n\t\tvec2 centroidUV = floor( uv * size + 0.5 ) / size;\r\n\r\n\t\tfloat lb = texture2DCompare( depths, centroidUV + texelSize * offset.xx, compare );\r\n\t\tfloat lt = texture2DCompare( depths, centroidUV + texelSize * offset.xy, compare );\r\n\t\tfloat rb = texture2DCompare( depths, centroidUV + texelSize * offset.yx, compare );\r\n\t\tfloat rt = texture2DCompare( depths, centroidUV + texelSize * offset.yy, compare );\r\n\r\n\t\tvec2 f = fract( uv * size + 0.5 );\r\n\r\n\t\tfloat a = mix( lb, lt, f.y );\r\n\t\tfloat b = mix( rb, rt, f.y );\r\n\t\tfloat c = mix( a, b, f.x );\r\n\r\n\t\treturn c;\r\n\r\n\t}\r\n\r\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\r\n\r\n\t\tfloat shadow = 1.0;\r\n\r\n\t\tshadowCoord.xyz /= shadowCoord.w;\r\n\t\tshadowCoord.z += shadowBias;\r\n\r\n\t\t// if ( something && something ) breaks ATI OpenGL shader compiler\r\n\t\t// if ( all( something, something ) ) using this instead\r\n\r\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\r\n\t\tbool inFrustum = all( inFrustumVec );\r\n\r\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\r\n\r\n\t\tbool frustumTest = all( frustumTestVec );\r\n\r\n\t\tif ( frustumTest ) {\r\n\r\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\r\n\r\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\r\n\r\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\r\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\r\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\r\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\r\n\r\n\t\t\tshadow = (\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\r\n\t\t\t) * ( 1.0 / 9.0 );\r\n\r\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\r\n\r\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\r\n\r\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\r\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\r\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\r\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\r\n\r\n\t\t\tshadow = (\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy, shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\r\n\t\t\t) * ( 1.0 / 9.0 );\r\n\r\n\t\t#else // no percentage-closer filtering:\r\n\r\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\r\n\r\n\t\t#endif\r\n\r\n\t\t}\r\n\r\n\t\treturn shadow;\r\n\r\n\t}\r\n\r\n\t// cubeToUV() maps a 3D direction vector suitable for cube texture mapping to a 2D\r\n\t// vector suitable for 2D texture mapping. This code uses the following layout for the\r\n\t// 2D texture:\r\n\t//\r\n\t// xzXZ\r\n\t//  y Y\r\n\t//\r\n\t// Y - Positive y direction\r\n\t// y - Negative y direction\r\n\t// X - Positive x direction\r\n\t// x - Negative x direction\r\n\t// Z - Positive z direction\r\n\t// z - Negative z direction\r\n\t//\r\n\t// Source and test bed:\r\n\t// https://gist.github.com/tschw/da10c43c467ce8afd0c4\r\n\r\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\r\n\r\n\t\t// Number of texels to avoid at the edge of each square\r\n\r\n\t\tvec3 absV = abs( v );\r\n\r\n\t\t// Intersect unit cube\r\n\r\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\r\n\t\tabsV *= scaleToCube;\r\n\r\n\t\t// Apply scale to avoid seams\r\n\r\n\t\t// two texels less per square (one texel will do for NEAREST)\r\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\r\n\r\n\t\t// Unwrap\r\n\r\n\t\t// space: -1 ... 1 range for each square\r\n\t\t//\r\n\t\t// #X##\t\tdim    := ( 4 , 2 )\r\n\t\t//  # #\t\tcenter := ( 1 , 1 )\r\n\r\n\t\tvec2 planar = v.xy;\r\n\r\n\t\tfloat almostATexel = 1.5 * texelSizeY;\r\n\t\tfloat almostOne = 1.0 - almostATexel;\r\n\r\n\t\tif ( absV.z >= almostOne ) {\r\n\r\n\t\t\tif ( v.z > 0.0 )\r\n\t\t\t\tplanar.x = 4.0 - v.x;\r\n\r\n\t\t} else if ( absV.x >= almostOne ) {\r\n\r\n\t\t\tfloat signX = sign( v.x );\r\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\r\n\r\n\t\t} else if ( absV.y >= almostOne ) {\r\n\r\n\t\t\tfloat signY = sign( v.y );\r\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\r\n\t\t\tplanar.y = v.z * signY - 2.0;\r\n\r\n\t\t}\r\n\r\n\t\t// Transform to UV space\r\n\r\n\t\t// scale := 0.5 / dim\r\n\t\t// translate := ( center + 0.5 ) / dim\r\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\r\n\r\n\t}\r\n\r\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\r\n\r\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\r\n\r\n\t\t// for point lights, the uniform @vShadowCoord is re-purposed to hold\r\n\t\t// the distance from the light to the world-space position of the fragment.\r\n\t\tvec3 lightToPosition = shadowCoord.xyz;\r\n\r\n\t\t// bd3D = base direction 3D\r\n\t\tvec3 bd3D = normalize( lightToPosition );\r\n\t\t// dp = distance from light to fragment position\r\n\t\tfloat dp = ( length( lightToPosition ) - shadowBias ) / 1000.0;\r\n\r\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT )\r\n\r\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\r\n\r\n\t\t\treturn (\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\r\n\t\t\t) * ( 1.0 / 9.0 );\r\n\r\n\t\t#else // no percentage-closer filtering\r\n\r\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\r\n\r\n\t\t#endif\r\n\r\n\t}\r\n\r\n#endif\r\n";

var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\r\n\r\n\t#if NUM_DIR_LIGHTS > 0\r\n\r\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHTS ];\r\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\t#if NUM_SPOT_LIGHTS > 0\r\n\r\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHTS ];\r\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\t#if NUM_POINT_LIGHTS > 0\r\n\r\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHTS ];\r\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\r\n\r\n#endif\r\n";

var shadowmap_vertex = "#ifdef USE_SHADOWMAP\r\n\r\n\t#if NUM_DIR_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\r\n\r\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * worldPosition;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\t#if NUM_SPOT_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\r\n\r\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * worldPosition;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\t#if NUM_POINT_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\r\n\r\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * worldPosition;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\r\n\r\n#endif\r\n";

var shadowmask_pars_fragment = "float getShadowMask() {\r\n\r\n\tfloat shadow = 1.0;\r\n\r\n\t#ifdef USE_SHADOWMAP\r\n\r\n\t#if NUM_DIR_LIGHTS > 0\r\n\r\n\tDirectionalLight directionalLight;\r\n\r\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\r\n\r\n\t\tdirectionalLight = directionalLights[ i ];\r\n\t\tshadow *= bool( directionalLight.shadow ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\t#if NUM_SPOT_LIGHTS > 0\r\n\r\n\tSpotLight spotLight;\r\n\r\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\r\n\r\n\t\tspotLight = spotLights[ i ];\r\n\t\tshadow *= bool( spotLight.shadow ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\t#if NUM_POINT_LIGHTS > 0\r\n\r\n\tPointLight pointLight;\r\n\r\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\r\n\r\n\t\tpointLight = pointLights[ i ];\r\n\t\tshadow *= bool( pointLight.shadow ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\r\n\r\n\t#endif\r\n\r\n\treturn shadow;\r\n\r\n}\r\n";

var skinbase_vertex = "#ifdef USE_SKINNING\r\n\r\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\r\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\r\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\r\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\r\n\r\n#endif";

var skinning_pars_vertex = "#ifdef USE_SKINNING\r\n\r\n\tuniform mat4 bindMatrix;\r\n\tuniform mat4 bindMatrixInverse;\r\n\r\n\t#ifdef BONE_TEXTURE\r\n\r\n\t\tuniform sampler2D boneTexture;\r\n\t\tuniform int boneTextureSize;\r\n\r\n\t\tmat4 getBoneMatrix( const in float i ) {\r\n\r\n\t\t\tfloat j = i * 4.0;\r\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\r\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\r\n\r\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\r\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\r\n\r\n\t\t\ty = dy * ( y + 0.5 );\r\n\r\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\r\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\r\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\r\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\r\n\r\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\r\n\r\n\t\t\treturn bone;\r\n\r\n\t\t}\r\n\r\n\t#else\r\n\r\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\r\n\r\n\t\tmat4 getBoneMatrix( const in float i ) {\r\n\r\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\r\n\t\t\treturn bone;\r\n\r\n\t\t}\r\n\r\n\t#endif\r\n\r\n#endif\r\n";

var skinning_vertex = "#ifdef USE_SKINNING\r\n\r\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\r\n\r\n\tvec4 skinned = vec4( 0.0 );\r\n\tskinned += boneMatX * skinVertex * skinWeight.x;\r\n\tskinned += boneMatY * skinVertex * skinWeight.y;\r\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\r\n\tskinned += boneMatW * skinVertex * skinWeight.w;\r\n\r\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\r\n\r\n#endif\r\n";

var skinnormal_vertex = "#ifdef USE_SKINNING\r\n\r\n\tmat4 skinMatrix = mat4( 0.0 );\r\n\tskinMatrix += skinWeight.x * boneMatX;\r\n\tskinMatrix += skinWeight.y * boneMatY;\r\n\tskinMatrix += skinWeight.z * boneMatZ;\r\n\tskinMatrix += skinWeight.w * boneMatW;\r\n\tskinMatrix  = bindMatrixInverse * skinMatrix * bindMatrix;\r\n\r\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\r\n\r\n#endif\r\n";

var specularmap_fragment = "float specularStrength;\r\n\r\n#ifdef USE_SPECULARMAP\r\n\r\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\r\n\tspecularStrength = texelSpecular.r;\r\n\r\n#else\r\n\r\n\tspecularStrength = 1.0;\r\n\r\n#endif";

var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\r\n\r\n\tuniform sampler2D specularMap;\r\n\r\n#endif";

var tonemapping_fragment = "#if defined( TONE_MAPPING )\r\n\r\n  gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\r\n\r\n#endif\r\n";

var tonemapping_pars_fragment = "#define saturate(a) clamp( a, 0.0, 1.0 )\r\n\r\nuniform float toneMappingExposure;\r\nuniform float toneMappingWhitePoint;\r\n\r\n// exposure only\r\nvec3 LinearToneMapping( vec3 color ) {\r\n\r\n\treturn toneMappingExposure * color;\r\n\r\n}\r\n\r\n// source: https://www.cs.utah.edu/~reinhard/cdrom/\r\nvec3 ReinhardToneMapping( vec3 color ) {\r\n\r\n\tcolor *= toneMappingExposure;\r\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\r\n\r\n}\r\n\r\n// source: http://filmicgames.com/archives/75\r\n#define Uncharted2Helper( x ) max( ( ( x * ( 0.15 * x + 0.10 * 0.50 ) + 0.20 * 0.02 ) / ( x * ( 0.15 * x + 0.50 ) + 0.20 * 0.30 ) ) - 0.02 / 0.30, vec3( 0.0 ) )\r\nvec3 Uncharted2ToneMapping( vec3 color ) {\r\n\r\n\t// John Hable's filmic operator from Uncharted 2 video game\r\n\tcolor *= toneMappingExposure;\r\n\treturn saturate( Uncharted2Helper( color ) / Uncharted2Helper( vec3( toneMappingWhitePoint ) ) );\r\n\r\n}\r\n\r\n// source: http://filmicgames.com/archives/75\r\nvec3 OptimizedCineonToneMapping( vec3 color ) {\r\n\r\n\t// optimized filmic operator by Jim Hejl and Richard Burgess-Dawson\r\n\tcolor *= toneMappingExposure;\r\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\r\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\r\n\r\n}\r\n";

var uv_pars_fragment = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\r\n\r\n\tvarying vec2 vUv;\r\n\r\n#endif";

var uv_pars_vertex = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\r\n\r\n\tvarying vec2 vUv;\r\n\tuniform vec4 offsetRepeat;\r\n\r\n#endif\r\n";

var uv_vertex = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\r\n\r\n\tvUv = uv * offsetRepeat.zw + offsetRepeat.xy;\r\n\r\n#endif";

var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\r\n\r\n\tvarying vec2 vUv2;\r\n\r\n#endif";

var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\r\n\r\n\tattribute vec2 uv2;\r\n\tvarying vec2 vUv2;\r\n\r\n#endif";

var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\r\n\r\n\tvUv2 = uv2;\r\n\r\n#endif";

var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( PHONG ) || defined( PHYSICAL ) || defined( LAMBERT ) || defined ( USE_SHADOWMAP )\r\n\r\n\tvec4 worldPosition = modelMatrix * vec4( transformed, 1.0 );\r\n\r\n#endif\r\n";

var cube_frag = "uniform samplerCube tCube;\r\nuniform float tFlip;\r\nuniform float opacity;\r\n\r\nvarying vec3 vWorldPosition;\r\n\r\n#include <common>\r\n\r\nvoid main() {\r\n\r\n\tgl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );\r\n\tgl_FragColor.a *= opacity;\r\n\r\n}\r\n";

var cube_vert = "varying vec3 vWorldPosition;\r\n\r\n#include <common>\r\n\r\nvoid main() {\r\n\r\n\tvWorldPosition = transformDirection( position, modelMatrix );\r\n\r\n\t#include <begin_vertex>\r\n\t#include <project_vertex>\r\n\r\n}\r\n";

var depth_frag = "#if DEPTH_PACKING == 3200\r\n\r\n\tuniform float opacity;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <uv_pars_fragment>\r\n#include <map_pars_fragment>\r\n#include <alphamap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec4 diffuseColor = vec4( 1.0 );\r\n\r\n\t#if DEPTH_PACKING == 3200\r\n\r\n\t\tdiffuseColor.a = opacity;\r\n\r\n\t#endif\r\n\r\n\t#include <map_fragment>\r\n\t#include <alphamap_fragment>\r\n\t#include <alphatest_fragment>\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\r\n\t#if DEPTH_PACKING == 3200\r\n\r\n\t\tgl_FragColor = vec4( vec3( gl_FragCoord.z ), opacity );\r\n\r\n\t#elif DEPTH_PACKING == 3201\r\n\r\n\t\tgl_FragColor = packDepthToRGBA( gl_FragCoord.z );\r\n\r\n\t#endif\r\n\r\n}\r\n";

var depth_vert = "#include <common>\r\n#include <uv_pars_vertex>\r\n#include <displacementmap_pars_vertex>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <uv_vertex>\r\n\r\n\t#include <skinbase_vertex>\r\n\r\n\t#ifdef USE_DISPLACEMENTMAP\r\n\r\n\t\t#include <beginnormal_vertex>\r\n\t\t#include <morphnormal_vertex>\r\n\t\t#include <skinnormal_vertex>\r\n\r\n\t#endif\r\n\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <displacementmap_vertex>\r\n\t#include <project_vertex>\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\r\n}\r\n";

var distanceRGBA_frag = "uniform vec3 lightPos;\r\nvarying vec4 vWorldPosition;\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main () {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tgl_FragColor = packDepthToRGBA( length( vWorldPosition.xyz - lightPos.xyz ) / 1000.0 );\r\n\r\n}\r\n";

var distanceRGBA_vert = "varying vec4 vWorldPosition;\r\n\r\n#include <common>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <skinbase_vertex>\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <project_vertex>\r\n\t#include <worldpos_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\r\n\tvWorldPosition = worldPosition;\r\n\r\n}\r\n";

var equirect_frag = "uniform sampler2D tEquirect;\r\nuniform float tFlip;\r\n\r\nvarying vec3 vWorldPosition;\r\n\r\n#include <common>\r\n\r\nvoid main() {\r\n\r\n\t// \tgl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );\r\n\tvec3 direction = normalize( vWorldPosition );\r\n\tvec2 sampleUV;\r\n\tsampleUV.y = saturate( tFlip * direction.y * -0.5 + 0.5 );\r\n\tsampleUV.x = atan( direction.z, direction.x ) * RECIPROCAL_PI2 + 0.5;\r\n\tgl_FragColor = texture2D( tEquirect, sampleUV );\r\n\r\n}\r\n";

var equirect_vert = "varying vec3 vWorldPosition;\r\n\r\n#include <common>\r\n\r\nvoid main() {\r\n\r\n\tvWorldPosition = transformDirection( position, modelMatrix );\r\n\r\n\t#include <begin_vertex>\r\n\t#include <project_vertex>\r\n\r\n}\r\n";

var linedashed_frag = "uniform vec3 diffuse;\r\nuniform float opacity;\r\n\r\nuniform float dashSize;\r\nuniform float totalSize;\r\n\r\nvarying float vLineDistance;\r\n\r\n#include <common>\r\n#include <color_pars_fragment>\r\n#include <fog_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\r\n\r\n\t\tdiscard;\r\n\r\n\t}\r\n\r\n\tvec3 outgoingLight = vec3( 0.0 );\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <color_fragment>\r\n\r\n\toutgoingLight = diffuseColor.rgb; // simple shader\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\r\n}\r\n";

var linedashed_vert = "uniform float scale;\r\nattribute float lineDistance;\r\n\r\nvarying float vLineDistance;\r\n\r\n#include <common>\r\n#include <color_pars_vertex>\r\n#include <fog_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <color_vertex>\r\n\r\n\tvLineDistance = scale * lineDistance;\r\n\r\n\tvec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );\r\n\tgl_Position = projectionMatrix * mvPosition;\r\n\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\t#include <fog_vertex>\r\n\r\n}\r\n";

var meshbasic_frag = "uniform vec3 diffuse;\r\nuniform float opacity;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <color_pars_fragment>\r\n#include <uv_pars_fragment>\r\n#include <uv2_pars_fragment>\r\n#include <map_pars_fragment>\r\n#include <alphamap_pars_fragment>\r\n#include <aomap_pars_fragment>\r\n#include <lightmap_pars_fragment>\r\n#include <envmap_pars_fragment>\r\n#include <fog_pars_fragment>\r\n#include <specularmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <map_fragment>\r\n\t#include <color_fragment>\r\n\t#include <alphamap_fragment>\r\n\t#include <alphatest_fragment>\r\n\t#include <specularmap_fragment>\r\n\r\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\r\n\r\n\t// accumulation (baked indirect lighting only)\r\n\t#ifdef USE_LIGHTMAP\r\n\r\n\t\treflectedLight.indirectDiffuse += texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\r\n\r\n\t#else\r\n\r\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\r\n\r\n\t#endif\r\n\r\n\t// modulation\r\n\t#include <aomap_fragment>\r\n\r\n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\r\n\r\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\r\n\r\n\t#include <normal_flip>\r\n\t#include <envmap_fragment>\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\r\n}\r\n";

var meshbasic_vert = "#include <common>\r\n#include <uv_pars_vertex>\r\n#include <uv2_pars_vertex>\r\n#include <envmap_pars_vertex>\r\n#include <color_pars_vertex>\r\n#include <fog_pars_vertex>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <uv_vertex>\r\n\t#include <uv2_vertex>\r\n\t#include <color_vertex>\r\n\t#include <skinbase_vertex>\r\n\r\n\t#ifdef USE_ENVMAP\r\n\r\n\t#include <beginnormal_vertex>\r\n\t#include <morphnormal_vertex>\r\n\t#include <skinnormal_vertex>\r\n\t#include <defaultnormal_vertex>\r\n\r\n\t#endif\r\n\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <project_vertex>\r\n\t#include <logdepthbuf_vertex>\r\n\r\n\t#include <worldpos_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\t#include <envmap_vertex>\r\n\t#include <fog_vertex>\r\n\r\n}\r\n";

var meshlambert_frag = "uniform vec3 diffuse;\r\nuniform vec3 emissive;\r\nuniform float opacity;\r\n\r\nvarying vec3 vLightFront;\r\n\r\n#ifdef DOUBLE_SIDED\r\n\r\n\tvarying vec3 vLightBack;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <dithering_pars_fragment>\r\n#include <color_pars_fragment>\r\n#include <uv_pars_fragment>\r\n#include <uv2_pars_fragment>\r\n#include <map_pars_fragment>\r\n#include <alphamap_pars_fragment>\r\n#include <aomap_pars_fragment>\r\n#include <lightmap_pars_fragment>\r\n#include <emissivemap_pars_fragment>\r\n#include <envmap_pars_fragment>\r\n#include <bsdfs>\r\n#include <lights_pars>\r\n#include <fog_pars_fragment>\r\n#include <shadowmap_pars_fragment>\r\n#include <shadowmask_pars_fragment>\r\n#include <specularmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\r\n\tvec3 totalEmissiveRadiance = emissive;\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <map_fragment>\r\n\t#include <color_fragment>\r\n\t#include <alphamap_fragment>\r\n\t#include <alphatest_fragment>\r\n\t#include <specularmap_fragment>\r\n\t#include <emissivemap_fragment>\r\n\r\n\t// accumulation\r\n\treflectedLight.indirectDiffuse = getAmbientLightIrradiance( ambientLightColor );\r\n\r\n\t#include <lightmap_fragment>\r\n\r\n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\r\n\r\n\t#ifdef DOUBLE_SIDED\r\n\r\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\r\n\r\n\t#else\r\n\r\n\t\treflectedLight.directDiffuse = vLightFront;\r\n\r\n\t#endif\r\n\r\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\r\n\r\n\t// modulation\r\n\t#include <aomap_fragment>\r\n\r\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\r\n\r\n\t#include <normal_flip>\r\n\t#include <envmap_fragment>\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <dithering_fragment>\r\n\r\n}\r\n";

var meshlambert_vert = "#define LAMBERT\r\n\r\nvarying vec3 vLightFront;\r\n\r\n#ifdef DOUBLE_SIDED\r\n\r\n\tvarying vec3 vLightBack;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <uv_pars_vertex>\r\n#include <uv2_pars_vertex>\r\n#include <envmap_pars_vertex>\r\n#include <bsdfs>\r\n#include <lights_pars>\r\n#include <color_pars_vertex>\r\n#include <fog_pars_vertex>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <shadowmap_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <uv_vertex>\r\n\t#include <uv2_vertex>\r\n\t#include <color_vertex>\r\n\r\n\t#include <beginnormal_vertex>\r\n\t#include <morphnormal_vertex>\r\n\t#include <skinbase_vertex>\r\n\t#include <skinnormal_vertex>\r\n\t#include <defaultnormal_vertex>\r\n\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <project_vertex>\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\r\n\t#include <worldpos_vertex>\r\n\t#include <envmap_vertex>\r\n\t#include <lights_lambert_vertex>\r\n\t#include <shadowmap_vertex>\r\n\t#include <fog_vertex>\r\n\r\n}\r\n";

var meshphong_frag = "#define PHONG\r\n\r\nuniform vec3 diffuse;\r\nuniform vec3 emissive;\r\nuniform vec3 specular;\r\nuniform float shininess;\r\nuniform float opacity;\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <dithering_pars_fragment>\r\n#include <color_pars_fragment>\r\n#include <uv_pars_fragment>\r\n#include <uv2_pars_fragment>\r\n#include <map_pars_fragment>\r\n#include <alphamap_pars_fragment>\r\n#include <aomap_pars_fragment>\r\n#include <lightmap_pars_fragment>\r\n#include <emissivemap_pars_fragment>\r\n#include <envmap_pars_fragment>\r\n#include <gradientmap_pars_fragment>\r\n#include <fog_pars_fragment>\r\n#include <bsdfs>\r\n#include <lights_pars>\r\n#include <lights_phong_pars_fragment>\r\n#include <shadowmap_pars_fragment>\r\n#include <bumpmap_pars_fragment>\r\n#include <normalmap_pars_fragment>\r\n#include <specularmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\r\n\tvec3 totalEmissiveRadiance = emissive;\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <map_fragment>\r\n\t#include <color_fragment>\r\n\t#include <alphamap_fragment>\r\n\t#include <alphatest_fragment>\r\n\t#include <specularmap_fragment>\r\n\t#include <normal_flip>\r\n\t#include <normal_fragment>\r\n\t#include <emissivemap_fragment>\r\n\r\n\t// accumulation\r\n\t#include <lights_phong_fragment>\r\n\t#include <lights_template>\r\n\r\n\t// modulation\r\n\t#include <aomap_fragment>\r\n\r\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\r\n\r\n\t#include <envmap_fragment>\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <dithering_fragment>\r\n\r\n}\r\n";

var meshphong_vert = "#define PHONG\r\n\r\nvarying vec3 vViewPosition;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <uv_pars_vertex>\r\n#include <uv2_pars_vertex>\r\n#include <displacementmap_pars_vertex>\r\n#include <envmap_pars_vertex>\r\n#include <color_pars_vertex>\r\n#include <fog_pars_vertex>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <shadowmap_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <uv_vertex>\r\n\t#include <uv2_vertex>\r\n\t#include <color_vertex>\r\n\r\n\t#include <beginnormal_vertex>\r\n\t#include <morphnormal_vertex>\r\n\t#include <skinbase_vertex>\r\n\t#include <skinnormal_vertex>\r\n\t#include <defaultnormal_vertex>\r\n\r\n#ifndef FLAT_SHADED // Normal computed with derivatives when FLAT_SHADED\r\n\r\n\tvNormal = normalize( transformedNormal );\r\n\r\n#endif\r\n\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <displacementmap_vertex>\r\n\t#include <project_vertex>\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\r\n\tvViewPosition = - mvPosition.xyz;\r\n\r\n\t#include <worldpos_vertex>\r\n\t#include <envmap_vertex>\r\n\t#include <shadowmap_vertex>\r\n\t#include <fog_vertex>\r\n\r\n}\r\n";

var meshphysical_frag = "#define PHYSICAL\r\n\r\nuniform vec3 diffuse;\r\nuniform vec3 emissive;\r\nuniform float roughness;\r\nuniform float metalness;\r\nuniform float opacity;\r\n\r\n#ifndef STANDARD\r\n\tuniform float clearCoat;\r\n\tuniform float clearCoatRoughness;\r\n#endif\r\n\r\nvarying vec3 vViewPosition;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <dithering_pars_fragment>\r\n#include <color_pars_fragment>\r\n#include <uv_pars_fragment>\r\n#include <uv2_pars_fragment>\r\n#include <map_pars_fragment>\r\n#include <alphamap_pars_fragment>\r\n#include <aomap_pars_fragment>\r\n#include <lightmap_pars_fragment>\r\n#include <emissivemap_pars_fragment>\r\n#include <envmap_pars_fragment>\r\n#include <fog_pars_fragment>\r\n#include <bsdfs>\r\n#include <cube_uv_reflection_fragment>\r\n#include <lights_pars>\r\n#include <lights_physical_pars_fragment>\r\n#include <shadowmap_pars_fragment>\r\n#include <bumpmap_pars_fragment>\r\n#include <normalmap_pars_fragment>\r\n#include <roughnessmap_pars_fragment>\r\n#include <metalnessmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\r\n\tvec3 totalEmissiveRadiance = emissive;\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <map_fragment>\r\n\t#include <color_fragment>\r\n\t#include <alphamap_fragment>\r\n\t#include <alphatest_fragment>\r\n\t#include <roughnessmap_fragment>\r\n\t#include <metalnessmap_fragment>\r\n\t#include <normal_flip>\r\n\t#include <normal_fragment>\r\n\t#include <emissivemap_fragment>\r\n\r\n\t// accumulation\r\n\t#include <lights_physical_fragment>\r\n\t#include <lights_template>\r\n\r\n\t// modulation\r\n\t#include <aomap_fragment>\r\n\r\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <dithering_fragment>\r\n\r\n}\r\n";

var meshphysical_vert = "#define PHYSICAL\r\n\r\nvarying vec3 vViewPosition;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <uv_pars_vertex>\r\n#include <uv2_pars_vertex>\r\n#include <displacementmap_pars_vertex>\r\n#include <color_pars_vertex>\r\n#include <fog_pars_vertex>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <shadowmap_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <uv_vertex>\r\n\t#include <uv2_vertex>\r\n\t#include <color_vertex>\r\n\r\n\t#include <beginnormal_vertex>\r\n\t#include <morphnormal_vertex>\r\n\t#include <skinbase_vertex>\r\n\t#include <skinnormal_vertex>\r\n\t#include <defaultnormal_vertex>\r\n\r\n#ifndef FLAT_SHADED // Normal computed with derivatives when FLAT_SHADED\r\n\r\n\tvNormal = normalize( transformedNormal );\r\n\r\n#endif\r\n\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <displacementmap_vertex>\r\n\t#include <project_vertex>\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\r\n\tvViewPosition = - mvPosition.xyz;\r\n\r\n\t#include <worldpos_vertex>\r\n\t#include <shadowmap_vertex>\r\n\t#include <fog_vertex>\r\n\r\n}\r\n";

var normal_frag = "#define NORMAL\r\n\r\nuniform float opacity;\r\n\r\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\r\n\r\n\tvarying vec3 vViewPosition;\r\n\r\n#endif\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include <packing>\r\n#include <uv_pars_fragment>\r\n#include <bumpmap_pars_fragment>\r\n#include <normalmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <normal_flip>\r\n\t#include <normal_fragment>\r\n\r\n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\r\n\r\n}\r\n";

var normal_vert = "#define NORMAL\r\n\r\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\r\n\r\n\tvarying vec3 vViewPosition;\r\n\r\n#endif\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include <uv_pars_vertex>\r\n#include <displacementmap_pars_vertex>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <uv_vertex>\r\n\r\n\t#include <beginnormal_vertex>\r\n\t#include <morphnormal_vertex>\r\n\t#include <skinbase_vertex>\r\n\t#include <skinnormal_vertex>\r\n\t#include <defaultnormal_vertex>\r\n\r\n#ifndef FLAT_SHADED // Normal computed with derivatives when FLAT_SHADED\r\n\r\n\tvNormal = normalize( transformedNormal );\r\n\r\n#endif\r\n\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <displacementmap_vertex>\r\n\t#include <project_vertex>\r\n\t#include <logdepthbuf_vertex>\r\n\r\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\r\n\r\n\tvViewPosition = - mvPosition.xyz;\r\n\r\n#endif\r\n\r\n}\r\n";

var points_frag = "uniform vec3 diffuse;\r\nuniform float opacity;\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <color_pars_fragment>\r\n#include <map_particle_pars_fragment>\r\n#include <fog_pars_fragment>\r\n#include <shadowmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec3 outgoingLight = vec3( 0.0 );\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <map_particle_fragment>\r\n\t#include <color_fragment>\r\n\t#include <alphatest_fragment>\r\n\r\n\toutgoingLight = diffuseColor.rgb;\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\r\n}\r\n";

var points_vert = "uniform float size;\r\nuniform float scale;\r\n\r\n#include <common>\r\n#include <color_pars_vertex>\r\n#include <fog_pars_vertex>\r\n#include <shadowmap_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <color_vertex>\r\n\t#include <begin_vertex>\r\n\t#include <project_vertex>\r\n\r\n\t#ifdef USE_SIZEATTENUATION\r\n\t\tgl_PointSize = size * ( scale / - mvPosition.z );\r\n\t#else\r\n\t\tgl_PointSize = size;\r\n\t#endif\r\n\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\t#include <worldpos_vertex>\r\n\t#include <shadowmap_vertex>\r\n\t#include <fog_vertex>\r\n\r\n}\r\n";

var shadow_frag = "uniform float opacity;\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <bsdfs>\r\n#include <lights_pars>\r\n#include <shadowmap_pars_fragment>\r\n#include <shadowmask_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\tgl_FragColor = vec4( 0.0, 0.0, 0.0, opacity * ( 1.0 - getShadowMask() ) );\r\n\r\n}\r\n";

var shadow_vert = "#include <shadowmap_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <begin_vertex>\r\n\t#include <project_vertex>\r\n\t#include <worldpos_vertex>\r\n\t#include <shadowmap_vertex>\r\n\r\n}\r\n";

var ShaderChunk = {
	alphamap_fragment: alphamap_fragment,
	alphamap_pars_fragment: alphamap_pars_fragment,
	alphatest_fragment: alphatest_fragment,
	aomap_fragment: aomap_fragment,
	aomap_pars_fragment: aomap_pars_fragment,
	begin_vertex: begin_vertex,
	beginnormal_vertex: beginnormal_vertex,
	bsdfs: bsdfs,
	bumpmap_pars_fragment: bumpmap_pars_fragment,
	clipping_planes_fragment: clipping_planes_fragment,
	clipping_planes_pars_fragment: clipping_planes_pars_fragment,
	clipping_planes_pars_vertex: clipping_planes_pars_vertex,
	clipping_planes_vertex: clipping_planes_vertex,
	color_fragment: color_fragment,
	color_pars_fragment: color_pars_fragment,
	color_pars_vertex: color_pars_vertex,
	color_vertex: color_vertex,
	common: common,
	cube_uv_reflection_fragment: cube_uv_reflection_fragment,
	defaultnormal_vertex: defaultnormal_vertex,
	displacementmap_pars_vertex: displacementmap_pars_vertex,
	displacementmap_vertex: displacementmap_vertex,
	emissivemap_fragment: emissivemap_fragment,
	emissivemap_pars_fragment: emissivemap_pars_fragment,
	encodings_fragment: encodings_fragment,
	encodings_pars_fragment: encodings_pars_fragment,
	envmap_fragment: envmap_fragment,
	envmap_pars_fragment: envmap_pars_fragment,
	envmap_pars_vertex: envmap_pars_vertex,
	envmap_vertex: envmap_vertex,
	fog_vertex: fog_vertex,
	fog_pars_vertex: fog_pars_vertex,
	fog_fragment: fog_fragment,
	fog_pars_fragment: fog_pars_fragment,
	gradientmap_pars_fragment: gradientmap_pars_fragment,
	lightmap_fragment: lightmap_fragment,
	lightmap_pars_fragment: lightmap_pars_fragment,
	lights_lambert_vertex: lights_lambert_vertex,
	lights_pars: lights_pars,
	lights_phong_fragment: lights_phong_fragment,
	lights_phong_pars_fragment: lights_phong_pars_fragment,
	lights_physical_fragment: lights_physical_fragment,
	lights_physical_pars_fragment: lights_physical_pars_fragment,
	lights_template: lights_template,
	logdepthbuf_fragment: logdepthbuf_fragment,
	logdepthbuf_pars_fragment: logdepthbuf_pars_fragment,
	logdepthbuf_pars_vertex: logdepthbuf_pars_vertex,
	logdepthbuf_vertex: logdepthbuf_vertex,
	map_fragment: map_fragment,
	map_pars_fragment: map_pars_fragment,
	map_particle_fragment: map_particle_fragment,
	map_particle_pars_fragment: map_particle_pars_fragment,
	metalnessmap_fragment: metalnessmap_fragment,
	metalnessmap_pars_fragment: metalnessmap_pars_fragment,
	morphnormal_vertex: morphnormal_vertex,
	morphtarget_pars_vertex: morphtarget_pars_vertex,
	morphtarget_vertex: morphtarget_vertex,
	normal_flip: normal_flip,
	normal_fragment: normal_fragment,
	normalmap_pars_fragment: normalmap_pars_fragment,
	packing: packing,
	premultiplied_alpha_fragment: premultiplied_alpha_fragment,
	project_vertex: project_vertex,
	dithering_fragment: dithering_fragment,
	dithering_pars_fragment: dithering_pars_fragment,
	roughnessmap_fragment: roughnessmap_fragment,
	roughnessmap_pars_fragment: roughnessmap_pars_fragment,
	shadowmap_pars_fragment: shadowmap_pars_fragment,
	shadowmap_pars_vertex: shadowmap_pars_vertex,
	shadowmap_vertex: shadowmap_vertex,
	shadowmask_pars_fragment: shadowmask_pars_fragment,
	skinbase_vertex: skinbase_vertex,
	skinning_pars_vertex: skinning_pars_vertex,
	skinning_vertex: skinning_vertex,
	skinnormal_vertex: skinnormal_vertex,
	specularmap_fragment: specularmap_fragment,
	specularmap_pars_fragment: specularmap_pars_fragment,
	tonemapping_fragment: tonemapping_fragment,
	tonemapping_pars_fragment: tonemapping_pars_fragment,
	uv_pars_fragment: uv_pars_fragment,
	uv_pars_vertex: uv_pars_vertex,
	uv_vertex: uv_vertex,
	uv2_pars_fragment: uv2_pars_fragment,
	uv2_pars_vertex: uv2_pars_vertex,
	uv2_vertex: uv2_vertex,
	worldpos_vertex: worldpos_vertex,

	cube_frag: cube_frag,
	cube_vert: cube_vert,
	depth_frag: depth_frag,
	depth_vert: depth_vert,
	distanceRGBA_frag: distanceRGBA_frag,
	distanceRGBA_vert: distanceRGBA_vert,
	equirect_frag: equirect_frag,
	equirect_vert: equirect_vert,
	linedashed_frag: linedashed_frag,
	linedashed_vert: linedashed_vert,
	meshbasic_frag: meshbasic_frag,
	meshbasic_vert: meshbasic_vert,
	meshlambert_frag: meshlambert_frag,
	meshlambert_vert: meshlambert_vert,
	meshphong_frag: meshphong_frag,
	meshphong_vert: meshphong_vert,
	meshphysical_frag: meshphysical_frag,
	meshphysical_vert: meshphysical_vert,
	normal_frag: normal_frag,
	normal_vert: normal_vert,
	points_frag: points_frag,
	points_vert: points_vert,
	shadow_frag: shadow_frag,
	shadow_vert: shadow_vert
};

/**
 * @author alteredq / http://alteredqualia.com/
 * @author mrdoob / http://mrdoob.com/
 * @author mikael emtinger / http://gomo.se/
 */

var ShaderLib = {

	basic: {

		uniforms: UniformsUtils.merge( [
			UniformsLib.common,
			UniformsLib.aomap,
			UniformsLib.lightmap,
			UniformsLib.fog
		] ),

		vertexShader: ShaderChunk.meshbasic_vert,
		fragmentShader: ShaderChunk.meshbasic_frag

	},

	lambert: {

		uniforms: UniformsUtils.merge( [
			UniformsLib.common,
			UniformsLib.aomap,
			UniformsLib.lightmap,
			UniformsLib.emissivemap,
			UniformsLib.fog,
			UniformsLib.lights,
			{
				emissive: { value: new Color( 0x000000 ) }
			}
		] ),

		vertexShader: ShaderChunk.meshlambert_vert,
		fragmentShader: ShaderChunk.meshlambert_frag

	},

	phong: {

		uniforms: UniformsUtils.merge( [
			UniformsLib.common,
			UniformsLib.aomap,
			UniformsLib.lightmap,
			UniformsLib.emissivemap,
			UniformsLib.bumpmap,
			UniformsLib.normalmap,
			UniformsLib.displacementmap,
			UniformsLib.gradientmap,
			UniformsLib.fog,
			UniformsLib.lights,
			{
				emissive: { value: new Color( 0x000000 ) },
				specular: { value: new Color( 0x111111 ) },
				shininess: { value: 30 }
			}
		] ),

		vertexShader: ShaderChunk.meshphong_vert,
		fragmentShader: ShaderChunk.meshphong_frag

	},

	standard: {

		uniforms: UniformsUtils.merge( [
			UniformsLib.common,
			UniformsLib.aomap,
			UniformsLib.lightmap,
			UniformsLib.emissivemap,
			UniformsLib.bumpmap,
			UniformsLib.normalmap,
			UniformsLib.displacementmap,
			UniformsLib.roughnessmap,
			UniformsLib.metalnessmap,
			UniformsLib.fog,
			UniformsLib.lights,
			{
				emissive: { value: new Color( 0x000000 ) },
				roughness: { value: 0.5 },
				metalness: { value: 0.5 },
				envMapIntensity: { value: 1 } // temporary
			}
		] ),

		vertexShader: ShaderChunk.meshphysical_vert,
		fragmentShader: ShaderChunk.meshphysical_frag

	},

	points: {

		uniforms: UniformsUtils.merge( [
			UniformsLib.points,
			UniformsLib.fog
		] ),

		vertexShader: ShaderChunk.points_vert,
		fragmentShader: ShaderChunk.points_frag

	},

	dashed: {

		uniforms: UniformsUtils.merge( [
			UniformsLib.common,
			UniformsLib.fog,
			{
				scale: { value: 1 },
				dashSize: { value: 1 },
				totalSize: { value: 2 }
			}
		] ),

		vertexShader: ShaderChunk.linedashed_vert,
		fragmentShader: ShaderChunk.linedashed_frag

	},

	depth: {

		uniforms: UniformsUtils.merge( [
			UniformsLib.common,
			UniformsLib.displacementmap
		] ),

		vertexShader: ShaderChunk.depth_vert,
		fragmentShader: ShaderChunk.depth_frag

	},

	normal: {

		uniforms: UniformsUtils.merge( [
			UniformsLib.common,
			UniformsLib.bumpmap,
			UniformsLib.normalmap,
			UniformsLib.displacementmap,
			{
				opacity: { value: 1.0 }
			}
		] ),

		vertexShader: ShaderChunk.normal_vert,
		fragmentShader: ShaderChunk.normal_frag

	},

	/* -------------------------------------------------------------------------
	//	Cube map shader
	 ------------------------------------------------------------------------- */

	cube: {

		uniforms: {
			tCube: { value: null },
			tFlip: { value: - 1 },
			opacity: { value: 1.0 }
		},

		vertexShader: ShaderChunk.cube_vert,
		fragmentShader: ShaderChunk.cube_frag

	},

	/* -------------------------------------------------------------------------
	//	Cube map shader
	 ------------------------------------------------------------------------- */

	equirect: {

		uniforms: {
			tEquirect: { value: null },
			tFlip: { value: - 1 }
		},

		vertexShader: ShaderChunk.equirect_vert,
		fragmentShader: ShaderChunk.equirect_frag

	},

	distanceRGBA: {

		uniforms: {
			lightPos: { value: new Vector3() }
		},

		vertexShader: ShaderChunk.distanceRGBA_vert,
		fragmentShader: ShaderChunk.distanceRGBA_frag

	}

};

ShaderLib.physical = {

	uniforms: UniformsUtils.merge( [
		ShaderLib.standard.uniforms,
		{
			clearCoat: { value: 0 },
			clearCoatRoughness: { value: 0 }
		}
	] ),

	vertexShader: ShaderChunk.meshphysical_vert,
	fragmentShader: ShaderChunk.meshphysical_frag

};

/**
 * @author bhouston / http://clara.io
 */

function Box2( min, max ) {

	this.min = ( min !== undefined ) ? min : new Vector2( + Infinity, + Infinity );
	this.max = ( max !== undefined ) ? max : new Vector2( - Infinity, - Infinity );

}

Object.assign( Box2.prototype, {

	set: function ( min, max ) {

		this.min.copy( min );
		this.max.copy( max );

		return this;

	},

	setFromPoints: function ( points ) {

		this.makeEmpty();

		for ( var i = 0, il = points.length; i < il; i ++ ) {

			this.expandByPoint( points[ i ] );

		}

		return this;

	},

	setFromCenterAndSize: function () {

		var v1 = new Vector2();

		return function setFromCenterAndSize( center, size ) {

			var halfSize = v1.copy( size ).multiplyScalar( 0.5 );
			this.min.copy( center ).sub( halfSize );
			this.max.copy( center ).add( halfSize );

			return this;

		};

	}(),

	clone: function () {

		return new this.constructor().copy( this );

	},

	copy: function ( box ) {

		this.min.copy( box.min );
		this.max.copy( box.max );

		return this;

	},

	makeEmpty: function () {

		this.min.x = this.min.y = + Infinity;
		this.max.x = this.max.y = - Infinity;

		return this;

	},

	isEmpty: function () {

		// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes

		return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y );

	},

	getCenter: function ( optionalTarget ) {

		var result = optionalTarget || new Vector2();
		return this.isEmpty() ? result.set( 0, 0 ) : result.addVectors( this.min, this.max ).multiplyScalar( 0.5 );

	},

	getSize: function ( optionalTarget ) {

		var result = optionalTarget || new Vector2();
		return this.isEmpty() ? result.set( 0, 0 ) : result.subVectors( this.max, this.min );

	},

	expandByPoint: function ( point ) {

		this.min.min( point );
		this.max.max( point );

		return this;

	},

	expandByVector: function ( vector ) {

		this.min.sub( vector );
		this.max.add( vector );

		return this;

	},

	expandByScalar: function ( scalar ) {

		this.min.addScalar( - scalar );
		this.max.addScalar( scalar );

		return this;

	},

	containsPoint: function ( point ) {

		return point.x < this.min.x || point.x > this.max.x ||
			point.y < this.min.y || point.y > this.max.y ? false : true;

	},

	containsBox: function ( box ) {

		return this.min.x <= box.min.x && box.max.x <= this.max.x &&
			this.min.y <= box.min.y && box.max.y <= this.max.y;

	},

	getParameter: function ( point, optionalTarget ) {

		// This can potentially have a divide by zero if the box
		// has a size dimension of 0.

		var result = optionalTarget || new Vector2();

		return result.set(
			( point.x - this.min.x ) / ( this.max.x - this.min.x ),
			( point.y - this.min.y ) / ( this.max.y - this.min.y )
		);

	},

	intersectsBox: function ( box ) {

		// using 4 splitting planes to rule out intersections

		return box.max.x < this.min.x || box.min.x > this.max.x ||
			box.max.y < this.min.y || box.min.y > this.max.y ? false : true;

	},

	clampPoint: function ( point, optionalTarget ) {

		var result = optionalTarget || new Vector2();
		return result.copy( point ).clamp( this.min, this.max );

	},

	distanceToPoint: function () {

		var v1 = new Vector2();

		return function distanceToPoint( point ) {

			var clampedPoint = v1.copy( point ).clamp( this.min, this.max );
			return clampedPoint.sub( point ).length();

		};

	}(),

	intersect: function ( box ) {

		this.min.max( box.min );
		this.max.min( box.max );

		return this;

	},

	union: function ( box ) {

		this.min.min( box.min );
		this.max.max( box.max );

		return this;

	},

	translate: function ( offset ) {

		this.min.add( offset );
		this.max.add( offset );

		return this;

	},

	equals: function ( box ) {

		return box.min.equals( this.min ) && box.max.equals( this.max );

	}

} );

/**
 * @author mikael emtinger / http://gomo.se/
 * @author alteredq / http://alteredqualia.com/
 */

function LensFlarePlugin( renderer, flares ) {

	var gl = renderer.context;
	var state = renderer.state;

	var vertexBuffer, elementBuffer;
	var shader, program, attributes, uniforms;

	var tempTexture, occlusionTexture;

	function init() {

		var vertices = new Float32Array( [
			- 1, - 1,  0, 0,
			 1, - 1,  1, 0,
			 1,  1,  1, 1,
			- 1,  1,  0, 1
		] );

		var faces = new Uint16Array( [
			0, 1, 2,
			0, 2, 3
		] );

		// buffers

		vertexBuffer     = gl.createBuffer();
		elementBuffer    = gl.createBuffer();

		gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer );
		gl.bufferData( gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW );

		gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer );
		gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, faces, gl.STATIC_DRAW );

		// textures

		tempTexture      = gl.createTexture();
		occlusionTexture = gl.createTexture();

		state.bindTexture( gl.TEXTURE_2D, tempTexture );
		gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGB, 16, 16, 0, gl.RGB, gl.UNSIGNED_BYTE, null );
		gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE );
		gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE );
		gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST );
		gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST );

		state.bindTexture( gl.TEXTURE_2D, occlusionTexture );
		gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGBA, 16, 16, 0, gl.RGBA, gl.UNSIGNED_BYTE, null );
		gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE );
		gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE );
		gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST );
		gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST );

		shader = {

			vertexShader: [

				"uniform lowp int renderType;",

				"uniform vec3 screenPosition;",
				"uniform vec2 scale;",
				"uniform float rotation;",

				"uniform sampler2D occlusionMap;",

				"attribute vec2 position;",
				"attribute vec2 uv;",

				"varying vec2 vUV;",
				"varying float vVisibility;",

				"void main() {",

					"vUV = uv;",

					"vec2 pos = position;",

					"if ( renderType == 2 ) {",

						"vec4 visibility = texture2D( occlusionMap, vec2( 0.1, 0.1 ) );",
						"visibility += texture2D( occlusionMap, vec2( 0.5, 0.1 ) );",
						"visibility += texture2D( occlusionMap, vec2( 0.9, 0.1 ) );",
						"visibility += texture2D( occlusionMap, vec2( 0.9, 0.5 ) );",
						"visibility += texture2D( occlusionMap, vec2( 0.9, 0.9 ) );",
						"visibility += texture2D( occlusionMap, vec2( 0.5, 0.9 ) );",
						"visibility += texture2D( occlusionMap, vec2( 0.1, 0.9 ) );",
						"visibility += texture2D( occlusionMap, vec2( 0.1, 0.5 ) );",
						"visibility += texture2D( occlusionMap, vec2( 0.5, 0.5 ) );",

						"vVisibility =        visibility.r / 9.0;",
						"vVisibility *= 1.0 - visibility.g / 9.0;",
						"vVisibility *=       visibility.b / 9.0;",
						"vVisibility *= 1.0 - visibility.a / 9.0;",

						"pos.x = cos( rotation ) * position.x - sin( rotation ) * position.y;",
						"pos.y = sin( rotation ) * position.x + cos( rotation ) * position.y;",

					"}",

					"gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );",

				"}"

			].join( "\n" ),

			fragmentShader: [

				"uniform lowp int renderType;",

				"uniform sampler2D map;",
				"uniform float opacity;",
				"uniform vec3 color;",

				"varying vec2 vUV;",
				"varying float vVisibility;",

				"void main() {",

					// pink square

					"if ( renderType == 0 ) {",

						"gl_FragColor = vec4( 1.0, 0.0, 1.0, 0.0 );",

					// restore

					"} else if ( renderType == 1 ) {",

						"gl_FragColor = texture2D( map, vUV );",

					// flare

					"} else {",

						"vec4 texture = texture2D( map, vUV );",
						"texture.a *= opacity * vVisibility;",
						"gl_FragColor = texture;",
						"gl_FragColor.rgb *= color;",

					"}",

				"}"

			].join( "\n" )

		};

		program = createProgram( shader );

		attributes = {
			vertex: gl.getAttribLocation ( program, "position" ),
			uv:     gl.getAttribLocation ( program, "uv" )
		};

		uniforms = {
			renderType:     gl.getUniformLocation( program, "renderType" ),
			map:            gl.getUniformLocation( program, "map" ),
			occlusionMap:   gl.getUniformLocation( program, "occlusionMap" ),
			opacity:        gl.getUniformLocation( program, "opacity" ),
			color:          gl.getUniformLocation( program, "color" ),
			scale:          gl.getUniformLocation( program, "scale" ),
			rotation:       gl.getUniformLocation( program, "rotation" ),
			screenPosition: gl.getUniformLocation( program, "screenPosition" )
		};

	}

	/*
	 * Render lens flares
	 * Method: renders 16x16 0xff00ff-colored points scattered over the light source area,
	 *         reads these back and calculates occlusion.
	 */

	this.render = function ( scene, camera, viewport ) {

		if ( flares.length === 0 ) return;

		var tempPosition = new Vector3();

		var invAspect = viewport.w / viewport.z,
			halfViewportWidth = viewport.z * 0.5,
			halfViewportHeight = viewport.w * 0.5;

		var size = 16 / viewport.w,
			scale = new Vector2( size * invAspect, size );

		var screenPosition = new Vector3( 1, 1, 0 ),
			screenPositionPixels = new Vector2( 1, 1 );

		var validArea = new Box2();

		validArea.min.set( viewport.x, viewport.y );
		validArea.max.set( viewport.x + ( viewport.z - 16 ), viewport.y + ( viewport.w - 16 ) );

		if ( program === undefined ) {

			init();

		}

		gl.useProgram( program );

		state.initAttributes();
		state.enableAttribute( attributes.vertex );
		state.enableAttribute( attributes.uv );
		state.disableUnusedAttributes();

		// loop through all lens flares to update their occlusion and positions
		// setup gl and common used attribs/uniforms

		gl.uniform1i( uniforms.occlusionMap, 0 );
		gl.uniform1i( uniforms.map, 1 );

		gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer );
		gl.vertexAttribPointer( attributes.vertex, 2, gl.FLOAT, false, 2 * 8, 0 );
		gl.vertexAttribPointer( attributes.uv, 2, gl.FLOAT, false, 2 * 8, 8 );

		gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer );

		state.disable( gl.CULL_FACE );
		state.buffers.depth.setMask( false );

		for ( var i = 0, l = flares.length; i < l; i ++ ) {

			size = 16 / viewport.w;
			scale.set( size * invAspect, size );

			// calc object screen position

			var flare = flares[ i ];

			tempPosition.set( flare.matrixWorld.elements[ 12 ], flare.matrixWorld.elements[ 13 ], flare.matrixWorld.elements[ 14 ] );

			tempPosition.applyMatrix4( camera.matrixWorldInverse );
			tempPosition.applyMatrix4( camera.projectionMatrix );

			// setup arrays for gl programs

			screenPosition.copy( tempPosition );

			// horizontal and vertical coordinate of the lower left corner of the pixels to copy

			screenPositionPixels.x = viewport.x + ( screenPosition.x * halfViewportWidth ) + halfViewportWidth - 8;
			screenPositionPixels.y = viewport.y + ( screenPosition.y * halfViewportHeight ) + halfViewportHeight - 8;

			// screen cull

			if ( validArea.containsPoint( screenPositionPixels ) === true ) {

				// save current RGB to temp texture

				state.activeTexture( gl.TEXTURE0 );
				state.bindTexture( gl.TEXTURE_2D, null );
				state.activeTexture( gl.TEXTURE1 );
				state.bindTexture( gl.TEXTURE_2D, tempTexture );
				gl.copyTexImage2D( gl.TEXTURE_2D, 0, gl.RGB, screenPositionPixels.x, screenPositionPixels.y, 16, 16, 0 );


				// render pink quad

				gl.uniform1i( uniforms.renderType, 0 );
				gl.uniform2f( uniforms.scale, scale.x, scale.y );
				gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z );

				state.disable( gl.BLEND );
				state.enable( gl.DEPTH_TEST );

				gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 );


				// copy result to occlusionMap

				state.activeTexture( gl.TEXTURE0 );
				state.bindTexture( gl.TEXTURE_2D, occlusionTexture );
				gl.copyTexImage2D( gl.TEXTURE_2D, 0, gl.RGBA, screenPositionPixels.x, screenPositionPixels.y, 16, 16, 0 );


				// restore graphics

				gl.uniform1i( uniforms.renderType, 1 );
				state.disable( gl.DEPTH_TEST );

				state.activeTexture( gl.TEXTURE1 );
				state.bindTexture( gl.TEXTURE_2D, tempTexture );
				gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 );


				// update object positions

				flare.positionScreen.copy( screenPosition );

				if ( flare.customUpdateCallback ) {

					flare.customUpdateCallback( flare );

				} else {

					flare.updateLensFlares();

				}

				// render flares

				gl.uniform1i( uniforms.renderType, 2 );
				state.enable( gl.BLEND );

				for ( var j = 0, jl = flare.lensFlares.length; j < jl; j ++ ) {

					var sprite = flare.lensFlares[ j ];

					if ( sprite.opacity > 0.001 && sprite.scale > 0.001 ) {

						screenPosition.x = sprite.x;
						screenPosition.y = sprite.y;
						screenPosition.z = sprite.z;

						size = sprite.size * sprite.scale / viewport.w;

						scale.x = size * invAspect;
						scale.y = size;

						gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z );
						gl.uniform2f( uniforms.scale, scale.x, scale.y );
						gl.uniform1f( uniforms.rotation, sprite.rotation );

						gl.uniform1f( uniforms.opacity, sprite.opacity );
						gl.uniform3f( uniforms.color, sprite.color.r, sprite.color.g, sprite.color.b );

						state.setBlending( sprite.blending, sprite.blendEquation, sprite.blendSrc, sprite.blendDst );
						renderer.setTexture2D( sprite.texture, 1 );

						gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 );

					}

				}

			}

		}

		// restore gl

		state.enable( gl.CULL_FACE );
		state.enable( gl.DEPTH_TEST );
		state.buffers.depth.setMask( true );

		renderer.resetGLState();

	};

	function createProgram( shader ) {

		var program = gl.createProgram();

		var fragmentShader = gl.createShader( gl.FRAGMENT_SHADER );
		var vertexShader = gl.createShader( gl.VERTEX_SHADER );

		var prefix = "precision " + renderer.getPrecision() + " float;\n";

		gl.shaderSource( fragmentShader, prefix + shader.fragmentShader );
		gl.shaderSource( vertexShader, prefix + shader.vertexShader );

		gl.compileShader( fragmentShader );
		gl.compileShader( vertexShader );

		gl.attachShader( program, fragmentShader );
		gl.attachShader( program, vertexShader );

		gl.linkProgram( program );

		return program;

	}

}

/**
 * @author mikael emtinger / http://gomo.se/
 * @author alteredq / http://alteredqualia.com/
 */

function SpritePlugin( renderer, sprites ) {

	var gl = renderer.context;
	var state = renderer.state;

	var vertexBuffer, elementBuffer;
	var program, attributes, uniforms;

	var texture;

	// decompose matrixWorld

	var spritePosition = new Vector3();
	var spriteRotation = new Quaternion();
	var spriteScale = new Vector3();

	function init() {

		var vertices = new Float32Array( [
			- 0.5, - 0.5,  0, 0,
			  0.5, - 0.5,  1, 0,
			  0.5,   0.5,  1, 1,
			- 0.5,   0.5,  0, 1
		] );

		var faces = new Uint16Array( [
			0, 1, 2,
			0, 2, 3
		] );

		vertexBuffer  = gl.createBuffer();
		elementBuffer = gl.createBuffer();

		gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer );
		gl.bufferData( gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW );

		gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer );
		gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, faces, gl.STATIC_DRAW );

		program = createProgram();

		attributes = {
			position:			gl.getAttribLocation ( program, 'position' ),
			uv:					gl.getAttribLocation ( program, 'uv' )
		};

		uniforms = {
			uvOffset:			gl.getUniformLocation( program, 'uvOffset' ),
			uvScale:			gl.getUniformLocation( program, 'uvScale' ),

			rotation:			gl.getUniformLocation( program, 'rotation' ),
			scale:				gl.getUniformLocation( program, 'scale' ),

			color:				gl.getUniformLocation( program, 'color' ),
			map:				gl.getUniformLocation( program, 'map' ),
			opacity:			gl.getUniformLocation( program, 'opacity' ),

			modelViewMatrix: 	gl.getUniformLocation( program, 'modelViewMatrix' ),
			projectionMatrix:	gl.getUniformLocation( program, 'projectionMatrix' ),

			fogType:			gl.getUniformLocation( program, 'fogType' ),
			fogDensity:			gl.getUniformLocation( program, 'fogDensity' ),
			fogNear:			gl.getUniformLocation( program, 'fogNear' ),
			fogFar:				gl.getUniformLocation( program, 'fogFar' ),
			fogColor:			gl.getUniformLocation( program, 'fogColor' ),

			alphaTest:			gl.getUniformLocation( program, 'alphaTest' )
		};

		var canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );
		canvas.width = 8;
		canvas.height = 8;

		var context = canvas.getContext( '2d' );
		context.fillStyle = 'white';
		context.fillRect( 0, 0, 8, 8 );

		texture = new Texture( canvas );
		texture.needsUpdate = true;

	}

	this.render = function ( scene, camera ) {

		if ( sprites.length === 0 ) return;

		// setup gl

		if ( program === undefined ) {

			init();

		}

		gl.useProgram( program );

		state.initAttributes();
		state.enableAttribute( attributes.position );
		state.enableAttribute( attributes.uv );
		state.disableUnusedAttributes();

		state.disable( gl.CULL_FACE );
		state.enable( gl.BLEND );

		gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer );
		gl.vertexAttribPointer( attributes.position, 2, gl.FLOAT, false, 2 * 8, 0 );
		gl.vertexAttribPointer( attributes.uv, 2, gl.FLOAT, false, 2 * 8, 8 );

		gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer );

		gl.uniformMatrix4fv( uniforms.projectionMatrix, false, camera.projectionMatrix.elements );

		state.activeTexture( gl.TEXTURE0 );
		gl.uniform1i( uniforms.map, 0 );

		var oldFogType = 0;
		var sceneFogType = 0;
		var fog = scene.fog;

		if ( fog ) {

			gl.uniform3f( uniforms.fogColor, fog.color.r, fog.color.g, fog.color.b );

			if ( fog.isFog ) {

				gl.uniform1f( uniforms.fogNear, fog.near );
				gl.uniform1f( uniforms.fogFar, fog.far );

				gl.uniform1i( uniforms.fogType, 1 );
				oldFogType = 1;
				sceneFogType = 1;

			} else if ( fog.isFogExp2 ) {

				gl.uniform1f( uniforms.fogDensity, fog.density );

				gl.uniform1i( uniforms.fogType, 2 );
				oldFogType = 2;
				sceneFogType = 2;

			}

		} else {

			gl.uniform1i( uniforms.fogType, 0 );
			oldFogType = 0;
			sceneFogType = 0;

		}


		// update positions and sort

		for ( var i = 0, l = sprites.length; i < l; i ++ ) {

			var sprite = sprites[ i ];

			sprite.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, sprite.matrixWorld );
			sprite.z = - sprite.modelViewMatrix.elements[ 14 ];

		}

		sprites.sort( painterSortStable );

		// render all sprites

		var scale = [];

		for ( var i = 0, l = sprites.length; i < l; i ++ ) {

			var sprite = sprites[ i ];
			var material = sprite.material;

			if ( material.visible === false ) continue;

			sprite.onBeforeRender( renderer, scene, camera, undefined, material, undefined );

			gl.uniform1f( uniforms.alphaTest, material.alphaTest );
			gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, sprite.modelViewMatrix.elements );

			sprite.matrixWorld.decompose( spritePosition, spriteRotation, spriteScale );

			scale[ 0 ] = spriteScale.x;
			scale[ 1 ] = spriteScale.y;

			var fogType = 0;

			if ( scene.fog && material.fog ) {

				fogType = sceneFogType;

			}

			if ( oldFogType !== fogType ) {

				gl.uniform1i( uniforms.fogType, fogType );
				oldFogType = fogType;

			}

			if ( material.map !== null ) {

				gl.uniform2f( uniforms.uvOffset, material.map.offset.x, material.map.offset.y );
				gl.uniform2f( uniforms.uvScale, material.map.repeat.x, material.map.repeat.y );

			} else {

				gl.uniform2f( uniforms.uvOffset, 0, 0 );
				gl.uniform2f( uniforms.uvScale, 1, 1 );

			}

			gl.uniform1f( uniforms.opacity, material.opacity );
			gl.uniform3f( uniforms.color, material.color.r, material.color.g, material.color.b );

			gl.uniform1f( uniforms.rotation, material.rotation );
			gl.uniform2fv( uniforms.scale, scale );

			state.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha );
			state.buffers.depth.setTest( material.depthTest );
			state.buffers.depth.setMask( material.depthWrite );

			if ( material.map ) {

				renderer.setTexture2D( material.map, 0 );

			} else {

				renderer.setTexture2D( texture, 0 );

			}

			gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 );

			sprite.onAfterRender( renderer, scene, camera, undefined, material, undefined );

		}

		// restore gl

		state.enable( gl.CULL_FACE );

		renderer.resetGLState();

	};

	function createProgram() {

		var program = gl.createProgram();

		var vertexShader = gl.createShader( gl.VERTEX_SHADER );
		var fragmentShader = gl.createShader( gl.FRAGMENT_SHADER );

		gl.shaderSource( vertexShader, [

			'precision ' + renderer.getPrecision() + ' float;',

			'#define SHADER_NAME ' + 'SpriteMaterial',

			'uniform mat4 modelViewMatrix;',
			'uniform mat4 projectionMatrix;',
			'uniform float rotation;',
			'uniform vec2 scale;',
			'uniform vec2 uvOffset;',
			'uniform vec2 uvScale;',

			'attribute vec2 position;',
			'attribute vec2 uv;',

			'varying vec2 vUV;',

			'void main() {',

				'vUV = uvOffset + uv * uvScale;',

				'vec2 alignedPosition = position * scale;',

				'vec2 rotatedPosition;',
				'rotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;',
				'rotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;',

				'vec4 finalPosition;',

				'finalPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );',
				'finalPosition.xy += rotatedPosition;',
				'finalPosition = projectionMatrix * finalPosition;',

				'gl_Position = finalPosition;',

			'}'

		].join( '\n' ) );

		gl.shaderSource( fragmentShader, [

			'precision ' + renderer.getPrecision() + ' float;',

			'#define SHADER_NAME ' + 'SpriteMaterial',

			'uniform vec3 color;',
			'uniform sampler2D map;',
			'uniform float opacity;',

			'uniform int fogType;',
			'uniform vec3 fogColor;',
			'uniform float fogDensity;',
			'uniform float fogNear;',
			'uniform float fogFar;',
			'uniform float alphaTest;',

			'varying vec2 vUV;',

			'void main() {',

				'vec4 texture = texture2D( map, vUV );',

				'if ( texture.a < alphaTest ) discard;',

				'gl_FragColor = vec4( color * texture.xyz, texture.a * opacity );',

				'if ( fogType > 0 ) {',

					'float depth = gl_FragCoord.z / gl_FragCoord.w;',
					'float fogFactor = 0.0;',

					'if ( fogType == 1 ) {',

						'fogFactor = smoothstep( fogNear, fogFar, depth );',

					'} else {',

						'const float LOG2 = 1.442695;',
						'fogFactor = exp2( - fogDensity * fogDensity * depth * depth * LOG2 );',
						'fogFactor = 1.0 - clamp( fogFactor, 0.0, 1.0 );',

					'}',

					'gl_FragColor = mix( gl_FragColor, vec4( fogColor, gl_FragColor.w ), fogFactor );',

				'}',

			'}'

		].join( '\n' ) );

		gl.compileShader( vertexShader );
		gl.compileShader( fragmentShader );

		gl.attachShader( program, vertexShader );
		gl.attachShader( program, fragmentShader );

		gl.linkProgram( program );

		return program;

	}

	function painterSortStable( a, b ) {

		if ( a.renderOrder !== b.renderOrder ) {

			return a.renderOrder - b.renderOrder;

		} else if ( a.z !== b.z ) {

			return b.z - a.z;

		} else {

			return b.id - a.id;

		}

	}

}

/**
 * @author mrdoob / http://mrdoob.com/
 * @author alteredq / http://alteredqualia.com/
 */

var materialId = 0;

function Material() {

	Object.defineProperty( this, 'id', { value: materialId ++ } );

	this.uuid = _Math.generateUUID();

	this.name = '';
	this.type = 'Material';

	this.fog = true;
	this.lights = true;

	this.blending = NormalBlending;
	this.side = FrontSide;
	this.shading = SmoothShading; // THREE.FlatShading, THREE.SmoothShading
	this.vertexColors = NoColors; // THREE.NoColors, THREE.VertexColors, THREE.FaceColors

	this.opacity = 1;
	this.transparent = false;

	this.blendSrc = SrcAlphaFactor;
	this.blendDst = OneMinusSrcAlphaFactor;
	this.blendEquation = AddEquation;
	this.blendSrcAlpha = null;
	this.blendDstAlpha = null;
	this.blendEquationAlpha = null;

	this.depthFunc = LessEqualDepth;
	this.depthTest = true;
	this.depthWrite = true;

	this.clippingPlanes = null;
	this.clipIntersection = false;
	this.clipShadows = false;

	this.colorWrite = true;

	this.precision = null; // override the renderer's default precision for this material

	this.polygonOffset = false;
	this.polygonOffsetFactor = 0;
	this.polygonOffsetUnits = 0;

	this.dithering = false;

	this.alphaTest = 0;
	this.premultipliedAlpha = false;

	this.overdraw = 0; // Overdrawn pixels (typically between 0 and 1) for fixing antialiasing gaps in CanvasRenderer

	this.visible = true;

	this.needsUpdate = true;

}

Object.assign( Material.prototype, EventDispatcher.prototype, {

	isMaterial: true,

	onBeforeCompile: function () {},

	setValues: function ( values ) {

		if ( values === undefined ) return;

		for ( var key in values ) {

			var newValue = values[ key ];

			if ( newValue === undefined ) {

				console.warn( "THREE.Material: '" + key + "' parameter is undefined." );
				continue;

			}

			var currentValue = this[ key ];

			if ( currentValue === undefined ) {

				console.warn( "THREE." + this.type + ": '" + key + "' is not a property of this material." );
				continue;

			}

			if ( currentValue && currentValue.isColor ) {

				currentValue.set( newValue );

			} else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) {

				currentValue.copy( newValue );

			} else if ( key === 'overdraw' ) {

				// ensure overdraw is backwards-compatible with legacy boolean type
				this[ key ] = Number( newValue );

			} else {

				this[ key ] = newValue;

			}

		}

	},

	toJSON: function ( meta ) {

		var isRoot = meta === undefined;

		if ( isRoot ) {

			meta = {
				textures: {},
				images: {}
			};

		}

		var data = {
			metadata: {
				version: 4.5,
				type: 'Material',
				generator: 'Material.toJSON'
			}
		};

		// standard Material serialization
		data.uuid = this.uuid;
		data.type = this.type;

		if ( this.name !== '' ) data.name = this.name;

		if ( this.color && this.color.isColor ) data.color = this.color.getHex();

		if ( this.roughness !== undefined ) data.roughness = this.roughness;
		if ( this.metalness !== undefined ) data.metalness = this.metalness;

		if ( this.emissive && this.emissive.isColor ) data.emissive = this.emissive.getHex();
		if ( this.specular && this.specular.isColor ) data.specular = this.specular.getHex();
		if ( this.shininess !== undefined ) data.shininess = this.shininess;
		if ( this.clearCoat !== undefined ) data.clearCoat = this.clearCoat;
		if ( this.clearCoatRoughness !== undefined ) data.clearCoatRoughness = this.clearCoatRoughness;

		if ( this.map && this.map.isTexture ) data.map = this.map.toJSON( meta ).uuid;
		if ( this.alphaMap && this.alphaMap.isTexture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid;
		if ( this.lightMap && this.lightMap.isTexture ) data.lightMap = this.lightMap.toJSON( meta ).uuid;
		if ( this.bumpMap && this.bumpMap.isTexture ) {

			data.bumpMap = this.bumpMap.toJSON( meta ).uuid;
			data.bumpScale = this.bumpScale;

		}
		if ( this.normalMap && this.normalMap.isTexture ) {

			data.normalMap = this.normalMap.toJSON( meta ).uuid;
			data.normalScale = this.normalScale.toArray();

		}
		if ( this.displacementMap && this.displacementMap.isTexture ) {

			data.displacementMap = this.displacementMap.toJSON( meta ).uuid;
			data.displacementScale = this.displacementScale;
			data.displacementBias = this.displacementBias;

		}
		if ( this.roughnessMap && this.roughnessMap.isTexture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid;
		if ( this.metalnessMap && this.metalnessMap.isTexture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid;

		if ( this.emissiveMap && this.emissiveMap.isTexture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid;
		if ( this.specularMap && this.specularMap.isTexture ) data.specularMap = this.specularMap.toJSON( meta ).uuid;

		if ( this.envMap && this.envMap.isTexture ) {

			data.envMap = this.envMap.toJSON( meta ).uuid;
			data.reflectivity = this.reflectivity; // Scale behind envMap

		}

		if ( this.gradientMap && this.gradientMap.isTexture ) {

			data.gradientMap = this.gradientMap.toJSON( meta ).uuid;

		}

		if ( this.size !== undefined ) data.size = this.size;
		if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation;

		if ( this.blending !== NormalBlending ) data.blending = this.blending;
		if ( this.shading !== SmoothShading ) data.shading = this.shading;
		if ( this.side !== FrontSide ) data.side = this.side;
		if ( this.vertexColors !== NoColors ) data.vertexColors = this.vertexColors;

		if ( this.opacity < 1 ) data.opacity = this.opacity;
		if ( this.transparent === true ) data.transparent = this.transparent;

		data.depthFunc = this.depthFunc;
		data.depthTest = this.depthTest;
		data.depthWrite = this.depthWrite;

		if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest;
		if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = this.premultipliedAlpha;
		if ( this.wireframe === true ) data.wireframe = this.wireframe;
		if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth;
		if ( this.wireframeLinecap !== 'round' ) data.wireframeLinecap = this.wireframeLinecap;
		if ( this.wireframeLinejoin !== 'round' ) data.wireframeLinejoin = this.wireframeLinejoin;

		data.skinning = this.skinning;
		data.morphTargets = this.morphTargets;

		data.dithering = this.dithering;

		// TODO: Copied from Object3D.toJSON

		function extractFromCache( cache ) {

			var values = [];

			for ( var key in cache ) {

				var data = cache[ key ];
				delete data.metadata;
				values.push( data );

			}

			return values;

		}

		if ( isRoot ) {

			var textures = extractFromCache( meta.textures );
			var images = extractFromCache( meta.images );

			if ( textures.length > 0 ) data.textures = textures;
			if ( images.length > 0 ) data.images = images;

		}

		return data;

	},

	clone: function () {

		return new this.constructor().copy( this );

	},

	copy: function ( source ) {

		this.name = source.name;

		this.fog = source.fog;
		this.lights = source.lights;

		this.blending = source.blending;
		this.side = source.side;
		this.shading = source.shading;
		this.vertexColors = source.vertexColors;

		this.opacity = source.opacity;
		this.transparent = source.transparent;

		this.blendSrc = source.blendSrc;
		this.blendDst = source.blendDst;
		this.blendEquation = source.blendEquation;
		this.blendSrcAlpha = source.blendSrcAlpha;
		this.blendDstAlpha = source.blendDstAlpha;
		this.blendEquationAlpha = source.blendEquationAlpha;

		this.depthFunc = source.depthFunc;
		this.depthTest = source.depthTest;
		this.depthWrite = source.depthWrite;

		this.colorWrite = source.colorWrite;

		this.precision = source.precision;

		this.polygonOffset = source.polygonOffset;
		this.polygonOffsetFactor = source.polygonOffsetFactor;
		this.polygonOffsetUnits = source.polygonOffsetUnits;

		this.dithering = source.dithering;

		this.alphaTest = source.alphaTest;

		this.premultipliedAlpha = source.premultipliedAlpha;

		this.overdraw = source.overdraw;

		this.visible = source.visible;
		this.clipShadows = source.clipShadows;
		this.clipIntersection = source.clipIntersection;

		var srcPlanes = source.clippingPlanes,
			dstPlanes = null;

		if ( srcPlanes !== null ) {

			var n = srcPlanes.length;
			dstPlanes = new Array( n );

			for ( var i = 0; i !== n; ++ i )
				dstPlanes[ i ] = srcPlanes[ i ].clone();

		}

		this.clippingPlanes = dstPlanes;

		return this;

	},

	dispose: function () {

		this.dispatchEvent( { type: 'dispose' } );

	}

} );

/**
 * @author alteredq / http://alteredqualia.com/
 *
 * parameters = {
 *  defines: { "label" : "value" },
 *  uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } },
 *
 *  fragmentShader: <string>,
 *  vertexShader: <string>,
 *
 *  wireframe: <boolean>,
 *  wireframeLinewidth: <float>,
 *
 *  lights: <bool>,
 *
 *  skinning: <bool>,
 *  morphTargets: <bool>,
 *  morphNormals: <bool>
 * }
 */

function ShaderMaterial( parameters ) {

	Material.call( this );

	this.type = 'ShaderMaterial';

	this.defines = {};
	this.uniforms = {};

	this.vertexShader = 'void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}';
	this.fragmentShader = 'void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}';

	this.linewidth = 1;

	this.wireframe = false;
	this.wireframeLinewidth = 1;

	this.fog = false; // set to use scene fog
	this.lights = false; // set to use scene lights
	this.clipping = false; // set to use user-defined clipping planes

	this.skinning = false; // set to use skinning attribute streams
	this.morphTargets = false; // set to use morph targets
	this.morphNormals = false; // set to use morph normals

	this.extensions = {
		derivatives: false, // set to use derivatives
		fragDepth: false, // set to use fragment depth values
		drawBuffers: false, // set to use draw buffers
		shaderTextureLOD: false // set to use shader texture LOD
	};

	// When rendered geometry doesn't include these attributes but the material does,
	// use these default values in WebGL. This avoids errors when buffer data is missing.
	this.defaultAttributeValues = {
		'color': [ 1, 1, 1 ],
		'uv': [ 0, 0 ],
		'uv2': [ 0, 0 ]
	};

	this.index0AttributeName = undefined;

	if ( parameters !== undefined ) {

		if ( parameters.attributes !== undefined ) {

			console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' );

		}

		this.setValues( parameters );

	}

}

ShaderMaterial.prototype = Object.create( Material.prototype );
ShaderMaterial.prototype.constructor = ShaderMaterial;

ShaderMaterial.prototype.isShaderMaterial = true;

ShaderMaterial.prototype.copy = function ( source ) {

	Material.prototype.copy.call( this, source );

	this.fragmentShader = source.fragmentShader;
	this.vertexShader = source.vertexShader;

	this.uniforms = UniformsUtils.clone( source.uniforms );

	this.defines = source.defines;

	this.wireframe = source.wireframe;
	this.wireframeLinewidth = source.wireframeLinewidth;

	this.lights = source.lights;
	this.clipping = source.clipping;

	this.skinning = source.skinning;

	this.morphTargets = source.morphTargets;
	this.morphNormals = source.morphNormals;

	this.extensions = source.extensions;

	return this;

};

ShaderMaterial.prototype.toJSON = function ( meta ) {

	var data = Material.prototype.toJSON.call( this, meta );

	data.uniforms = this.uniforms;
	data.vertexShader = this.vertexShader;
	data.fragmentShader = this.fragmentShader;

	return data;

};

/**
 * @author mrdoob / http://mrdoob.com/
 * @author alteredq / http://alteredqualia.com/
 * @author bhouston / https://clara.io
 * @author WestLangley / http://github.com/WestLangley
 *
 * parameters = {
 *
 *  opacity: <float>,
 *
 *  map: new THREE.Texture( <Image> ),
 *
 *  alphaMap: new THREE.Texture( <Image> ),
 *
 *  displacementMap: new THREE.Texture( <Image> ),
 *  displacementScale: <float>,
 *  displacementBias: <float>,
 *
 *  wireframe: <boolean>,
 *  wireframeLinewidth: <float>
 * }
 */

function MeshDepthMaterial( parameters ) {

	Material.call( this );

	this.type = 'MeshDepthMaterial';

	this.depthPacking = BasicDepthPacking;

	this.skinning = false;
	this.morphTargets = false;

	this.map = null;

	this.alphaMap = null;

	this.displacementMap = null;
	this.displacementScale = 1;
	this.displacementBias = 0;

	this.wireframe = false;
	this.wireframeLinewidth = 1;

	this.fog = false;
	this.lights = false;

	this.setValues( parameters );

}

MeshDepthMaterial.prototype = Object.create( Material.prototype );
MeshDepthMaterial.prototype.constructor = MeshDepthMaterial;

MeshDepthMaterial.prototype.isMeshDepthMaterial = true;

MeshDepthMaterial.prototype.copy = function ( source ) {

	Material.prototype.copy.call( this, source );

	this.depthPacking = source.depthPacking;

	this.skinning = source.skinning;
	this.morphTargets = source.morphTargets;

	this.map = source.map;

	this.alphaMap = source.alphaMap;

	this.displacementMap = source.displacementMap;
	this.displacementScale = source.displacementScale;
	this.displacementBias = source.displacementBias;

	this.wireframe = source.wireframe;
	this.wireframeLinewidth = source.wireframeLinewidth;

	return this;

};

/**
 * @author bhouston / http://clara.io
 * @author WestLangley / http://github.com/WestLangley
 */

function Box3( min, max ) {

	this.min = ( min !== undefined ) ? min : new Vector3( + Infinity, + Infinity, + Infinity );
	this.max = ( max !== undefined ) ? max : new Vector3( - Infinity, - Infinity, - Infinity );

}

Object.assign( Box3.prototype, {

	isBox3: true,

	set: function ( min, max ) {

		this.min.copy( min );
		this.max.copy( max );

		return this;

	},

	setFromArray: function ( array ) {

		var minX = + Infinity;
		var minY = + Infinity;
		var minZ = + Infinity;

		var maxX = - Infinity;
		var maxY = - Infinity;
		var maxZ = - Infinity;

		for ( var i = 0, l = array.length; i < l; i += 3 ) {

			var x = array[ i ];
			var y = array[ i + 1 ];
			var z = array[ i + 2 ];

			if ( x < minX ) minX = x;
			if ( y < minY ) minY = y;
			if ( z < minZ ) minZ = z;

			if ( x > maxX ) maxX = x;
			if ( y > maxY ) maxY = y;
			if ( z > maxZ ) maxZ = z;

		}

		this.min.set( minX, minY, minZ );
		this.max.set( maxX, maxY, maxZ );

		return this;

	},

	setFromBufferAttribute: function ( attribute ) {

		var minX = + Infinity;
		var minY = + Infinity;
		var minZ = + Infinity;

		var maxX = - Infinity;
		var maxY = - Infinity;
		var maxZ = - Infinity;

		for ( var i = 0, l = attribute.count; i < l; i ++ ) {

			var x = attribute.getX( i );
			var y = attribute.getY( i );
			var z = attribute.getZ( i );

			if ( x < minX ) minX = x;
			if ( y < minY ) minY = y;
			if ( z < minZ ) minZ = z;

			if ( x > maxX ) maxX = x;
			if ( y > maxY ) maxY = y;
			if ( z > maxZ ) maxZ = z;

		}

		this.min.set( minX, minY, minZ );
		this.max.set( maxX, maxY, maxZ );

		return this;

	},

	setFromPoints: function ( points ) {

		this.makeEmpty();

		for ( var i = 0, il = points.length; i < il; i ++ ) {

			this.expandByPoint( points[ i ] );

		}

		return this;

	},

	setFromCenterAndSize: function () {

		var v1 = new Vector3();

		return function setFromCenterAndSize( center, size ) {

			var halfSize = v1.copy( size ).multiplyScalar( 0.5 );

			this.min.copy( center ).sub( halfSize );
			this.max.copy( center ).add( halfSize );

			return this;

		};

	}(),

	setFromObject: function ( object ) {

		this.makeEmpty();

		return this.expandByObject( object );

	},

	clone: function () {

		return new this.constructor().copy( this );

	},

	copy: function ( box ) {

		this.min.copy( box.min );
		this.max.copy( box.max );

		return this;

	},

	makeEmpty: function () {

		this.min.x = this.min.y = this.min.z = + Infinity;
		this.max.x = this.max.y = this.max.z = - Infinity;

		return this;

	},

	isEmpty: function () {

		// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes

		return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z );

	},

	getCenter: function ( optionalTarget ) {

		var result = optionalTarget || new Vector3();
		return this.isEmpty() ? result.set( 0, 0, 0 ) : result.addVectors( this.min, this.max ).multiplyScalar( 0.5 );

	},

	getSize: function ( optionalTarget ) {

		var result = optionalTarget || new Vector3();
		return this.isEmpty() ? result.set( 0, 0, 0 ) : result.subVectors( this.max, this.min );

	},

	expandByPoint: function ( point ) {

		this.min.min( point );
		this.max.max( point );

		return this;

	},

	expandByVector: function ( vector ) {

		this.min.sub( vector );
		this.max.add( vector );

		return this;

	},

	expandByScalar: function ( scalar ) {

		this.min.addScalar( - scalar );
		this.max.addScalar( scalar );

		return this;

	},

	expandByObject: function () {

		// Computes the world-axis-aligned bounding box of an object (including its children),
		// accounting for both the object's, and children's, world transforms

		var v1 = new Vector3();

		return function expandByObject( object ) {

			var scope = this;

			object.updateMatrixWorld( true );

			object.traverse( function ( node ) {

				var i, l;

				var geometry = node.geometry;

				if ( geometry !== undefined ) {

					if ( geometry.isGeometry ) {

						var vertices = geometry.vertices;

						for ( i = 0, l = vertices.length; i < l; i ++ ) {

							v1.copy( vertices[ i ] );
							v1.applyMatrix4( node.matrixWorld );

							scope.expandByPoint( v1 );

						}

					} else if ( geometry.isBufferGeometry ) {

						var attribute = geometry.attributes.position;

						if ( attribute !== undefined ) {

							for ( i = 0, l = attribute.count; i < l; i ++ ) {

								v1.fromBufferAttribute( attribute, i ).applyMatrix4( node.matrixWorld );

								scope.expandByPoint( v1 );

							}

						}

					}

				}

			} );

			return this;

		};

	}(),

	containsPoint: function ( point ) {

		return point.x < this.min.x || point.x > this.max.x ||
			point.y < this.min.y || point.y > this.max.y ||
			point.z < this.min.z || point.z > this.max.z ? false : true;

	},

	containsBox: function ( box ) {

		return this.min.x <= box.min.x && box.max.x <= this.max.x &&
			this.min.y <= box.min.y && box.max.y <= this.max.y &&
			this.min.z <= box.min.z && box.max.z <= this.max.z;

	},

	getParameter: function ( point, optionalTarget ) {

		// This can potentially have a divide by zero if the box
		// has a size dimension of 0.

		var result = optionalTarget || new Vector3();

		return result.set(
			( point.x - this.min.x ) / ( this.max.x - this.min.x ),
			( point.y - this.min.y ) / ( this.max.y - this.min.y ),
			( point.z - this.min.z ) / ( this.max.z - this.min.z )
		);

	},

	intersectsBox: function ( box ) {

		// using 6 splitting planes to rule out intersections.
		return box.max.x < this.min.x || box.min.x > this.max.x ||
			box.max.y < this.min.y || box.min.y > this.max.y ||
			box.max.z < this.min.z || box.min.z > this.max.z ? false : true;

	},

	intersectsSphere: ( function () {

		var closestPoint = new Vector3();

		return function intersectsSphere( sphere ) {

			// Find the point on the AABB closest to the sphere center.
			this.clampPoint( sphere.center, closestPoint );

			// If that point is inside the sphere, the AABB and sphere intersect.
			return closestPoint.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );

		};

	} )(),

	intersectsPlane: function ( plane ) {

		// We compute the minimum and maximum dot product values. If those values
		// are on the same side (back or front) of the plane, then there is no intersection.

		var min, max;

		if ( plane.normal.x > 0 ) {

			min = plane.normal.x * this.min.x;
			max = plane.normal.x * this.max.x;

		} else {

			min = plane.normal.x * this.max.x;
			max = plane.normal.x * this.min.x;

		}

		if ( plane.normal.y > 0 ) {

			min += plane.normal.y * this.min.y;
			max += plane.normal.y * this.max.y;

		} else {

			min += plane.normal.y * this.max.y;
			max += plane.normal.y * this.min.y;

		}

		if ( plane.normal.z > 0 ) {

			min += plane.normal.z * this.min.z;
			max += plane.normal.z * this.max.z;

		} else {

			min += plane.normal.z * this.max.z;
			max += plane.normal.z * this.min.z;

		}

		return ( min <= plane.constant && max >= plane.constant );

	},

	clampPoint: function ( point, optionalTarget ) {

		var result = optionalTarget || new Vector3();
		return result.copy( point ).clamp( this.min, this.max );

	},

	distanceToPoint: function () {

		var v1 = new Vector3();

		return function distanceToPoint( point ) {

			var clampedPoint = v1.copy( point ).clamp( this.min, this.max );
			return clampedPoint.sub( point ).length();

		};

	}(),

	getBoundingSphere: function () {

		var v1 = new Vector3();

		return function getBoundingSphere( optionalTarget ) {

			var result = optionalTarget || new Sphere();

			this.getCenter( result.center );

			result.radius = this.getSize( v1 ).length() * 0.5;

			return result;

		};

	}(),

	intersect: function ( box ) {

		this.min.max( box.min );
		this.max.min( box.max );

		// ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
		if( this.isEmpty() ) this.makeEmpty();

		return this;

	},

	union: function ( box ) {

		this.min.min( box.min );
		this.max.max( box.max );

		return this;

	},

	applyMatrix4: function () {

		var points = [
			new Vector3(),
			new Vector3(),
			new Vector3(),
			new Vector3(),
			new Vector3(),
			new Vector3(),
			new Vector3(),
			new Vector3()
		];

		return function applyMatrix4( matrix ) {

			// transform of empty box is an empty box.
			if( this.isEmpty() ) return this;

			// NOTE: I am using a binary pattern to specify all 2^3 combinations below
			points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000
			points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001
			points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010
			points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011
			points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100
			points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101
			points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110
			points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix );	// 111

			this.setFromPoints( points );

			return this;

		};

	}(),

	translate: function ( offset ) {

		this.min.add( offset );
		this.max.add( offset );

		return this;

	},

	equals: function ( box ) {

		return box.min.equals( this.min ) && box.max.equals( this.max );

	}

} );

/**
 * @author bhouston / http://clara.io
 * @author mrdoob / http://mrdoob.com/
 */

function Sphere( center, radius ) {

	this.center = ( center !== undefined ) ? center : new Vector3();
	this.radius = ( radius !== undefined ) ? radius : 0;

}

Object.assign( Sphere.prototype, {

	set: function ( center, radius ) {

		this.center.copy( center );
		this.radius = radius;

		return this;

	},

	setFromPoints: function () {

		var box = new Box3();

		return function setFromPoints( points, optionalCenter ) {

			var center = this.center;

			if ( optionalCenter !== undefined ) {

				center.copy( optionalCenter );

			} else {

				box.setFromPoints( points ).getCenter( center );

			}

			var maxRadiusSq = 0;

			for ( var i = 0, il = points.length; i < il; i ++ ) {

				maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) );

			}

			this.radius = Math.sqrt( maxRadiusSq );

			return this;

		};

	}(),

	clone: function () {

		return new this.constructor().copy( this );

	},

	copy: function ( sphere ) {

		this.center.copy( sphere.center );
		this.radius = sphere.radius;

		return this;

	},

	empty: function () {

		return ( this.radius <= 0 );

	},

	containsPoint: function ( point ) {

		return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) );

	},

	distanceToPoint: function ( point ) {

		return ( point.distanceTo( this.center ) - this.radius );

	},

	intersectsSphere: function ( sphere ) {

		var radiusSum = this.radius + sphere.radius;

		return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum );

	},

	intersectsBox: function ( box ) {

		return box.intersectsSphere( this );

	},

	intersectsPlane: function ( plane ) {

		// We use the following equation to compute the signed distance from
		// the center of the sphere to the plane.
		//
		// distance = q * n - d
		//
		// If this distance is greater than the radius of the sphere,
		// then there is no intersection.

		return Math.abs( this.center.dot( plane.normal ) - plane.constant ) <= this.radius;

	},

	clampPoint: function ( point, optionalTarget ) {

		var deltaLengthSq = this.center.distanceToSquared( point );

		var result = optionalTarget || new Vector3();

		result.copy( point );

		if ( deltaLengthSq > ( this.radius * this.radius ) ) {

			result.sub( this.center ).normalize();
			result.multiplyScalar( this.radius ).add( this.center );

		}

		return result;

	},

	getBoundingBox: function ( optionalTarget ) {

		var box = optionalTarget || new Box3();

		box.set( this.center, this.center );
		box.expandByScalar( this.radius );

		return box;

	},

	applyMatrix4: function ( matrix ) {

		this.center.applyMatrix4( matrix );
		this.radius = this.radius * matrix.getMaxScaleOnAxis();

		return this;

	},

	translate: function ( offset ) {

		this.center.add( offset );

		return this;

	},

	equals: function ( sphere ) {

		return sphere.center.equals( this.center ) && ( sphere.radius === this.radius );

	}

} );

/**
 * @author alteredq / http://alteredqualia.com/
 * @author WestLangley / http://github.com/WestLangley
 * @author bhouston / http://clara.io
 * @author tschw
 */

function Matrix3() {

	this.elements = [

		1, 0, 0,
		0, 1, 0,
		0, 0, 1

	];

	if ( arguments.length > 0 ) {

		console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' );

	}

}

Object.assign( Matrix3.prototype, {

	isMatrix3: true,

	set: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {

		var te = this.elements;

		te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31;
		te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32;
		te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33;

		return this;

	},

	identity: function () {

		this.set(

			1, 0, 0,
			0, 1, 0,
			0, 0, 1

		);

		return this;

	},

	clone: function () {

		return new this.constructor().fromArray( this.elements );

	},

	copy: function ( m ) {

		var te = this.elements;
		var me = m.elements;

		te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ];
		te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ];
		te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ];

		return this;

	},

	setFromMatrix4: function ( m ) {

		var me = m.elements;

		this.set(

			me[ 0 ], me[ 4 ], me[  8 ],
			me[ 1 ], me[ 5 ], me[  9 ],
			me[ 2 ], me[ 6 ], me[ 10 ]

		);

		return this;

	},

	applyToBufferAttribute: function () {

		var v1 = new Vector3();

		return function applyToBufferAttribute( attribute ) {

			for ( var i = 0, l = attribute.count; i < l; i ++ ) {

				v1.x = attribute.getX( i );
				v1.y = attribute.getY( i );
				v1.z = attribute.getZ( i );

				v1.applyMatrix3( this );

				attribute.setXYZ( i, v1.x, v1.y, v1.z );

			}

			return attribute;

		};

	}(),

	multiply: function ( m ) {

		return this.multiplyMatrices( this, m );

	},

	premultiply: function ( m ) {

		return this.multiplyMatrices( m, this );

	},

	multiplyMatrices: function ( a, b ) {

		var ae = a.elements;
		var be = b.elements;
		var te = this.elements;

		var a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ];
		var a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ];
		var a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ];

		var b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ];
		var b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ];
		var b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ];

		te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31;
		te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32;
		te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33;

		te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31;
		te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32;
		te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33;

		te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31;
		te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32;
		te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33;

		return this;

	},

	multiplyScalar: function ( s ) {

		var te = this.elements;

		te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s;
		te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s;
		te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s;

		return this;

	},

	determinant: function () {

		var te = this.elements;

		var a = te[ 0 ], b = te[ 1 ], c = te[ 2 ],
			d = te[ 3 ], e = te[ 4 ], f = te[ 5 ],
			g = te[ 6 ], h = te[ 7 ], i = te[ 8 ];

		return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;

	},

	getInverse: function ( matrix, throwOnDegenerate ) {

		if ( matrix && matrix.isMatrix4 ) {

			console.error( "THREE.Matrix3.getInverse no longer takes a Matrix4 argument." );

		}

		var me = matrix.elements,
			te = this.elements,

			n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ],
			n12 = me[ 3 ], n22 = me[ 4 ], n32 = me[ 5 ],
			n13 = me[ 6 ], n23 = me[ 7 ], n33 = me[ 8 ],

			t11 = n33 * n22 - n32 * n23,
			t12 = n32 * n13 - n33 * n12,
			t13 = n23 * n12 - n22 * n13,

			det = n11 * t11 + n21 * t12 + n31 * t13;

		if ( det === 0 ) {

			var msg = "THREE.Matrix3.getInverse(): can't invert matrix, determinant is 0";

			if ( throwOnDegenerate === true ) {

				throw new Error( msg );

			} else {

				console.warn( msg );

			}

			return this.identity();

		}

		var detInv = 1 / det;

		te[ 0 ] = t11 * detInv;
		te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv;
		te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv;

		te[ 3 ] = t12 * detInv;
		te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv;
		te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv;

		te[ 6 ] = t13 * detInv;
		te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv;
		te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv;

		return this;

	},

	transpose: function () {

		var tmp, m = this.elements;

		tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp;
		tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp;
		tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp;

		return this;

	},

	getNormalMatrix: function ( matrix4 ) {

		return this.setFromMatrix4( matrix4 ).getInverse( this ).transpose();

	},

	transposeIntoArray: function ( r ) {

		var m = this.elements;

		r[ 0 ] = m[ 0 ];
		r[ 1 ] = m[ 3 ];
		r[ 2 ] = m[ 6 ];
		r[ 3 ] = m[ 1 ];
		r[ 4 ] = m[ 4 ];
		r[ 5 ] = m[ 7 ];
		r[ 6 ] = m[ 2 ];
		r[ 7 ] = m[ 5 ];
		r[ 8 ] = m[ 8 ];

		return this;

	},

	equals: function ( matrix ) {

		var te = this.elements;
		var me = matrix.elements;

		for ( var i = 0; i < 9; i ++ ) {

			if ( te[ i ] !== me[ i ] ) return false;

		}

		return true;

	},

	fromArray: function ( array, offset ) {

		if ( offset === undefined ) offset = 0;

		for ( var i = 0; i < 9; i ++ ) {

			this.elements[ i ] = array[ i + offset ];

		}

		return this;

	},

	toArray: function ( array, offset ) {

		if ( array === undefined ) array = [];
		if ( offset === undefined ) offset = 0;

		var te = this.elements;

		array[ offset ] = te[ 0 ];
		array[ offset + 1 ] = te[ 1 ];
		array[ offset + 2 ] = te[ 2 ];

		array[ offset + 3 ] = te[ 3 ];
		array[ offset + 4 ] = te[ 4 ];
		array[ offset + 5 ] = te[ 5 ];

		array[ offset + 6 ] = te[ 6 ];
		array[ offset + 7 ] = te[ 7 ];
		array[ offset + 8 ] = te[ 8 ];

		return array;

	}

} );

/**
 * @author bhouston / http://clara.io
 */

function Plane( normal, constant ) {

	this.normal = ( normal !== undefined ) ? normal : new Vector3( 1, 0, 0 );
	this.constant = ( constant !== undefined ) ? constant : 0;

}

Object.assign( Plane.prototype, {

	set: function ( normal, constant ) {

		this.normal.copy( normal );
		this.constant = constant;

		return this;

	},

	setComponents: function ( x, y, z, w ) {

		this.normal.set( x, y, z );
		this.constant = w;

		return this;

	},

	setFromNormalAndCoplanarPoint: function ( normal, point ) {

		this.normal.copy( normal );
		this.constant = - point.dot( this.normal );	// must be this.normal, not normal, as this.normal is normalized

		return this;

	},

	setFromCoplanarPoints: function () {

		var v1 = new Vector3();
		var v2 = new Vector3();

		return function setFromCoplanarPoints( a, b, c ) {

			var normal = v1.subVectors( c, b ).cross( v2.subVectors( a, b ) ).normalize();

			// Q: should an error be thrown if normal is zero (e.g. degenerate plane)?

			this.setFromNormalAndCoplanarPoint( normal, a );

			return this;

		};

	}(),

	clone: function () {

		return new this.constructor().copy( this );

	},

	copy: function ( plane ) {

		this.normal.copy( plane.normal );
		this.constant = plane.constant;

		return this;

	},

	normalize: function () {

		// Note: will lead to a divide by zero if the plane is invalid.

		var inverseNormalLength = 1.0 / this.normal.length();
		this.normal.multiplyScalar( inverseNormalLength );
		this.constant *= inverseNormalLength;

		return this;

	},

	negate: function () {

		this.constant *= - 1;
		this.normal.negate();

		return this;

	},

	distanceToPoint: function ( point ) {

		return this.normal.dot( point ) + this.constant;

	},

	distanceToSphere: function ( sphere ) {

		return this.distanceToPoint( sphere.center ) - sphere.radius;

	},

	projectPoint: function ( point, optionalTarget ) {

		return this.orthoPoint( point, optionalTarget ).sub( point ).negate();

	},

	orthoPoint: function ( point, optionalTarget ) {

		var perpendicularMagnitude = this.distanceToPoint( point );

		var result = optionalTarget || new Vector3();
		return result.copy( this.normal ).multiplyScalar( perpendicularMagnitude );

	},

	intersectLine: function () {

		var v1 = new Vector3();

		return function intersectLine( line, optionalTarget ) {

			var result = optionalTarget || new Vector3();

			var direction = line.delta( v1 );

			var denominator = this.normal.dot( direction );

			if ( denominator === 0 ) {

				// line is coplanar, return origin
				if ( this.distanceToPoint( line.start ) === 0 ) {

					return result.copy( line.start );

				}

				// Unsure if this is the correct method to handle this case.
				return undefined;

			}

			var t = - ( line.start.dot( this.normal ) + this.constant ) / denominator;

			if ( t < 0 || t > 1 ) {

				return undefined;

			}

			return result.copy( direction ).multiplyScalar( t ).add( line.start );

		};

	}(),

	intersectsLine: function ( line ) {

		// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.

		var startSign = this.distanceToPoint( line.start );
		var endSign = this.distanceToPoint( line.end );

		return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 );

	},

	intersectsBox: function ( box ) {

		return box.intersectsPlane( this );

	},

	intersectsSphere: function ( sphere ) {

		return sphere.intersectsPlane( this );

	},

	coplanarPoint: function ( optionalTarget ) {

		var result = optionalTarget || new Vector3();
		return result.copy( this.normal ).multiplyScalar( - this.constant );

	},

	applyMatrix4: function () {

		var v1 = new Vector3();
		var m1 = new Matrix3();

		return function applyMatrix4( matrix, optionalNormalMatrix ) {

			var referencePoint = this.coplanarPoint( v1 ).applyMatrix4( matrix );

			// transform normal based on theory here:
			// http://www.songho.ca/opengl/gl_normaltransform.html
			var normalMatrix = optionalNormalMatrix || m1.getNormalMatrix( matrix );
			var normal = this.normal.applyMatrix3( normalMatrix ).normalize();

			// recalculate constant (like in setFromNormalAndCoplanarPoint)
			this.constant = - referencePoint.dot( normal );

			return this;

		};

	}(),

	translate: function ( offset ) {

		this.constant = this.constant - offset.dot( this.normal );

		return this;

	},

	equals: function ( plane ) {

		return plane.normal.equals( this.normal ) && ( plane.constant === this.constant );

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 * @author alteredq / http://alteredqualia.com/
 * @author bhouston / http://clara.io
 */

function Frustum( p0, p1, p2, p3, p4, p5 ) {

	this.planes = [

		( p0 !== undefined ) ? p0 : new Plane(),
		( p1 !== undefined ) ? p1 : new Plane(),
		( p2 !== undefined ) ? p2 : new Plane(),
		( p3 !== undefined ) ? p3 : new Plane(),
		( p4 !== undefined ) ? p4 : new Plane(),
		( p5 !== undefined ) ? p5 : new Plane()

	];

}

Object.assign( Frustum.prototype, {

	set: function ( p0, p1, p2, p3, p4, p5 ) {

		var planes = this.planes;

		planes[ 0 ].copy( p0 );
		planes[ 1 ].copy( p1 );
		planes[ 2 ].copy( p2 );
		planes[ 3 ].copy( p3 );
		planes[ 4 ].copy( p4 );
		planes[ 5 ].copy( p5 );

		return this;

	},

	clone: function () {

		return new this.constructor().copy( this );

	},

	copy: function ( frustum ) {

		var planes = this.planes;

		for ( var i = 0; i < 6; i ++ ) {

			planes[ i ].copy( frustum.planes[ i ] );

		}

		return this;

	},

	setFromMatrix: function ( m ) {

		var planes = this.planes;
		var me = m.elements;
		var me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ];
		var me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ];
		var me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ];
		var me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ];

		planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize();
		planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize();
		planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize();
		planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize();
		planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize();
		planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize();

		return this;

	},

	intersectsObject: function () {

		var sphere = new Sphere();

		return function intersectsObject( object ) {

			var geometry = object.geometry;

			if ( geometry.boundingSphere === null )
				geometry.computeBoundingSphere();

			sphere.copy( geometry.boundingSphere )
				.applyMatrix4( object.matrixWorld );

			return this.intersectsSphere( sphere );

		};

	}(),

	intersectsSprite: function () {

		var sphere = new Sphere();

		return function intersectsSprite( sprite ) {

			sphere.center.set( 0, 0, 0 );
			sphere.radius = 0.7071067811865476;
			sphere.applyMatrix4( sprite.matrixWorld );

			return this.intersectsSphere( sphere );

		};

	}(),

	intersectsSphere: function ( sphere ) {

		var planes = this.planes;
		var center = sphere.center;
		var negRadius = - sphere.radius;

		for ( var i = 0; i < 6; i ++ ) {

			var distance = planes[ i ].distanceToPoint( center );

			if ( distance < negRadius ) {

				return false;

			}

		}

		return true;

	},

	intersectsBox: function () {

		var p1 = new Vector3(),
			p2 = new Vector3();

		return function intersectsBox( box ) {

			var planes = this.planes;

			for ( var i = 0; i < 6; i ++ ) {

				var plane = planes[ i ];

				p1.x = plane.normal.x > 0 ? box.min.x : box.max.x;
				p2.x = plane.normal.x > 0 ? box.max.x : box.min.x;
				p1.y = plane.normal.y > 0 ? box.min.y : box.max.y;
				p2.y = plane.normal.y > 0 ? box.max.y : box.min.y;
				p1.z = plane.normal.z > 0 ? box.min.z : box.max.z;
				p2.z = plane.normal.z > 0 ? box.max.z : box.min.z;

				var d1 = plane.distanceToPoint( p1 );
				var d2 = plane.distanceToPoint( p2 );

				// if both outside plane, no intersection

				if ( d1 < 0 && d2 < 0 ) {

					return false;

				}

			}

			return true;

		};

	}(),

	containsPoint: function ( point ) {

		var planes = this.planes;

		for ( var i = 0; i < 6; i ++ ) {

			if ( planes[ i ].distanceToPoint( point ) < 0 ) {

				return false;

			}

		}

		return true;

	}

} );

/**
 * @author alteredq / http://alteredqualia.com/
 * @author mrdoob / http://mrdoob.com/
 */

function WebGLShadowMap( _renderer, _lights, _objects, capabilities ) {

	var _gl = _renderer.context,
		_state = _renderer.state,
		_frustum = new Frustum(),
		_projScreenMatrix = new Matrix4(),

		_lightShadows = _lights.shadows,

		_shadowMapSize = new Vector2(),
		_maxShadowMapSize = new Vector2( capabilities.maxTextureSize, capabilities.maxTextureSize ),

		_lookTarget = new Vector3(),
		_lightPositionWorld = new Vector3(),

		_MorphingFlag = 1,
		_SkinningFlag = 2,

		_NumberOfMaterialVariants = ( _MorphingFlag | _SkinningFlag ) + 1,

		_depthMaterials = new Array( _NumberOfMaterialVariants ),
		_distanceMaterials = new Array( _NumberOfMaterialVariants ),

		_materialCache = {};

	var cubeDirections = [
		new Vector3( 1, 0, 0 ), new Vector3( - 1, 0, 0 ), new Vector3( 0, 0, 1 ),
		new Vector3( 0, 0, - 1 ), new Vector3( 0, 1, 0 ), new Vector3( 0, - 1, 0 )
	];

	var cubeUps = [
		new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ),
		new Vector3( 0, 1, 0 ), new Vector3( 0, 0, 1 ),	new Vector3( 0, 0, - 1 )
	];

	var cube2DViewPorts = [
		new Vector4(), new Vector4(), new Vector4(),
		new Vector4(), new Vector4(), new Vector4()
	];

	// init

	var depthMaterialTemplate = new MeshDepthMaterial();
	depthMaterialTemplate.depthPacking = RGBADepthPacking;
	depthMaterialTemplate.clipping = true;

	var distanceShader = ShaderLib[ "distanceRGBA" ];
	var distanceUniforms = UniformsUtils.clone( distanceShader.uniforms );

	for ( var i = 0; i !== _NumberOfMaterialVariants; ++ i ) {

		var useMorphing = ( i & _MorphingFlag ) !== 0;
		var useSkinning = ( i & _SkinningFlag ) !== 0;

		var depthMaterial = depthMaterialTemplate.clone();
		depthMaterial.morphTargets = useMorphing;
		depthMaterial.skinning = useSkinning;

		_depthMaterials[ i ] = depthMaterial;

		var distanceMaterial = new ShaderMaterial( {
			defines: {
				'USE_SHADOWMAP': ''
			},
			uniforms: distanceUniforms,
			vertexShader: distanceShader.vertexShader,
			fragmentShader: distanceShader.fragmentShader,
			morphTargets: useMorphing,
			skinning: useSkinning,
			clipping: true
		} );

		_distanceMaterials[ i ] = distanceMaterial;

	}

	//

	var scope = this;

	this.enabled = false;

	this.autoUpdate = true;
	this.needsUpdate = false;

	this.type = PCFShadowMap;

	this.renderReverseSided = true;
	this.renderSingleSided = true;

	this.render = function ( scene, camera ) {

		if ( scope.enabled === false ) return;
		if ( scope.autoUpdate === false && scope.needsUpdate === false ) return;

		if ( _lightShadows.length === 0 ) return;

		// Set GL state for depth map.
		_state.disable( _gl.BLEND );
		_state.buffers.color.setClear( 1, 1, 1, 1 );
		_state.buffers.depth.setTest( true );
		_state.setScissorTest( false );

		// render depth map

		var faceCount;

		for ( var i = 0, il = _lightShadows.length; i < il; i ++ ) {

			var light = _lightShadows[ i ];
			var shadow = light.shadow;
			var isPointLight = light && light.isPointLight;

			if ( shadow === undefined ) {

				console.warn( 'THREE.WebGLShadowMap:', light, 'has no shadow.' );
				continue;

			}

			var shadowCamera = shadow.camera;

			_shadowMapSize.copy( shadow.mapSize );
			_shadowMapSize.min( _maxShadowMapSize );

			if ( isPointLight ) {

				var vpWidth = _shadowMapSize.x;
				var vpHeight = _shadowMapSize.y;

				// These viewports map a cube-map onto a 2D texture with the
				// following orientation:
				//
				//  xzXZ
				//   y Y
				//
				// X - Positive x direction
				// x - Negative x direction
				// Y - Positive y direction
				// y - Negative y direction
				// Z - Positive z direction
				// z - Negative z direction

				// positive X
				cube2DViewPorts[ 0 ].set( vpWidth * 2, vpHeight, vpWidth, vpHeight );
				// negative X
				cube2DViewPorts[ 1 ].set( 0, vpHeight, vpWidth, vpHeight );
				// positive Z
				cube2DViewPorts[ 2 ].set( vpWidth * 3, vpHeight, vpWidth, vpHeight );
				// negative Z
				cube2DViewPorts[ 3 ].set( vpWidth, vpHeight, vpWidth, vpHeight );
				// positive Y
				cube2DViewPorts[ 4 ].set( vpWidth * 3, 0, vpWidth, vpHeight );
				// negative Y
				cube2DViewPorts[ 5 ].set( vpWidth, 0, vpWidth, vpHeight );

				_shadowMapSize.x *= 4.0;
				_shadowMapSize.y *= 2.0;

			}

			if ( shadow.map === null ) {

				var pars = { minFilter: NearestFilter, magFilter: NearestFilter, format: RGBAFormat };

				shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars );
				shadow.map.texture.name = light.name + ".shadowMap";

				shadowCamera.updateProjectionMatrix();

			}

			if ( shadow.isSpotLightShadow ) {

				shadow.update( light );

			}

			var shadowMap = shadow.map;
			var shadowMatrix = shadow.matrix;

			_lightPositionWorld.setFromMatrixPosition( light.matrixWorld );
			shadowCamera.position.copy( _lightPositionWorld );

			if ( isPointLight ) {

				faceCount = 6;

				// for point lights we set the shadow matrix to be a translation-only matrix
				// equal to inverse of the light's position

				shadowMatrix.makeTranslation( - _lightPositionWorld.x, - _lightPositionWorld.y, - _lightPositionWorld.z );

			} else {

				faceCount = 1;

				_lookTarget.setFromMatrixPosition( light.target.matrixWorld );
				shadowCamera.lookAt( _lookTarget );
				shadowCamera.updateMatrixWorld();

				// compute shadow matrix

				shadowMatrix.set(
					0.5, 0.0, 0.0, 0.5,
					0.0, 0.5, 0.0, 0.5,
					0.0, 0.0, 0.5, 0.5,
					0.0, 0.0, 0.0, 1.0
				);

				shadowMatrix.multiply( shadowCamera.projectionMatrix );
				shadowMatrix.multiply( shadowCamera.matrixWorldInverse );

			}

			_renderer.setRenderTarget( shadowMap );
			_renderer.clear();

			// render shadow map for each cube face (if omni-directional) or
			// run a single pass if not

			for ( var face = 0; face < faceCount; face ++ ) {

				if ( isPointLight ) {

					_lookTarget.copy( shadowCamera.position );
					_lookTarget.add( cubeDirections[ face ] );
					shadowCamera.up.copy( cubeUps[ face ] );
					shadowCamera.lookAt( _lookTarget );
					shadowCamera.updateMatrixWorld();

					var vpDimensions = cube2DViewPorts[ face ];
					_state.viewport( vpDimensions );

				}

				// update camera matrices and frustum

				_projScreenMatrix.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse );
				_frustum.setFromMatrix( _projScreenMatrix );

				// set object matrices & frustum culling

				renderObject( scene, camera, shadowCamera, isPointLight );

			}

		}

		// Restore GL state.
		var clearColor = _renderer.getClearColor();
		var clearAlpha = _renderer.getClearAlpha();
		_renderer.setClearColor( clearColor, clearAlpha );

		scope.needsUpdate = false;

	};

	function getDepthMaterial( object, material, isPointLight, lightPositionWorld ) {

		var geometry = object.geometry;

		var result = null;

		var materialVariants = _depthMaterials;
		var customMaterial = object.customDepthMaterial;

		if ( isPointLight ) {

			materialVariants = _distanceMaterials;
			customMaterial = object.customDistanceMaterial;

		}

		if ( ! customMaterial ) {

			var useMorphing = false;

			if ( material.morphTargets ) {

				if ( geometry && geometry.isBufferGeometry ) {

					useMorphing = geometry.morphAttributes && geometry.morphAttributes.position && geometry.morphAttributes.position.length > 0;

				} else if ( geometry && geometry.isGeometry ) {

					useMorphing = geometry.morphTargets && geometry.morphTargets.length > 0;

				}

			}

			if ( object.isSkinnedMesh && material.skinning === false ) {

				console.warn( 'THREE.WebGLShadowMap: THREE.SkinnedMesh with material.skinning set to false:', object );

			}

			var useSkinning = object.isSkinnedMesh && material.skinning;

			var variantIndex = 0;

			if ( useMorphing ) variantIndex |= _MorphingFlag;
			if ( useSkinning ) variantIndex |= _SkinningFlag;

			result = materialVariants[ variantIndex ];

		} else {

			result = customMaterial;

		}

		if ( _renderer.localClippingEnabled &&
				material.clipShadows === true &&
				material.clippingPlanes.length !== 0 ) {

			// in this case we need a unique material instance reflecting the
			// appropriate state

			var keyA = result.uuid, keyB = material.uuid;

			var materialsForVariant = _materialCache[ keyA ];

			if ( materialsForVariant === undefined ) {

				materialsForVariant = {};
				_materialCache[ keyA ] = materialsForVariant;

			}

			var cachedMaterial = materialsForVariant[ keyB ];

			if ( cachedMaterial === undefined ) {

				cachedMaterial = result.clone();
				materialsForVariant[ keyB ] = cachedMaterial;

			}

			result = cachedMaterial;

		}

		result.visible = material.visible;
		result.wireframe = material.wireframe;

		var side = material.side;

		if ( scope.renderSingleSided && side == DoubleSide ) {

			side = FrontSide;

		}

		if ( scope.renderReverseSided ) {

			if ( side === FrontSide ) side = BackSide;
			else if ( side === BackSide ) side = FrontSide;

		}

		result.side = side;

		result.clipShadows = material.clipShadows;
		result.clippingPlanes = material.clippingPlanes;

		result.wireframeLinewidth = material.wireframeLinewidth;
		result.linewidth = material.linewidth;

		if ( isPointLight && result.uniforms.lightPos !== undefined ) {

			result.uniforms.lightPos.value.copy( lightPositionWorld );

		}

		return result;

	}

	function renderObject( object, camera, shadowCamera, isPointLight ) {

		if ( object.visible === false ) return;

		var visible = object.layers.test( camera.layers );

		if ( visible && ( object.isMesh || object.isLine || object.isPoints ) ) {

			if ( object.castShadow && ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) ) {

				object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld );

				var geometry = _objects.update( object );
				var material = object.material;

				if ( Array.isArray( material ) ) {

					var groups = geometry.groups;

					for ( var k = 0, kl = groups.length; k < kl; k ++ ) {

						var group = groups[ k ];
						var groupMaterial = material[ group.materialIndex ];

						if ( groupMaterial && groupMaterial.visible ) {

							var depthMaterial = getDepthMaterial( object, groupMaterial, isPointLight, _lightPositionWorld );
							_renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group );

						}

					}

				} else if ( material.visible ) {

					var depthMaterial = getDepthMaterial( object, material, isPointLight, _lightPositionWorld );
					_renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null );

				}

			}

		}

		var children = object.children;

		for ( var i = 0, l = children.length; i < l; i ++ ) {

			renderObject( children[ i ], camera, shadowCamera, isPointLight );

		}

	}

}

/**
 * @author mrdoob / http://mrdoob.com/
 */

function WebGLAttributes( gl ) {

	var buffers = {};

	function createBuffer( attribute, bufferType ) {

		var array = attribute.array;
		var usage = attribute.dynamic ? gl.DYNAMIC_DRAW : gl.STATIC_DRAW;

		var buffer = gl.createBuffer();

		gl.bindBuffer( bufferType, buffer );
		gl.bufferData( bufferType, array, usage );

		attribute.onUploadCallback();

		var type = gl.FLOAT;

		if ( array instanceof Float32Array ) {

			type = gl.FLOAT;

		} else if ( array instanceof Float64Array ) {

			console.warn( 'THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.' );

		} else if ( array instanceof Uint16Array ) {

			type = gl.UNSIGNED_SHORT;

		} else if ( array instanceof Int16Array ) {

			type = gl.SHORT;

		} else if ( array instanceof Uint32Array ) {

			type = gl.UNSIGNED_INT;

		} else if ( array instanceof Int32Array ) {

			type = gl.INT;

		} else if ( array instanceof Int8Array ) {

			type = gl.BYTE;

		} else if ( array instanceof Uint8Array ) {

			type = gl.UNSIGNED_BYTE;

		}

		return {
			buffer: buffer,
			type: type,
			bytesPerElement: array.BYTES_PER_ELEMENT,
			version: attribute.version
		};

	}

	function updateBuffer( buffer, attribute, bufferType ) {

		var array = attribute.array;
		var updateRange = attribute.updateRange;

		gl.bindBuffer( bufferType, buffer );

		if ( attribute.dynamic === false ) {

			gl.bufferData( bufferType, array, gl.STATIC_DRAW );

		} else if ( updateRange.count === - 1 ) {

			// Not using update ranges

			gl.bufferSubData( bufferType, 0, array );

		} else if ( updateRange.count === 0 ) {

			console.error( 'THREE.WebGLObjects.updateBuffer: dynamic THREE.BufferAttribute marked as needsUpdate but updateRange.count is 0, ensure you are using set methods or updating manually.' );

		} else {

			gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT,
				array.subarray( updateRange.offset, updateRange.offset + updateRange.count ) );

			updateRange.count = -1; // reset range

		}

	}

	//

	function get( attribute ) {

		if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;

		return buffers[ attribute.uuid ];

	}

	function remove( attribute ) {

		if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;
		
		var data = buffers[ attribute.uuid ];

		if ( data ) {

			gl.deleteBuffer( data.buffer );

			delete buffers[ attribute.uuid ];

		}

	}

	function update( attribute, bufferType ) {

		if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;

		var data = buffers[ attribute.uuid ];

		if ( data === undefined ) {

			buffers[ attribute.uuid ] = createBuffer( attribute, bufferType );

		} else if ( data.version < attribute.version ) {

			updateBuffer( data.buffer, attribute, bufferType );

			data.version = attribute.version;

		}

	}

	return {

		get: get,
		remove: remove,
		update: update

	};

}

/**
 * @author mrdoob / http://mrdoob.com/
 * @author WestLangley / http://github.com/WestLangley
 * @author bhouston / http://clara.io
 */

function Euler( x, y, z, order ) {

	this._x = x || 0;
	this._y = y || 0;
	this._z = z || 0;
	this._order = order || Euler.DefaultOrder;

}

Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ];

Euler.DefaultOrder = 'XYZ';

Object.defineProperties( Euler.prototype, {

	x: {

		get: function () {

			return this._x;

		},

		set: function ( value ) {

			this._x = value;
			this.onChangeCallback();

		}

	},

	y: {

		get: function () {

			return this._y;

		},

		set: function ( value ) {

			this._y = value;
			this.onChangeCallback();

		}

	},

	z: {

		get: function () {

			return this._z;

		},

		set: function ( value ) {

			this._z = value;
			this.onChangeCallback();

		}

	},

	order: {

		get: function () {

			return this._order;

		},

		set: function ( value ) {

			this._order = value;
			this.onChangeCallback();

		}

	}

} );

Object.assign( Euler.prototype, {

	isEuler: true,

	set: function ( x, y, z, order ) {

		this._x = x;
		this._y = y;
		this._z = z;
		this._order = order || this._order;

		this.onChangeCallback();

		return this;

	},

	clone: function () {

		return new this.constructor( this._x, this._y, this._z, this._order );

	},

	copy: function ( euler ) {

		this._x = euler._x;
		this._y = euler._y;
		this._z = euler._z;
		this._order = euler._order;

		this.onChangeCallback();

		return this;

	},

	setFromRotationMatrix: function ( m, order, update ) {

		var clamp = _Math.clamp;

		// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

		var te = m.elements;
		var m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ];
		var m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ];
		var m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];

		order = order || this._order;

		if ( order === 'XYZ' ) {

			this._y = Math.asin( clamp( m13, - 1, 1 ) );

			if ( Math.abs( m13 ) < 0.99999 ) {

				this._x = Math.atan2( - m23, m33 );
				this._z = Math.atan2( - m12, m11 );

			} else {

				this._x = Math.atan2( m32, m22 );
				this._z = 0;

			}

		} else if ( order === 'YXZ' ) {

			this._x = Math.asin( - clamp( m23, - 1, 1 ) );

			if ( Math.abs( m23 ) < 0.99999 ) {

				this._y = Math.atan2( m13, m33 );
				this._z = Math.atan2( m21, m22 );

			} else {

				this._y = Math.atan2( - m31, m11 );
				this._z = 0;

			}

		} else if ( order === 'ZXY' ) {

			this._x = Math.asin( clamp( m32, - 1, 1 ) );

			if ( Math.abs( m32 ) < 0.99999 ) {

				this._y = Math.atan2( - m31, m33 );
				this._z = Math.atan2( - m12, m22 );

			} else {

				this._y = 0;
				this._z = Math.atan2( m21, m11 );

			}

		} else if ( order === 'ZYX' ) {

			this._y = Math.asin( - clamp( m31, - 1, 1 ) );

			if ( Math.abs( m31 ) < 0.99999 ) {

				this._x = Math.atan2( m32, m33 );
				this._z = Math.atan2( m21, m11 );

			} else {

				this._x = 0;
				this._z = Math.atan2( - m12, m22 );

			}

		} else if ( order === 'YZX' ) {

			this._z = Math.asin( clamp( m21, - 1, 1 ) );

			if ( Math.abs( m21 ) < 0.99999 ) {

				this._x = Math.atan2( - m23, m22 );
				this._y = Math.atan2( - m31, m11 );

			} else {

				this._x = 0;
				this._y = Math.atan2( m13, m33 );

			}

		} else if ( order === 'XZY' ) {

			this._z = Math.asin( - clamp( m12, - 1, 1 ) );

			if ( Math.abs( m12 ) < 0.99999 ) {

				this._x = Math.atan2( m32, m22 );
				this._y = Math.atan2( m13, m11 );

			} else {

				this._x = Math.atan2( - m23, m33 );
				this._y = 0;

			}

		} else {

			console.warn( 'THREE.Euler: .setFromRotationMatrix() given unsupported order: ' + order );

		}

		this._order = order;

		if ( update !== false ) this.onChangeCallback();

		return this;

	},

	setFromQuaternion: function () {

		var matrix = new Matrix4();

		return function setFromQuaternion( q, order, update ) {

			matrix.makeRotationFromQuaternion( q );

			return this.setFromRotationMatrix( matrix, order, update );

		};

	}(),

	setFromVector3: function ( v, order ) {

		return this.set( v.x, v.y, v.z, order || this._order );

	},

	reorder: function () {

		// WARNING: this discards revolution information -bhouston

		var q = new Quaternion();

		return function reorder( newOrder ) {

			q.setFromEuler( this );

			return this.setFromQuaternion( q, newOrder );

		};

	}(),

	equals: function ( euler ) {

		return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order );

	},

	fromArray: function ( array ) {

		this._x = array[ 0 ];
		this._y = array[ 1 ];
		this._z = array[ 2 ];
		if ( array[ 3 ] !== undefined ) this._order = array[ 3 ];

		this.onChangeCallback();

		return this;

	},

	toArray: function ( array, offset ) {

		if ( array === undefined ) array = [];
		if ( offset === undefined ) offset = 0;

		array[ offset ] = this._x;
		array[ offset + 1 ] = this._y;
		array[ offset + 2 ] = this._z;
		array[ offset + 3 ] = this._order;

		return array;

	},

	toVector3: function ( optionalResult ) {

		if ( optionalResult ) {

			return optionalResult.set( this._x, this._y, this._z );

		} else {

			return new Vector3( this._x, this._y, this._z );

		}

	},

	onChange: function ( callback ) {

		this.onChangeCallback = callback;

		return this;

	},

	onChangeCallback: function () {}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function Layers() {

	this.mask = 1 | 0;

}

Object.assign( Layers.prototype, {

	set: function ( channel ) {

		this.mask = 1 << channel | 0;

	},

	enable: function ( channel ) {

		this.mask |= 1 << channel | 0;

	},

	toggle: function ( channel ) {

		this.mask ^= 1 << channel | 0;

	},

	disable: function ( channel ) {

		this.mask &= ~ ( 1 << channel | 0 );

	},

	test: function ( layers ) {

		return ( this.mask & layers.mask ) !== 0;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 * @author mikael emtinger / http://gomo.se/
 * @author alteredq / http://alteredqualia.com/
 * @author WestLangley / http://github.com/WestLangley
 * @author elephantatwork / www.elephantatwork.ch
 */

var object3DId = 0;

function Object3D() {

	Object.defineProperty( this, 'id', { value: object3DId ++ } );

	this.uuid = _Math.generateUUID();

	this.name = '';
	this.type = 'Object3D';

	this.parent = null;
	this.children = [];

	this.up = Object3D.DefaultUp.clone();

	var position = new Vector3();
	var rotation = new Euler();
	var quaternion = new Quaternion();
	var scale = new Vector3( 1, 1, 1 );

	function onRotationChange() {

		quaternion.setFromEuler( rotation, false );

	}

	function onQuaternionChange() {

		rotation.setFromQuaternion( quaternion, undefined, false );

	}

	rotation.onChange( onRotationChange );
	quaternion.onChange( onQuaternionChange );

	Object.defineProperties( this, {
		position: {
			enumerable: true,
			value: position
		},
		rotation: {
			enumerable: true,
			value: rotation
		},
		quaternion: {
			enumerable: true,
			value: quaternion
		},
		scale: {
			enumerable: true,
			value: scale
		},
		modelViewMatrix: {
			value: new Matrix4()
		},
		normalMatrix: {
			value: new Matrix3()
		}
	} );

	this.matrix = new Matrix4();
	this.matrixWorld = new Matrix4();

	this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate;
	this.matrixWorldNeedsUpdate = false;

	this.layers = new Layers();
	this.visible = true;

	this.castShadow = false;
	this.receiveShadow = false;

	this.frustumCulled = true;
	this.renderOrder = 0;

	this.userData = {};
}

Object3D.DefaultUp = new Vector3( 0, 1, 0 );
Object3D.DefaultMatrixAutoUpdate = true;

Object.assign( Object3D.prototype, EventDispatcher.prototype, {

	isObject3D: true,

	onBeforeRender: function () {},
	onAfterRender: function () {},

	applyMatrix: function ( matrix ) {

		this.matrix.multiplyMatrices( matrix, this.matrix );

		this.matrix.decompose( this.position, this.quaternion, this.scale );

	},

	applyQuaternion: function ( q ) {

		this.quaternion.premultiply( q );

		return this;

	},

	setRotationFromAxisAngle: function ( axis, angle ) {

		// assumes axis is normalized

		this.quaternion.setFromAxisAngle( axis, angle );

	},

	setRotationFromEuler: function ( euler ) {

		this.quaternion.setFromEuler( euler, true );

	},

	setRotationFromMatrix: function ( m ) {

		// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

		this.quaternion.setFromRotationMatrix( m );

	},

	setRotationFromQuaternion: function ( q ) {

		// assumes q is normalized

		this.quaternion.copy( q );

	},

	rotateOnAxis: function () {

		// rotate object on axis in object space
		// axis is assumed to be normalized

		var q1 = new Quaternion();

		return function rotateOnAxis( axis, angle ) {

			q1.setFromAxisAngle( axis, angle );

			this.quaternion.multiply( q1 );

			return this;

		};

	}(),

	rotateX: function () {

		var v1 = new Vector3( 1, 0, 0 );

		return function rotateX( angle ) {

			return this.rotateOnAxis( v1, angle );

		};

	}(),

	rotateY: function () {

		var v1 = new Vector3( 0, 1, 0 );

		return function rotateY( angle ) {

			return this.rotateOnAxis( v1, angle );

		};

	}(),

	rotateZ: function () {

		var v1 = new Vector3( 0, 0, 1 );

		return function rotateZ( angle ) {

			return this.rotateOnAxis( v1, angle );

		};

	}(),

	translateOnAxis: function () {

		// translate object by distance along axis in object space
		// axis is assumed to be normalized

		var v1 = new Vector3();

		return function translateOnAxis( axis, distance ) {

			v1.copy( axis ).applyQuaternion( this.quaternion );

			this.position.add( v1.multiplyScalar( distance ) );

			return this;

		};

	}(),

	translateX: function () {

		var v1 = new Vector3( 1, 0, 0 );

		return function translateX( distance ) {

			return this.translateOnAxis( v1, distance );

		};

	}(),

	translateY: function () {

		var v1 = new Vector3( 0, 1, 0 );

		return function translateY( distance ) {

			return this.translateOnAxis( v1, distance );

		};

	}(),

	translateZ: function () {

		var v1 = new Vector3( 0, 0, 1 );

		return function translateZ( distance ) {

			return this.translateOnAxis( v1, distance );

		};

	}(),

	localToWorld: function ( vector ) {

		return vector.applyMatrix4( this.matrixWorld );

	},

	worldToLocal: function () {

		var m1 = new Matrix4();

		return function worldToLocal( vector ) {

			return vector.applyMatrix4( m1.getInverse( this.matrixWorld ) );

		};

	}(),

	lookAt: function () {

		// This method does not support objects with rotated and/or translated parent(s)

		var m1 = new Matrix4();

		return function lookAt( vector ) {

			if ( this.isCamera ) {

				m1.lookAt( this.position, vector, this.up );

			} else {

				m1.lookAt( vector, this.position, this.up );

			}

			this.quaternion.setFromRotationMatrix( m1 );

		};

	}(),

	add: function ( object ) {

		if ( arguments.length > 1 ) {

			for ( var i = 0; i < arguments.length; i ++ ) {

				this.add( arguments[ i ] );

			}

			return this;

		}

		if ( object === this ) {

			console.error( "THREE.Object3D.add: object can't be added as a child of itself.", object );
			return this;

		}

		if ( ( object && object.isObject3D ) ) {

			if ( object.parent !== null ) {

				object.parent.remove( object );

			}

			object.parent = this;
			object.dispatchEvent( { type: 'added' } );

			this.children.push( object );

		} else {

			console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object );

		}

		return this;

	},

	remove: function ( object ) {

		if ( arguments.length > 1 ) {

			for ( var i = 0; i < arguments.length; i ++ ) {

				this.remove( arguments[ i ] );

			}

			return this;

		}

		var index = this.children.indexOf( object );

		if ( index !== - 1 ) {

			object.parent = null;

			object.dispatchEvent( { type: 'removed' } );

			this.children.splice( index, 1 );

		}

		return this;
		
	},

	getObjectById: function ( id ) {

		return this.getObjectByProperty( 'id', id );

	},

	getObjectByName: function ( name ) {

		return this.getObjectByProperty( 'name', name );

	},

	getObjectByProperty: function ( name, value ) {

		if ( this[ name ] === value ) return this;

		for ( var i = 0, l = this.children.length; i < l; i ++ ) {

			var child = this.children[ i ];
			var object = child.getObjectByProperty( name, value );

			if ( object !== undefined ) {

				return object;

			}

		}

		return undefined;

	},

	getWorldPosition: function ( optionalTarget ) {

		var result = optionalTarget || new Vector3();

		this.updateMatrixWorld( true );

		return result.setFromMatrixPosition( this.matrixWorld );

	},

	getWorldQuaternion: function () {

		var position = new Vector3();
		var scale = new Vector3();

		return function getWorldQuaternion( optionalTarget ) {

			var result = optionalTarget || new Quaternion();

			this.updateMatrixWorld( true );

			this.matrixWorld.decompose( position, result, scale );

			return result;

		};

	}(),

	getWorldRotation: function () {

		var quaternion = new Quaternion();

		return function getWorldRotation( optionalTarget ) {

			var result = optionalTarget || new Euler();

			this.getWorldQuaternion( quaternion );

			return result.setFromQuaternion( quaternion, this.rotation.order, false );

		};

	}(),

	getWorldScale: function () {

		var position = new Vector3();
		var quaternion = new Quaternion();

		return function getWorldScale( optionalTarget ) {

			var result = optionalTarget || new Vector3();

			this.updateMatrixWorld( true );

			this.matrixWorld.decompose( position, quaternion, result );

			return result;

		};

	}(),

	getWorldDirection: function () {

		var quaternion = new Quaternion();

		return function getWorldDirection( optionalTarget ) {

			var result = optionalTarget || new Vector3();

			this.getWorldQuaternion( quaternion );

			return result.set( 0, 0, 1 ).applyQuaternion( quaternion );

		};

	}(),

	raycast: function () {},

	traverse: function ( callback ) {

		callback( this );

		var children = this.children;

		for ( var i = 0, l = children.length; i < l; i ++ ) {

			children[ i ].traverse( callback );

		}

	},

	traverseVisible: function ( callback ) {

		if ( this.visible === false ) return;

		callback( this );

		var children = this.children;

		for ( var i = 0, l = children.length; i < l; i ++ ) {

			children[ i ].traverseVisible( callback );

		}

	},

	traverseAncestors: function ( callback ) {

		var parent = this.parent;

		if ( parent !== null ) {

			callback( parent );

			parent.traverseAncestors( callback );

		}

	},

	updateMatrix: function () {

		this.matrix.compose( this.position, this.quaternion, this.scale );

		this.matrixWorldNeedsUpdate = true;

	},

	updateMatrixWorld: function ( force ) {

		if ( this.matrixAutoUpdate ) this.updateMatrix();

		if ( this.matrixWorldNeedsUpdate || force ) {

			if ( this.parent === null ) {

				this.matrixWorld.copy( this.matrix );

			} else {

				this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );

			}

			this.matrixWorldNeedsUpdate = false;

			force = true;

		}

		// update children

		var children = this.children;

		for ( var i = 0, l = children.length; i < l; i ++ ) {

			children[ i ].updateMatrixWorld( force );

		}

	},

	toJSON: function ( meta ) {

		// meta is '' when called from JSON.stringify
		var isRootObject = ( meta === undefined || meta === '' );

		var output = {};

		// meta is a hash used to collect geometries, materials.
		// not providing it implies that this is the root object
		// being serialized.
		if ( isRootObject ) {

			// initialize meta obj
			meta = {
				geometries: {},
				materials: {},
				textures: {},
				images: {}
			};

			output.metadata = {
				version: 4.5,
				type: 'Object',
				generator: 'Object3D.toJSON'
			};

		}

		// standard Object3D serialization

		var object = {};

		object.uuid = this.uuid;
		object.type = this.type;

		if ( this.name !== '' ) object.name = this.name;
		if ( JSON.stringify( this.userData ) !== '{}' ) object.userData = this.userData;
		if ( this.castShadow === true ) object.castShadow = true;
		if ( this.receiveShadow === true ) object.receiveShadow = true;
		if ( this.visible === false ) object.visible = false;

		object.matrix = this.matrix.toArray();

		//

		function serialize( library, element ) {

			if ( library[ element.uuid ] === undefined ) {

				library[ element.uuid ] = element.toJSON( meta );

			}

			return element.uuid;

		}

		if ( this.geometry !== undefined ) {

			object.geometry = serialize( meta.geometries, this.geometry );

		}

		if ( this.material !== undefined ) {

			if ( Array.isArray( this.material ) ) {

				var uuids = [];

				for ( var i = 0, l = this.material.length; i < l; i ++ ) {

					uuids.push( serialize( meta.materials, this.material[ i ] ) );

				}

				object.material = uuids;

			} else {

				object.material = serialize( meta.materials, this.material );

			}

		}

		//

		if ( this.children.length > 0 ) {

			object.children = [];

			for ( var i = 0; i < this.children.length; i ++ ) {

				object.children.push( this.children[ i ].toJSON( meta ).object );

			}

		}

		if ( isRootObject ) {

			var geometries = extractFromCache( meta.geometries );
			var materials = extractFromCache( meta.materials );
			var textures = extractFromCache( meta.textures );
			var images = extractFromCache( meta.images );

			if ( geometries.length > 0 ) output.geometries = geometries;
			if ( materials.length > 0 ) output.materials = materials;
			if ( textures.length > 0 ) output.textures = textures;
			if ( images.length > 0 ) output.images = images;

		}

		output.object = object;

		return output;

		// extract data from the cache hash
		// remove metadata on each item
		// and return as array
		function extractFromCache( cache ) {

			var values = [];
			for ( var key in cache ) {

				var data = cache[ key ];
				delete data.metadata;
				values.push( data );

			}
			return values;

		}

	},

	clone: function ( recursive ) {

		return new this.constructor().copy( this, recursive );

	},

	copy: function ( source, recursive ) {

		if ( recursive === undefined ) recursive = true;

		this.name = source.name;

		this.up.copy( source.up );

		this.position.copy( source.position );
		this.quaternion.copy( source.quaternion );
		this.scale.copy( source.scale );

		this.matrix.copy( source.matrix );
		this.matrixWorld.copy( source.matrixWorld );

		this.matrixAutoUpdate = source.matrixAutoUpdate;
		this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;

		this.layers.mask = source.layers.mask;
		this.visible = source.visible;

		this.castShadow = source.castShadow;
		this.receiveShadow = source.receiveShadow;

		this.frustumCulled = source.frustumCulled;
		this.renderOrder = source.renderOrder;

		this.userData = JSON.parse( JSON.stringify( source.userData ) );

		if ( recursive === true ) {

			for ( var i = 0; i < source.children.length; i ++ ) {

				var child = source.children[ i ];
				this.add( child.clone() );

			}

		}

		return this;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 * @author mikael emtinger / http://gomo.se/
 * @author WestLangley / http://github.com/WestLangley
*/

function Camera() {

	Object3D.call( this );

	this.type = 'Camera';

	this.matrixWorldInverse = new Matrix4();
	this.projectionMatrix = new Matrix4();

}

Camera.prototype = Object.assign( Object.create( Object3D.prototype ), {

	constructor: Camera,

	isCamera: true,

	copy: function ( source, recursive ) {

		Object3D.prototype.copy.call( this, source, recursive );

		this.matrixWorldInverse.copy( source.matrixWorldInverse );
		this.projectionMatrix.copy( source.projectionMatrix );

		return this;

	},

	getWorldDirection: function () {

		var quaternion = new Quaternion();

		return function getWorldDirection( optionalTarget ) {

			var result = optionalTarget || new Vector3();

			this.getWorldQuaternion( quaternion );

			return result.set( 0, 0, - 1 ).applyQuaternion( quaternion );

		};

	}(),

	updateMatrixWorld: function ( force ) {

		Object3D.prototype.updateMatrixWorld.call( this, force );

		this.matrixWorldInverse.getInverse( this.matrixWorld );

	},

	clone: function () {

		return new this.constructor().copy( this );

	}

} );

/**
 * @author alteredq / http://alteredqualia.com/
 * @author arose / http://github.com/arose
 */

function OrthographicCamera( left, right, top, bottom, near, far ) {

	Camera.call( this );

	this.type = 'OrthographicCamera';

	this.zoom = 1;
	this.view = null;

	this.left = left;
	this.right = right;
	this.top = top;
	this.bottom = bottom;

	this.near = ( near !== undefined ) ? near : 0.1;
	this.far = ( far !== undefined ) ? far : 2000;

	this.updateProjectionMatrix();

}

OrthographicCamera.prototype = Object.assign( Object.create( Camera.prototype ), {

	constructor: OrthographicCamera,

	isOrthographicCamera: true,

	copy: function ( source, recursive ) {

		Camera.prototype.copy.call( this, source, recursive );

		this.left = source.left;
		this.right = source.right;
		this.top = source.top;
		this.bottom = source.bottom;
		this.near = source.near;
		this.far = source.far;

		this.zoom = source.zoom;
		this.view = source.view === null ? null : Object.assign( {}, source.view );

		return this;

	},

	setViewOffset: function( fullWidth, fullHeight, x, y, width, height ) {

		this.view = {
			fullWidth: fullWidth,
			fullHeight: fullHeight,
			offsetX: x,
			offsetY: y,
			width: width,
			height: height
		};

		this.updateProjectionMatrix();

	},

	clearViewOffset: function() {

		this.view = null;
		this.updateProjectionMatrix();

	},

	updateProjectionMatrix: function () {

		var dx = ( this.right - this.left ) / ( 2 * this.zoom );
		var dy = ( this.top - this.bottom ) / ( 2 * this.zoom );
		var cx = ( this.right + this.left ) / 2;
		var cy = ( this.top + this.bottom ) / 2;

		var left = cx - dx;
		var right = cx + dx;
		var top = cy + dy;
		var bottom = cy - dy;

		if ( this.view !== null ) {

			var zoomW = this.zoom / ( this.view.width / this.view.fullWidth );
			var zoomH = this.zoom / ( this.view.height / this.view.fullHeight );
			var scaleW = ( this.right - this.left ) / this.view.width;
			var scaleH = ( this.top - this.bottom ) / this.view.height;

			left += scaleW * ( this.view.offsetX / zoomW );
			right = left + scaleW * ( this.view.width / zoomW );
			top -= scaleH * ( this.view.offsetY / zoomH );
			bottom = top - scaleH * ( this.view.height / zoomH );

		}

		this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far );

	},

	toJSON: function ( meta ) {

		var data = Object3D.prototype.toJSON.call( this, meta );

		data.object.zoom = this.zoom;
		data.object.left = this.left;
		data.object.right = this.right;
		data.object.top = this.top;
		data.object.bottom = this.bottom;
		data.object.near = this.near;
		data.object.far = this.far;

		if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );

		return data;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 * @author greggman / http://games.greggman.com/
 * @author zz85 / http://www.lab4games.net/zz85/blog
 * @author tschw
 */

function PerspectiveCamera( fov, aspect, near, far ) {

	Camera.call( this );

	this.type = 'PerspectiveCamera';

	this.fov = fov !== undefined ? fov : 50;
	this.zoom = 1;

	this.near = near !== undefined ? near : 0.1;
	this.far = far !== undefined ? far : 2000;
	this.focus = 10;

	this.aspect = aspect !== undefined ? aspect : 1;
	this.view = null;

	this.filmGauge = 35;	// width of the film (default in millimeters)
	this.filmOffset = 0;	// horizontal film offset (same unit as gauge)

	this.updateProjectionMatrix();

}

PerspectiveCamera.prototype = Object.assign( Object.create( Camera.prototype ), {

	constructor: PerspectiveCamera,

	isPerspectiveCamera: true,

	copy: function ( source, recursive ) {

		Camera.prototype.copy.call( this, source, recursive );

		this.fov = source.fov;
		this.zoom = source.zoom;

		this.near = source.near;
		this.far = source.far;
		this.focus = source.focus;

		this.aspect = source.aspect;
		this.view = source.view === null ? null : Object.assign( {}, source.view );

		this.filmGauge = source.filmGauge;
		this.filmOffset = source.filmOffset;

		return this;

	},

	/**
	 * Sets the FOV by focal length in respect to the current .filmGauge.
	 *
	 * The default film gauge is 35, so that the focal length can be specified for
	 * a 35mm (full frame) camera.
	 *
	 * Values for focal length and film gauge must have the same unit.
	 */
	setFocalLength: function ( focalLength ) {

		// see http://www.bobatkins.com/photography/technical/field_of_view.html
		var vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;

		this.fov = _Math.RAD2DEG * 2 * Math.atan( vExtentSlope );
		this.updateProjectionMatrix();

	},

	/**
	 * Calculates the focal length from the current .fov and .filmGauge.
	 */
	getFocalLength: function () {

		var vExtentSlope = Math.tan( _Math.DEG2RAD * 0.5 * this.fov );

		return 0.5 * this.getFilmHeight() / vExtentSlope;

	},

	getEffectiveFOV: function () {

		return _Math.RAD2DEG * 2 * Math.atan(
				Math.tan( _Math.DEG2RAD * 0.5 * this.fov ) / this.zoom );

	},

	getFilmWidth: function () {

		// film not completely covered in portrait format (aspect < 1)
		return this.filmGauge * Math.min( this.aspect, 1 );

	},

	getFilmHeight: function () {

		// film not completely covered in landscape format (aspect > 1)
		return this.filmGauge / Math.max( this.aspect, 1 );

	},

	/**
	 * Sets an offset in a larger frustum. This is useful for multi-window or
	 * multi-monitor/multi-machine setups.
	 *
	 * For example, if you have 3x2 monitors and each monitor is 1920x1080 and
	 * the monitors are in grid like this
	 *
	 *   +---+---+---+
	 *   | A | B | C |
	 *   +---+---+---+
	 *   | D | E | F |
	 *   +---+---+---+
	 *
	 * then for each monitor you would call it like this
	 *
	 *   var w = 1920;
	 *   var h = 1080;
	 *   var fullWidth = w * 3;
	 *   var fullHeight = h * 2;
	 *
	 *   --A--
	 *   camera.setOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
	 *   --B--
	 *   camera.setOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
	 *   --C--
	 *   camera.setOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
	 *   --D--
	 *   camera.setOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
	 *   --E--
	 *   camera.setOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
	 *   --F--
	 *   camera.setOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
	 *
	 *   Note there is no reason monitors have to be the same size or in a grid.
	 */
	setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) {

		this.aspect = fullWidth / fullHeight;

		this.view = {
			fullWidth: fullWidth,
			fullHeight: fullHeight,
			offsetX: x,
			offsetY: y,
			width: width,
			height: height
		};

		this.updateProjectionMatrix();

	},

	clearViewOffset: function () {

		this.view = null;
		this.updateProjectionMatrix();

	},

	updateProjectionMatrix: function () {

		var near = this.near,
			top = near * Math.tan(
					_Math.DEG2RAD * 0.5 * this.fov ) / this.zoom,
			height = 2 * top,
			width = this.aspect * height,
			left = - 0.5 * width,
			view = this.view;

		if ( view !== null ) {

			var fullWidth = view.fullWidth,
				fullHeight = view.fullHeight;

			left += view.offsetX * width / fullWidth;
			top -= view.offsetY * height / fullHeight;
			width *= view.width / fullWidth;
			height *= view.height / fullHeight;

		}

		var skew = this.filmOffset;
		if ( skew !== 0 ) left += near * skew / this.getFilmWidth();

		this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far );

	},

	toJSON: function ( meta ) {

		var data = Object3D.prototype.toJSON.call( this, meta );

		data.object.fov = this.fov;
		data.object.zoom = this.zoom;

		data.object.near = this.near;
		data.object.far = this.far;
		data.object.focus = this.focus;

		data.object.aspect = this.aspect;

		if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );

		data.object.filmGauge = this.filmGauge;
		data.object.filmOffset = this.filmOffset;

		return data;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 * @author alteredq / http://alteredqualia.com/
 */

function Face3( a, b, c, normal, color, materialIndex ) {

	this.a = a;
	this.b = b;
	this.c = c;

	this.normal = ( normal && normal.isVector3 ) ? normal : new Vector3();
	this.vertexNormals = Array.isArray( normal ) ? normal : [];

	this.color = ( color && color.isColor ) ? color : new Color();
	this.vertexColors = Array.isArray( color ) ? color : [];

	this.materialIndex = materialIndex !== undefined ? materialIndex : 0;

}

Object.assign( Face3.prototype, {

	clone: function () {

		return new this.constructor().copy( this );

	},

	copy: function ( source ) {

		this.a = source.a;
		this.b = source.b;
		this.c = source.c;

		this.normal.copy( source.normal );
		this.color.copy( source.color );

		this.materialIndex = source.materialIndex;

		for ( var i = 0, il = source.vertexNormals.length; i < il; i ++ ) {

			this.vertexNormals[ i ] = source.vertexNormals[ i ].clone();

		}

		for ( var i = 0, il = source.vertexColors.length; i < il; i ++ ) {

			this.vertexColors[ i ] = source.vertexColors[ i ].clone();

		}

		return this;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 * @author kile / http://kile.stravaganza.org/
 * @author alteredq / http://alteredqualia.com/
 * @author mikael emtinger / http://gomo.se/
 * @author zz85 / http://www.lab4games.net/zz85/blog
 * @author bhouston / http://clara.io
 */

var count = 0;
function GeometryIdCount() { return count++; }

function Geometry() {

	Object.defineProperty( this, 'id', { value: GeometryIdCount() } );

	this.uuid = _Math.generateUUID();

	this.name = '';
	this.type = 'Geometry';

	this.vertices = [];
	this.colors = [];
	this.faces = [];
	this.faceVertexUvs = [[]];

	this.morphTargets = [];
	this.morphNormals = [];

	this.skinWeights = [];
	this.skinIndices = [];

	this.lineDistances = [];

	this.boundingBox = null;
	this.boundingSphere = null;

	// update flags

	this.elementsNeedUpdate = false;
	this.verticesNeedUpdate = false;
	this.uvsNeedUpdate = false;
	this.normalsNeedUpdate = false;
	this.colorsNeedUpdate = false;
	this.lineDistancesNeedUpdate = false;
	this.groupsNeedUpdate = false;

}

Object.assign( Geometry.prototype, EventDispatcher.prototype, {

	isGeometry: true,

	applyMatrix: function ( matrix ) {

		var normalMatrix = new Matrix3().getNormalMatrix( matrix );

		for ( var i = 0, il = this.vertices.length; i < il; i ++ ) {

			var vertex = this.vertices[ i ];
			vertex.applyMatrix4( matrix );

		}

		for ( var i = 0, il = this.faces.length; i < il; i ++ ) {

			var face = this.faces[ i ];
			face.normal.applyMatrix3( normalMatrix ).normalize();

			for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {

				face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize();

			}

		}

		if ( this.boundingBox !== null ) {

			this.computeBoundingBox();

		}

		if ( this.boundingSphere !== null ) {

			this.computeBoundingSphere();

		}

		this.verticesNeedUpdate = true;
		this.normalsNeedUpdate = true;

		return this;

	},

	rotateX: function () {

		// rotate geometry around world x-axis

		var m1 = new Matrix4();

		return function rotateX( angle ) {

			m1.makeRotationX( angle );

			this.applyMatrix( m1 );

			return this;

		};

	}(),

	rotateY: function () {

		// rotate geometry around world y-axis

		var m1 = new Matrix4();

		return function rotateY( angle ) {

			m1.makeRotationY( angle );

			this.applyMatrix( m1 );

			return this;

		};

	}(),

	rotateZ: function () {

		// rotate geometry around world z-axis

		var m1 = new Matrix4();

		return function rotateZ( angle ) {

			m1.makeRotationZ( angle );

			this.applyMatrix( m1 );

			return this;

		};

	}(),

	translate: function () {

		// translate geometry

		var m1 = new Matrix4();

		return function translate( x, y, z ) {

			m1.makeTranslation( x, y, z );

			this.applyMatrix( m1 );

			return this;

		};

	}(),

	scale: function () {

		// scale geometry

		var m1 = new Matrix4();

		return function scale( x, y, z ) {

			m1.makeScale( x, y, z );

			this.applyMatrix( m1 );

			return this;

		};

	}(),

	lookAt: function () {

		var obj = new Object3D();

		return function lookAt( vector ) {

			obj.lookAt( vector );

			obj.updateMatrix();

			this.applyMatrix( obj.matrix );

		};

	}(),

	fromBufferGeometry: function ( geometry ) {

		var scope = this;

		var indices = geometry.index !== null ? geometry.index.array : undefined;
		var attributes = geometry.attributes;

		var positions = attributes.position.array;
		var normals = attributes.normal !== undefined ? attributes.normal.array : undefined;
		var colors = attributes.color !== undefined ? attributes.color.array : undefined;
		var uvs = attributes.uv !== undefined ? attributes.uv.array : undefined;
		var uvs2 = attributes.uv2 !== undefined ? attributes.uv2.array : undefined;

		if ( uvs2 !== undefined ) this.faceVertexUvs[ 1 ] = [];

		var tempNormals = [];
		var tempUVs = [];
		var tempUVs2 = [];

		for ( var i = 0, j = 0; i < positions.length; i += 3, j += 2 ) {

			scope.vertices.push( new Vector3( positions[ i ], positions[ i + 1 ], positions[ i + 2 ] ) );

			if ( normals !== undefined ) {

				tempNormals.push( new Vector3( normals[ i ], normals[ i + 1 ], normals[ i + 2 ] ) );

			}

			if ( colors !== undefined ) {

				scope.colors.push( new Color( colors[ i ], colors[ i + 1 ], colors[ i + 2 ] ) );

			}

			if ( uvs !== undefined ) {

				tempUVs.push( new Vector2( uvs[ j ], uvs[ j + 1 ] ) );

			}

			if ( uvs2 !== undefined ) {

				tempUVs2.push( new Vector2( uvs2[ j ], uvs2[ j + 1 ] ) );

			}

		}

		function addFace( a, b, c, materialIndex ) {

			var vertexNormals = normals !== undefined ? [ tempNormals[ a ].clone(), tempNormals[ b ].clone(), tempNormals[ c ].clone() ] : [];
			var vertexColors = colors !== undefined ? [ scope.colors[ a ].clone(), scope.colors[ b ].clone(), scope.colors[ c ].clone() ] : [];

			var face = new Face3( a, b, c, vertexNormals, vertexColors, materialIndex );

			scope.faces.push( face );

			if ( uvs !== undefined ) {

				scope.faceVertexUvs[ 0 ].push( [ tempUVs[ a ].clone(), tempUVs[ b ].clone(), tempUVs[ c ].clone() ] );

			}

			if ( uvs2 !== undefined ) {

				scope.faceVertexUvs[ 1 ].push( [ tempUVs2[ a ].clone(), tempUVs2[ b ].clone(), tempUVs2[ c ].clone() ] );

			}

		}

		var groups = geometry.groups;

		if ( groups.length > 0 ) {

			for ( var i = 0; i < groups.length; i ++ ) {

				var group = groups[ i ];

				var start = group.start;
				var count = group.count;

				for ( var j = start, jl = start + count; j < jl; j += 3 ) {

					if ( indices !== undefined ) {

						addFace( indices[ j ], indices[ j + 1 ], indices[ j + 2 ], group.materialIndex );

					} else {

						addFace( j, j + 1, j + 2, group.materialIndex );

					}

				}

			}

		} else {

			if ( indices !== undefined ) {

				for ( var i = 0; i < indices.length; i += 3 ) {

					addFace( indices[ i ], indices[ i + 1 ], indices[ i + 2 ] );

				}

			} else {

				for ( var i = 0; i < positions.length / 3; i += 3 ) {

					addFace( i, i + 1, i + 2 );

				}

			}

		}

		this.computeFaceNormals();

		if ( geometry.boundingBox !== null ) {

			this.boundingBox = geometry.boundingBox.clone();

		}

		if ( geometry.boundingSphere !== null ) {

			this.boundingSphere = geometry.boundingSphere.clone();

		}

		return this;

	},

	center: function () {

		this.computeBoundingBox();

		var offset = this.boundingBox.getCenter().negate();

		this.translate( offset.x, offset.y, offset.z );

		return offset;

	},

	normalize: function () {

		this.computeBoundingSphere();

		var center = this.boundingSphere.center;
		var radius = this.boundingSphere.radius;

		var s = radius === 0 ? 1 : 1.0 / radius;

		var matrix = new Matrix4();
		matrix.set(
			s, 0, 0, - s * center.x,
			0, s, 0, - s * center.y,
			0, 0, s, - s * center.z,
			0, 0, 0, 1
		);

		this.applyMatrix( matrix );

		return this;

	},

	computeFaceNormals: function () {

		var cb = new Vector3(), ab = new Vector3();

		for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) {

			var face = this.faces[ f ];

			var vA = this.vertices[ face.a ];
			var vB = this.vertices[ face.b ];
			var vC = this.vertices[ face.c ];

			cb.subVectors( vC, vB );
			ab.subVectors( vA, vB );
			cb.cross( ab );

			cb.normalize();

			face.normal.copy( cb );

		}

	},

	computeVertexNormals: function ( areaWeighted ) {

		if ( areaWeighted === undefined ) areaWeighted = true;

		var v, vl, f, fl, face, vertices;

		vertices = new Array( this.vertices.length );

		for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {

			vertices[ v ] = new Vector3();

		}

		if ( areaWeighted ) {

			// vertex normals weighted by triangle areas
			// http://www.iquilezles.org/www/articles/normals/normals.htm

			var vA, vB, vC;
			var cb = new Vector3(), ab = new Vector3();

			for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

				face = this.faces[ f ];

				vA = this.vertices[ face.a ];
				vB = this.vertices[ face.b ];
				vC = this.vertices[ face.c ];

				cb.subVectors( vC, vB );
				ab.subVectors( vA, vB );
				cb.cross( ab );

				vertices[ face.a ].add( cb );
				vertices[ face.b ].add( cb );
				vertices[ face.c ].add( cb );

			}

		} else {

			this.computeFaceNormals();

			for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

				face = this.faces[ f ];

				vertices[ face.a ].add( face.normal );
				vertices[ face.b ].add( face.normal );
				vertices[ face.c ].add( face.normal );

			}

		}

		for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {

			vertices[ v ].normalize();

		}

		for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

			face = this.faces[ f ];

			var vertexNormals = face.vertexNormals;

			if ( vertexNormals.length === 3 ) {

				vertexNormals[ 0 ].copy( vertices[ face.a ] );
				vertexNormals[ 1 ].copy( vertices[ face.b ] );
				vertexNormals[ 2 ].copy( vertices[ face.c ] );

			} else {

				vertexNormals[ 0 ] = vertices[ face.a ].clone();
				vertexNormals[ 1 ] = vertices[ face.b ].clone();
				vertexNormals[ 2 ] = vertices[ face.c ].clone();

			}

		}

		if ( this.faces.length > 0 ) {

			this.normalsNeedUpdate = true;

		}

	},

	computeFlatVertexNormals: function () {

		var f, fl, face;

		this.computeFaceNormals();

		for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

			face = this.faces[ f ];

			var vertexNormals = face.vertexNormals;

			if ( vertexNormals.length === 3 ) {

				vertexNormals[ 0 ].copy( face.normal );
				vertexNormals[ 1 ].copy( face.normal );
				vertexNormals[ 2 ].copy( face.normal );

			} else {

				vertexNormals[ 0 ] = face.normal.clone();
				vertexNormals[ 1 ] = face.normal.clone();
				vertexNormals[ 2 ] = face.normal.clone();

			}

		}

		if ( this.faces.length > 0 ) {

			this.normalsNeedUpdate = true;

		}

	},

	computeMorphNormals: function () {

		var i, il, f, fl, face;

		// save original normals
		// - create temp variables on first access
		//   otherwise just copy (for faster repeated calls)

		for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

			face = this.faces[ f ];

			if ( ! face.__originalFaceNormal ) {

				face.__originalFaceNormal = face.normal.clone();

			} else {

				face.__originalFaceNormal.copy( face.normal );

			}

			if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = [];

			for ( i = 0, il = face.vertexNormals.length; i < il; i ++ ) {

				if ( ! face.__originalVertexNormals[ i ] ) {

					face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone();

				} else {

					face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] );

				}

			}

		}

		// use temp geometry to compute face and vertex normals for each morph

		var tmpGeo = new Geometry();
		tmpGeo.faces = this.faces;

		for ( i = 0, il = this.morphTargets.length; i < il; i ++ ) {

			// create on first access

			if ( ! this.morphNormals[ i ] ) {

				this.morphNormals[ i ] = {};
				this.morphNormals[ i ].faceNormals = [];
				this.morphNormals[ i ].vertexNormals = [];

				var dstNormalsFace = this.morphNormals[ i ].faceNormals;
				var dstNormalsVertex = this.morphNormals[ i ].vertexNormals;

				var faceNormal, vertexNormals;

				for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

					faceNormal = new Vector3();
					vertexNormals = { a: new Vector3(), b: new Vector3(), c: new Vector3() };

					dstNormalsFace.push( faceNormal );
					dstNormalsVertex.push( vertexNormals );

				}

			}

			var morphNormals = this.morphNormals[ i ];

			// set vertices to morph target

			tmpGeo.vertices = this.morphTargets[ i ].vertices;

			// compute morph normals

			tmpGeo.computeFaceNormals();
			tmpGeo.computeVertexNormals();

			// store morph normals

			var faceNormal, vertexNormals;

			for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

				face = this.faces[ f ];

				faceNormal = morphNormals.faceNormals[ f ];
				vertexNormals = morphNormals.vertexNormals[ f ];

				faceNormal.copy( face.normal );

				vertexNormals.a.copy( face.vertexNormals[ 0 ] );
				vertexNormals.b.copy( face.vertexNormals[ 1 ] );
				vertexNormals.c.copy( face.vertexNormals[ 2 ] );

			}

		}

		// restore original normals

		for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

			face = this.faces[ f ];

			face.normal = face.__originalFaceNormal;
			face.vertexNormals = face.__originalVertexNormals;

		}

	},

	computeLineDistances: function () {

		var d = 0;
		var vertices = this.vertices;

		for ( var i = 0, il = vertices.length; i < il; i ++ ) {

			if ( i > 0 ) {

				d += vertices[ i ].distanceTo( vertices[ i - 1 ] );

			}

			this.lineDistances[ i ] = d;

		}

	},

	computeBoundingBox: function () {

		if ( this.boundingBox === null ) {

			this.boundingBox = new Box3();

		}

		this.boundingBox.setFromPoints( this.vertices );

	},

	computeBoundingSphere: function () {

		if ( this.boundingSphere === null ) {

			this.boundingSphere = new Sphere();

		}

		this.boundingSphere.setFromPoints( this.vertices );

	},

	merge: function ( geometry, matrix, materialIndexOffset ) {

		if ( ! ( geometry && geometry.isGeometry ) ) {

			console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry );
			return;

		}

		var normalMatrix,
			vertexOffset = this.vertices.length,
			vertices1 = this.vertices,
			vertices2 = geometry.vertices,
			faces1 = this.faces,
			faces2 = geometry.faces,
			uvs1 = this.faceVertexUvs[ 0 ],
			uvs2 = geometry.faceVertexUvs[ 0 ],
			colors1 = this.colors,
			colors2 = geometry.colors;

		if ( materialIndexOffset === undefined ) materialIndexOffset = 0;

		if ( matrix !== undefined ) {

			normalMatrix = new Matrix3().getNormalMatrix( matrix );

		}

		// vertices

		for ( var i = 0, il = vertices2.length; i < il; i ++ ) {

			var vertex = vertices2[ i ];

			var vertexCopy = vertex.clone();

			if ( matrix !== undefined ) vertexCopy.applyMatrix4( matrix );

			vertices1.push( vertexCopy );

		}

		// colors

		for ( var i = 0, il = colors2.length; i < il; i ++ ) {

			colors1.push( colors2[ i ].clone() );

		}

		// faces

		for ( i = 0, il = faces2.length; i < il; i ++ ) {

			var face = faces2[ i ], faceCopy, normal, color,
				faceVertexNormals = face.vertexNormals,
				faceVertexColors = face.vertexColors;

			faceCopy = new Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset );
			faceCopy.normal.copy( face.normal );

			if ( normalMatrix !== undefined ) {

				faceCopy.normal.applyMatrix3( normalMatrix ).normalize();

			}

			for ( var j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) {

				normal = faceVertexNormals[ j ].clone();

				if ( normalMatrix !== undefined ) {

					normal.applyMatrix3( normalMatrix ).normalize();

				}

				faceCopy.vertexNormals.push( normal );

			}

			faceCopy.color.copy( face.color );

			for ( var j = 0, jl = faceVertexColors.length; j < jl; j ++ ) {

				color = faceVertexColors[ j ];
				faceCopy.vertexColors.push( color.clone() );

			}

			faceCopy.materialIndex = face.materialIndex + materialIndexOffset;

			faces1.push( faceCopy );

		}

		// uvs

		for ( i = 0, il = uvs2.length; i < il; i ++ ) {

			var uv = uvs2[ i ], uvCopy = [];

			if ( uv === undefined ) {

				continue;

			}

			for ( var j = 0, jl = uv.length; j < jl; j ++ ) {

				uvCopy.push( uv[ j ].clone() );

			}

			uvs1.push( uvCopy );

		}

	},

	mergeMesh: function ( mesh ) {

		if ( ! ( mesh && mesh.isMesh ) ) {

			console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh );
			return;

		}

		mesh.matrixAutoUpdate && mesh.updateMatrix();

		this.merge( mesh.geometry, mesh.matrix );

	},

	/*
	 * Checks for duplicate vertices with hashmap.
	 * Duplicated vertices are removed
	 * and faces' vertices are updated.
	 */

	mergeVertices: function () {

		var verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique)
		var unique = [], changes = [];

		var v, key;
		var precisionPoints = 4; // number of decimal points, e.g. 4 for epsilon of 0.0001
		var precision = Math.pow( 10, precisionPoints );
		var i, il, face;
		var indices, j, jl;

		for ( i = 0, il = this.vertices.length; i < il; i ++ ) {

			v = this.vertices[ i ];
			key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision );

			if ( verticesMap[ key ] === undefined ) {

				verticesMap[ key ] = i;
				unique.push( this.vertices[ i ] );
				changes[ i ] = unique.length - 1;

			} else {

				//console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]);
				changes[ i ] = changes[ verticesMap[ key ] ];

			}

		}


		// if faces are completely degenerate after merging vertices, we
		// have to remove them from the geometry.
		var faceIndicesToRemove = [];

		for ( i = 0, il = this.faces.length; i < il; i ++ ) {

			face = this.faces[ i ];

			face.a = changes[ face.a ];
			face.b = changes[ face.b ];
			face.c = changes[ face.c ];

			indices = [ face.a, face.b, face.c ];

			// if any duplicate vertices are found in a Face3
			// we have to remove the face as nothing can be saved
			for ( var n = 0; n < 3; n ++ ) {

				if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) {

					faceIndicesToRemove.push( i );
					break;

				}

			}

		}

		for ( i = faceIndicesToRemove.length - 1; i >= 0; i -- ) {

			var idx = faceIndicesToRemove[ i ];

			this.faces.splice( idx, 1 );

			for ( j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) {

				this.faceVertexUvs[ j ].splice( idx, 1 );

			}

		}

		// Use unique set of vertices

		var diff = this.vertices.length - unique.length;
		this.vertices = unique;
		return diff;

	},

	sortFacesByMaterialIndex: function () {

		var faces = this.faces;
		var length = faces.length;

		// tag faces

		for ( var i = 0; i < length; i ++ ) {

			faces[ i ]._id = i;

		}

		// sort faces

		function materialIndexSort( a, b ) {

			return a.materialIndex - b.materialIndex;

		}

		faces.sort( materialIndexSort );

		// sort uvs

		var uvs1 = this.faceVertexUvs[ 0 ];
		var uvs2 = this.faceVertexUvs[ 1 ];

		var newUvs1, newUvs2;

		if ( uvs1 && uvs1.length === length ) newUvs1 = [];
		if ( uvs2 && uvs2.length === length ) newUvs2 = [];

		for ( var i = 0; i < length; i ++ ) {

			var id = faces[ i ]._id;

			if ( newUvs1 ) newUvs1.push( uvs1[ id ] );
			if ( newUvs2 ) newUvs2.push( uvs2[ id ] );

		}

		if ( newUvs1 ) this.faceVertexUvs[ 0 ] = newUvs1;
		if ( newUvs2 ) this.faceVertexUvs[ 1 ] = newUvs2;

	},

	toJSON: function () {

		var data = {
			metadata: {
				version: 4.5,
				type: 'Geometry',
				generator: 'Geometry.toJSON'
			}
		};

		// standard Geometry serialization

		data.uuid = this.uuid;
		data.type = this.type;
		if ( this.name !== '' ) data.name = this.name;

		if ( this.parameters !== undefined ) {

			var parameters = this.parameters;

			for ( var key in parameters ) {

				if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];

			}

			return data;

		}

		var vertices = [];

		for ( var i = 0; i < this.vertices.length; i ++ ) {

			var vertex = this.vertices[ i ];
			vertices.push( vertex.x, vertex.y, vertex.z );

		}

		var faces = [];
		var normals = [];
		var normalsHash = {};
		var colors = [];
		var colorsHash = {};
		var uvs = [];
		var uvsHash = {};

		for ( var i = 0; i < this.faces.length; i ++ ) {

			var face = this.faces[ i ];

			var hasMaterial = true;
			var hasFaceUv = false; // deprecated
			var hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i ] !== undefined;
			var hasFaceNormal = face.normal.length() > 0;
			var hasFaceVertexNormal = face.vertexNormals.length > 0;
			var hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1;
			var hasFaceVertexColor = face.vertexColors.length > 0;

			var faceType = 0;

			faceType = setBit( faceType, 0, 0 ); // isQuad
			faceType = setBit( faceType, 1, hasMaterial );
			faceType = setBit( faceType, 2, hasFaceUv );
			faceType = setBit( faceType, 3, hasFaceVertexUv );
			faceType = setBit( faceType, 4, hasFaceNormal );
			faceType = setBit( faceType, 5, hasFaceVertexNormal );
			faceType = setBit( faceType, 6, hasFaceColor );
			faceType = setBit( faceType, 7, hasFaceVertexColor );

			faces.push( faceType );
			faces.push( face.a, face.b, face.c );
			faces.push( face.materialIndex );

			if ( hasFaceVertexUv ) {

				var faceVertexUvs = this.faceVertexUvs[ 0 ][ i ];

				faces.push(
					getUvIndex( faceVertexUvs[ 0 ] ),
					getUvIndex( faceVertexUvs[ 1 ] ),
					getUvIndex( faceVertexUvs[ 2 ] )
				);

			}

			if ( hasFaceNormal ) {

				faces.push( getNormalIndex( face.normal ) );

			}

			if ( hasFaceVertexNormal ) {

				var vertexNormals = face.vertexNormals;

				faces.push(
					getNormalIndex( vertexNormals[ 0 ] ),
					getNormalIndex( vertexNormals[ 1 ] ),
					getNormalIndex( vertexNormals[ 2 ] )
				);

			}

			if ( hasFaceColor ) {

				faces.push( getColorIndex( face.color ) );

			}

			if ( hasFaceVertexColor ) {

				var vertexColors = face.vertexColors;

				faces.push(
					getColorIndex( vertexColors[ 0 ] ),
					getColorIndex( vertexColors[ 1 ] ),
					getColorIndex( vertexColors[ 2 ] )
				);

			}

		}

		function setBit( value, position, enabled ) {

			return enabled ? value | ( 1 << position ) : value & ( ~ ( 1 << position ) );

		}

		function getNormalIndex( normal ) {

			var hash = normal.x.toString() + normal.y.toString() + normal.z.toString();

			if ( normalsHash[ hash ] !== undefined ) {

				return normalsHash[ hash ];

			}

			normalsHash[ hash ] = normals.length / 3;
			normals.push( normal.x, normal.y, normal.z );

			return normalsHash[ hash ];

		}

		function getColorIndex( color ) {

			var hash = color.r.toString() + color.g.toString() + color.b.toString();

			if ( colorsHash[ hash ] !== undefined ) {

				return colorsHash[ hash ];

			}

			colorsHash[ hash ] = colors.length;
			colors.push( color.getHex() );

			return colorsHash[ hash ];

		}

		function getUvIndex( uv ) {

			var hash = uv.x.toString() + uv.y.toString();

			if ( uvsHash[ hash ] !== undefined ) {

				return uvsHash[ hash ];

			}

			uvsHash[ hash ] = uvs.length / 2;
			uvs.push( uv.x, uv.y );

			return uvsHash[ hash ];

		}

		data.data = {};

		data.data.vertices = vertices;
		data.data.normals = normals;
		if ( colors.length > 0 ) data.data.colors = colors;
		if ( uvs.length > 0 ) data.data.uvs = [ uvs ]; // temporal backward compatibility
		data.data.faces = faces;

		return data;

	},

	clone: function () {

		/*
		 // Handle primitives

		 var parameters = this.parameters;

		 if ( parameters !== undefined ) {

		 var values = [];

		 for ( var key in parameters ) {

		 values.push( parameters[ key ] );

		 }

		 var geometry = Object.create( this.constructor.prototype );
		 this.constructor.apply( geometry, values );
		 return geometry;

		 }

		 return new this.constructor().copy( this );
		 */

		return new Geometry().copy( this );

	},

	copy: function ( source ) {

		var i, il, j, jl, k, kl;

		// reset

		this.vertices = [];
		this.colors = [];
		this.faces = [];
		this.faceVertexUvs = [[]];
		this.morphTargets = [];
		this.morphNormals = [];
		this.skinWeights = [];
		this.skinIndices = [];
		this.lineDistances = [];
		this.boundingBox = null;
		this.boundingSphere = null;

		// name

		this.name = source.name;

		// vertices

		var vertices = source.vertices;

		for ( i = 0, il = vertices.length; i < il; i ++ ) {

			this.vertices.push( vertices[ i ].clone() );

		}

		// colors

		var colors = source.colors;

		for ( i = 0, il = colors.length; i < il; i ++ ) {

			this.colors.push( colors[ i ].clone() );

		}

		// faces

		var faces = source.faces;

		for ( i = 0, il = faces.length; i < il; i ++ ) {

			this.faces.push( faces[ i ].clone() );

		}

		// face vertex uvs

		for ( i = 0, il = source.faceVertexUvs.length; i < il; i ++ ) {

			var faceVertexUvs = source.faceVertexUvs[ i ];

			if ( this.faceVertexUvs[ i ] === undefined ) {

				this.faceVertexUvs[ i ] = [];

			}

			for ( j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) {

				var uvs = faceVertexUvs[ j ], uvsCopy = [];

				for ( k = 0, kl = uvs.length; k < kl; k ++ ) {

					var uv = uvs[ k ];

					uvsCopy.push( uv.clone() );

				}

				this.faceVertexUvs[ i ].push( uvsCopy );

			}

		}

		// morph targets

		var morphTargets = source.morphTargets;

		for ( i = 0, il = morphTargets.length; i < il; i ++ ) {

			var morphTarget = {};
			morphTarget.name = morphTargets[ i ].name;

			// vertices

			if ( morphTargets[ i ].vertices !== undefined ) {

				morphTarget.vertices = [];

				for ( j = 0, jl = morphTargets[ i ].vertices.length; j < jl; j ++ ) {

					morphTarget.vertices.push( morphTargets[ i ].vertices[ j ].clone() );

				}

			}

			// normals

			if ( morphTargets[ i ].normals !== undefined ) {

				morphTarget.normals = [];

				for ( j = 0, jl = morphTargets[ i ].normals.length; j < jl; j ++ ) {

					morphTarget.normals.push( morphTargets[ i ].normals[ j ].clone() );

				}

			}

			this.morphTargets.push( morphTarget );

		}

		// morph normals

		var morphNormals = source.morphNormals;

		for ( i = 0, il = morphNormals.length; i < il; i ++ ) {

			var morphNormal = {};

			// vertex normals

			if ( morphNormals[ i ].vertexNormals !== undefined ) {

				morphNormal.vertexNormals = [];

				for ( j = 0, jl = morphNormals[ i ].vertexNormals.length; j < jl; j ++ ) {

					var srcVertexNormal = morphNormals[ i ].vertexNormals[ j ];
					var destVertexNormal = {};

					destVertexNormal.a = srcVertexNormal.a.clone();
					destVertexNormal.b = srcVertexNormal.b.clone();
					destVertexNormal.c = srcVertexNormal.c.clone();

					morphNormal.vertexNormals.push( destVertexNormal );

				}

			}

			// face normals

			if ( morphNormals[ i ].faceNormals !== undefined ) {

				morphNormal.faceNormals = [];

				for ( j = 0, jl = morphNormals[ i ].faceNormals.length; j < jl; j ++ ) {

					morphNormal.faceNormals.push( morphNormals[ i ].faceNormals[ j ].clone() );

				}

			}

			this.morphNormals.push( morphNormal );

		}

		// skin weights

		var skinWeights = source.skinWeights;

		for ( i = 0, il = skinWeights.length; i < il; i ++ ) {

			this.skinWeights.push( skinWeights[ i ].clone() );

		}

		// skin indices

		var skinIndices = source.skinIndices;

		for ( i = 0, il = skinIndices.length; i < il; i ++ ) {

			this.skinIndices.push( skinIndices[ i ].clone() );

		}

		// line distances

		var lineDistances = source.lineDistances;

		for ( i = 0, il = lineDistances.length; i < il; i ++ ) {

			this.lineDistances.push( lineDistances[ i ] );

		}

		// bounding box

		var boundingBox = source.boundingBox;

		if ( boundingBox !== null ) {

			this.boundingBox = boundingBox.clone();

		}

		// bounding sphere

		var boundingSphere = source.boundingSphere;

		if ( boundingSphere !== null ) {

			this.boundingSphere = boundingSphere.clone();

		}

		// update flags

		this.elementsNeedUpdate = source.elementsNeedUpdate;
		this.verticesNeedUpdate = source.verticesNeedUpdate;
		this.uvsNeedUpdate = source.uvsNeedUpdate;
		this.normalsNeedUpdate = source.normalsNeedUpdate;
		this.colorsNeedUpdate = source.colorsNeedUpdate;
		this.lineDistancesNeedUpdate = source.lineDistancesNeedUpdate;
		this.groupsNeedUpdate = source.groupsNeedUpdate;

		return this;

	},

	dispose: function () {

		this.dispatchEvent( { type: 'dispose' } );

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function BufferAttribute( array, itemSize, normalized ) {

	if ( Array.isArray( array ) ) {

		throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );

	}

	this.uuid = _Math.generateUUID();
	this.name = '';

	this.array = array;
	this.itemSize = itemSize;
	this.count = array !== undefined ? array.length / itemSize : 0;
	this.normalized = normalized === true;

	this.dynamic = false;
	this.updateRange = { offset: 0, count: - 1 };

	this.onUploadCallback = function () {};

	this.version = 0;

}

Object.defineProperty( BufferAttribute.prototype, 'needsUpdate', {

	set: function ( value ) {

		if ( value === true ) this.version ++;

	}

} );

Object.assign( BufferAttribute.prototype, {

	isBufferAttribute: true,

	setArray: function ( array ) {

		if ( Array.isArray( array ) ) {

			throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );

		}

		this.count = array !== undefined ? array.length / this.itemSize : 0;
		this.array = array;

	},

	setDynamic: function ( value ) {

		this.dynamic = value;

		return this;

	},

	copy: function ( source ) {

		this.array = new source.array.constructor( source.array );
		this.itemSize = source.itemSize;
		this.count = source.count;
		this.normalized = source.normalized;

		this.dynamic = source.dynamic;

		return this;

	},

	copyAt: function ( index1, attribute, index2 ) {

		index1 *= this.itemSize;
		index2 *= attribute.itemSize;

		for ( var i = 0, l = this.itemSize; i < l; i ++ ) {

			this.array[ index1 + i ] = attribute.array[ index2 + i ];

		}

		return this;

	},

	copyArray: function ( array ) {

		this.array.set( array );

		return this;

	},

	copyColorsArray: function ( colors ) {

		var array = this.array, offset = 0;

		for ( var i = 0, l = colors.length; i < l; i ++ ) {

			var color = colors[ i ];

			if ( color === undefined ) {

				console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i );
				color = new Color();

			}

			array[ offset ++ ] = color.r;
			array[ offset ++ ] = color.g;
			array[ offset ++ ] = color.b;

		}

		return this;

	},

	copyIndicesArray: function ( indices ) {

		var array = this.array, offset = 0;

		for ( var i = 0, l = indices.length; i < l; i ++ ) {

			var index = indices[ i ];

			array[ offset ++ ] = index.a;
			array[ offset ++ ] = index.b;
			array[ offset ++ ] = index.c;

		}

		return this;

	},

	copyVector2sArray: function ( vectors ) {

		var array = this.array, offset = 0;

		for ( var i = 0, l = vectors.length; i < l; i ++ ) {

			var vector = vectors[ i ];

			if ( vector === undefined ) {

				console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i );
				vector = new Vector2();

			}

			array[ offset ++ ] = vector.x;
			array[ offset ++ ] = vector.y;

		}

		return this;

	},

	copyVector3sArray: function ( vectors ) {

		var array = this.array, offset = 0;

		for ( var i = 0, l = vectors.length; i < l; i ++ ) {

			var vector = vectors[ i ];

			if ( vector === undefined ) {

				console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i );
				vector = new Vector3();

			}

			array[ offset ++ ] = vector.x;
			array[ offset ++ ] = vector.y;
			array[ offset ++ ] = vector.z;

		}

		return this;

	},

	copyVector4sArray: function ( vectors ) {

		var array = this.array, offset = 0;

		for ( var i = 0, l = vectors.length; i < l; i ++ ) {

			var vector = vectors[ i ];

			if ( vector === undefined ) {

				console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i );
				vector = new Vector4();

			}

			array[ offset ++ ] = vector.x;
			array[ offset ++ ] = vector.y;
			array[ offset ++ ] = vector.z;
			array[ offset ++ ] = vector.w;

		}

		return this;

	},

	set: function ( value, offset ) {

		if ( offset === undefined ) offset = 0;

		this.array.set( value, offset );

		return this;

	},

	getX: function ( index ) {

		return this.array[ index * this.itemSize ];

	},

	setX: function ( index, x ) {

		this.array[ index * this.itemSize ] = x;

		return this;

	},

	getY: function ( index ) {

		return this.array[ index * this.itemSize + 1 ];

	},

	setY: function ( index, y ) {

		this.array[ index * this.itemSize + 1 ] = y;

		return this;

	},

	getZ: function ( index ) {

		return this.array[ index * this.itemSize + 2 ];

	},

	setZ: function ( index, z ) {

		this.array[ index * this.itemSize + 2 ] = z;

		return this;

	},

	getW: function ( index ) {

		return this.array[ index * this.itemSize + 3 ];

	},

	setW: function ( index, w ) {

		this.array[ index * this.itemSize + 3 ] = w;

		return this;

	},

	setXY: function ( index, x, y ) {

		index *= this.itemSize;

		this.array[ index + 0 ] = x;
		this.array[ index + 1 ] = y;

		return this;

	},

	setXYZ: function ( index, x, y, z ) {

		index *= this.itemSize;

		this.array[ index + 0 ] = x;
		this.array[ index + 1 ] = y;
		this.array[ index + 2 ] = z;

		return this;

	},

	setXYZW: function ( index, x, y, z, w ) {

		index *= this.itemSize;

		this.array[ index + 0 ] = x;
		this.array[ index + 1 ] = y;
		this.array[ index + 2 ] = z;
		this.array[ index + 3 ] = w;

		return this;

	},

	onUpload: function ( callback ) {

		this.onUploadCallback = callback;

		return this;

	},

	clone: function () {

		return new this.constructor( this.array, this.itemSize ).copy( this );

	}

} );

function Uint16BufferAttribute( array, itemSize ) {

	BufferAttribute.call( this, new Uint16Array( array ), itemSize );

}

Uint16BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
Uint16BufferAttribute.prototype.constructor = Uint16BufferAttribute;


function Uint32BufferAttribute( array, itemSize ) {

	BufferAttribute.call( this, new Uint32Array( array ), itemSize );

}

Uint32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
Uint32BufferAttribute.prototype.constructor = Uint32BufferAttribute;


function Float32BufferAttribute( array, itemSize ) {

	BufferAttribute.call( this, new Float32Array( array ), itemSize );

}

Float32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
Float32BufferAttribute.prototype.constructor = Float32BufferAttribute;

/**
 * @author mrdoob / http://mrdoob.com/
 */

function DirectGeometry() {

	this.indices = [];
	this.vertices = [];
	this.normals = [];
	this.colors = [];
	this.uvs = [];
	this.uvs2 = [];

	this.groups = [];

	this.morphTargets = {};

	this.skinWeights = [];
	this.skinIndices = [];

	// this.lineDistances = [];

	this.boundingBox = null;
	this.boundingSphere = null;

	// update flags

	this.verticesNeedUpdate = false;
	this.normalsNeedUpdate = false;
	this.colorsNeedUpdate = false;
	this.uvsNeedUpdate = false;
	this.groupsNeedUpdate = false;

}

Object.assign( DirectGeometry.prototype, {

	computeGroups: function ( geometry ) {

		var group;
		var groups = [];
		var materialIndex = undefined;

		var faces = geometry.faces;

		for ( var i = 0; i < faces.length; i ++ ) {

			var face = faces[ i ];

			// materials

			if ( face.materialIndex !== materialIndex ) {

				materialIndex = face.materialIndex;

				if ( group !== undefined ) {

					group.count = ( i * 3 ) - group.start;
					groups.push( group );

				}

				group = {
					start: i * 3,
					materialIndex: materialIndex
				};

			}

		}

		if ( group !== undefined ) {

			group.count = ( i * 3 ) - group.start;
			groups.push( group );

		}

		this.groups = groups;

	},

	fromGeometry: function ( geometry ) {

		var faces = geometry.faces;
		var vertices = geometry.vertices;
		var faceVertexUvs = geometry.faceVertexUvs;

		var hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0;
		var hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0;

		// morphs

		var morphTargets = geometry.morphTargets;
		var morphTargetsLength = morphTargets.length;

		var morphTargetsPosition;

		if ( morphTargetsLength > 0 ) {

			morphTargetsPosition = [];

			for ( var i = 0; i < morphTargetsLength; i ++ ) {

				morphTargetsPosition[ i ] = [];

			}

			this.morphTargets.position = morphTargetsPosition;

		}

		var morphNormals = geometry.morphNormals;
		var morphNormalsLength = morphNormals.length;

		var morphTargetsNormal;

		if ( morphNormalsLength > 0 ) {

			morphTargetsNormal = [];

			for ( var i = 0; i < morphNormalsLength; i ++ ) {

				morphTargetsNormal[ i ] = [];

			}

			this.morphTargets.normal = morphTargetsNormal;

		}

		// skins

		var skinIndices = geometry.skinIndices;
		var skinWeights = geometry.skinWeights;

		var hasSkinIndices = skinIndices.length === vertices.length;
		var hasSkinWeights = skinWeights.length === vertices.length;

		//

		for ( var i = 0; i < faces.length; i ++ ) {

			var face = faces[ i ];

			this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] );

			var vertexNormals = face.vertexNormals;

			if ( vertexNormals.length === 3 ) {

				this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] );

			} else {

				var normal = face.normal;

				this.normals.push( normal, normal, normal );

			}

			var vertexColors = face.vertexColors;

			if ( vertexColors.length === 3 ) {

				this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] );

			} else {

				var color = face.color;

				this.colors.push( color, color, color );

			}

			if ( hasFaceVertexUv === true ) {

				var vertexUvs = faceVertexUvs[ 0 ][ i ];

				if ( vertexUvs !== undefined ) {

					this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );

				} else {

					console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i );

					this.uvs.push( new Vector2(), new Vector2(), new Vector2() );

				}

			}

			if ( hasFaceVertexUv2 === true ) {

				var vertexUvs = faceVertexUvs[ 1 ][ i ];

				if ( vertexUvs !== undefined ) {

					this.uvs2.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );

				} else {

					console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i );

					this.uvs2.push( new Vector2(), new Vector2(), new Vector2() );

				}

			}

			// morphs

			for ( var j = 0; j < morphTargetsLength; j ++ ) {

				var morphTarget = morphTargets[ j ].vertices;

				morphTargetsPosition[ j ].push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] );

			}

			for ( var j = 0; j < morphNormalsLength; j ++ ) {

				var morphNormal = morphNormals[ j ].vertexNormals[ i ];

				morphTargetsNormal[ j ].push( morphNormal.a, morphNormal.b, morphNormal.c );

			}

			// skins

			if ( hasSkinIndices ) {

				this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] );

			}

			if ( hasSkinWeights ) {

				this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] );

			}

		}

		this.computeGroups( geometry );

		this.verticesNeedUpdate = geometry.verticesNeedUpdate;
		this.normalsNeedUpdate = geometry.normalsNeedUpdate;
		this.colorsNeedUpdate = geometry.colorsNeedUpdate;
		this.uvsNeedUpdate = geometry.uvsNeedUpdate;
		this.groupsNeedUpdate = geometry.groupsNeedUpdate;

		return this;

	}

} );

function arrayMax( array ) {

	if ( array.length === 0 ) return - Infinity;

	var max = array[ 0 ];

	for ( var i = 1, l = array.length; i < l; ++ i ) {

		if ( array[ i ] > max ) max = array[ i ];

	}

	return max;

}

/**
 * @author alteredq / http://alteredqualia.com/
 * @author mrdoob / http://mrdoob.com/
 */

function BufferGeometry() {

	Object.defineProperty( this, 'id', { value: GeometryIdCount() } );

	this.uuid = _Math.generateUUID();

	this.name = '';
	this.type = 'BufferGeometry';

	this.index = null;
	this.attributes = {};

	this.morphAttributes = {};

	this.groups = [];

	this.boundingBox = null;
	this.boundingSphere = null;

	this.drawRange = { start: 0, count: Infinity };

}

BufferGeometry.MaxIndex = 65535;

Object.assign( BufferGeometry.prototype, EventDispatcher.prototype, {

	isBufferGeometry: true,

	getIndex: function () {

		return this.index;

	},

	setIndex: function ( index ) {

		if ( Array.isArray( index ) ) {

			this.index = new ( arrayMax( index ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 );

		} else {

			this.index = index;

		}

	},

	addAttribute: function ( name, attribute ) {

		if ( ! ( attribute && attribute.isBufferAttribute ) && ! ( attribute && attribute.isInterleavedBufferAttribute ) ) {

			console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' );

			this.addAttribute( name, new BufferAttribute( arguments[ 1 ], arguments[ 2 ] ) );

			return;

		}

		if ( name === 'index' ) {

			console.warn( 'THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.' );
			this.setIndex( attribute );

			return;

		}

		this.attributes[ name ] = attribute;

		return this;

	},

	getAttribute: function ( name ) {

		return this.attributes[ name ];

	},

	removeAttribute: function ( name ) {

		delete this.attributes[ name ];

		return this;

	},

	addGroup: function ( start, count, materialIndex ) {

		this.groups.push( {

			start: start,
			count: count,
			materialIndex: materialIndex !== undefined ? materialIndex : 0

		} );

	},

	clearGroups: function () {

		this.groups = [];

	},

	setDrawRange: function ( start, count ) {

		this.drawRange.start = start;
		this.drawRange.count = count;

	},

	applyMatrix: function ( matrix ) {

		var position = this.attributes.position;

		if ( position !== undefined ) {

			matrix.applyToBufferAttribute( position );
			position.needsUpdate = true;

		}

		var normal = this.attributes.normal;

		if ( normal !== undefined ) {

			var normalMatrix = new Matrix3().getNormalMatrix( matrix );

			normalMatrix.applyToBufferAttribute( normal );
			normal.needsUpdate = true;

		}

		if ( this.boundingBox !== null ) {

			this.computeBoundingBox();

		}

		if ( this.boundingSphere !== null ) {

			this.computeBoundingSphere();

		}

		return this;

	},

	rotateX: function () {

		// rotate geometry around world x-axis

		var m1 = new Matrix4();

		return function rotateX( angle ) {

			m1.makeRotationX( angle );

			this.applyMatrix( m1 );

			return this;

		};

	}(),

	rotateY: function () {

		// rotate geometry around world y-axis

		var m1 = new Matrix4();

		return function rotateY( angle ) {

			m1.makeRotationY( angle );

			this.applyMatrix( m1 );

			return this;

		};

	}(),

	rotateZ: function () {

		// rotate geometry around world z-axis

		var m1 = new Matrix4();

		return function rotateZ( angle ) {

			m1.makeRotationZ( angle );

			this.applyMatrix( m1 );

			return this;

		};

	}(),

	translate: function () {

		// translate geometry

		var m1 = new Matrix4();

		return function translate( x, y, z ) {

			m1.makeTranslation( x, y, z );

			this.applyMatrix( m1 );

			return this;

		};

	}(),

	scale: function () {

		// scale geometry

		var m1 = new Matrix4();

		return function scale( x, y, z ) {

			m1.makeScale( x, y, z );

			this.applyMatrix( m1 );

			return this;

		};

	}(),

	lookAt: function () {

		var obj = new Object3D();

		return function lookAt( vector ) {

			obj.lookAt( vector );

			obj.updateMatrix();

			this.applyMatrix( obj.matrix );

		};

	}(),

	center: function () {

		this.computeBoundingBox();

		var offset = this.boundingBox.getCenter().negate();

		this.translate( offset.x, offset.y, offset.z );

		return offset;

	},

	setFromObject: function ( object ) {

		// console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this );

		var geometry = object.geometry;

		if ( object.isPoints || object.isLine ) {

			var positions = new Float32BufferAttribute( geometry.vertices.length * 3, 3 );
			var colors = new Float32BufferAttribute( geometry.colors.length * 3, 3 );

			this.addAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) );
			this.addAttribute( 'color', colors.copyColorsArray( geometry.colors ) );

			if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) {

				var lineDistances = new Float32BufferAttribute( geometry.lineDistances.length, 1 );

				this.addAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) );

			}

			if ( geometry.boundingSphere !== null ) {

				this.boundingSphere = geometry.boundingSphere.clone();

			}

			if ( geometry.boundingBox !== null ) {

				this.boundingBox = geometry.boundingBox.clone();

			}

		} else if ( object.isMesh ) {

			if ( geometry && geometry.isGeometry ) {

				this.fromGeometry( geometry );

			}

		}

		return this;

	},

	updateFromObject: function ( object ) {

		var geometry = object.geometry;

		if ( object.isMesh ) {

			var direct = geometry.__directGeometry;

			if ( geometry.elementsNeedUpdate === true ) {

				direct = undefined;
				geometry.elementsNeedUpdate = false;

			}

			if ( direct === undefined ) {

				return this.fromGeometry( geometry );

			}

			direct.verticesNeedUpdate = geometry.verticesNeedUpdate;
			direct.normalsNeedUpdate = geometry.normalsNeedUpdate;
			direct.colorsNeedUpdate = geometry.colorsNeedUpdate;
			direct.uvsNeedUpdate = geometry.uvsNeedUpdate;
			direct.groupsNeedUpdate = geometry.groupsNeedUpdate;

			geometry.verticesNeedUpdate = false;
			geometry.normalsNeedUpdate = false;
			geometry.colorsNeedUpdate = false;
			geometry.uvsNeedUpdate = false;
			geometry.groupsNeedUpdate = false;

			geometry = direct;

		}

		var attribute;

		if ( geometry.verticesNeedUpdate === true ) {

			attribute = this.attributes.position;

			if ( attribute !== undefined ) {

				attribute.copyVector3sArray( geometry.vertices );
				attribute.needsUpdate = true;

			}

			geometry.verticesNeedUpdate = false;

		}

		if ( geometry.normalsNeedUpdate === true ) {

			attribute = this.attributes.normal;

			if ( attribute !== undefined ) {

				attribute.copyVector3sArray( geometry.normals );
				attribute.needsUpdate = true;

			}

			geometry.normalsNeedUpdate = false;

		}

		if ( geometry.colorsNeedUpdate === true ) {

			attribute = this.attributes.color;

			if ( attribute !== undefined ) {

				attribute.copyColorsArray( geometry.colors );
				attribute.needsUpdate = true;

			}

			geometry.colorsNeedUpdate = false;

		}

		if ( geometry.uvsNeedUpdate ) {

			attribute = this.attributes.uv;

			if ( attribute !== undefined ) {

				attribute.copyVector2sArray( geometry.uvs );
				attribute.needsUpdate = true;

			}

			geometry.uvsNeedUpdate = false;

		}

		if ( geometry.lineDistancesNeedUpdate ) {

			attribute = this.attributes.lineDistance;

			if ( attribute !== undefined ) {

				attribute.copyArray( geometry.lineDistances );
				attribute.needsUpdate = true;

			}

			geometry.lineDistancesNeedUpdate = false;

		}

		if ( geometry.groupsNeedUpdate ) {

			geometry.computeGroups( object.geometry );
			this.groups = geometry.groups;

			geometry.groupsNeedUpdate = false;

		}

		return this;

	},

	fromGeometry: function ( geometry ) {

		geometry.__directGeometry = new DirectGeometry().fromGeometry( geometry );

		return this.fromDirectGeometry( geometry.__directGeometry );

	},

	fromDirectGeometry: function ( geometry ) {

		var positions = new Float32Array( geometry.vertices.length * 3 );
		this.addAttribute( 'position', new BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) );

		if ( geometry.normals.length > 0 ) {

			var normals = new Float32Array( geometry.normals.length * 3 );
			this.addAttribute( 'normal', new BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) );

		}

		if ( geometry.colors.length > 0 ) {

			var colors = new Float32Array( geometry.colors.length * 3 );
			this.addAttribute( 'color', new BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) );

		}

		if ( geometry.uvs.length > 0 ) {

			var uvs = new Float32Array( geometry.uvs.length * 2 );
			this.addAttribute( 'uv', new BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) );

		}

		if ( geometry.uvs2.length > 0 ) {

			var uvs2 = new Float32Array( geometry.uvs2.length * 2 );
			this.addAttribute( 'uv2', new BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) );

		}

		if ( geometry.indices.length > 0 ) {

			var TypeArray = arrayMax( geometry.indices ) > 65535 ? Uint32Array : Uint16Array;
			var indices = new TypeArray( geometry.indices.length * 3 );
			this.setIndex( new BufferAttribute( indices, 1 ).copyIndicesArray( geometry.indices ) );

		}

		// groups

		this.groups = geometry.groups;

		// morphs

		for ( var name in geometry.morphTargets ) {

			var array = [];
			var morphTargets = geometry.morphTargets[ name ];

			for ( var i = 0, l = morphTargets.length; i < l; i ++ ) {

				var morphTarget = morphTargets[ i ];

				var attribute = new Float32BufferAttribute( morphTarget.length * 3, 3 );

				array.push( attribute.copyVector3sArray( morphTarget ) );

			}

			this.morphAttributes[ name ] = array;

		}

		// skinning

		if ( geometry.skinIndices.length > 0 ) {

			var skinIndices = new Float32BufferAttribute( geometry.skinIndices.length * 4, 4 );
			this.addAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) );

		}

		if ( geometry.skinWeights.length > 0 ) {

			var skinWeights = new Float32BufferAttribute( geometry.skinWeights.length * 4, 4 );
			this.addAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) );

		}

		//

		if ( geometry.boundingSphere !== null ) {

			this.boundingSphere = geometry.boundingSphere.clone();

		}

		if ( geometry.boundingBox !== null ) {

			this.boundingBox = geometry.boundingBox.clone();

		}

		return this;

	},

	computeBoundingBox: function () {

		if ( this.boundingBox === null ) {

			this.boundingBox = new Box3();

		}

		var position = this.attributes.position;

		if ( position !== undefined ) {

			this.boundingBox.setFromBufferAttribute( position );

		} else {

			this.boundingBox.makeEmpty();

		}

		if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) {

			console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this );

		}

	},

	computeBoundingSphere: function () {

		var box = new Box3();
		var vector = new Vector3();

		return function computeBoundingSphere() {

			if ( this.boundingSphere === null ) {

				this.boundingSphere = new Sphere();

			}

			var position = this.attributes.position;

			if ( position ) {

				var center = this.boundingSphere.center;

				box.setFromBufferAttribute( position );
				box.getCenter( center );

				// hoping to find a boundingSphere with a radius smaller than the
				// boundingSphere of the boundingBox: sqrt(3) smaller in the best case

				var maxRadiusSq = 0;

				for ( var i = 0, il = position.count; i < il; i ++ ) {

					vector.x = position.getX( i );
					vector.y = position.getY( i );
					vector.z = position.getZ( i );
					maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( vector ) );

				}

				this.boundingSphere.radius = Math.sqrt( maxRadiusSq );

				if ( isNaN( this.boundingSphere.radius ) ) {

					console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this );

				}

			}

		};

	}(),

	computeFaceNormals: function () {

		// backwards compatibility

	},

	computeVertexNormals: function () {

		var index = this.index;
		var attributes = this.attributes;
		var groups = this.groups;

		if ( attributes.position ) {

			var positions = attributes.position.array;

			if ( attributes.normal === undefined ) {

				this.addAttribute( 'normal', new BufferAttribute( new Float32Array( positions.length ), 3 ) );

			} else {

				// reset existing normals to zero

				var array = attributes.normal.array;

				for ( var i = 0, il = array.length; i < il; i ++ ) {

					array[ i ] = 0;

				}

			}

			var normals = attributes.normal.array;

			var vA, vB, vC;
			var pA = new Vector3(), pB = new Vector3(), pC = new Vector3();
			var cb = new Vector3(), ab = new Vector3();

			// indexed elements

			if ( index ) {

				var indices = index.array;

				if ( groups.length === 0 ) {

					this.addGroup( 0, indices.length );

				}

				for ( var j = 0, jl = groups.length; j < jl; ++ j ) {

					var group = groups[ j ];

					var start = group.start;
					var count = group.count;

					for ( var i = start, il = start + count; i < il; i += 3 ) {

						vA = indices[ i + 0 ] * 3;
						vB = indices[ i + 1 ] * 3;
						vC = indices[ i + 2 ] * 3;

						pA.fromArray( positions, vA );
						pB.fromArray( positions, vB );
						pC.fromArray( positions, vC );

						cb.subVectors( pC, pB );
						ab.subVectors( pA, pB );
						cb.cross( ab );

						normals[ vA ] += cb.x;
						normals[ vA + 1 ] += cb.y;
						normals[ vA + 2 ] += cb.z;

						normals[ vB ] += cb.x;
						normals[ vB + 1 ] += cb.y;
						normals[ vB + 2 ] += cb.z;

						normals[ vC ] += cb.x;
						normals[ vC + 1 ] += cb.y;
						normals[ vC + 2 ] += cb.z;

					}

				}

			} else {

				// non-indexed elements (unconnected triangle soup)

				for ( var i = 0, il = positions.length; i < il; i += 9 ) {

					pA.fromArray( positions, i );
					pB.fromArray( positions, i + 3 );
					pC.fromArray( positions, i + 6 );

					cb.subVectors( pC, pB );
					ab.subVectors( pA, pB );
					cb.cross( ab );

					normals[ i ] = cb.x;
					normals[ i + 1 ] = cb.y;
					normals[ i + 2 ] = cb.z;

					normals[ i + 3 ] = cb.x;
					normals[ i + 4 ] = cb.y;
					normals[ i + 5 ] = cb.z;

					normals[ i + 6 ] = cb.x;
					normals[ i + 7 ] = cb.y;
					normals[ i + 8 ] = cb.z;

				}

			}

			this.normalizeNormals();

			attributes.normal.needsUpdate = true;

		}

	},

	merge: function ( geometry, offset ) {

		if ( ! ( geometry && geometry.isBufferGeometry ) ) {

			console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry );
			return;

		}

		if ( offset === undefined ) offset = 0;

		var attributes = this.attributes;

		for ( var key in attributes ) {

			if ( geometry.attributes[ key ] === undefined ) continue;

			var attribute1 = attributes[ key ];
			var attributeArray1 = attribute1.array;

			var attribute2 = geometry.attributes[ key ];
			var attributeArray2 = attribute2.array;

			var attributeSize = attribute2.itemSize;

			for ( var i = 0, j = attributeSize * offset; i < attributeArray2.length; i ++, j ++ ) {

				attributeArray1[ j ] = attributeArray2[ i ];

			}

		}

		return this;

	},

	normalizeNormals: function () {

		var normals = this.attributes.normal;

		var x, y, z, n;

		for ( var i = 0, il = normals.count; i < il; i ++ ) {

			x = normals.getX( i );
			y = normals.getY( i );
			z = normals.getZ( i );

			n = 1.0 / Math.sqrt( x * x + y * y + z * z );

			normals.setXYZ( i, x * n, y * n, z * n );

		}

	},

	toNonIndexed: function () {

		if ( this.index === null ) {

			console.warn( 'THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.' );
			return this;

		}

		var geometry2 = new BufferGeometry();

		var indices = this.index.array;
		var attributes = this.attributes;

		for ( var name in attributes ) {

			var attribute = attributes[ name ];

			var array = attribute.array;
			var itemSize = attribute.itemSize;

			var array2 = new array.constructor( indices.length * itemSize );

			var index = 0, index2 = 0;

			for ( var i = 0, l = indices.length; i < l; i ++ ) {

				index = indices[ i ] * itemSize;

				for ( var j = 0; j < itemSize; j ++ ) {

					array2[ index2 ++ ] = array[ index ++ ];

				}

			}

			geometry2.addAttribute( name, new BufferAttribute( array2, itemSize ) );

		}

		return geometry2;

	},

	toJSON: function () {

		var data = {
			metadata: {
				version: 4.5,
				type: 'BufferGeometry',
				generator: 'BufferGeometry.toJSON'
			}
		};

		// standard BufferGeometry serialization

		data.uuid = this.uuid;
		data.type = this.type;
		if ( this.name !== '' ) data.name = this.name;

		if ( this.parameters !== undefined ) {

			var parameters = this.parameters;

			for ( var key in parameters ) {

				if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];

			}

			return data;

		}

		data.data = { attributes: {} };

		var index = this.index;

		if ( index !== null ) {

			var array = Array.prototype.slice.call( index.array );

			data.data.index = {
				type: index.array.constructor.name,
				array: array
			};

		}

		var attributes = this.attributes;

		for ( var key in attributes ) {

			var attribute = attributes[ key ];

			var array = Array.prototype.slice.call( attribute.array );

			data.data.attributes[ key ] = {
				itemSize: attribute.itemSize,
				type: attribute.array.constructor.name,
				array: array,
				normalized: attribute.normalized
			};

		}

		var groups = this.groups;

		if ( groups.length > 0 ) {

			data.data.groups = JSON.parse( JSON.stringify( groups ) );

		}

		var boundingSphere = this.boundingSphere;

		if ( boundingSphere !== null ) {

			data.data.boundingSphere = {
				center: boundingSphere.center.toArray(),
				radius: boundingSphere.radius
			};

		}

		return data;

	},

	clone: function () {

		/*
		 // Handle primitives

		 var parameters = this.parameters;

		 if ( parameters !== undefined ) {

		 var values = [];

		 for ( var key in parameters ) {

		 values.push( parameters[ key ] );

		 }

		 var geometry = Object.create( this.constructor.prototype );
		 this.constructor.apply( geometry, values );
		 return geometry;

		 }

		 return new this.constructor().copy( this );
		 */

		return new BufferGeometry().copy( this );

	},

	copy: function ( source ) {

		var name, i, l;

		// reset

		this.index = null;
		this.attributes = {};
		this.morphAttributes = {};
		this.groups = [];
		this.boundingBox = null;
		this.boundingSphere = null;

		// name

		this.name = source.name;

		// index

		var index = source.index;

		if ( index !== null ) {

			this.setIndex( index.clone() );

		}

		// attributes

		var attributes = source.attributes;

		for ( name in attributes ) {

			var attribute = attributes[ name ];
			this.addAttribute( name, attribute.clone() );

		}

		// morph attributes

		var morphAttributes = source.morphAttributes;

		for ( name in morphAttributes ) {

			var array = [];
			var morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes

			for ( i = 0, l = morphAttribute.length; i < l; i ++ ) {

				array.push( morphAttribute[ i ].clone() );

			}

			this.morphAttributes[ name ] = array;

		}

		// groups

		var groups = source.groups;

		for ( i = 0, l = groups.length; i < l; i ++ ) {

			var group = groups[ i ];
			this.addGroup( group.start, group.count, group.materialIndex );

		}

		// bounding box

		var boundingBox = source.boundingBox;

		if ( boundingBox !== null ) {

			this.boundingBox = boundingBox.clone();

		}

		// bounding sphere

		var boundingSphere = source.boundingSphere;

		if ( boundingSphere !== null ) {

			this.boundingSphere = boundingSphere.clone();

		}

		// draw range

		this.drawRange.start = source.drawRange.start;
		this.drawRange.count = source.drawRange.count;

		return this;

	},

	dispose: function () {

		this.dispatchEvent( { type: 'dispose' } );

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 * @author Mugen87 / https://github.com/Mugen87
 */

// BoxGeometry

function BoxGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) {

	Geometry.call( this );

	this.type = 'BoxGeometry';

	this.parameters = {
		width: width,
		height: height,
		depth: depth,
		widthSegments: widthSegments,
		heightSegments: heightSegments,
		depthSegments: depthSegments
	};

	this.fromBufferGeometry( new BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) );
	this.mergeVertices();

}

BoxGeometry.prototype = Object.create( Geometry.prototype );
BoxGeometry.prototype.constructor = BoxGeometry;

// BoxBufferGeometry

function BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) {

	BufferGeometry.call( this );

	this.type = 'BoxBufferGeometry';

	this.parameters = {
		width: width,
		height: height,
		depth: depth,
		widthSegments: widthSegments,
		heightSegments: heightSegments,
		depthSegments: depthSegments
	};

	var scope = this;

	// segments

	widthSegments = Math.floor( widthSegments ) || 1;
	heightSegments = Math.floor( heightSegments ) || 1;
	depthSegments = Math.floor( depthSegments ) || 1;

	// buffers

	var indices = [];
	var vertices = [];
	var normals = [];
	var uvs = [];

	// helper variables

	var numberOfVertices = 0;
	var groupStart = 0;

	// build each side of the box geometry

	buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height,   width,  depthSegments, heightSegments, 0 ); // px
	buildPlane( 'z', 'y', 'x',   1, - 1, depth, height, - width,  depthSegments, heightSegments, 1 ); // nx
	buildPlane( 'x', 'z', 'y',   1,   1, width, depth,    height, widthSegments, depthSegments,  2 ); // py
	buildPlane( 'x', 'z', 'y',   1, - 1, width, depth,  - height, widthSegments, depthSegments,  3 ); // ny
	buildPlane( 'x', 'y', 'z',   1, - 1, width, height,   depth,  widthSegments, heightSegments, 4 ); // pz
	buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth,  widthSegments, heightSegments, 5 ); // nz

	// build geometry

	this.setIndex( indices );
	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

	function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) {

		var segmentWidth = width / gridX;
		var segmentHeight = height / gridY;

		var widthHalf = width / 2;
		var heightHalf = height / 2;
		var depthHalf = depth / 2;

		var gridX1 = gridX + 1;
		var gridY1 = gridY + 1;

		var vertexCounter = 0;
		var groupCount = 0;

		var ix, iy;

		var vector = new Vector3();

		// generate vertices, normals and uvs

		for ( iy = 0; iy < gridY1; iy ++ ) {

			var y = iy * segmentHeight - heightHalf;

			for ( ix = 0; ix < gridX1; ix ++ ) {

				var x = ix * segmentWidth - widthHalf;

				// set values to correct vector component

				vector[ u ] = x * udir;
				vector[ v ] = y * vdir;
				vector[ w ] = depthHalf;

				// now apply vector to vertex buffer

				vertices.push( vector.x, vector.y, vector.z );

				// set values to correct vector component

				vector[ u ] = 0;
				vector[ v ] = 0;
				vector[ w ] = depth > 0 ? 1 : - 1;

				// now apply vector to normal buffer

				normals.push( vector.x, vector.y, vector.z );

				// uvs

				uvs.push( ix / gridX );
				uvs.push( 1 - ( iy / gridY ) );

				// counters

				vertexCounter += 1;

			}

		}

		// indices

		// 1. you need three indices to draw a single face
		// 2. a single segment consists of two faces
		// 3. so we need to generate six (2*3) indices per segment

		for ( iy = 0; iy < gridY; iy ++ ) {

			for ( ix = 0; ix < gridX; ix ++ ) {

				var a = numberOfVertices + ix + gridX1 * iy;
				var b = numberOfVertices + ix + gridX1 * ( iy + 1 );
				var c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 );
				var d = numberOfVertices + ( ix + 1 ) + gridX1 * iy;

				// faces

				indices.push( a, b, d );
				indices.push( b, c, d );

				// increase counter

				groupCount += 6;

			}

		}

		// add a group to the geometry. this will ensure multi material support

		scope.addGroup( groupStart, groupCount, materialIndex );

		// calculate new start value for groups

		groupStart += groupCount;

		// update total number of vertices

		numberOfVertices += vertexCounter;

	}

}

BoxBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
BoxBufferGeometry.prototype.constructor = BoxBufferGeometry;

/**
 * @author mrdoob / http://mrdoob.com/
 * @author Mugen87 / https://github.com/Mugen87
 */

// PlaneGeometry

function PlaneGeometry( width, height, widthSegments, heightSegments ) {

	Geometry.call( this );

	this.type = 'PlaneGeometry';

	this.parameters = {
		width: width,
		height: height,
		widthSegments: widthSegments,
		heightSegments: heightSegments
	};

	this.fromBufferGeometry( new PlaneBufferGeometry( width, height, widthSegments, heightSegments ) );
	this.mergeVertices();

}

PlaneGeometry.prototype = Object.create( Geometry.prototype );
PlaneGeometry.prototype.constructor = PlaneGeometry;

// PlaneBufferGeometry

function PlaneBufferGeometry( width, height, widthSegments, heightSegments ) {

	BufferGeometry.call( this );

	this.type = 'PlaneBufferGeometry';

	this.parameters = {
		width: width,
		height: height,
		widthSegments: widthSegments,
		heightSegments: heightSegments
	};

	var width_half = width / 2;
	var height_half = height / 2;

	var gridX = Math.floor( widthSegments ) || 1;
	var gridY = Math.floor( heightSegments ) || 1;

	var gridX1 = gridX + 1;
	var gridY1 = gridY + 1;

	var segment_width = width / gridX;
	var segment_height = height / gridY;

	var ix, iy;

	// buffers

	var indices = [];
	var vertices = [];
	var normals = [];
	var uvs = [];

	// generate vertices, normals and uvs

	for ( iy = 0; iy < gridY1; iy ++ ) {

		var y = iy * segment_height - height_half;

		for ( ix = 0; ix < gridX1; ix ++ ) {

			var x = ix * segment_width - width_half;

			vertices.push( x, - y, 0 );

			normals.push( 0, 0, 1 );

			uvs.push( ix / gridX );
			uvs.push( 1 - ( iy / gridY ) );

		}

	}

	// indices

	for ( iy = 0; iy < gridY; iy ++ ) {

		for ( ix = 0; ix < gridX; ix ++ ) {

			var a = ix + gridX1 * iy;
			var b = ix + gridX1 * ( iy + 1 );
			var c = ( ix + 1 ) + gridX1 * ( iy + 1 );
			var d = ( ix + 1 ) + gridX1 * iy;

			// faces

			indices.push( a, b, d );
			indices.push( b, c, d );

		}

	}

	// build geometry

	this.setIndex( indices );
	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

}

PlaneBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
PlaneBufferGeometry.prototype.constructor = PlaneBufferGeometry;

/**
 * @author mrdoob / http://mrdoob.com/
 * @author alteredq / http://alteredqualia.com/
 *
 * parameters = {
 *  color: <hex>,
 *  opacity: <float>,
 *  map: new THREE.Texture( <Image> ),
 *
 *  lightMap: new THREE.Texture( <Image> ),
 *  lightMapIntensity: <float>
 *
 *  aoMap: new THREE.Texture( <Image> ),
 *  aoMapIntensity: <float>
 *
 *  specularMap: new THREE.Texture( <Image> ),
 *
 *  alphaMap: new THREE.Texture( <Image> ),
 *
 *  envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
 *  combine: THREE.Multiply,
 *  reflectivity: <float>,
 *  refractionRatio: <float>,
 *
 *  shading: THREE.SmoothShading,
 *  depthTest: <bool>,
 *  depthWrite: <bool>,
 *
 *  wireframe: <boolean>,
 *  wireframeLinewidth: <float>,
 *
 *  skinning: <bool>,
 *  morphTargets: <bool>
 * }
 */

function MeshBasicMaterial( parameters ) {

	Material.call( this );

	this.type = 'MeshBasicMaterial';

	this.color = new Color( 0xffffff ); // emissive

	this.map = null;

	this.lightMap = null;
	this.lightMapIntensity = 1.0;

	this.aoMap = null;
	this.aoMapIntensity = 1.0;

	this.specularMap = null;

	this.alphaMap = null;

	this.envMap = null;
	this.combine = MultiplyOperation;
	this.reflectivity = 1;
	this.refractionRatio = 0.98;

	this.wireframe = false;
	this.wireframeLinewidth = 1;
	this.wireframeLinecap = 'round';
	this.wireframeLinejoin = 'round';

	this.skinning = false;
	this.morphTargets = false;

	this.lights = false;

	this.setValues( parameters );

}

MeshBasicMaterial.prototype = Object.create( Material.prototype );
MeshBasicMaterial.prototype.constructor = MeshBasicMaterial;

MeshBasicMaterial.prototype.isMeshBasicMaterial = true;

MeshBasicMaterial.prototype.copy = function ( source ) {

	Material.prototype.copy.call( this, source );

	this.color.copy( source.color );

	this.map = source.map;

	this.lightMap = source.lightMap;
	this.lightMapIntensity = source.lightMapIntensity;

	this.aoMap = source.aoMap;
	this.aoMapIntensity = source.aoMapIntensity;

	this.specularMap = source.specularMap;

	this.alphaMap = source.alphaMap;

	this.envMap = source.envMap;
	this.combine = source.combine;
	this.reflectivity = source.reflectivity;
	this.refractionRatio = source.refractionRatio;

	this.wireframe = source.wireframe;
	this.wireframeLinewidth = source.wireframeLinewidth;
	this.wireframeLinecap = source.wireframeLinecap;
	this.wireframeLinejoin = source.wireframeLinejoin;

	this.skinning = source.skinning;
	this.morphTargets = source.morphTargets;

	return this;

};

/**
 * @author bhouston / http://clara.io
 */

function Ray( origin, direction ) {

	this.origin = ( origin !== undefined ) ? origin : new Vector3();
	this.direction = ( direction !== undefined ) ? direction : new Vector3();

}

Object.assign( Ray.prototype, {

	set: function ( origin, direction ) {

		this.origin.copy( origin );
		this.direction.copy( direction );

		return this;

	},

	clone: function () {

		return new this.constructor().copy( this );

	},

	copy: function ( ray ) {

		this.origin.copy( ray.origin );
		this.direction.copy( ray.direction );

		return this;

	},

	at: function ( t, optionalTarget ) {

		var result = optionalTarget || new Vector3();

		return result.copy( this.direction ).multiplyScalar( t ).add( this.origin );

	},

	lookAt: function ( v ) {

		this.direction.copy( v ).sub( this.origin ).normalize();

		return this;

	},

	recast: function () {

		var v1 = new Vector3();

		return function recast( t ) {

			this.origin.copy( this.at( t, v1 ) );

			return this;

		};

	}(),

	closestPointToPoint: function ( point, optionalTarget ) {

		var result = optionalTarget || new Vector3();
		result.subVectors( point, this.origin );
		var directionDistance = result.dot( this.direction );

		if ( directionDistance < 0 ) {

			return result.copy( this.origin );

		}

		return result.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );

	},

	distanceToPoint: function ( point ) {

		return Math.sqrt( this.distanceSqToPoint( point ) );

	},

	distanceSqToPoint: function () {

		var v1 = new Vector3();

		return function distanceSqToPoint( point ) {

			var directionDistance = v1.subVectors( point, this.origin ).dot( this.direction );

			// point behind the ray

			if ( directionDistance < 0 ) {

				return this.origin.distanceToSquared( point );

			}

			v1.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );

			return v1.distanceToSquared( point );

		};

	}(),

	distanceSqToSegment: function () {

		var segCenter = new Vector3();
		var segDir = new Vector3();
		var diff = new Vector3();

		return function distanceSqToSegment( v0, v1, optionalPointOnRay, optionalPointOnSegment ) {

			// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h
			// It returns the min distance between the ray and the segment
			// defined by v0 and v1
			// It can also set two optional targets :
			// - The closest point on the ray
			// - The closest point on the segment

			segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 );
			segDir.copy( v1 ).sub( v0 ).normalize();
			diff.copy( this.origin ).sub( segCenter );

			var segExtent = v0.distanceTo( v1 ) * 0.5;
			var a01 = - this.direction.dot( segDir );
			var b0 = diff.dot( this.direction );
			var b1 = - diff.dot( segDir );
			var c = diff.lengthSq();
			var det = Math.abs( 1 - a01 * a01 );
			var s0, s1, sqrDist, extDet;

			if ( det > 0 ) {

				// The ray and segment are not parallel.

				s0 = a01 * b1 - b0;
				s1 = a01 * b0 - b1;
				extDet = segExtent * det;

				if ( s0 >= 0 ) {

					if ( s1 >= - extDet ) {

						if ( s1 <= extDet ) {

							// region 0
							// Minimum at interior points of ray and segment.

							var invDet = 1 / det;
							s0 *= invDet;
							s1 *= invDet;
							sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c;

						} else {

							// region 1

							s1 = segExtent;
							s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
							sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

						}

					} else {

						// region 5

						s1 = - segExtent;
						s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
						sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

					}

				} else {

					if ( s1 <= - extDet ) {

						// region 4

						s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) );
						s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
						sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

					} else if ( s1 <= extDet ) {

						// region 3

						s0 = 0;
						s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent );
						sqrDist = s1 * ( s1 + 2 * b1 ) + c;

					} else {

						// region 2

						s0 = Math.max( 0, - ( a01 * segExtent + b0 ) );
						s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
						sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

					}

				}

			} else {

				// Ray and segment are parallel.

				s1 = ( a01 > 0 ) ? - segExtent : segExtent;
				s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
				sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

			}

			if ( optionalPointOnRay ) {

				optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin );

			}

			if ( optionalPointOnSegment ) {

				optionalPointOnSegment.copy( segDir ).multiplyScalar( s1 ).add( segCenter );

			}

			return sqrDist;

		};

	}(),

	intersectSphere: function () {

		var v1 = new Vector3();

		return function intersectSphere( sphere, optionalTarget ) {

			v1.subVectors( sphere.center, this.origin );
			var tca = v1.dot( this.direction );
			var d2 = v1.dot( v1 ) - tca * tca;
			var radius2 = sphere.radius * sphere.radius;

			if ( d2 > radius2 ) return null;

			var thc = Math.sqrt( radius2 - d2 );

			// t0 = first intersect point - entrance on front of sphere
			var t0 = tca - thc;

			// t1 = second intersect point - exit point on back of sphere
			var t1 = tca + thc;

			// test to see if both t0 and t1 are behind the ray - if so, return null
			if ( t0 < 0 && t1 < 0 ) return null;

			// test to see if t0 is behind the ray:
			// if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
			// in order to always return an intersect point that is in front of the ray.
			if ( t0 < 0 ) return this.at( t1, optionalTarget );

			// else t0 is in front of the ray, so return the first collision point scaled by t0
			return this.at( t0, optionalTarget );

		};

	}(),

	intersectsSphere: function ( sphere ) {

		return this.distanceToPoint( sphere.center ) <= sphere.radius;

	},

	distanceToPlane: function ( plane ) {

		var denominator = plane.normal.dot( this.direction );

		if ( denominator === 0 ) {

			// line is coplanar, return origin
			if ( plane.distanceToPoint( this.origin ) === 0 ) {

				return 0;

			}

			// Null is preferable to undefined since undefined means.... it is undefined

			return null;

		}

		var t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator;

		// Return if the ray never intersects the plane

		return t >= 0 ? t :  null;

	},

	intersectPlane: function ( plane, optionalTarget ) {

		var t = this.distanceToPlane( plane );

		if ( t === null ) {

			return null;

		}

		return this.at( t, optionalTarget );

	},

	intersectsPlane: function ( plane ) {

		// check if the ray lies on the plane first

		var distToPoint = plane.distanceToPoint( this.origin );

		if ( distToPoint === 0 ) {

			return true;

		}

		var denominator = plane.normal.dot( this.direction );

		if ( denominator * distToPoint < 0 ) {

			return true;

		}

		// ray origin is behind the plane (and is pointing behind it)

		return false;

	},

	intersectBox: function ( box, optionalTarget ) {

		var tmin, tmax, tymin, tymax, tzmin, tzmax;

		var invdirx = 1 / this.direction.x,
			invdiry = 1 / this.direction.y,
			invdirz = 1 / this.direction.z;

		var origin = this.origin;

		if ( invdirx >= 0 ) {

			tmin = ( box.min.x - origin.x ) * invdirx;
			tmax = ( box.max.x - origin.x ) * invdirx;

		} else {

			tmin = ( box.max.x - origin.x ) * invdirx;
			tmax = ( box.min.x - origin.x ) * invdirx;

		}

		if ( invdiry >= 0 ) {

			tymin = ( box.min.y - origin.y ) * invdiry;
			tymax = ( box.max.y - origin.y ) * invdiry;

		} else {

			tymin = ( box.max.y - origin.y ) * invdiry;
			tymax = ( box.min.y - origin.y ) * invdiry;

		}

		if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null;

		// These lines also handle the case where tmin or tmax is NaN
		// (result of 0 * Infinity). x !== x returns true if x is NaN

		if ( tymin > tmin || tmin !== tmin ) tmin = tymin;

		if ( tymax < tmax || tmax !== tmax ) tmax = tymax;

		if ( invdirz >= 0 ) {

			tzmin = ( box.min.z - origin.z ) * invdirz;
			tzmax = ( box.max.z - origin.z ) * invdirz;

		} else {

			tzmin = ( box.max.z - origin.z ) * invdirz;
			tzmax = ( box.min.z - origin.z ) * invdirz;

		}

		if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null;

		if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin;

		if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax;

		//return point closest to the ray (positive side)

		if ( tmax < 0 ) return null;

		return this.at( tmin >= 0 ? tmin : tmax, optionalTarget );

	},

	intersectsBox: ( function () {

		var v = new Vector3();

		return function intersectsBox( box ) {

			return this.intersectBox( box, v ) !== null;

		};

	} )(),

	intersectTriangle: function () {

		// Compute the offset origin, edges, and normal.
		var diff = new Vector3();
		var edge1 = new Vector3();
		var edge2 = new Vector3();
		var normal = new Vector3();

		return function intersectTriangle( a, b, c, backfaceCulling, optionalTarget ) {

			// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h

			edge1.subVectors( b, a );
			edge2.subVectors( c, a );
			normal.crossVectors( edge1, edge2 );

			// Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
			// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
			//   |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
			//   |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
			//   |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
			var DdN = this.direction.dot( normal );
			var sign;

			if ( DdN > 0 ) {

				if ( backfaceCulling ) return null;
				sign = 1;

			} else if ( DdN < 0 ) {

				sign = - 1;
				DdN = - DdN;

			} else {

				return null;

			}

			diff.subVectors( this.origin, a );
			var DdQxE2 = sign * this.direction.dot( edge2.crossVectors( diff, edge2 ) );

			// b1 < 0, no intersection
			if ( DdQxE2 < 0 ) {

				return null;

			}

			var DdE1xQ = sign * this.direction.dot( edge1.cross( diff ) );

			// b2 < 0, no intersection
			if ( DdE1xQ < 0 ) {

				return null;

			}

			// b1+b2 > 1, no intersection
			if ( DdQxE2 + DdE1xQ > DdN ) {

				return null;

			}

			// Line intersects triangle, check if ray does.
			var QdN = - sign * diff.dot( normal );

			// t < 0, no intersection
			if ( QdN < 0 ) {

				return null;

			}

			// Ray intersects triangle.
			return this.at( QdN / DdN, optionalTarget );

		};

	}(),

	applyMatrix4: function ( matrix4 ) {

		this.origin.applyMatrix4( matrix4 );
		this.direction.transformDirection( matrix4 );

		return this;

	},

	equals: function ( ray ) {

		return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction );

	}

} );

/**
 * @author bhouston / http://clara.io
 */

function Line3( start, end ) {

	this.start = ( start !== undefined ) ? start : new Vector3();
	this.end = ( end !== undefined ) ? end : new Vector3();

}

Object.assign( Line3.prototype, {

	set: function ( start, end ) {

		this.start.copy( start );
		this.end.copy( end );

		return this;

	},

	clone: function () {

		return new this.constructor().copy( this );

	},

	copy: function ( line ) {

		this.start.copy( line.start );
		this.end.copy( line.end );

		return this;

	},

	getCenter: function ( optionalTarget ) {

		var result = optionalTarget || new Vector3();
		return result.addVectors( this.start, this.end ).multiplyScalar( 0.5 );

	},

	delta: function ( optionalTarget ) {

		var result = optionalTarget || new Vector3();
		return result.subVectors( this.end, this.start );

	},

	distanceSq: function () {

		return this.start.distanceToSquared( this.end );

	},

	distance: function () {

		return this.start.distanceTo( this.end );

	},

	at: function ( t, optionalTarget ) {

		var result = optionalTarget || new Vector3();

		return this.delta( result ).multiplyScalar( t ).add( this.start );

	},

	closestPointToPointParameter: function () {

		var startP = new Vector3();
		var startEnd = new Vector3();

		return function closestPointToPointParameter( point, clampToLine ) {

			startP.subVectors( point, this.start );
			startEnd.subVectors( this.end, this.start );

			var startEnd2 = startEnd.dot( startEnd );
			var startEnd_startP = startEnd.dot( startP );

			var t = startEnd_startP / startEnd2;

			if ( clampToLine ) {

				t = _Math.clamp( t, 0, 1 );

			}

			return t;

		};

	}(),

	closestPointToPoint: function ( point, clampToLine, optionalTarget ) {

		var t = this.closestPointToPointParameter( point, clampToLine );

		var result = optionalTarget || new Vector3();

		return this.delta( result ).multiplyScalar( t ).add( this.start );

	},

	applyMatrix4: function ( matrix ) {

		this.start.applyMatrix4( matrix );
		this.end.applyMatrix4( matrix );

		return this;

	},

	equals: function ( line ) {

		return line.start.equals( this.start ) && line.end.equals( this.end );

	}

} );

/**
 * @author bhouston / http://clara.io
 * @author mrdoob / http://mrdoob.com/
 */

function Triangle( a, b, c ) {

	this.a = ( a !== undefined ) ? a : new Vector3();
	this.b = ( b !== undefined ) ? b : new Vector3();
	this.c = ( c !== undefined ) ? c : new Vector3();

}

Object.assign( Triangle, {

	normal: function () {

		var v0 = new Vector3();

		return function normal( a, b, c, optionalTarget ) {

			var result = optionalTarget || new Vector3();

			result.subVectors( c, b );
			v0.subVectors( a, b );
			result.cross( v0 );

			var resultLengthSq = result.lengthSq();
			if ( resultLengthSq > 0 ) {

				return result.multiplyScalar( 1 / Math.sqrt( resultLengthSq ) );

			}

			return result.set( 0, 0, 0 );

		};

	}(),

	// static/instance method to calculate barycentric coordinates
	// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
	barycoordFromPoint: function () {

		var v0 = new Vector3();
		var v1 = new Vector3();
		var v2 = new Vector3();

		return function barycoordFromPoint( point, a, b, c, optionalTarget ) {

			v0.subVectors( c, a );
			v1.subVectors( b, a );
			v2.subVectors( point, a );

			var dot00 = v0.dot( v0 );
			var dot01 = v0.dot( v1 );
			var dot02 = v0.dot( v2 );
			var dot11 = v1.dot( v1 );
			var dot12 = v1.dot( v2 );

			var denom = ( dot00 * dot11 - dot01 * dot01 );

			var result = optionalTarget || new Vector3();

			// collinear or singular triangle
			if ( denom === 0 ) {

				// arbitrary location outside of triangle?
				// not sure if this is the best idea, maybe should be returning undefined
				return result.set( - 2, - 1, - 1 );

			}

			var invDenom = 1 / denom;
			var u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom;
			var v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom;

			// barycentric coordinates must always sum to 1
			return result.set( 1 - u - v, v, u );

		};

	}(),

	containsPoint: function () {

		var v1 = new Vector3();

		return function containsPoint( point, a, b, c ) {

			var result = Triangle.barycoordFromPoint( point, a, b, c, v1 );

			return ( result.x >= 0 ) && ( result.y >= 0 ) && ( ( result.x + result.y ) <= 1 );

		};

	}()

} );

Object.assign( Triangle.prototype, {

	set: function ( a, b, c ) {

		this.a.copy( a );
		this.b.copy( b );
		this.c.copy( c );

		return this;

	},

	setFromPointsAndIndices: function ( points, i0, i1, i2 ) {

		this.a.copy( points[ i0 ] );
		this.b.copy( points[ i1 ] );
		this.c.copy( points[ i2 ] );

		return this;

	},

	clone: function () {

		return new this.constructor().copy( this );

	},

	copy: function ( triangle ) {

		this.a.copy( triangle.a );
		this.b.copy( triangle.b );
		this.c.copy( triangle.c );

		return this;

	},

	area: function () {

		var v0 = new Vector3();
		var v1 = new Vector3();

		return function area() {

			v0.subVectors( this.c, this.b );
			v1.subVectors( this.a, this.b );

			return v0.cross( v1 ).length() * 0.5;

		};

	}(),

	midpoint: function ( optionalTarget ) {

		var result = optionalTarget || new Vector3();
		return result.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 );

	},

	normal: function ( optionalTarget ) {

		return Triangle.normal( this.a, this.b, this.c, optionalTarget );

	},

	plane: function ( optionalTarget ) {

		var result = optionalTarget || new Plane();

		return result.setFromCoplanarPoints( this.a, this.b, this.c );

	},

	barycoordFromPoint: function ( point, optionalTarget ) {

		return Triangle.barycoordFromPoint( point, this.a, this.b, this.c, optionalTarget );

	},

	containsPoint: function ( point ) {

		return Triangle.containsPoint( point, this.a, this.b, this.c );

	},

	closestPointToPoint: function () {

		var plane = new Plane();
		var edgeList = [ new Line3(), new Line3(), new Line3() ];
		var projectedPoint = new Vector3();
		var closestPoint = new Vector3();

		return function closestPointToPoint( point, optionalTarget ) {

			var result = optionalTarget || new Vector3();
			var minDistance = Infinity;

			// project the point onto the plane of the triangle

			plane.setFromCoplanarPoints( this.a, this.b, this.c );
			plane.projectPoint( point, projectedPoint );

			// check if the projection lies within the triangle

			if( this.containsPoint( projectedPoint ) === true ) {

				// if so, this is the closest point

				result.copy( projectedPoint );

			} else {

				// if not, the point falls outside the triangle. the result is the closest point to the triangle's edges or vertices

				edgeList[ 0 ].set( this.a, this.b );
				edgeList[ 1 ].set( this.b, this.c );
				edgeList[ 2 ].set( this.c, this.a );

				for( var i = 0; i < edgeList.length; i ++ ) {

					edgeList[ i ].closestPointToPoint( projectedPoint, true, closestPoint );

					var distance = projectedPoint.distanceToSquared( closestPoint );

					if( distance < minDistance ) {

						minDistance = distance;

						result.copy( closestPoint );

					}

				}

			}

			return result;

		};

	}(),

	equals: function ( triangle ) {

		return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c );

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 * @author alteredq / http://alteredqualia.com/
 * @author mikael emtinger / http://gomo.se/
 * @author jonobr1 / http://jonobr1.com/
 */

function Mesh( geometry, material ) {

	Object3D.call( this );

	this.type = 'Mesh';

	this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
	this.material = material !== undefined ? material : new MeshBasicMaterial( { color: Math.random() * 0xffffff } );

	this.drawMode = TrianglesDrawMode;

	this.updateMorphTargets();

}

Mesh.prototype = Object.assign( Object.create( Object3D.prototype ), {

	constructor: Mesh,

	isMesh: true,

	setDrawMode: function ( value ) {

		this.drawMode = value;

	},

	copy: function ( source ) {

		Object3D.prototype.copy.call( this, source );

		this.drawMode = source.drawMode;

		return this;

	},

	updateMorphTargets: function () {

		var geometry = this.geometry;
		var m, ml, name;

		if ( geometry.isBufferGeometry ) {

			var morphAttributes = geometry.morphAttributes;
			var keys = Object.keys( morphAttributes );

			if ( keys.length > 0 ) {

				var morphAttribute = morphAttributes[ keys[ 0 ] ];

				if ( morphAttribute !== undefined ) {

					this.morphTargetInfluences = [];
					this.morphTargetDictionary = {};

					for ( m = 0, ml = morphAttribute.length; m < ml; m ++ ) {

						name = morphAttribute[ m ].name || String( m );

						this.morphTargetInfluences.push( 0 );
						this.morphTargetDictionary[ name ] = m;

					}

				}

			}

		} else {

			var morphTargets = geometry.morphTargets;

			if ( morphTargets !== undefined && morphTargets.length > 0 ) {

				this.morphTargetInfluences = [];
				this.morphTargetDictionary = {};

				for ( m = 0, ml = morphTargets.length; m < ml; m ++ ) {

					name = morphTargets[ m ].name || String( m );

					this.morphTargetInfluences.push( 0 );
					this.morphTargetDictionary[ name ] = m;

				}

			}

		}

	},

	raycast: ( function () {

		var inverseMatrix = new Matrix4();
		var ray = new Ray();
		var sphere = new Sphere();

		var vA = new Vector3();
		var vB = new Vector3();
		var vC = new Vector3();

		var tempA = new Vector3();
		var tempB = new Vector3();
		var tempC = new Vector3();

		var uvA = new Vector2();
		var uvB = new Vector2();
		var uvC = new Vector2();

		var barycoord = new Vector3();

		var intersectionPoint = new Vector3();
		var intersectionPointWorld = new Vector3();

		function uvIntersection( point, p1, p2, p3, uv1, uv2, uv3 ) {

			Triangle.barycoordFromPoint( point, p1, p2, p3, barycoord );

			uv1.multiplyScalar( barycoord.x );
			uv2.multiplyScalar( barycoord.y );
			uv3.multiplyScalar( barycoord.z );

			uv1.add( uv2 ).add( uv3 );

			return uv1.clone();

		}

		function checkIntersection( object, raycaster, ray, pA, pB, pC, point ) {

			var intersect;
			var material = object.material;

			if ( material.side === BackSide ) {

				intersect = ray.intersectTriangle( pC, pB, pA, true, point );

			} else {

				intersect = ray.intersectTriangle( pA, pB, pC, material.side !== DoubleSide, point );

			}

			if ( intersect === null ) return null;

			intersectionPointWorld.copy( point );
			intersectionPointWorld.applyMatrix4( object.matrixWorld );

			var distance = raycaster.ray.origin.distanceTo( intersectionPointWorld );

			if ( distance < raycaster.near || distance > raycaster.far ) return null;

			return {
				distance: distance,
				point: intersectionPointWorld.clone(),
				object: object
			};

		}

		function checkBufferGeometryIntersection( object, raycaster, ray, position, uv, a, b, c ) {

			vA.fromBufferAttribute( position, a );
			vB.fromBufferAttribute( position, b );
			vC.fromBufferAttribute( position, c );

			var intersection = checkIntersection( object, raycaster, ray, vA, vB, vC, intersectionPoint );

			if ( intersection ) {

				if ( uv ) {

					uvA.fromBufferAttribute( uv, a );
					uvB.fromBufferAttribute( uv, b );
					uvC.fromBufferAttribute( uv, c );

					intersection.uv = uvIntersection( intersectionPoint, vA, vB, vC, uvA, uvB, uvC );

				}

				intersection.face = new Face3( a, b, c, Triangle.normal( vA, vB, vC ) );
				intersection.faceIndex = a;

			}

			return intersection;

		}

		return function raycast( raycaster, intersects ) {

			var geometry = this.geometry;
			var material = this.material;
			var matrixWorld = this.matrixWorld;

			if ( material === undefined ) return;

			// Checking boundingSphere distance to ray

			if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();

			sphere.copy( geometry.boundingSphere );
			sphere.applyMatrix4( matrixWorld );

			if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;

			//

			inverseMatrix.getInverse( matrixWorld );
			ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );

			// Check boundingBox before continuing

			if ( geometry.boundingBox !== null ) {

				if ( ray.intersectsBox( geometry.boundingBox ) === false ) return;

			}

			var intersection;

			if ( geometry.isBufferGeometry ) {

				var a, b, c;
				var index = geometry.index;
				var position = geometry.attributes.position;
				var uv = geometry.attributes.uv;
				var i, l;

				if ( index !== null ) {

					// indexed buffer geometry

					for ( i = 0, l = index.count; i < l; i += 3 ) {

						a = index.getX( i );
						b = index.getX( i + 1 );
						c = index.getX( i + 2 );

						intersection = checkBufferGeometryIntersection( this, raycaster, ray, position, uv, a, b, c );

						if ( intersection ) {

							intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indices buffer semantics
							intersects.push( intersection );

						}

					}

				} else {

					// non-indexed buffer geometry

					for ( i = 0, l = position.count; i < l; i += 3 ) {

						a = i;
						b = i + 1;
						c = i + 2;

						intersection = checkBufferGeometryIntersection( this, raycaster, ray, position, uv, a, b, c );

						if ( intersection ) {

							intersection.index = a; // triangle number in positions buffer semantics
							intersects.push( intersection );

						}

					}

				}

			} else if ( geometry.isGeometry ) {

				var fvA, fvB, fvC;
				var isMultiMaterial = Array.isArray( material );

				var vertices = geometry.vertices;
				var faces = geometry.faces;
				var uvs;

				var faceVertexUvs = geometry.faceVertexUvs[ 0 ];
				if ( faceVertexUvs.length > 0 ) uvs = faceVertexUvs;

				for ( var f = 0, fl = faces.length; f < fl; f ++ ) {

					var face = faces[ f ];
					var faceMaterial = isMultiMaterial ? material[ face.materialIndex ] : material;

					if ( faceMaterial === undefined ) continue;

					fvA = vertices[ face.a ];
					fvB = vertices[ face.b ];
					fvC = vertices[ face.c ];

					if ( faceMaterial.morphTargets === true ) {

						var morphTargets = geometry.morphTargets;
						var morphInfluences = this.morphTargetInfluences;

						vA.set( 0, 0, 0 );
						vB.set( 0, 0, 0 );
						vC.set( 0, 0, 0 );

						for ( var t = 0, tl = morphTargets.length; t < tl; t ++ ) {

							var influence = morphInfluences[ t ];

							if ( influence === 0 ) continue;

							var targets = morphTargets[ t ].vertices;

							vA.addScaledVector( tempA.subVectors( targets[ face.a ], fvA ), influence );
							vB.addScaledVector( tempB.subVectors( targets[ face.b ], fvB ), influence );
							vC.addScaledVector( tempC.subVectors( targets[ face.c ], fvC ), influence );

						}

						vA.add( fvA );
						vB.add( fvB );
						vC.add( fvC );

						fvA = vA;
						fvB = vB;
						fvC = vC;

					}

					intersection = checkIntersection( this, raycaster, ray, fvA, fvB, fvC, intersectionPoint );

					if ( intersection ) {

						if ( uvs && uvs[ f ] ) {

							var uvs_f = uvs[ f ];
							uvA.copy( uvs_f[ 0 ] );
							uvB.copy( uvs_f[ 1 ] );
							uvC.copy( uvs_f[ 2 ] );

							intersection.uv = uvIntersection( intersectionPoint, fvA, fvB, fvC, uvA, uvB, uvC );

						}

						intersection.face = face;
						intersection.faceIndex = f;
						intersects.push( intersection );

					}

				}

			}

		};

	}() ),

	clone: function () {

		return new this.constructor( this.geometry, this.material ).copy( this );

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function WebGLBackground( renderer, state, objects, premultipliedAlpha ) {

	var clearColor = new Color( 0x000000 );
	var clearAlpha = 0;

	var planeCamera, planeMesh;
	var boxCamera, boxMesh;

	function render( scene, camera, forceClear ) {

		var background = scene.background;

		if ( background === null ) {

			setClear( clearColor, clearAlpha );

		} else if ( background && background.isColor ) {

			setClear( background, 1 );
			forceClear = true;

		}

		if ( renderer.autoClear || forceClear ) {

			renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil );

		}

		if ( background && background.isCubeTexture ) {

			if ( boxCamera === undefined ) {

				boxCamera = new PerspectiveCamera();

				boxMesh = new Mesh(
					new BoxBufferGeometry( 5, 5, 5 ),
					new ShaderMaterial( {
						uniforms: ShaderLib.cube.uniforms,
						vertexShader: ShaderLib.cube.vertexShader,
						fragmentShader: ShaderLib.cube.fragmentShader,
						side: BackSide,
						depthTest: false,
						depthWrite: false,
						fog: false
					} )
				);

			}

			boxCamera.projectionMatrix.copy( camera.projectionMatrix );

			boxCamera.matrixWorld.extractRotation( camera.matrixWorld );
			boxCamera.matrixWorldInverse.getInverse( boxCamera.matrixWorld );

			boxMesh.material.uniforms[ "tCube" ].value = background;
			boxMesh.modelViewMatrix.multiplyMatrices( boxCamera.matrixWorldInverse, boxMesh.matrixWorld );

			objects.update( boxMesh );

			renderer.renderBufferDirect( boxCamera, null, boxMesh.geometry, boxMesh.material, boxMesh, null );

		} else if ( background && background.isTexture ) {

			if ( planeCamera === undefined ) {

				planeCamera = new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 );

				planeMesh = new Mesh(
					new PlaneBufferGeometry( 2, 2 ),
					new MeshBasicMaterial( { depthTest: false, depthWrite: false, fog: false } )
				);

			}

			planeMesh.material.map = background;

			objects.update( planeMesh );

			renderer.renderBufferDirect( planeCamera, null, planeMesh.geometry, planeMesh.material, planeMesh, null );

		}

	}

	function setClear( color, alpha ) {

		state.buffers.color.setClear( color.r, color.g, color.b, alpha, premultipliedAlpha );

	}

	return {

		getClearColor: function () {

			return clearColor;

		},
		setClearColor: function ( color, alpha ) {

			clearColor.set( color );
			clearAlpha = alpha !== undefined ? alpha : 1;
			setClear( clearColor, clearAlpha );

		},
		getClearAlpha: function () {

			return clearAlpha;

		},
		setClearAlpha: function ( alpha ) {

			clearAlpha = alpha;
			setClear( clearColor, clearAlpha );

		},
		render: render

	};

}

/**
 * @author mrdoob / http://mrdoob.com/
 */

function painterSortStable( a, b ) {

	if ( a.renderOrder !== b.renderOrder ) {

		return a.renderOrder - b.renderOrder;

	} else if ( a.program && b.program && a.program !== b.program ) {

		return a.program.id - b.program.id;

	} else if ( a.material.id !== b.material.id ) {

		return a.material.id - b.material.id;

	} else if ( a.z !== b.z ) {

		return a.z - b.z;

	} else {

		return a.id - b.id;

	}

}

function reversePainterSortStable( a, b ) {

	if ( a.renderOrder !== b.renderOrder ) {

		return a.renderOrder - b.renderOrder;

	} if ( a.z !== b.z ) {

		return b.z - a.z;

	} else {

		return a.id - b.id;

	}

}

function WebGLRenderList() {

	var opaque = [];
	var opaqueLastIndex = - 1;

	var transparent = [];
	var transparentLastIndex = - 1;

	function init() {

		opaqueLastIndex = - 1;
		transparentLastIndex = - 1;

	}

	function push( object, geometry, material, z, group ) {

		var array, index;

		// allocate the next position in the appropriate array

		if ( material.transparent ) {

			array = transparent;
			index = ++ transparentLastIndex;

		} else {

			array = opaque;
			index = ++ opaqueLastIndex;

		}

		// recycle existing render item or grow the array

		var renderItem = array[ index ];

		if ( renderItem ) {

			renderItem.id = object.id;
			renderItem.object = object;
			renderItem.geometry = geometry;
			renderItem.material = material;
			renderItem.program = material.program;
			renderItem.renderOrder = object.renderOrder;
			renderItem.z = z;
			renderItem.group = group;

		} else {

			renderItem = {
				id: object.id,
				object: object,
				geometry: geometry,
				material: material,
				program: material.program,
				renderOrder: object.renderOrder,
				z: z,
				group: group
			};

			// assert( index === array.length );
			array.push( renderItem );

		}

	}

	function finish() {

		opaque.length = opaqueLastIndex + 1;
		transparent.length = transparentLastIndex + 1;

	}

	function sort() {

		opaque.sort( painterSortStable );
		transparent.sort( reversePainterSortStable );

	}

	return {
		opaque: opaque,
		transparent: transparent,

		init: init,
		push: push,
		finish: finish,

		sort: sort
	};

}

function WebGLRenderLists() {

	var lists = {};

	function get( scene, camera ) {

		var hash = scene.id + ',' + camera.id;
		var list = lists[ hash ];

		if ( list === undefined ) {

			// console.log( 'THREE.WebGLRenderLists:', hash );

			list = new WebGLRenderList();
			lists[ hash ] = list;

		}

		return list;

	}

	function dispose() {

		lists = {};

	}

	return {
		get: get,
		dispose: dispose
	};

}

/**
 * @author mrdoob / http://mrdoob.com/
 */

function WebGLIndexedBufferRenderer( gl, extensions, infoRender ) {

	var mode;

	function setMode( value ) {

		mode = value;

	}

	var type, bytesPerElement;

	function setIndex( value ) {

		type = value.type;
		bytesPerElement = value.bytesPerElement;

	}

	function render( start, count ) {

		gl.drawElements( mode, count, type, start * bytesPerElement );

		infoRender.calls ++;
		infoRender.vertices += count;

		if ( mode === gl.TRIANGLES ) infoRender.faces += count / 3;

	}

	function renderInstances( geometry, start, count ) {

		var extension = extensions.get( 'ANGLE_instanced_arrays' );

		if ( extension === null ) {

			console.error( 'THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
			return;

		}

		extension.drawElementsInstancedANGLE( mode, count, type, start * bytesPerElement, geometry.maxInstancedCount );

		infoRender.calls ++;
		infoRender.vertices += count * geometry.maxInstancedCount;

		if ( mode === gl.TRIANGLES ) infoRender.faces += geometry.maxInstancedCount * count / 3;

	}

	//

	this.setMode = setMode;
	this.setIndex = setIndex;
	this.render = render;
	this.renderInstances = renderInstances;

}

/**
 * @author mrdoob / http://mrdoob.com/
 */

function WebGLBufferRenderer( gl, extensions, infoRender ) {

	var mode;

	function setMode( value ) {

		mode = value;

	}

	function render( start, count ) {

		gl.drawArrays( mode, start, count );

		infoRender.calls ++;
		infoRender.vertices += count;

		if ( mode === gl.TRIANGLES ) infoRender.faces += count / 3;

	}

	function renderInstances( geometry, start, count ) {

		var extension = extensions.get( 'ANGLE_instanced_arrays' );

		if ( extension === null ) {

			console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
			return;

		}

		var position = geometry.attributes.position;

		if ( position.isInterleavedBufferAttribute ) {

			count = position.data.count;

			extension.drawArraysInstancedANGLE( mode, 0, count, geometry.maxInstancedCount );

		} else {

			extension.drawArraysInstancedANGLE( mode, start, count, geometry.maxInstancedCount );

		}

		infoRender.calls ++;
		infoRender.vertices += count * geometry.maxInstancedCount;

		if ( mode === gl.TRIANGLES ) infoRender.faces += geometry.maxInstancedCount * count / 3;

	}

	//

	this.setMode = setMode;
	this.render = render;
	this.renderInstances = renderInstances;

}

/**
 * @author mrdoob / http://mrdoob.com/
 */

function WebGLGeometries( gl, attributes, infoMemory ) {

	var geometries = {};
	var wireframeAttributes = {};

	function onGeometryDispose( event ) {

		var geometry = event.target;
		var buffergeometry = geometries[ geometry.id ];

		if ( buffergeometry.index !== null ) {

			attributes.remove( buffergeometry.index );

		}

		for ( var name in buffergeometry.attributes ) {

			attributes.remove( buffergeometry.attributes[ name ] );

		}

		geometry.removeEventListener( 'dispose', onGeometryDispose );

		delete geometries[ geometry.id ];

		// TODO Remove duplicate code

		var attribute = wireframeAttributes[ geometry.id ];

		if ( attribute ) {

			attributes.remove( attribute );
			delete wireframeAttributes[ geometry.id ];

		}

		attribute = wireframeAttributes[ buffergeometry.id ];

		if ( attribute ) {

			attributes.remove( attribute );
			delete wireframeAttributes[ buffergeometry.id ];

		}

		//

		infoMemory.geometries --;

	}

	function get( object, geometry ) {

		var buffergeometry = geometries[ geometry.id ];

		if ( buffergeometry ) return buffergeometry;

		geometry.addEventListener( 'dispose', onGeometryDispose );

		if ( geometry.isBufferGeometry ) {

			buffergeometry = geometry;

		} else if ( geometry.isGeometry ) {

			if ( geometry._bufferGeometry === undefined ) {

				geometry._bufferGeometry = new BufferGeometry().setFromObject( object );

			}

			buffergeometry = geometry._bufferGeometry;

		}

		geometries[ geometry.id ] = buffergeometry;

		infoMemory.geometries ++;

		return buffergeometry;

	}

	function update( geometry ) {

		var index = geometry.index;
		var geometryAttributes = geometry.attributes;

		if ( index !== null ) {

			attributes.update( index, gl.ELEMENT_ARRAY_BUFFER );

		}

		for ( var name in geometryAttributes ) {

			attributes.update( geometryAttributes[ name ], gl.ARRAY_BUFFER );

		}

		// morph targets

		var morphAttributes = geometry.morphAttributes;

		for ( var name in morphAttributes ) {

			var array = morphAttributes[ name ];

			for ( var i = 0, l = array.length; i < l; i ++ ) {

				attributes.update( array[ i ], gl.ARRAY_BUFFER );

			}

		}

	}

	function getWireframeAttribute( geometry ) {

		var attribute = wireframeAttributes[ geometry.id ];

		if ( attribute ) return attribute;

		var indices = [];

		var geometryIndex = geometry.index;
		var geometryAttributes = geometry.attributes;

		// console.time( 'wireframe' );

		if ( geometryIndex !== null ) {

			var array = geometryIndex.array;

			for ( var i = 0, l = array.length; i < l; i += 3 ) {

				var a = array[ i + 0 ];
				var b = array[ i + 1 ];
				var c = array[ i + 2 ];

				indices.push( a, b, b, c, c, a );

			}

		} else {

			var array = geometryAttributes.position.array;

			for ( var i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) {

				var a = i + 0;
				var b = i + 1;
				var c = i + 2;

				indices.push( a, b, b, c, c, a );

			}

		}

		// console.timeEnd( 'wireframe' );

		attribute = new ( arrayMax( indices ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 );

		attributes.update( attribute, gl.ELEMENT_ARRAY_BUFFER );

		wireframeAttributes[ geometry.id ] = attribute;

		return attribute;

	}

	return {

		get: get,
		update: update,

		getWireframeAttribute: getWireframeAttribute

	};

}

/**
 * @author mrdoob / http://mrdoob.com/
 */

function WebGLLights() {

	var lights = {};

	return {

		get: function ( light ) {

			if ( lights[ light.id ] !== undefined ) {

				return lights[ light.id ];

			}

			var uniforms;

			switch ( light.type ) {

				case 'DirectionalLight':
					uniforms = {
						direction: new Vector3(),
						color: new Color(),

						shadow: false,
						shadowBias: 0,
						shadowRadius: 1,
						shadowMapSize: new Vector2()
					};
					break;

				case 'SpotLight':
					uniforms = {
						position: new Vector3(),
						direction: new Vector3(),
						color: new Color(),
						distance: 0,
						coneCos: 0,
						penumbraCos: 0,
						decay: 0,

						shadow: false,
						shadowBias: 0,
						shadowRadius: 1,
						shadowMapSize: new Vector2()
					};
					break;

				case 'PointLight':
					uniforms = {
						position: new Vector3(),
						color: new Color(),
						distance: 0,
						decay: 0,

						shadow: false,
						shadowBias: 0,
						shadowRadius: 1,
						shadowMapSize: new Vector2()
					};
					break;

				case 'HemisphereLight':
					uniforms = {
						direction: new Vector3(),
						skyColor: new Color(),
						groundColor: new Color()
					};
					break;

				case 'RectAreaLight':
					uniforms = {
						color: new Color(),
						position: new Vector3(),
						halfWidth: new Vector3(),
						halfHeight: new Vector3()
						// TODO (abelnation): set RectAreaLight shadow uniforms
					};
					break;

			}

			lights[ light.id ] = uniforms;

			return uniforms;

		}

	};

}

/**
 * @author mrdoob / http://mrdoob.com/
 */

function WebGLObjects( gl, geometries, infoRender ) {

	var updateList = {};

	function update( object ) {

		var frame = infoRender.frame;

		var geometry = object.geometry;
		var buffergeometry = geometries.get( object, geometry );

		// Update once per frame

		if ( updateList[ buffergeometry.id ] !== frame ) {

			if ( geometry.isGeometry ) {

				buffergeometry.updateFromObject( object );

			}

			geometries.update( buffergeometry );

			updateList[ buffergeometry.id ] = frame;

		}

		return buffergeometry;

	}

	function clear() {

		updateList = {};

	}

	return {

		update: update,
		clear: clear

	};

}

/**
 * @author mrdoob / http://mrdoob.com/
 */

function addLineNumbers( string ) {

	var lines = string.split( '\n' );

	for ( var i = 0; i < lines.length; i ++ ) {

		lines[ i ] = ( i + 1 ) + ': ' + lines[ i ];

	}

	return lines.join( '\n' );

}

function WebGLShader( gl, type, string ) {

	var shader = gl.createShader( type );

	gl.shaderSource( shader, string );
	gl.compileShader( shader );

	if ( gl.getShaderParameter( shader, gl.COMPILE_STATUS ) === false ) {

		console.error( 'THREE.WebGLShader: Shader couldn\'t compile.' );

	}

	if ( gl.getShaderInfoLog( shader ) !== '' ) {

		console.warn( 'THREE.WebGLShader: gl.getShaderInfoLog()', type === gl.VERTEX_SHADER ? 'vertex' : 'fragment', gl.getShaderInfoLog( shader ), addLineNumbers( string ) );

	}

	// --enable-privileged-webgl-extension
	// console.log( type, gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );

	return shader;

}

/**
 * @author mrdoob / http://mrdoob.com/
 */

var programIdCount = 0;

function getEncodingComponents( encoding ) {

	switch ( encoding ) {

		case LinearEncoding:
			return [ 'Linear','( value )' ];
		case sRGBEncoding:
			return [ 'sRGB','( value )' ];
		case RGBEEncoding:
			return [ 'RGBE','( value )' ];
		case RGBM7Encoding:
			return [ 'RGBM','( value, 7.0 )' ];
		case RGBM16Encoding:
			return [ 'RGBM','( value, 16.0 )' ];
		case RGBDEncoding:
			return [ 'RGBD','( value, 256.0 )' ];
		case GammaEncoding:
			return [ 'Gamma','( value, float( GAMMA_FACTOR ) )' ];
		default:
			throw new Error( 'unsupported encoding: ' + encoding );

	}

}

function getTexelDecodingFunction( functionName, encoding ) {

	var components = getEncodingComponents( encoding );
	return "vec4 " + functionName + "( vec4 value ) { return " + components[ 0 ] + "ToLinear" + components[ 1 ] + "; }";

}

function getTexelEncodingFunction( functionName, encoding ) {

	var components = getEncodingComponents( encoding );
	return "vec4 " + functionName + "( vec4 value ) { return LinearTo" + components[ 0 ] + components[ 1 ] + "; }";

}

function getToneMappingFunction( functionName, toneMapping ) {

	var toneMappingName;

	switch ( toneMapping ) {

		case LinearToneMapping:
			toneMappingName = "Linear";
			break;

		case ReinhardToneMapping:
			toneMappingName = "Reinhard";
			break;

		case Uncharted2ToneMapping:
			toneMappingName = "Uncharted2";
			break;

		case CineonToneMapping:
			toneMappingName = "OptimizedCineon";
			break;

		default:
			throw new Error( 'unsupported toneMapping: ' + toneMapping );

	}

	return "vec3 " + functionName + "( vec3 color ) { return " + toneMappingName + "ToneMapping( color ); }";

}

function generateExtensions( extensions, parameters, rendererExtensions ) {

	extensions = extensions || {};

	var chunks = [
		( extensions.derivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.normalMap || parameters.flatShading ) ? '#extension GL_OES_standard_derivatives : enable' : '',
		( extensions.fragDepth || parameters.logarithmicDepthBuffer ) && rendererExtensions.get( 'EXT_frag_depth' ) ? '#extension GL_EXT_frag_depth : enable' : '',
		( extensions.drawBuffers ) && rendererExtensions.get( 'WEBGL_draw_buffers' ) ? '#extension GL_EXT_draw_buffers : require' : '',
		( extensions.shaderTextureLOD || parameters.envMap ) && rendererExtensions.get( 'EXT_shader_texture_lod' ) ? '#extension GL_EXT_shader_texture_lod : enable' : ''
	];

	return chunks.filter( filterEmptyLine ).join( '\n' );

}

function generateDefines( defines ) {

	var chunks = [];

	for ( var name in defines ) {

		var value = defines[ name ];

		if ( value === false ) continue;

		chunks.push( '#define ' + name + ' ' + value );

	}

	return chunks.join( '\n' );

}

function fetchAttributeLocations( gl, program, identifiers ) {

	var attributes = {};

	var n = gl.getProgramParameter( program, gl.ACTIVE_ATTRIBUTES );

	for ( var i = 0; i < n; i ++ ) {

		var info = gl.getActiveAttrib( program, i );
		var name = info.name;

		// console.log("THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:", name, i );

		attributes[ name ] = gl.getAttribLocation( program, name );

	}

	return attributes;

}

function filterEmptyLine( string ) {

	return string !== '';

}

function replaceLightNums( string, parameters ) {

	return string
		.replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights )
		.replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights )
		.replace( /NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights )
		.replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights )
		.replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights );

}

function parseIncludes( string ) {

	var pattern = /^[ \t]*#include +<([\w\d.]+)>/gm;

	function replace( match, include ) {

		var replace = ShaderChunk[ include ];

		if ( replace === undefined ) {

			throw new Error( 'Can not resolve #include <' + include + '>' );

		}

		return parseIncludes( replace );

	}

	return string.replace( pattern, replace );

}

function unrollLoops( string ) {

	var pattern = /for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;

	function replace( match, start, end, snippet ) {

		var unroll = '';

		for ( var i = parseInt( start ); i < parseInt( end ); i ++ ) {

			unroll += snippet.replace( /\[ i \]/g, '[ ' + i + ' ]' );

		}

		return unroll;

	}

	return string.replace( pattern, replace );

}

function WebGLProgram( renderer, code, material, shader, parameters ) {

	var gl = renderer.context;

	var extensions = material.extensions;
	var defines = material.defines;

	var vertexShader = shader.vertexShader;
	var fragmentShader = shader.fragmentShader;

	var shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';

	if ( parameters.shadowMapType === PCFShadowMap ) {

		shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';

	} else if ( parameters.shadowMapType === PCFSoftShadowMap ) {

		shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';

	}

	var envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
	var envMapModeDefine = 'ENVMAP_MODE_REFLECTION';
	var envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';

	if ( parameters.envMap ) {

		switch ( material.envMap.mapping ) {

			case CubeReflectionMapping:
			case CubeRefractionMapping:
				envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
				break;

			case CubeUVReflectionMapping:
			case CubeUVRefractionMapping:
				envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV';
				break;

			case EquirectangularReflectionMapping:
			case EquirectangularRefractionMapping:
				envMapTypeDefine = 'ENVMAP_TYPE_EQUIREC';
				break;

			case SphericalReflectionMapping:
				envMapTypeDefine = 'ENVMAP_TYPE_SPHERE';
				break;

		}

		switch ( material.envMap.mapping ) {

			case CubeRefractionMapping:
			case EquirectangularRefractionMapping:
				envMapModeDefine = 'ENVMAP_MODE_REFRACTION';
				break;

		}

		switch ( material.combine ) {

			case MultiplyOperation:
				envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
				break;

			case MixOperation:
				envMapBlendingDefine = 'ENVMAP_BLENDING_MIX';
				break;

			case AddOperation:
				envMapBlendingDefine = 'ENVMAP_BLENDING_ADD';
				break;

		}

	}

	var gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0;

	// console.log( 'building new program ' );

	//

	var customExtensions = generateExtensions( extensions, parameters, renderer.extensions );

	var customDefines = generateDefines( defines );

	//

	var program = gl.createProgram();

	var prefixVertex, prefixFragment;

	if ( material.isRawShaderMaterial ) {

		prefixVertex = [

			customDefines,

			'\n'

		].filter( filterEmptyLine ).join( '\n' );

		prefixFragment = [

			customExtensions,
			customDefines,

			'\n'

		].filter( filterEmptyLine ).join( '\n' );

	} else {

		prefixVertex = [

			'precision ' + parameters.precision + ' float;',
			'precision ' + parameters.precision + ' int;',

			'#define SHADER_NAME ' + shader.name,

			customDefines,

			parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '',

			'#define GAMMA_FACTOR ' + gammaFactorDefine,

			'#define MAX_BONES ' + parameters.maxBones,
			( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
			( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : '',

			parameters.map ? '#define USE_MAP' : '',
			parameters.envMap ? '#define USE_ENVMAP' : '',
			parameters.envMap ? '#define ' + envMapModeDefine : '',
			parameters.lightMap ? '#define USE_LIGHTMAP' : '',
			parameters.aoMap ? '#define USE_AOMAP' : '',
			parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
			parameters.bumpMap ? '#define USE_BUMPMAP' : '',
			parameters.normalMap ? '#define USE_NORMALMAP' : '',
			parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '',
			parameters.specularMap ? '#define USE_SPECULARMAP' : '',
			parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
			parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
			parameters.alphaMap ? '#define USE_ALPHAMAP' : '',
			parameters.vertexColors ? '#define USE_COLOR' : '',

			parameters.flatShading ? '#define FLAT_SHADED' : '',

			parameters.skinning ? '#define USE_SKINNING' : '',
			parameters.useVertexTexture ? '#define BONE_TEXTURE' : '',

			parameters.morphTargets ? '#define USE_MORPHTARGETS' : '',
			parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '',
			parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
			parameters.flipSided ? '#define FLIP_SIDED' : '',

			'#define NUM_CLIPPING_PLANES ' + parameters.numClippingPlanes,

			parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
			parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',

			parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '',

			parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
			parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '',

			'uniform mat4 modelMatrix;',
			'uniform mat4 modelViewMatrix;',
			'uniform mat4 projectionMatrix;',
			'uniform mat4 viewMatrix;',
			'uniform mat3 normalMatrix;',
			'uniform vec3 cameraPosition;',

			'attribute vec3 position;',
			'attribute vec3 normal;',
			'attribute vec2 uv;',

			'#ifdef USE_COLOR',

			'	attribute vec3 color;',

			'#endif',

			'#ifdef USE_MORPHTARGETS',

			'	attribute vec3 morphTarget0;',
			'	attribute vec3 morphTarget1;',
			'	attribute vec3 morphTarget2;',
			'	attribute vec3 morphTarget3;',

			'	#ifdef USE_MORPHNORMALS',

			'		attribute vec3 morphNormal0;',
			'		attribute vec3 morphNormal1;',
			'		attribute vec3 morphNormal2;',
			'		attribute vec3 morphNormal3;',

			'	#else',

			'		attribute vec3 morphTarget4;',
			'		attribute vec3 morphTarget5;',
			'		attribute vec3 morphTarget6;',
			'		attribute vec3 morphTarget7;',

			'	#endif',

			'#endif',

			'#ifdef USE_SKINNING',

			'	attribute vec4 skinIndex;',
			'	attribute vec4 skinWeight;',

			'#endif',

			'\n'

		].filter( filterEmptyLine ).join( '\n' );

		prefixFragment = [

			customExtensions,

			'precision ' + parameters.precision + ' float;',
			'precision ' + parameters.precision + ' int;',

			'#define SHADER_NAME ' + shader.name,

			customDefines,

			parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest : '',

			'#define GAMMA_FACTOR ' + gammaFactorDefine,

			( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
			( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : '',

			parameters.map ? '#define USE_MAP' : '',
			parameters.envMap ? '#define USE_ENVMAP' : '',
			parameters.envMap ? '#define ' + envMapTypeDefine : '',
			parameters.envMap ? '#define ' + envMapModeDefine : '',
			parameters.envMap ? '#define ' + envMapBlendingDefine : '',
			parameters.lightMap ? '#define USE_LIGHTMAP' : '',
			parameters.aoMap ? '#define USE_AOMAP' : '',
			parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
			parameters.bumpMap ? '#define USE_BUMPMAP' : '',
			parameters.normalMap ? '#define USE_NORMALMAP' : '',
			parameters.specularMap ? '#define USE_SPECULARMAP' : '',
			parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
			parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
			parameters.alphaMap ? '#define USE_ALPHAMAP' : '',
			parameters.vertexColors ? '#define USE_COLOR' : '',

			parameters.gradientMap ? '#define USE_GRADIENTMAP' : '',

			parameters.flatShading ? '#define FLAT_SHADED' : '',

			parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
			parameters.flipSided ? '#define FLIP_SIDED' : '',

			'#define NUM_CLIPPING_PLANES ' + parameters.numClippingPlanes,
			'#define UNION_CLIPPING_PLANES ' + (parameters.numClippingPlanes - parameters.numClipIntersection),

			parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
			parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',

			parameters.premultipliedAlpha ? "#define PREMULTIPLIED_ALPHA" : '',

			parameters.physicallyCorrectLights ? "#define PHYSICALLY_CORRECT_LIGHTS" : '',

			parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
			parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '',

			parameters.envMap && renderer.extensions.get( 'EXT_shader_texture_lod' ) ? '#define TEXTURE_LOD_EXT' : '',

			'uniform mat4 viewMatrix;',
			'uniform vec3 cameraPosition;',

			( parameters.toneMapping !== NoToneMapping ) ? "#define TONE_MAPPING" : '',
			( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : '',  // this code is required here because it is used by the toneMapping() function defined below
			( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( "toneMapping", parameters.toneMapping ) : '',

			parameters.dithering ? '#define DITHERING' : '',

			( parameters.outputEncoding || parameters.mapEncoding || parameters.envMapEncoding || parameters.emissiveMapEncoding ) ? ShaderChunk[ 'encodings_pars_fragment' ] : '', // this code is required here because it is used by the various encoding/decoding function defined below
			parameters.mapEncoding ? getTexelDecodingFunction( 'mapTexelToLinear', parameters.mapEncoding ) : '',
			parameters.envMapEncoding ? getTexelDecodingFunction( 'envMapTexelToLinear', parameters.envMapEncoding ) : '',
			parameters.emissiveMapEncoding ? getTexelDecodingFunction( 'emissiveMapTexelToLinear', parameters.emissiveMapEncoding ) : '',
			parameters.outputEncoding ? getTexelEncodingFunction( "linearToOutputTexel", parameters.outputEncoding ) : '',

			parameters.depthPacking ? "#define DEPTH_PACKING " + material.depthPacking : '',

			'\n'

		].filter( filterEmptyLine ).join( '\n' );

	}

	vertexShader = parseIncludes( vertexShader );
	vertexShader = replaceLightNums( vertexShader, parameters );

	fragmentShader = parseIncludes( fragmentShader );
	fragmentShader = replaceLightNums( fragmentShader, parameters );

	if ( ! material.isShaderMaterial ) {

		vertexShader = unrollLoops( vertexShader );
		fragmentShader = unrollLoops( fragmentShader );

	}

	var vertexGlsl = prefixVertex + vertexShader;
	var fragmentGlsl = prefixFragment + fragmentShader;

	// console.log( '*VERTEX*', vertexGlsl );
	// console.log( '*FRAGMENT*', fragmentGlsl );

	var glVertexShader = WebGLShader( gl, gl.VERTEX_SHADER, vertexGlsl );
	var glFragmentShader = WebGLShader( gl, gl.FRAGMENT_SHADER, fragmentGlsl );

	gl.attachShader( program, glVertexShader );
	gl.attachShader( program, glFragmentShader );

	// Force a particular attribute to index 0.

	if ( material.index0AttributeName !== undefined ) {

		gl.bindAttribLocation( program, 0, material.index0AttributeName );

	} else if ( parameters.morphTargets === true ) {

		// programs with morphTargets displace position out of attribute 0
		gl.bindAttribLocation( program, 0, 'position' );

	}

	gl.linkProgram( program );

	var programLog = gl.getProgramInfoLog( program );
	var vertexLog = gl.getShaderInfoLog( glVertexShader );
	var fragmentLog = gl.getShaderInfoLog( glFragmentShader );

	var runnable = true;
	var haveDiagnostics = true;

	// console.log( '**VERTEX**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glVertexShader ) );
	// console.log( '**FRAGMENT**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glFragmentShader ) );

	if ( gl.getProgramParameter( program, gl.LINK_STATUS ) === false ) {

		runnable = false;

		console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), 'gl.VALIDATE_STATUS', gl.getProgramParameter( program, gl.VALIDATE_STATUS ), 'gl.getProgramInfoLog', programLog, vertexLog, fragmentLog );

	} else if ( programLog !== '' ) {

		console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', programLog );

	} else if ( vertexLog === '' || fragmentLog === '' ) {

		haveDiagnostics = false;

	}

	if ( haveDiagnostics ) {

		this.diagnostics = {

			runnable: runnable,
			material: material,

			programLog: programLog,

			vertexShader: {

				log: vertexLog,
				prefix: prefixVertex

			},

			fragmentShader: {

				log: fragmentLog,
				prefix: prefixFragment

			}

		};

	}

	// clean up

	gl.deleteShader( glVertexShader );
	gl.deleteShader( glFragmentShader );

	// set up caching for uniform locations

	var cachedUniforms;

	this.getUniforms = function() {

		if ( cachedUniforms === undefined ) {

			cachedUniforms =
				new WebGLUniforms( gl, program, renderer );

		}

		return cachedUniforms;

	};

	// set up caching for attribute locations

	var cachedAttributes;

	this.getAttributes = function() {

		if ( cachedAttributes === undefined ) {

			cachedAttributes = fetchAttributeLocations( gl, program );

		}

		return cachedAttributes;

	};

	// free resource

	this.destroy = function() {

		gl.deleteProgram( program );
		this.program = undefined;

	};

	// DEPRECATED

	Object.defineProperties( this, {

		uniforms: {
			get: function() {

				console.warn( 'THREE.WebGLProgram: .uniforms is now .getUniforms().' );
				return this.getUniforms();

			}
		},

		attributes: {
			get: function() {

				console.warn( 'THREE.WebGLProgram: .attributes is now .getAttributes().' );
				return this.getAttributes();

			}
		}

	} );


	//

	this.id = programIdCount ++;
	this.code = code;
	this.usedTimes = 1;
	this.program = program;
	this.vertexShader = glVertexShader;
	this.fragmentShader = glFragmentShader;

	return this;

}

/**
 * @author mrdoob / http://mrdoob.com/
 */

function WebGLPrograms( renderer, capabilities ) {

	var programs = [];

	var shaderIDs = {
		MeshDepthMaterial: 'depth',
		MeshNormalMaterial: 'normal',
		MeshBasicMaterial: 'basic',
		MeshLambertMaterial: 'lambert',
		MeshPhongMaterial: 'phong',
		MeshToonMaterial: 'phong',
		MeshStandardMaterial: 'physical',
		MeshPhysicalMaterial: 'physical',
		LineBasicMaterial: 'basic',
		LineDashedMaterial: 'dashed',
		PointsMaterial: 'points'
	};

	var parameterNames = [
		"precision", "supportsVertexTextures", "map", "mapEncoding", "envMap", "envMapMode", "envMapEncoding",
		"lightMap", "aoMap", "emissiveMap", "emissiveMapEncoding", "bumpMap", "normalMap", "displacementMap", "specularMap",
		"roughnessMap", "metalnessMap", "gradientMap",
		"alphaMap", "combine", "vertexColors", "fog", "useFog", "fogExp",
		"flatShading", "sizeAttenuation", "logarithmicDepthBuffer", "skinning",
		"maxBones", "useVertexTexture", "morphTargets", "morphNormals",
		"maxMorphTargets", "maxMorphNormals", "premultipliedAlpha",
		"numDirLights", "numPointLights", "numSpotLights", "numHemiLights", "numRectAreaLights",
		"shadowMapEnabled", "shadowMapType", "toneMapping", 'physicallyCorrectLights',
		"alphaTest", "doubleSided", "flipSided", "numClippingPlanes", "numClipIntersection", "depthPacking", "dithering"
	];


	function allocateBones( object ) {

		var skeleton = object.skeleton;
		var bones = skeleton.bones;

		if ( capabilities.floatVertexTextures ) {

			return 1024;

		} else {

			// default for when object is not specified
			// ( for example when prebuilding shader to be used with multiple objects )
			//
			//  - leave some extra space for other uniforms
			//  - limit here is ANGLE's 254 max uniform vectors
			//    (up to 54 should be safe)

			var nVertexUniforms = capabilities.maxVertexUniforms;
			var nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 );

			var maxBones = Math.min( nVertexMatrices, bones.length );

			if ( maxBones < bones.length ) {

				console.warn( 'THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.' );
				return 0;

			}

			return maxBones;

		}

	}

	function getTextureEncodingFromMap( map, gammaOverrideLinear ) {

		var encoding;

		if ( ! map ) {

			encoding = LinearEncoding;

		} else if ( map.isTexture ) {

			encoding = map.encoding;

		} else if ( map.isWebGLRenderTarget ) {

			console.warn( "THREE.WebGLPrograms.getTextureEncodingFromMap: don't use render targets as textures. Use their .texture property instead." );
			encoding = map.texture.encoding;

		}

		// add backwards compatibility for WebGLRenderer.gammaInput/gammaOutput parameter, should probably be removed at some point.
		if ( encoding === LinearEncoding && gammaOverrideLinear ) {

			encoding = GammaEncoding;

		}

		return encoding;

	}

	this.getParameters = function ( material, lights, fog, nClipPlanes, nClipIntersection, object ) {

		var shaderID = shaderIDs[ material.type ];

		// heuristics to create shader parameters according to lights in the scene
		// (not to blow over maxLights budget)

		var maxBones = object.isSkinnedMesh ? allocateBones( object ) : 0;
		var precision = renderer.getPrecision();

		if ( material.precision !== null ) {

			precision = capabilities.getMaxPrecision( material.precision );

			if ( precision !== material.precision ) {

				console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' );

			}

		}

		var currentRenderTarget = renderer.getRenderTarget();

		var parameters = {

			shaderID: shaderID,

			precision: precision,
			supportsVertexTextures: capabilities.vertexTextures,
			outputEncoding: getTextureEncodingFromMap( ( ! currentRenderTarget ) ? null : currentRenderTarget.texture, renderer.gammaOutput ),
			map: !! material.map,
			mapEncoding: getTextureEncodingFromMap( material.map, renderer.gammaInput ),
			envMap: !! material.envMap,
			envMapMode: material.envMap && material.envMap.mapping,
			envMapEncoding: getTextureEncodingFromMap( material.envMap, renderer.gammaInput ),
			envMapCubeUV: ( !! material.envMap ) && ( ( material.envMap.mapping === CubeUVReflectionMapping ) || ( material.envMap.mapping === CubeUVRefractionMapping ) ),
			lightMap: !! material.lightMap,
			aoMap: !! material.aoMap,
			emissiveMap: !! material.emissiveMap,
			emissiveMapEncoding: getTextureEncodingFromMap( material.emissiveMap, renderer.gammaInput ),
			bumpMap: !! material.bumpMap,
			normalMap: !! material.normalMap,
			displacementMap: !! material.displacementMap,
			roughnessMap: !! material.roughnessMap,
			metalnessMap: !! material.metalnessMap,
			specularMap: !! material.specularMap,
			alphaMap: !! material.alphaMap,

			gradientMap: !! material.gradientMap,

			combine: material.combine,

			vertexColors: material.vertexColors,

			fog: !! fog,
			useFog: material.fog,
			fogExp: ( fog && fog.isFogExp2 ),

			flatShading: material.shading === FlatShading,

			sizeAttenuation: material.sizeAttenuation,
			logarithmicDepthBuffer: capabilities.logarithmicDepthBuffer,

			skinning: material.skinning && maxBones > 0,
			maxBones: maxBones,
			useVertexTexture: capabilities.floatVertexTextures,

			morphTargets: material.morphTargets,
			morphNormals: material.morphNormals,
			maxMorphTargets: renderer.maxMorphTargets,
			maxMorphNormals: renderer.maxMorphNormals,

			numDirLights: lights.directional.length,
			numPointLights: lights.point.length,
			numSpotLights: lights.spot.length,
			numRectAreaLights: lights.rectArea.length,
			numHemiLights: lights.hemi.length,

			numClippingPlanes: nClipPlanes,
			numClipIntersection: nClipIntersection,

			dithering: material.dithering,

			shadowMapEnabled: renderer.shadowMap.enabled && object.receiveShadow && lights.shadows.length > 0,
			shadowMapType: renderer.shadowMap.type,

			toneMapping: renderer.toneMapping,
			physicallyCorrectLights: renderer.physicallyCorrectLights,

			premultipliedAlpha: material.premultipliedAlpha,

			alphaTest: material.alphaTest,
			doubleSided: material.side === DoubleSide,
			flipSided: material.side === BackSide,

			depthPacking: ( material.depthPacking !== undefined ) ? material.depthPacking : false

		};

		return parameters;

	};

	this.getProgramCode = function ( material, parameters ) {

		var array = [];

		if ( parameters.shaderID ) {

			array.push( parameters.shaderID );

		} else {

			array.push( material.fragmentShader );
			array.push( material.vertexShader );

		}

		if ( material.defines !== undefined ) {

			for ( var name in material.defines ) {

				array.push( name );
				array.push( material.defines[ name ] );

			}

		}

		for ( var i = 0; i < parameterNames.length; i ++ ) {

			array.push( parameters[ parameterNames[ i ] ] );

		}

		array.push( material.onBeforeCompile.toString() );

		array.push( renderer.gammaOutput );

		return array.join();

	};

	this.acquireProgram = function ( material, shader, parameters, code ) {

		var program;

		// Check if code has been already compiled
		for ( var p = 0, pl = programs.length; p < pl; p ++ ) {

			var programInfo = programs[ p ];

			if ( programInfo.code === code ) {

				program = programInfo;
				++ program.usedTimes;

				break;

			}

		}

		if ( program === undefined ) {

			program = new WebGLProgram( renderer, code, material, shader, parameters );
			programs.push( program );

		}

		return program;

	};

	this.releaseProgram = function ( program ) {

		if ( -- program.usedTimes === 0 ) {

			// Remove from unordered set
			var i = programs.indexOf( program );
			programs[ i ] = programs[ programs.length - 1 ];
			programs.pop();

			// Free WebGL resources
			program.destroy();

		}

	};

	// Exposed for resource monitoring & error feedback via renderer.info:
	this.programs = programs;

}

/**
 * @author mrdoob / http://mrdoob.com/
 */

function WebGLTextures( _gl, extensions, state, properties, capabilities, paramThreeToGL, infoMemory ) {

	var _isWebGL2 = ( typeof WebGL2RenderingContext !== 'undefined' && _gl instanceof WebGL2RenderingContext );

	//

	function clampToMaxSize( image, maxSize ) {

		if ( image.width > maxSize || image.height > maxSize ) {

			// Warning: Scaling through the canvas will only work with images that use
			// premultiplied alpha.

			var scale = maxSize / Math.max( image.width, image.height );

			var canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );
			canvas.width = Math.floor( image.width * scale );
			canvas.height = Math.floor( image.height * scale );

			var context = canvas.getContext( '2d' );
			context.drawImage( image, 0, 0, image.width, image.height, 0, 0, canvas.width, canvas.height );

			console.warn( 'THREE.WebGLRenderer: image is too big (' + image.width + 'x' + image.height + '). Resized to ' + canvas.width + 'x' + canvas.height, image );

			return canvas;

		}

		return image;

	}

	function isPowerOfTwo( image ) {

		return _Math.isPowerOfTwo( image.width ) && _Math.isPowerOfTwo( image.height );

	}

	function makePowerOfTwo( image ) {

		if ( image instanceof HTMLImageElement || image instanceof HTMLCanvasElement ) {

			var canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );
			canvas.width = _Math.nearestPowerOfTwo( image.width );
			canvas.height = _Math.nearestPowerOfTwo( image.height );

			var context = canvas.getContext( '2d' );
			context.drawImage( image, 0, 0, canvas.width, canvas.height );

			console.warn( 'THREE.WebGLRenderer: image is not power of two (' + image.width + 'x' + image.height + '). Resized to ' + canvas.width + 'x' + canvas.height, image );

			return canvas;

		}

		return image;

	}

	function textureNeedsPowerOfTwo( texture ) {

		return ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) ||
			( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter );

	}

	function textureNeedsGenerateMipmaps( texture, isPowerOfTwo ) {

		return texture.generateMipmaps && isPowerOfTwo &&
			texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;

	}

	// Fallback filters for non-power-of-2 textures

	function filterFallback( f ) {

		if ( f === NearestFilter || f === NearestMipMapNearestFilter || f === NearestMipMapLinearFilter ) {

			return _gl.NEAREST;

		}

		return _gl.LINEAR;

	}

	//

	function onTextureDispose( event ) {

		var texture = event.target;

		texture.removeEventListener( 'dispose', onTextureDispose );

		deallocateTexture( texture );

		infoMemory.textures --;


	}

	function onRenderTargetDispose( event ) {

		var renderTarget = event.target;

		renderTarget.removeEventListener( 'dispose', onRenderTargetDispose );

		deallocateRenderTarget( renderTarget );

		infoMemory.textures --;

	}

	//

	function deallocateTexture( texture ) {

		var textureProperties = properties.get( texture );

		if ( texture.image && textureProperties.__image__webglTextureCube ) {

			// cube texture

			_gl.deleteTexture( textureProperties.__image__webglTextureCube );

		} else {

			// 2D texture

			if ( textureProperties.__webglInit === undefined ) return;

			_gl.deleteTexture( textureProperties.__webglTexture );

		}

		// remove all webgl properties
		properties.remove( texture );

	}

	function deallocateRenderTarget( renderTarget ) {

		var renderTargetProperties = properties.get( renderTarget );
		var textureProperties = properties.get( renderTarget.texture );

		if ( ! renderTarget ) return;

		if ( textureProperties.__webglTexture !== undefined ) {

			_gl.deleteTexture( textureProperties.__webglTexture );

		}

		if ( renderTarget.depthTexture ) {

			renderTarget.depthTexture.dispose();

		}

		if ( renderTarget.isWebGLRenderTargetCube ) {

			for ( var i = 0; i < 6; i ++ ) {

				_gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] );
				if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] );

			}

		} else {

			_gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer );
			if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer );

		}

		properties.remove( renderTarget.texture );
		properties.remove( renderTarget );

	}

	//



	function setTexture2D( texture, slot ) {

		var textureProperties = properties.get( texture );

		if ( texture.version > 0 && textureProperties.__version !== texture.version ) {

			var image = texture.image;

			if ( image === undefined ) {

				console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is undefined', texture );

			} else if ( image.complete === false ) {

				console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete', texture );

			} else {

				uploadTexture( textureProperties, texture, slot );
				return;

			}

		}

		state.activeTexture( _gl.TEXTURE0 + slot );
		state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture );

	}

	function setTextureCube( texture, slot ) {

		var textureProperties = properties.get( texture );

		if ( texture.image.length === 6 ) {

			if ( texture.version > 0 && textureProperties.__version !== texture.version ) {

				if ( ! textureProperties.__image__webglTextureCube ) {

					texture.addEventListener( 'dispose', onTextureDispose );

					textureProperties.__image__webglTextureCube = _gl.createTexture();

					infoMemory.textures ++;

				}

				state.activeTexture( _gl.TEXTURE0 + slot );
				state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube );

				_gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY );

				var isCompressed = ( texture && texture.isCompressedTexture );
				var isDataTexture = ( texture.image[ 0 ] && texture.image[ 0 ].isDataTexture );

				var cubeImage = [];

				for ( var i = 0; i < 6; i ++ ) {

					if ( ! isCompressed && ! isDataTexture ) {

						cubeImage[ i ] = clampToMaxSize( texture.image[ i ], capabilities.maxCubemapSize );

					} else {

						cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ];

					}

				}

				var image = cubeImage[ 0 ],
				isPowerOfTwoImage = isPowerOfTwo( image ),
				glFormat = paramThreeToGL( texture.format ),
				glType = paramThreeToGL( texture.type );

				setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture, isPowerOfTwoImage );

				for ( var i = 0; i < 6; i ++ ) {

					if ( ! isCompressed ) {

						if ( isDataTexture ) {

							state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data );

						} else {

							state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, glFormat, glType, cubeImage[ i ] );

						}

					} else {

						var mipmap, mipmaps = cubeImage[ i ].mipmaps;

						for ( var j = 0, jl = mipmaps.length; j < jl; j ++ ) {

							mipmap = mipmaps[ j ];

							if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) {

								if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) {

									state.compressedTexImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, mipmap.data );

								} else {

									console.warn( "THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()" );

								}

							} else {

								state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );

							}

						}

					}

				}

				if ( textureNeedsGenerateMipmaps( texture, isPowerOfTwoImage ) ) {

					_gl.generateMipmap( _gl.TEXTURE_CUBE_MAP );

				}

				textureProperties.__version = texture.version;

				if ( texture.onUpdate ) texture.onUpdate( texture );

			} else {

				state.activeTexture( _gl.TEXTURE0 + slot );
				state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube );

			}

		}

	}

	function setTextureCubeDynamic( texture, slot ) {

		state.activeTexture( _gl.TEXTURE0 + slot );
		state.bindTexture( _gl.TEXTURE_CUBE_MAP, properties.get( texture ).__webglTexture );

	}

	function setTextureParameters( textureType, texture, isPowerOfTwoImage ) {

		var extension;

		if ( isPowerOfTwoImage ) {

			_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, paramThreeToGL( texture.wrapS ) );
			_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, paramThreeToGL( texture.wrapT ) );

			_gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, paramThreeToGL( texture.magFilter ) );
			_gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, paramThreeToGL( texture.minFilter ) );

		} else {

			_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE );
			_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE );

			if ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) {

				console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.', texture );

			}

			_gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, filterFallback( texture.magFilter ) );
			_gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, filterFallback( texture.minFilter ) );

			if ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) {

				console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.', texture );

			}

		}

		extension = extensions.get( 'EXT_texture_filter_anisotropic' );

		if ( extension ) {

			if ( texture.type === FloatType && extensions.get( 'OES_texture_float_linear' ) === null ) return;
			if ( texture.type === HalfFloatType && extensions.get( 'OES_texture_half_float_linear' ) === null ) return;

			if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) {

				_gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, capabilities.getMaxAnisotropy() ) );
				properties.get( texture ).__currentAnisotropy = texture.anisotropy;

			}

		}

	}

	function uploadTexture( textureProperties, texture, slot ) {

		if ( textureProperties.__webglInit === undefined ) {

			textureProperties.__webglInit = true;

			texture.addEventListener( 'dispose', onTextureDispose );

			textureProperties.__webglTexture = _gl.createTexture();

			infoMemory.textures ++;

		}

		state.activeTexture( _gl.TEXTURE0 + slot );
		state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture );

		_gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY );
		_gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha );
		_gl.pixelStorei( _gl.UNPACK_ALIGNMENT, texture.unpackAlignment );

		var image = clampToMaxSize( texture.image, capabilities.maxTextureSize );

		if ( textureNeedsPowerOfTwo( texture ) && isPowerOfTwo( image ) === false ) {

			image = makePowerOfTwo( image );

		}

		var isPowerOfTwoImage = isPowerOfTwo( image ),
		glFormat = paramThreeToGL( texture.format ),
		glType = paramThreeToGL( texture.type );

		setTextureParameters( _gl.TEXTURE_2D, texture, isPowerOfTwoImage );

		var mipmap, mipmaps = texture.mipmaps;

		if ( texture.isDepthTexture ) {

			// populate depth texture with dummy data

			var internalFormat = _gl.DEPTH_COMPONENT;

			if ( texture.type === FloatType ) {

				if ( !_isWebGL2 ) throw new Error('Float Depth Texture only supported in WebGL2.0');
				internalFormat = _gl.DEPTH_COMPONENT32F;

			} else if ( _isWebGL2 ) {

				// WebGL 2.0 requires signed internalformat for glTexImage2D
				internalFormat = _gl.DEPTH_COMPONENT16;

			}

			if ( texture.format === DepthFormat && internalFormat === _gl.DEPTH_COMPONENT ) {

				// The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
				// DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT
				// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
				if ( texture.type !== UnsignedShortType && texture.type !== UnsignedIntType ) {

				        console.warn( 'THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.' );

					texture.type = UnsignedShortType;
					glType = paramThreeToGL( texture.type );

				}

			}

			// Depth stencil textures need the DEPTH_STENCIL internal format
			// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
			if ( texture.format === DepthStencilFormat ) {

				internalFormat = _gl.DEPTH_STENCIL;

				// The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
				// DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL.
				// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
				if ( texture.type !== UnsignedInt248Type ) {

					console.warn( 'THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.' );

					texture.type = UnsignedInt248Type;
					glType = paramThreeToGL( texture.type );

				}

			}

			state.texImage2D( _gl.TEXTURE_2D, 0, internalFormat, image.width, image.height, 0, glFormat, glType, null );

		} else if ( texture.isDataTexture ) {

			// use manually created mipmaps if available
			// if there are no manual mipmaps
			// set 0 level mipmap and then use GL to generate other mipmap levels

			if ( mipmaps.length > 0 && isPowerOfTwoImage ) {

				for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {

					mipmap = mipmaps[ i ];
					state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );

				}

				texture.generateMipmaps = false;

			} else {

				state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, image.width, image.height, 0, glFormat, glType, image.data );

			}

		} else if ( texture.isCompressedTexture ) {

			for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {

				mipmap = mipmaps[ i ];

				if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) {

					if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) {

						state.compressedTexImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, mipmap.data );

					} else {

						console.warn( "THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()" );

					}

				} else {

					state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );

				}

			}

		} else {

			// regular Texture (image, video, canvas)

			// use manually created mipmaps if available
			// if there are no manual mipmaps
			// set 0 level mipmap and then use GL to generate other mipmap levels

			if ( mipmaps.length > 0 && isPowerOfTwoImage ) {

				for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {

					mipmap = mipmaps[ i ];
					state.texImage2D( _gl.TEXTURE_2D, i, glFormat, glFormat, glType, mipmap );

				}

				texture.generateMipmaps = false;

			} else {

				state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, glFormat, glType, image );

			}

		}

		if ( textureNeedsGenerateMipmaps( texture, isPowerOfTwoImage ) ) _gl.generateMipmap( _gl.TEXTURE_2D );

		textureProperties.__version = texture.version;

		if ( texture.onUpdate ) texture.onUpdate( texture );

	}

	// Render targets

	// Setup storage for target texture and bind it to correct framebuffer
	function setupFrameBufferTexture( framebuffer, renderTarget, attachment, textureTarget ) {

		var glFormat = paramThreeToGL( renderTarget.texture.format );
		var glType = paramThreeToGL( renderTarget.texture.type );
		state.texImage2D( textureTarget, 0, glFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null );
		_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
		_gl.framebufferTexture2D( _gl.FRAMEBUFFER, attachment, textureTarget, properties.get( renderTarget.texture ).__webglTexture, 0 );
		_gl.bindFramebuffer( _gl.FRAMEBUFFER, null );

	}

	// Setup storage for internal depth/stencil buffers and bind to correct framebuffer
	function setupRenderBufferStorage( renderbuffer, renderTarget ) {

		_gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer );

		if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) {

			_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_COMPONENT16, renderTarget.width, renderTarget.height );
			_gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer );

		} else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) {

			_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height );
			_gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer );

		} else {

			// FIXME: We don't support !depth !stencil
			_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.RGBA4, renderTarget.width, renderTarget.height );

		}

		_gl.bindRenderbuffer( _gl.RENDERBUFFER, null );

	}

	// Setup resources for a Depth Texture for a FBO (needs an extension)
	function setupDepthTexture( framebuffer, renderTarget ) {

		var isCube = ( renderTarget && renderTarget.isWebGLRenderTargetCube );
		if ( isCube ) throw new Error('Depth Texture with cube render targets is not supported!');

		_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );

		if ( !( renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture ) ) {

			throw new Error('renderTarget.depthTexture must be an instance of THREE.DepthTexture');

		}

		// upload an empty depth texture with framebuffer size
		if ( !properties.get( renderTarget.depthTexture ).__webglTexture ||
				renderTarget.depthTexture.image.width !== renderTarget.width ||
				renderTarget.depthTexture.image.height !== renderTarget.height ) {
			renderTarget.depthTexture.image.width = renderTarget.width;
			renderTarget.depthTexture.image.height = renderTarget.height;
			renderTarget.depthTexture.needsUpdate = true;
		}

		setTexture2D( renderTarget.depthTexture, 0 );

		var webglDepthTexture = properties.get( renderTarget.depthTexture ).__webglTexture;

		if ( renderTarget.depthTexture.format === DepthFormat ) {

			_gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 );

		} else if ( renderTarget.depthTexture.format === DepthStencilFormat ) {

			_gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 );

		} else {

			throw new Error('Unknown depthTexture format')

		}

	}

	// Setup GL resources for a non-texture depth buffer
	function setupDepthRenderbuffer( renderTarget ) {

		var renderTargetProperties = properties.get( renderTarget );

		var isCube = ( renderTarget.isWebGLRenderTargetCube === true );

		if ( renderTarget.depthTexture ) {

			if ( isCube ) throw new Error('target.depthTexture not supported in Cube render targets');

			setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget );

		} else {

			if ( isCube ) {

				renderTargetProperties.__webglDepthbuffer = [];

				for ( var i = 0; i < 6; i ++ ) {

					_gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[ i ] );
					renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer();
					setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget );

				}

			} else {

				_gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer );
				renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer();
				setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget );

			}

		}

		_gl.bindFramebuffer( _gl.FRAMEBUFFER, null );

	}

	// Set up GL resources for the render target
	function setupRenderTarget( renderTarget ) {

		var renderTargetProperties = properties.get( renderTarget );
		var textureProperties = properties.get( renderTarget.texture );

		renderTarget.addEventListener( 'dispose', onRenderTargetDispose );

		textureProperties.__webglTexture = _gl.createTexture();

		infoMemory.textures ++;

		var isCube = ( renderTarget.isWebGLRenderTargetCube === true );
		var isTargetPowerOfTwo = isPowerOfTwo( renderTarget );

		// Setup framebuffer

		if ( isCube ) {

			renderTargetProperties.__webglFramebuffer = [];

			for ( var i = 0; i < 6; i ++ ) {

				renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer();

			}

		} else {

			renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer();

		}

		// Setup color buffer

		if ( isCube ) {

			state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture );
			setTextureParameters( _gl.TEXTURE_CUBE_MAP, renderTarget.texture, isTargetPowerOfTwo );

			for ( var i = 0; i < 6; i ++ ) {

				setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i );

			}

			if ( textureNeedsGenerateMipmaps( renderTarget.texture, isTargetPowerOfTwo ) ) _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP );
			state.bindTexture( _gl.TEXTURE_CUBE_MAP, null );

		} else {

			state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture );
			setTextureParameters( _gl.TEXTURE_2D, renderTarget.texture, isTargetPowerOfTwo );
			setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D );

			if ( textureNeedsGenerateMipmaps( renderTarget.texture, isTargetPowerOfTwo ) ) _gl.generateMipmap( _gl.TEXTURE_2D );
			state.bindTexture( _gl.TEXTURE_2D, null );

		}

		// Setup depth and stencil buffers

		if ( renderTarget.depthBuffer ) {

			setupDepthRenderbuffer( renderTarget );

		}

	}

	function updateRenderTargetMipmap( renderTarget ) {

		var texture = renderTarget.texture;
		var isTargetPowerOfTwo = isPowerOfTwo( renderTarget );

		if ( textureNeedsGenerateMipmaps( texture, isTargetPowerOfTwo ) ) {

			var target = renderTarget.isWebGLRenderTargetCube ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D;
			var webglTexture = properties.get( texture ).__webglTexture;

			state.bindTexture( target, webglTexture );
			_gl.generateMipmap( target );
			state.bindTexture( target, null );

		}

	}

	this.setTexture2D = setTexture2D;
	this.setTextureCube = setTextureCube;
	this.setTextureCubeDynamic = setTextureCubeDynamic;
	this.setupRenderTarget = setupRenderTarget;
	this.updateRenderTargetMipmap = updateRenderTargetMipmap;

}

/**
 * @author fordacious / fordacious.github.io
 */

function WebGLProperties() {

	var properties = {};

	function get( object ) {

		var uuid = object.uuid;
		var map = properties[ uuid ];

		if ( map === undefined ) {

			map = {};
			properties[ uuid ] = map;

		}

		return map;

	}

	function remove( object ) {

		delete properties[ object.uuid ];

	}

	function clear() {

		properties = {};

	}

	return {
		get: get,
		remove: remove,
		clear: clear
	};

}

/**
 * @author mrdoob / http://mrdoob.com/
 */

function WebGLState( gl, extensions, paramThreeToGL ) {

	function ColorBuffer() {

		var locked = false;

		var color = new Vector4();
		var currentColorMask = null;
		var currentColorClear = new Vector4();

		return {

			setMask: function ( colorMask ) {

				if ( currentColorMask !== colorMask && ! locked ) {

					gl.colorMask( colorMask, colorMask, colorMask, colorMask );
					currentColorMask = colorMask;

				}

			},

			setLocked: function ( lock ) {

				locked = lock;

			},

			setClear: function ( r, g, b, a, premultipliedAlpha ) {

				if ( premultipliedAlpha === true ) {

					r *= a; g *= a; b *= a;

				}

				color.set( r, g, b, a );

				if ( currentColorClear.equals( color ) === false ) {

					gl.clearColor( r, g, b, a );
					currentColorClear.copy( color );

				}

			},

			reset: function () {

				locked = false;

				currentColorMask = null;
				currentColorClear.set( 0, 0, 0, 1 );

			}

		};

	}

	function DepthBuffer() {

		var locked = false;

		var currentDepthMask = null;
		var currentDepthFunc = null;
		var currentDepthClear = null;

		return {

			setTest: function ( depthTest ) {

				if ( depthTest ) {

					enable( gl.DEPTH_TEST );

				} else {

					disable( gl.DEPTH_TEST );

				}

			},

			setMask: function ( depthMask ) {

				if ( currentDepthMask !== depthMask && ! locked ) {

					gl.depthMask( depthMask );
					currentDepthMask = depthMask;

				}

			},

			setFunc: function ( depthFunc ) {

				if ( currentDepthFunc !== depthFunc ) {

					if ( depthFunc ) {

						switch ( depthFunc ) {

							case NeverDepth:

								gl.depthFunc( gl.NEVER );
								break;

							case AlwaysDepth:

								gl.depthFunc( gl.ALWAYS );
								break;

							case LessDepth:

								gl.depthFunc( gl.LESS );
								break;

							case LessEqualDepth:

								gl.depthFunc( gl.LEQUAL );
								break;

							case EqualDepth:

								gl.depthFunc( gl.EQUAL );
								break;

							case GreaterEqualDepth:

								gl.depthFunc( gl.GEQUAL );
								break;

							case GreaterDepth:

								gl.depthFunc( gl.GREATER );
								break;

							case NotEqualDepth:

								gl.depthFunc( gl.NOTEQUAL );
								break;

							default:

								gl.depthFunc( gl.LEQUAL );

						}

					} else {

						gl.depthFunc( gl.LEQUAL );

					}

					currentDepthFunc = depthFunc;

				}

			},

			setLocked: function ( lock ) {

				locked = lock;

			},

			setClear: function ( depth ) {

				if ( currentDepthClear !== depth ) {

					gl.clearDepth( depth );
					currentDepthClear = depth;

				}

			},

			reset: function () {

				locked = false;

				currentDepthMask = null;
				currentDepthFunc = null;
				currentDepthClear = null;

			}

		};

	}

	function StencilBuffer() {

		var locked = false;

		var currentStencilMask = null;
		var currentStencilFunc = null;
		var currentStencilRef = null;
		var currentStencilFuncMask = null;
		var currentStencilFail = null;
		var currentStencilZFail = null;
		var currentStencilZPass = null;
		var currentStencilClear = null;

		return {

			setTest: function ( stencilTest ) {

				if ( stencilTest ) {

					enable( gl.STENCIL_TEST );

				} else {

					disable( gl.STENCIL_TEST );

				}

			},

			setMask: function ( stencilMask ) {

				if ( currentStencilMask !== stencilMask && ! locked ) {

					gl.stencilMask( stencilMask );
					currentStencilMask = stencilMask;

				}

			},

			setFunc: function ( stencilFunc, stencilRef, stencilMask ) {

				if ( currentStencilFunc !== stencilFunc ||
				     currentStencilRef 	!== stencilRef 	||
				     currentStencilFuncMask !== stencilMask ) {

					gl.stencilFunc( stencilFunc, stencilRef, stencilMask );

					currentStencilFunc = stencilFunc;
					currentStencilRef = stencilRef;
					currentStencilFuncMask = stencilMask;

				}

			},

			setOp: function ( stencilFail, stencilZFail, stencilZPass ) {

				if ( currentStencilFail	 !== stencilFail 	||
				     currentStencilZFail !== stencilZFail ||
				     currentStencilZPass !== stencilZPass ) {

					gl.stencilOp( stencilFail, stencilZFail, stencilZPass );

					currentStencilFail = stencilFail;
					currentStencilZFail = stencilZFail;
					currentStencilZPass = stencilZPass;

				}

			},

			setLocked: function ( lock ) {

				locked = lock;

			},

			setClear: function ( stencil ) {

				if ( currentStencilClear !== stencil ) {

					gl.clearStencil( stencil );
					currentStencilClear = stencil;

				}

			},

			reset: function () {

				locked = false;

				currentStencilMask = null;
				currentStencilFunc = null;
				currentStencilRef = null;
				currentStencilFuncMask = null;
				currentStencilFail = null;
				currentStencilZFail = null;
				currentStencilZPass = null;
				currentStencilClear = null;

			}

		};

	}

	//

	var colorBuffer = new ColorBuffer();
	var depthBuffer = new DepthBuffer();
	var stencilBuffer = new StencilBuffer();

	var maxVertexAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS );
	var newAttributes = new Uint8Array( maxVertexAttributes );
	var enabledAttributes = new Uint8Array( maxVertexAttributes );
	var attributeDivisors = new Uint8Array( maxVertexAttributes );

	var capabilities = {};

	var compressedTextureFormats = null;

	var currentBlending = null;
	var currentBlendEquation = null;
	var currentBlendSrc = null;
	var currentBlendDst = null;
	var currentBlendEquationAlpha = null;
	var currentBlendSrcAlpha = null;
	var currentBlendDstAlpha = null;
	var currentPremultipledAlpha = false;

	var currentFlipSided = null;
	var currentCullFace = null;

	var currentLineWidth = null;

	var currentPolygonOffsetFactor = null;
	var currentPolygonOffsetUnits = null;

	var currentScissorTest = null;

	var maxTextures = gl.getParameter( gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS );

	var version = parseFloat( /^WebGL\ ([0-9])/.exec( gl.getParameter( gl.VERSION ) )[ 1 ] );
	var lineWidthAvailable = parseFloat( version ) >= 1.0;

	var currentTextureSlot = null;
	var currentBoundTextures = {};

	var currentScissor = new Vector4();
	var currentViewport = new Vector4();

	function createTexture( type, target, count ) {

		var data = new Uint8Array( 4 ); // 4 is required to match default unpack alignment of 4.
		var texture = gl.createTexture();

		gl.bindTexture( type, texture );
		gl.texParameteri( type, gl.TEXTURE_MIN_FILTER, gl.NEAREST );
		gl.texParameteri( type, gl.TEXTURE_MAG_FILTER, gl.NEAREST );

		for ( var i = 0; i < count; i ++ ) {

			gl.texImage2D( target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data );

		}

		return texture;

	}

	var emptyTextures = {};
	emptyTextures[ gl.TEXTURE_2D ] = createTexture( gl.TEXTURE_2D, gl.TEXTURE_2D, 1 );
	emptyTextures[ gl.TEXTURE_CUBE_MAP ] = createTexture( gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6 );

	//

	function init() {

		colorBuffer.setClear( 0, 0, 0, 1 );
		depthBuffer.setClear( 1 );
		stencilBuffer.setClear( 0 );

		enable( gl.DEPTH_TEST );
		depthBuffer.setFunc( LessEqualDepth );

		setFlipSided( false );
		setCullFace( CullFaceBack );
		enable( gl.CULL_FACE );

		enable( gl.BLEND );
		setBlending( NormalBlending );

	}

	function initAttributes() {

		for ( var i = 0, l = newAttributes.length; i < l; i ++ ) {

			newAttributes[ i ] = 0;

		}

	}

	function enableAttribute( attribute ) {

		newAttributes[ attribute ] = 1;

		if ( enabledAttributes[ attribute ] === 0 ) {

			gl.enableVertexAttribArray( attribute );
			enabledAttributes[ attribute ] = 1;

		}

		if ( attributeDivisors[ attribute ] !== 0 ) {

			var extension = extensions.get( 'ANGLE_instanced_arrays' );

			extension.vertexAttribDivisorANGLE( attribute, 0 );
			attributeDivisors[ attribute ] = 0;

		}

	}

	function enableAttributeAndDivisor( attribute, meshPerAttribute ) {

		newAttributes[ attribute ] = 1;

		if ( enabledAttributes[ attribute ] === 0 ) {

			gl.enableVertexAttribArray( attribute );
			enabledAttributes[ attribute ] = 1;

		}

		if ( attributeDivisors[ attribute ] !== meshPerAttribute ) {

			var extension = extensions.get( 'ANGLE_instanced_arrays' );

			extension.vertexAttribDivisorANGLE( attribute, meshPerAttribute );
			attributeDivisors[ attribute ] = meshPerAttribute;

		}

	}

	function disableUnusedAttributes() {

		for ( var i = 0, l = enabledAttributes.length; i !== l; ++ i ) {

			if ( enabledAttributes[ i ] !== newAttributes[ i ] ) {

				gl.disableVertexAttribArray( i );
				enabledAttributes[ i ] = 0;

			}

		}

	}

	function enable( id ) {

		if ( capabilities[ id ] !== true ) {

			gl.enable( id );
			capabilities[ id ] = true;

		}

	}

	function disable( id ) {

		if ( capabilities[ id ] !== false ) {

			gl.disable( id );
			capabilities[ id ] = false;

		}

	}

	function getCompressedTextureFormats() {

		if ( compressedTextureFormats === null ) {

			compressedTextureFormats = [];

			if ( extensions.get( 'WEBGL_compressed_texture_pvrtc' ) ||
			     extensions.get( 'WEBGL_compressed_texture_s3tc' ) ||
			     extensions.get( 'WEBGL_compressed_texture_etc1' ) ) {

				var formats = gl.getParameter( gl.COMPRESSED_TEXTURE_FORMATS );

				for ( var i = 0; i < formats.length; i ++ ) {

					compressedTextureFormats.push( formats[ i ] );

				}

			}

		}

		return compressedTextureFormats;

	}

	function setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) {

		if ( blending !== NoBlending ) {

			enable( gl.BLEND );

		} else {

			disable( gl.BLEND );

		}

		if ( ( blending !== CustomBlending ) && ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) ) {

			if ( blending === AdditiveBlending ) {

				if ( premultipliedAlpha ) {

					gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
					gl.blendFuncSeparate( gl.ONE, gl.ONE, gl.ONE, gl.ONE );

				} else {

					gl.blendEquation( gl.FUNC_ADD );
					gl.blendFunc( gl.SRC_ALPHA, gl.ONE );

				}

			} else if ( blending === SubtractiveBlending ) {

				if ( premultipliedAlpha ) {

					gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
					gl.blendFuncSeparate( gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA );

				} else {

					gl.blendEquation( gl.FUNC_ADD );
					gl.blendFunc( gl.ZERO, gl.ONE_MINUS_SRC_COLOR );

				}

			} else if ( blending === MultiplyBlending ) {

				if ( premultipliedAlpha ) {

					gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
					gl.blendFuncSeparate( gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA );

				} else {

					gl.blendEquation( gl.FUNC_ADD );
					gl.blendFunc( gl.ZERO, gl.SRC_COLOR );

				}

			} else {

				if ( premultipliedAlpha ) {

					gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
					gl.blendFuncSeparate( gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA );

				} else {

					gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
					gl.blendFuncSeparate( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA );

				}

			}

			currentBlending = blending;
			currentPremultipledAlpha = premultipliedAlpha;

		}

		if ( blending === CustomBlending ) {

			blendEquationAlpha = blendEquationAlpha || blendEquation;
			blendSrcAlpha = blendSrcAlpha || blendSrc;
			blendDstAlpha = blendDstAlpha || blendDst;

			if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) {

				gl.blendEquationSeparate( paramThreeToGL( blendEquation ), paramThreeToGL( blendEquationAlpha ) );

				currentBlendEquation = blendEquation;
				currentBlendEquationAlpha = blendEquationAlpha;

			}

			if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) {

				gl.blendFuncSeparate( paramThreeToGL( blendSrc ), paramThreeToGL( blendDst ), paramThreeToGL( blendSrcAlpha ), paramThreeToGL( blendDstAlpha ) );

				currentBlendSrc = blendSrc;
				currentBlendDst = blendDst;
				currentBlendSrcAlpha = blendSrcAlpha;
				currentBlendDstAlpha = blendDstAlpha;

			}

		} else {

			currentBlendEquation = null;
			currentBlendSrc = null;
			currentBlendDst = null;
			currentBlendEquationAlpha = null;
			currentBlendSrcAlpha = null;
			currentBlendDstAlpha = null;

		}

	}

	function setMaterial( material ) {

		material.side === DoubleSide
			? disable( gl.CULL_FACE )
			: enable( gl.CULL_FACE );

		setFlipSided( material.side === BackSide );

		material.transparent === true
			? setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha )
			: setBlending( NoBlending );

		depthBuffer.setFunc( material.depthFunc );
		depthBuffer.setTest( material.depthTest );
		depthBuffer.setMask( material.depthWrite );
		colorBuffer.setMask( material.colorWrite );

		setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits );

	}

	//

	function setFlipSided( flipSided ) {

		if ( currentFlipSided !== flipSided ) {

			if ( flipSided ) {

				gl.frontFace( gl.CW );

			} else {

				gl.frontFace( gl.CCW );

			}

			currentFlipSided = flipSided;

		}

	}

	function setCullFace( cullFace ) {

		if ( cullFace !== CullFaceNone ) {

			enable( gl.CULL_FACE );

			if ( cullFace !== currentCullFace ) {

				if ( cullFace === CullFaceBack ) {

					gl.cullFace( gl.BACK );

				} else if ( cullFace === CullFaceFront ) {

					gl.cullFace( gl.FRONT );

				} else {

					gl.cullFace( gl.FRONT_AND_BACK );

				}

			}

		} else {

			disable( gl.CULL_FACE );

		}

		currentCullFace = cullFace;

	}

	function setLineWidth( width ) {

		if ( width !== currentLineWidth ) {

			if ( lineWidthAvailable ) gl.lineWidth( width );

			currentLineWidth = width;

		}

	}

	function setPolygonOffset( polygonOffset, factor, units ) {

		if ( polygonOffset ) {

			enable( gl.POLYGON_OFFSET_FILL );

			if ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) {

				gl.polygonOffset( factor, units );

				currentPolygonOffsetFactor = factor;
				currentPolygonOffsetUnits = units;

			}

		} else {

			disable( gl.POLYGON_OFFSET_FILL );

		}

	}

	function getScissorTest() {

		return currentScissorTest;

	}

	function setScissorTest( scissorTest ) {

		currentScissorTest = scissorTest;

		if ( scissorTest ) {

			enable( gl.SCISSOR_TEST );

		} else {

			disable( gl.SCISSOR_TEST );

		}

	}

	// texture

	function activeTexture( webglSlot ) {

		if ( webglSlot === undefined ) webglSlot = gl.TEXTURE0 + maxTextures - 1;

		if ( currentTextureSlot !== webglSlot ) {

			gl.activeTexture( webglSlot );
			currentTextureSlot = webglSlot;

		}

	}

	function bindTexture( webglType, webglTexture ) {

		if ( currentTextureSlot === null ) {

			activeTexture();

		}

		var boundTexture = currentBoundTextures[ currentTextureSlot ];

		if ( boundTexture === undefined ) {

			boundTexture = { type: undefined, texture: undefined };
			currentBoundTextures[ currentTextureSlot ] = boundTexture;

		}

		if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) {

			gl.bindTexture( webglType, webglTexture || emptyTextures[ webglType ] );

			boundTexture.type = webglType;
			boundTexture.texture = webglTexture;

		}

	}

	function compressedTexImage2D() {

		try {

			gl.compressedTexImage2D.apply( gl, arguments );

		} catch ( error ) {

			console.error( 'THREE.WebGLState:', error );

		}

	}

	function texImage2D() {

		try {

			gl.texImage2D.apply( gl, arguments );

		} catch ( error ) {

			console.error( 'THREE.WebGLState:', error );

		}

	}

	//

	function scissor( scissor ) {

		if ( currentScissor.equals( scissor ) === false ) {

			gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w );
			currentScissor.copy( scissor );

		}

	}

	function viewport( viewport ) {

		if ( currentViewport.equals( viewport ) === false ) {

			gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w );
			currentViewport.copy( viewport );

		}

	}

	//

	function reset() {

		for ( var i = 0; i < enabledAttributes.length; i ++ ) {

			if ( enabledAttributes[ i ] === 1 ) {

				gl.disableVertexAttribArray( i );
				enabledAttributes[ i ] = 0;

			}

		}

		capabilities = {};

		compressedTextureFormats = null;

		currentTextureSlot = null;
		currentBoundTextures = {};

		currentBlending = null;

		currentFlipSided = null;
		currentCullFace = null;

		colorBuffer.reset();
		depthBuffer.reset();
		stencilBuffer.reset();

	}

	return {

		buffers: {
			color: colorBuffer,
			depth: depthBuffer,
			stencil: stencilBuffer
		},

		init: init,
		initAttributes: initAttributes,
		enableAttribute: enableAttribute,
		enableAttributeAndDivisor: enableAttributeAndDivisor,
		disableUnusedAttributes: disableUnusedAttributes,
		enable: enable,
		disable: disable,
		getCompressedTextureFormats: getCompressedTextureFormats,

		setBlending: setBlending,
		setMaterial: setMaterial,

		setFlipSided: setFlipSided,
		setCullFace: setCullFace,

		setLineWidth: setLineWidth,
		setPolygonOffset: setPolygonOffset,

		getScissorTest: getScissorTest,
		setScissorTest: setScissorTest,

		activeTexture: activeTexture,
		bindTexture: bindTexture,
		compressedTexImage2D: compressedTexImage2D,
		texImage2D: texImage2D,

		scissor: scissor,
		viewport: viewport,

		reset: reset

	};

}

/**
 * @author mrdoob / http://mrdoob.com/
 */

function WebGLCapabilities( gl, extensions, parameters ) {

	var maxAnisotropy;

	function getMaxAnisotropy() {

		if ( maxAnisotropy !== undefined ) return maxAnisotropy;

		var extension = extensions.get( 'EXT_texture_filter_anisotropic' );

		if ( extension !== null ) {

			maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT );

		} else {

			maxAnisotropy = 0;

		}

		return maxAnisotropy;

	}

	function getMaxPrecision( precision ) {

		if ( precision === 'highp' ) {

			if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.HIGH_FLOAT ).precision > 0 &&
			     gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.HIGH_FLOAT ).precision > 0 ) {

				return 'highp';

			}

			precision = 'mediump';

		}

		if ( precision === 'mediump' ) {

			if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.MEDIUM_FLOAT ).precision > 0 &&
			     gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT ).precision > 0 ) {

				return 'mediump';

			}

		}

		return 'lowp';

	}

	var precision = parameters.precision !== undefined ? parameters.precision : 'highp';
	var maxPrecision = getMaxPrecision( precision );

	if ( maxPrecision !== precision ) {

		console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' );
		precision = maxPrecision;

	}

	var logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true && !! extensions.get( 'EXT_frag_depth' );

	var maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS );
	var maxVertexTextures = gl.getParameter( gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS );
	var maxTextureSize = gl.getParameter( gl.MAX_TEXTURE_SIZE );
	var maxCubemapSize = gl.getParameter( gl.MAX_CUBE_MAP_TEXTURE_SIZE );

	var maxAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS );
	var maxVertexUniforms = gl.getParameter( gl.MAX_VERTEX_UNIFORM_VECTORS );
	var maxVaryings = gl.getParameter( gl.MAX_VARYING_VECTORS );
	var maxFragmentUniforms = gl.getParameter( gl.MAX_FRAGMENT_UNIFORM_VECTORS );

	var vertexTextures = maxVertexTextures > 0;
	var floatFragmentTextures = !! extensions.get( 'OES_texture_float' );
	var floatVertexTextures = vertexTextures && floatFragmentTextures;

	return {

		getMaxAnisotropy: getMaxAnisotropy,
		getMaxPrecision: getMaxPrecision,

		precision: precision,
		logarithmicDepthBuffer: logarithmicDepthBuffer,

		maxTextures: maxTextures,
		maxVertexTextures: maxVertexTextures,
		maxTextureSize: maxTextureSize,
		maxCubemapSize: maxCubemapSize,

		maxAttributes: maxAttributes,
		maxVertexUniforms: maxVertexUniforms,
		maxVaryings: maxVaryings,
		maxFragmentUniforms: maxFragmentUniforms,

		vertexTextures: vertexTextures,
		floatFragmentTextures: floatFragmentTextures,
		floatVertexTextures: floatVertexTextures

	};

}

/**
 * @author mrdoob / http://mrdoob.com/
 */

function ArrayCamera( array ) {

	PerspectiveCamera.call( this );

	this.cameras = array || [];

}

ArrayCamera.prototype = Object.assign( Object.create( PerspectiveCamera.prototype ), {

	constructor: ArrayCamera,

	isArrayCamera: true

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function WebVRManager( renderer ) {

	var scope = this;

	var device = null;
	var frameData = null;

	if ( 'VRFrameData' in window ) {

		frameData = new window.VRFrameData();

	}

	var matrixWorldInverse = new Matrix4();

	var standingMatrix = new Matrix4();
	var standingMatrixInverse = new Matrix4();

	var cameraL = new PerspectiveCamera();
	cameraL.bounds = new Vector4( 0.0, 0.0, 0.5, 1.0 );
	cameraL.layers.enable( 1 );

	var cameraR = new PerspectiveCamera();
	cameraR.bounds = new Vector4( 0.5, 0.0, 0.5, 1.0 );
	cameraR.layers.enable( 2 );

	var cameraVR = new ArrayCamera( [ cameraL, cameraR ] );
	cameraVR.layers.enable( 1 );
	cameraVR.layers.enable( 2 );

	//

	var currentSize, currentPixelRatio;

	function onVRDisplayPresentChange() {

		if ( device.isPresenting ) {

			var eyeParameters = device.getEyeParameters( 'left' );
			var renderWidth = eyeParameters.renderWidth;
			var renderHeight = eyeParameters.renderHeight;

			currentPixelRatio = renderer.getPixelRatio();
			currentSize = renderer.getSize();

			renderer.setDrawingBufferSize( renderWidth * 2, renderHeight, 1 );

		} else if ( scope.enabled ) {

			renderer.setDrawingBufferSize( currentSize.width, currentSize.height, currentPixelRatio );

		}

	}

	window.addEventListener( 'vrdisplaypresentchange', onVRDisplayPresentChange, false );

	//

	this.enabled = false;
	this.standing = false;

	this.getDevice = function () {

		return device;

	};

	this.setDevice = function ( value ) {

		if ( value !== undefined ) device = value;

	};

	this.getCamera = function ( camera ) {

		if ( device === null ) return camera;

		device.depthNear = camera.near;
		device.depthFar = camera.far;

		device.getFrameData( frameData );

		//

		var pose = frameData.pose;

		if ( pose.position !== null ) {

			camera.position.fromArray( pose.position );

		} else {

			camera.position.set( 0, 0, 0 );

		}

		if ( pose.orientation !== null ) {

			camera.quaternion.fromArray( pose.orientation );

		}

		camera.updateMatrixWorld();

		var stageParameters = device.stageParameters;

		if ( this.standing && stageParameters ) {

			standingMatrix.fromArray( stageParameters.sittingToStandingTransform );
			standingMatrixInverse.getInverse( standingMatrix );

			camera.matrixWorld.multiply( standingMatrix );
			camera.matrixWorldInverse.multiply( standingMatrixInverse );

		}

		if ( device.isPresenting === false ) return camera;

		//

		cameraVR.matrixWorld.copy( camera.matrixWorld );
		cameraVR.matrixWorldInverse.copy( camera.matrixWorldInverse );

		cameraL.matrixWorldInverse.fromArray( frameData.leftViewMatrix );
		cameraR.matrixWorldInverse.fromArray( frameData.rightViewMatrix );

		if ( this.standing && stageParameters ) {

			cameraL.matrixWorldInverse.multiply( standingMatrixInverse );
			cameraR.matrixWorldInverse.multiply( standingMatrixInverse );

		}

		var parent = camera.parent;

		if ( parent !== null ) {

			matrixWorldInverse.getInverse( parent.matrixWorld );

			cameraL.matrixWorldInverse.multiply( matrixWorldInverse );
			cameraR.matrixWorldInverse.multiply( matrixWorldInverse );

		}

		// envMap and Mirror needs camera.matrixWorld

		cameraL.matrixWorld.getInverse( cameraL.matrixWorldInverse );
		cameraR.matrixWorld.getInverse( cameraR.matrixWorldInverse );

		cameraL.projectionMatrix.fromArray( frameData.leftProjectionMatrix );
		cameraR.projectionMatrix.fromArray( frameData.rightProjectionMatrix );

		// HACK @mrdoob
		// https://github.com/w3c/webvr/issues/203

		cameraVR.projectionMatrix.copy( cameraL.projectionMatrix );

		//

		var layers = device.getLayers();

		if ( layers.length ) {

			var layer = layers[ 0 ];

			if ( layer.leftBounds !== null && layer.leftBounds.length === 4 ) {

				cameraL.bounds.fromArray( layer.leftBounds );

			}

			if ( layer.rightBounds !== null && layer.rightBounds.length === 4 ) {

				cameraR.bounds.fromArray( layer.rightBounds );

			}

		}

		return cameraVR;

	};

	this.getStandingMatrix = function () {

		return standingMatrix;

	};

	this.submitFrame = function () {

		if ( device && device.isPresenting ) device.submitFrame();

	};

}

/**
 * @author mrdoob / http://mrdoob.com/
 */

function WebGLExtensions( gl ) {

	var extensions = {};

	return {

		get: function ( name ) {

			if ( extensions[ name ] !== undefined ) {

				return extensions[ name ];

			}

			var extension;

			switch ( name ) {

				case 'WEBGL_depth_texture':
					extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' );
					break;

				case 'EXT_texture_filter_anisotropic':
					extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' );
					break;

				case 'WEBGL_compressed_texture_s3tc':
					extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' );
					break;

				case 'WEBGL_compressed_texture_pvrtc':
					extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' );
					break;

				case 'WEBGL_compressed_texture_etc1':
					extension = gl.getExtension( 'WEBGL_compressed_texture_etc1' );
					break;

				default:
					extension = gl.getExtension( name );

			}

			if ( extension === null ) {

				console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' );

			}

			extensions[ name ] = extension;

			return extension;

		}

	};

}

/**
 * @author tschw
 */

function WebGLClipping() {

	var scope = this,

		globalState = null,
		numGlobalPlanes = 0,
		localClippingEnabled = false,
		renderingShadows = false,

		plane = new Plane(),
		viewNormalMatrix = new Matrix3(),

		uniform = { value: null, needsUpdate: false };

	this.uniform = uniform;
	this.numPlanes = 0;
	this.numIntersection = 0;

	this.init = function( planes, enableLocalClipping, camera ) {

		var enabled =
			planes.length !== 0 ||
			enableLocalClipping ||
			// enable state of previous frame - the clipping code has to
			// run another frame in order to reset the state:
			numGlobalPlanes !== 0 ||
			localClippingEnabled;

		localClippingEnabled = enableLocalClipping;

		globalState = projectPlanes( planes, camera, 0 );
		numGlobalPlanes = planes.length;

		return enabled;

	};

	this.beginShadows = function() {

		renderingShadows = true;
		projectPlanes( null );

	};

	this.endShadows = function() {

		renderingShadows = false;
		resetGlobalState();

	};

	this.setState = function( planes, clipIntersection, clipShadows, camera, cache, fromCache ) {

		if ( ! localClippingEnabled ||
				planes === null || planes.length === 0 ||
				renderingShadows && ! clipShadows ) {
			// there's no local clipping

			if ( renderingShadows ) {
				// there's no global clipping

				projectPlanes( null );

			} else {

				resetGlobalState();
			}

		} else {

			var nGlobal = renderingShadows ? 0 : numGlobalPlanes,
				lGlobal = nGlobal * 4,

				dstArray = cache.clippingState || null;

			uniform.value = dstArray; // ensure unique state

			dstArray = projectPlanes( planes, camera, lGlobal, fromCache );

			for ( var i = 0; i !== lGlobal; ++ i ) {

				dstArray[ i ] = globalState[ i ];

			}

			cache.clippingState = dstArray;
			this.numIntersection = clipIntersection ? this.numPlanes : 0;
			this.numPlanes += nGlobal;

		}


	};

	function resetGlobalState() {

		if ( uniform.value !== globalState ) {

			uniform.value = globalState;
			uniform.needsUpdate = numGlobalPlanes > 0;

		}

		scope.numPlanes = numGlobalPlanes;
		scope.numIntersection = 0;

	}

	function projectPlanes( planes, camera, dstOffset, skipTransform ) {

		var nPlanes = planes !== null ? planes.length : 0,
			dstArray = null;

		if ( nPlanes !== 0 ) {

			dstArray = uniform.value;

			if ( skipTransform !== true || dstArray === null ) {

				var flatSize = dstOffset + nPlanes * 4,
					viewMatrix = camera.matrixWorldInverse;

				viewNormalMatrix.getNormalMatrix( viewMatrix );

				if ( dstArray === null || dstArray.length < flatSize ) {

					dstArray = new Float32Array( flatSize );

				}

				for ( var i = 0, i4 = dstOffset;
									i !== nPlanes; ++ i, i4 += 4 ) {

					plane.copy( planes[ i ] ).
							applyMatrix4( viewMatrix, viewNormalMatrix );

					plane.normal.toArray( dstArray, i4 );
					dstArray[ i4 + 3 ] = plane.constant;

				}

			}

			uniform.value = dstArray;
			uniform.needsUpdate = true;

		}

		scope.numPlanes = nPlanes;
		
		return dstArray;

	}

}

// import { Sphere } from '../math/Sphere';
/**
 * @author supereggbert / http://www.paulbrunt.co.uk/
 * @author mrdoob / http://mrdoob.com/
 * @author alteredq / http://alteredqualia.com/
 * @author szimek / https://github.com/szimek/
 * @author tschw
 */

function WebGLRenderer( parameters ) {

	console.log( 'THREE.WebGLRenderer', REVISION );

	parameters = parameters || {};

	var _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ),
		_context = parameters.context !== undefined ? parameters.context : null,

		_alpha = parameters.alpha !== undefined ? parameters.alpha : false,
		_depth = parameters.depth !== undefined ? parameters.depth : true,
		_stencil = parameters.stencil !== undefined ? parameters.stencil : true,
		_antialias = parameters.antialias !== undefined ? parameters.antialias : false,
		_premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true,
		_preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false;

	var lights = [];

	var currentRenderList = null;

	var morphInfluences = new Float32Array( 8 );

	var sprites = [];
	var lensFlares = [];

	// public properties

	this.domElement = _canvas;
	this.context = null;

	// clearing

	this.autoClear = true;
	this.autoClearColor = true;
	this.autoClearDepth = true;
	this.autoClearStencil = true;

	// scene graph

	this.sortObjects = true;

	// user-defined clipping

	this.clippingPlanes = [];
	this.localClippingEnabled = false;

	// physically based shading

	this.gammaFactor = 2.0;	// for backwards compatibility
	this.gammaInput = false;
	this.gammaOutput = false;

	// physical lights

	this.physicallyCorrectLights = false;

	// tone mapping

	this.toneMapping = LinearToneMapping;
	this.toneMappingExposure = 1.0;
	this.toneMappingWhitePoint = 1.0;

	// morphs

	this.maxMorphTargets = 8;
	this.maxMorphNormals = 4;

	// internal properties

	var _this = this,

		// internal state cache

		_currentProgram = null,
		_currentRenderTarget = null,
		_currentFramebuffer = null,
		_currentMaterialId = - 1,
		_currentGeometryProgram = '',

		_currentCamera = null,
		_currentArrayCamera = null,

		_currentScissor = new Vector4(),
		_currentScissorTest = null,

		_currentViewport = new Vector4(),

		//

		_usedTextureUnits = 0,

		//

		_width = _canvas.width,
		_height = _canvas.height,

		_pixelRatio = 1,

		_scissor = new Vector4( 0, 0, _width, _height ),
		_scissorTest = false,

		_viewport = new Vector4( 0, 0, _width, _height ),

		// frustum

		_frustum = new Frustum(),

		// clipping

		_clipping = new WebGLClipping(),
		_clippingEnabled = false,
		_localClippingEnabled = false,

		// camera matrices cache

		_projScreenMatrix = new Matrix4(),

		_vector3 = new Vector3(),
		_matrix4 = new Matrix4(),
		_matrix42 = new Matrix4(),

		// light arrays cache

		_lights = {

			hash: '',

			ambient: [ 0, 0, 0 ],
			directional: [],
			directionalShadowMap: [],
			directionalShadowMatrix: [],
			spot: [],
			spotShadowMap: [],
			spotShadowMatrix: [],
			rectArea: [],
			point: [],
			pointShadowMap: [],
			pointShadowMatrix: [],
			hemi: [],

			shadows: []

		},

		// info

		_infoMemory = {
			geometries: 0,
			textures: 0
		},

		_infoRender = {

			frame: 0,
			calls: 0,
			vertices: 0,
			faces: 0,
			points: 0

		};

	this.info = {

		render: _infoRender,
		memory: _infoMemory,
		programs: null

	};


	// initialize

	var _gl;

	try {

		var contextAttributes = {
			alpha: _alpha,
			depth: _depth,
			stencil: _stencil,
			antialias: _antialias,
			premultipliedAlpha: _premultipliedAlpha,
			preserveDrawingBuffer: _preserveDrawingBuffer
		};

		_gl = _context || _canvas.getContext( 'webgl', contextAttributes ) || _canvas.getContext( 'experimental-webgl', contextAttributes );

		if ( _gl === null ) {

			if ( _canvas.getContext( 'webgl' ) !== null ) {

				throw 'Error creating WebGL context with your selected attributes.';

			} else {

				throw 'Error creating WebGL context.';

			}

		}

		// Some experimental-webgl implementations do not have getShaderPrecisionFormat

		if ( _gl.getShaderPrecisionFormat === undefined ) {

			_gl.getShaderPrecisionFormat = function () {

				return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 };

			};

		}

		_canvas.addEventListener( 'webglcontextlost', onContextLost, false );

	} catch ( error ) {

		console.error( 'THREE.WebGLRenderer: ' + error );

	}

	var extensions = new WebGLExtensions( _gl );

	extensions.get( 'WEBGL_depth_texture' );
	extensions.get( 'OES_texture_float' );
	extensions.get( 'OES_texture_float_linear' );
	extensions.get( 'OES_texture_half_float' );
	extensions.get( 'OES_texture_half_float_linear' );
	extensions.get( 'OES_standard_derivatives' );
	extensions.get( 'ANGLE_instanced_arrays' );

	if ( extensions.get( 'OES_element_index_uint' ) ) {

		BufferGeometry.MaxIndex = 4294967296;

	}

	var capabilities = new WebGLCapabilities( _gl, extensions, parameters );

	var state = new WebGLState( _gl, extensions, paramThreeToGL );

	var properties = new WebGLProperties();
	var textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, paramThreeToGL, _infoMemory );
	var attributes = new WebGLAttributes( _gl );
	var geometries = new WebGLGeometries( _gl, attributes, _infoMemory );
	var objects = new WebGLObjects( _gl, geometries, _infoRender );
	var programCache = new WebGLPrograms( this, capabilities );
	var lightCache = new WebGLLights();
	var renderLists = new WebGLRenderLists();

	var background = new WebGLBackground( this, state, objects, _premultipliedAlpha );
	var vr = new WebVRManager( this );

	this.info.programs = programCache.programs;

	var bufferRenderer = new WebGLBufferRenderer( _gl, extensions, _infoRender );
	var indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, _infoRender );

	//

	function getTargetPixelRatio() {

		return _currentRenderTarget === null ? _pixelRatio : 1;

	}

	function setDefaultGLState() {

		state.init();

		state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ) );
		state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ) );

	}

	function resetGLState() {

		_currentProgram = null;
		_currentCamera = null;

		_currentGeometryProgram = '';
		_currentMaterialId = - 1;

		state.reset();

	}

	setDefaultGLState();

	this.context = _gl;
	this.capabilities = capabilities;
	this.extensions = extensions;
	this.properties = properties;
	this.renderLists = renderLists;
	this.state = state;
	this.vr = vr;

	// shadow map

	var shadowMap = new WebGLShadowMap( this, _lights, objects, capabilities );

	this.shadowMap = shadowMap;


	// Plugins

	var spritePlugin = new SpritePlugin( this, sprites );
	var lensFlarePlugin = new LensFlarePlugin( this, lensFlares );

	// API

	this.getContext = function () {

		return _gl;

	};

	this.getContextAttributes = function () {

		return _gl.getContextAttributes();

	};

	this.forceContextLoss = function () {

		var extension = extensions.get( 'WEBGL_lose_context' );
		if ( extension ) extension.loseContext();

	};

	this.getMaxAnisotropy = function () {

		return capabilities.getMaxAnisotropy();

	};

	this.getPrecision = function () {

		return capabilities.precision;

	};

	this.getPixelRatio = function () {

		return _pixelRatio;

	};

	this.setPixelRatio = function ( value ) {

		if ( value === undefined ) return;

		_pixelRatio = value;

		this.setSize( _width, _height, false );

	};

	this.getSize = function () {

		return {
			width: _width,
			height: _height
		};

	};

	this.setSize = function ( width, height, updateStyle ) {

		var device = vr.getDevice();

		if ( device && device.isPresenting ) {

			console.warn( 'THREE.WebGLRenderer: Can\'t change size while VR device is presenting.' );
			return;

		}

		_width = width;
		_height = height;

		_canvas.width = width * _pixelRatio;
		_canvas.height = height * _pixelRatio;

		if ( updateStyle !== false ) {

			_canvas.style.width = width + 'px';
			_canvas.style.height = height + 'px';

		}

		this.setViewport( 0, 0, width, height );

	};

	this.getDrawingBufferSize = function () {

		return {
			width: _width * _pixelRatio,
			height: _height * _pixelRatio
		};

	};

	this.setDrawingBufferSize = function ( width, height, pixelRatio ) {

		_width = width;
		_height = height;

		_pixelRatio = pixelRatio;

		_canvas.width = width * pixelRatio;
		_canvas.height = height * pixelRatio;

		this.setViewport( 0, 0, width, height );

	};

	this.setViewport = function ( x, y, width, height ) {

		_viewport.set( x, _height - y - height, width, height );
		state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ) );

	};

	this.setScissor = function ( x, y, width, height ) {

		_scissor.set( x, _height - y - height, width, height );
		state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ) );

	};

	this.setScissorTest = function ( boolean ) {

		state.setScissorTest( _scissorTest = boolean );

	};

	// Clearing

	this.getClearColor = background.getClearColor;
	this.setClearColor = background.setClearColor;
	this.getClearAlpha = background.getClearAlpha;
	this.setClearAlpha = background.setClearAlpha;

	this.clear = function ( color, depth, stencil ) {

		var bits = 0;

		if ( color === undefined || color ) bits |= _gl.COLOR_BUFFER_BIT;
		if ( depth === undefined || depth ) bits |= _gl.DEPTH_BUFFER_BIT;
		if ( stencil === undefined || stencil ) bits |= _gl.STENCIL_BUFFER_BIT;

		_gl.clear( bits );

	};

	this.clearColor = function () {

		this.clear( true, false, false );

	};

	this.clearDepth = function () {

		this.clear( false, true, false );

	};

	this.clearStencil = function () {

		this.clear( false, false, true );

	};

	this.clearTarget = function ( renderTarget, color, depth, stencil ) {

		this.setRenderTarget( renderTarget );
		this.clear( color, depth, stencil );

	};

	// Reset

	this.resetGLState = resetGLState;

	this.dispose = function () {

		_canvas.removeEventListener( 'webglcontextlost', onContextLost, false );

		renderLists.dispose();

	};

	// Events

	function onContextLost( event ) {

		event.preventDefault();

		resetGLState();
		setDefaultGLState();

		properties.clear();
		objects.clear();

	}

	function onMaterialDispose( event ) {

		var material = event.target;

		material.removeEventListener( 'dispose', onMaterialDispose );

		deallocateMaterial( material );

	}

	// Buffer deallocation

	function deallocateMaterial( material ) {

		releaseMaterialProgramReference( material );

		properties.remove( material );

	}


	function releaseMaterialProgramReference( material ) {

		var programInfo = properties.get( material ).program;

		material.program = undefined;

		if ( programInfo !== undefined ) {

			programCache.releaseProgram( programInfo );

		}

	}

	// Buffer rendering

	function renderObjectImmediate( object, program, material ) {

		object.render( function ( object ) {

			_this.renderBufferImmediate( object, program, material );

		} );

	}

	this.renderBufferImmediate = function ( object, program, material ) {

		state.initAttributes();

		var buffers = properties.get( object );

		if ( object.hasPositions && ! buffers.position ) buffers.position = _gl.createBuffer();
		if ( object.hasNormals && ! buffers.normal ) buffers.normal = _gl.createBuffer();
		if ( object.hasUvs && ! buffers.uv ) buffers.uv = _gl.createBuffer();
		if ( object.hasColors && ! buffers.color ) buffers.color = _gl.createBuffer();

		var programAttributes = program.getAttributes();

		if ( object.hasPositions ) {

			_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.position );
			_gl.bufferData( _gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW );

			state.enableAttribute( programAttributes.position );
			_gl.vertexAttribPointer( programAttributes.position, 3, _gl.FLOAT, false, 0, 0 );

		}

		if ( object.hasNormals ) {

			_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.normal );

			if ( ! material.isMeshPhongMaterial &&
				! material.isMeshStandardMaterial &&
				! material.isMeshNormalMaterial &&
				material.shading === FlatShading ) {

				for ( var i = 0, l = object.count * 3; i < l; i += 9 ) {

					var array = object.normalArray;

					var nx = ( array[ i + 0 ] + array[ i + 3 ] + array[ i + 6 ] ) / 3;
					var ny = ( array[ i + 1 ] + array[ i + 4 ] + array[ i + 7 ] ) / 3;
					var nz = ( array[ i + 2 ] + array[ i + 5 ] + array[ i + 8 ] ) / 3;

					array[ i + 0 ] = nx;
					array[ i + 1 ] = ny;
					array[ i + 2 ] = nz;

					array[ i + 3 ] = nx;
					array[ i + 4 ] = ny;
					array[ i + 5 ] = nz;

					array[ i + 6 ] = nx;
					array[ i + 7 ] = ny;
					array[ i + 8 ] = nz;

				}

			}

			_gl.bufferData( _gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW );

			state.enableAttribute( programAttributes.normal );

			_gl.vertexAttribPointer( programAttributes.normal, 3, _gl.FLOAT, false, 0, 0 );

		}

		if ( object.hasUvs && material.map ) {

			_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.uv );
			_gl.bufferData( _gl.ARRAY_BUFFER, object.uvArray, _gl.DYNAMIC_DRAW );

			state.enableAttribute( programAttributes.uv );

			_gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 0, 0 );

		}

		if ( object.hasColors && material.vertexColors !== NoColors ) {

			_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.color );
			_gl.bufferData( _gl.ARRAY_BUFFER, object.colorArray, _gl.DYNAMIC_DRAW );

			state.enableAttribute( programAttributes.color );

			_gl.vertexAttribPointer( programAttributes.color, 3, _gl.FLOAT, false, 0, 0 );

		}

		state.disableUnusedAttributes();

		_gl.drawArrays( _gl.TRIANGLES, 0, object.count );

		object.count = 0;

	};

	function absNumericalSort( a, b ) {

		return Math.abs( b[ 0 ] ) - Math.abs( a[ 0 ] );

	}

	this.renderBufferDirect = function ( camera, fog, geometry, material, object, group ) {

		state.setMaterial( material );

		var program = setProgram( camera, fog, material, object );
		var geometryProgram = geometry.id + '_' + program.id + '_' + ( material.wireframe === true );

		var updateBuffers = false;

		if ( geometryProgram !== _currentGeometryProgram ) {

			_currentGeometryProgram = geometryProgram;
			updateBuffers = true;

		}

		// morph targets

		var morphTargetInfluences = object.morphTargetInfluences;

		if ( morphTargetInfluences !== undefined ) {

			// TODO Remove allocations

			var activeInfluences = [];

			for ( var i = 0, l = morphTargetInfluences.length; i < l; i ++ ) {

				var influence = morphTargetInfluences[ i ];
				activeInfluences.push( [ influence, i ] );

			}

			activeInfluences.sort( absNumericalSort );

			if ( activeInfluences.length > 8 ) {

				activeInfluences.length = 8;

			}

			var morphAttributes = geometry.morphAttributes;

			for ( var i = 0, l = activeInfluences.length; i < l; i ++ ) {

				var influence = activeInfluences[ i ];
				morphInfluences[ i ] = influence[ 0 ];

				if ( influence[ 0 ] !== 0 ) {

					var index = influence[ 1 ];

					if ( material.morphTargets === true && morphAttributes.position ) geometry.addAttribute( 'morphTarget' + i, morphAttributes.position[ index ] );
					if ( material.morphNormals === true && morphAttributes.normal ) geometry.addAttribute( 'morphNormal' + i, morphAttributes.normal[ index ] );

				} else {

					if ( material.morphTargets === true ) geometry.removeAttribute( 'morphTarget' + i );
					if ( material.morphNormals === true ) geometry.removeAttribute( 'morphNormal' + i );

				}

			}

			for ( var i = activeInfluences.length, il = morphInfluences.length; i < il; i ++ ) {

				morphInfluences[ i ] = 0.0;

			}

			program.getUniforms().setValue( _gl, 'morphTargetInfluences', morphInfluences );

			updateBuffers = true;

		}

		//

		var index = geometry.index;
		var position = geometry.attributes.position;
		var rangeFactor = 1;

		if ( material.wireframe === true ) {

			index = geometries.getWireframeAttribute( geometry );
			rangeFactor = 2;

		}

		var attribute;
		var renderer = bufferRenderer;

		if ( index !== null ) {

			attribute = attributes.get( index );

			renderer = indexedBufferRenderer;
			renderer.setIndex( attribute );

		}

		if ( updateBuffers ) {

			setupVertexAttributes( material, program, geometry );

			if ( index !== null ) {

				_gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, attribute.buffer );

			}

		}

		//

		var dataCount = 0;

		if ( index !== null ) {

			dataCount = index.count;

		} else if ( position !== undefined ) {

			dataCount = position.count;

		}

		var rangeStart = geometry.drawRange.start * rangeFactor;
		var rangeCount = geometry.drawRange.count * rangeFactor;

		var groupStart = group !== null ? group.start * rangeFactor : 0;
		var groupCount = group !== null ? group.count * rangeFactor : Infinity;

		var drawStart = Math.max( rangeStart, groupStart );
		var drawEnd = Math.min( dataCount, rangeStart + rangeCount, groupStart + groupCount ) - 1;

		var drawCount = Math.max( 0, drawEnd - drawStart + 1 );

		if ( drawCount === 0 ) return;

		//

		if ( object.isMesh ) {

			if ( material.wireframe === true ) {

				state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() );
				renderer.setMode( _gl.LINES );

			} else {

				switch ( object.drawMode ) {

					case TrianglesDrawMode:
						renderer.setMode( _gl.TRIANGLES );
						break;

					case TriangleStripDrawMode:
						renderer.setMode( _gl.TRIANGLE_STRIP );
						break;

					case TriangleFanDrawMode:
						renderer.setMode( _gl.TRIANGLE_FAN );
						break;

				}

			}


		} else if ( object.isLine ) {

			var lineWidth = material.linewidth;

			if ( lineWidth === undefined ) lineWidth = 1; // Not using Line*Material

			state.setLineWidth( lineWidth * getTargetPixelRatio() );

			if ( object.isLineSegments ) {

				renderer.setMode( _gl.LINES );

			} else if ( object.isLineLoop ) {

				renderer.setMode( _gl.LINE_LOOP );

			} else {

				renderer.setMode( _gl.LINE_STRIP );

			}

		} else if ( object.isPoints ) {

			renderer.setMode( _gl.POINTS );

		}

		if ( geometry && geometry.isInstancedBufferGeometry ) {

			if ( geometry.maxInstancedCount > 0 ) {

				renderer.renderInstances( geometry, drawStart, drawCount );

			}

		} else {

			renderer.render( drawStart, drawCount );

		}

	};

	function setupVertexAttributes( material, program, geometry, startIndex ) {

		if ( geometry && geometry.isInstancedBufferGeometry ) {

			if ( extensions.get( 'ANGLE_instanced_arrays' ) === null ) {

				console.error( 'THREE.WebGLRenderer.setupVertexAttributes: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
				return;

			}

		}

		if ( startIndex === undefined ) startIndex = 0;

		state.initAttributes();

		var geometryAttributes = geometry.attributes;

		var programAttributes = program.getAttributes();

		var materialDefaultAttributeValues = material.defaultAttributeValues;

		for ( var name in programAttributes ) {

			var programAttribute = programAttributes[ name ];

			if ( programAttribute >= 0 ) {

				var geometryAttribute = geometryAttributes[ name ];

				if ( geometryAttribute !== undefined ) {

					var normalized = geometryAttribute.normalized;
					var size = geometryAttribute.itemSize;

					var attribute = attributes.get( geometryAttribute );

					var buffer = attribute.buffer;
					var type = attribute.type;
					var bytesPerElement = attribute.bytesPerElement;

					if ( geometryAttribute.isInterleavedBufferAttribute ) {

						var data = geometryAttribute.data;
						var stride = data.stride;
						var offset = geometryAttribute.offset;

						if ( data && data.isInstancedInterleavedBuffer ) {

							state.enableAttributeAndDivisor( programAttribute, data.meshPerAttribute );

							if ( geometry.maxInstancedCount === undefined ) {

								geometry.maxInstancedCount = data.meshPerAttribute * data.count;

							}

						} else {

							state.enableAttribute( programAttribute );

						}

						_gl.bindBuffer( _gl.ARRAY_BUFFER, buffer );
						_gl.vertexAttribPointer( programAttribute, size, type, normalized, stride * bytesPerElement, ( startIndex * stride + offset ) * bytesPerElement );

					} else {

						if ( geometryAttribute.isInstancedBufferAttribute ) {

							state.enableAttributeAndDivisor( programAttribute, geometryAttribute.meshPerAttribute );

							if ( geometry.maxInstancedCount === undefined ) {

								geometry.maxInstancedCount = geometryAttribute.meshPerAttribute * geometryAttribute.count;

							}

						} else {

							state.enableAttribute( programAttribute );

						}

						_gl.bindBuffer( _gl.ARRAY_BUFFER, buffer );
						_gl.vertexAttribPointer( programAttribute, size, type, normalized, 0, startIndex * size * bytesPerElement );

					}

				} else if ( materialDefaultAttributeValues !== undefined ) {

					var value = materialDefaultAttributeValues[ name ];

					if ( value !== undefined ) {

						switch ( value.length ) {

							case 2:
								_gl.vertexAttrib2fv( programAttribute, value );
								break;

							case 3:
								_gl.vertexAttrib3fv( programAttribute, value );
								break;

							case 4:
								_gl.vertexAttrib4fv( programAttribute, value );
								break;

							default:
								_gl.vertexAttrib1fv( programAttribute, value );

						}

					}

				}

			}

		}

		state.disableUnusedAttributes();

	}

	// Compile

	this.compile = function ( scene, camera ) {

		lights = [];

		scene.traverse( function ( object ) {

			if ( object.isLight ) {

				lights.push( object );

			}

		} );

		setupLights( lights, camera );

		scene.traverse( function ( object ) {

			if ( object.material ) {

				if ( Array.isArray( object.material ) ) {

					for ( var i = 0; i < object.material.length; i ++ ) {

						initMaterial( object.material[ i ], scene.fog, object );

					}

				} else {

					initMaterial( object.material, scene.fog, object );

				}

			}

		} );

	};

	// Rendering

	this.animate = function ( callback ) {

		function onFrame() {

			callback();

			( vr.getDevice() || window ).requestAnimationFrame( onFrame );

		}

		( vr.getDevice() || window ).requestAnimationFrame( onFrame );

	};

	this.render = function ( scene, camera, renderTarget, forceClear ) {

		if ( ! ( camera && camera.isCamera ) ) {

			console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' );
			return;

		}

		// reset caching for this frame

		_currentGeometryProgram = '';
		_currentMaterialId = - 1;
		_currentCamera = null;

		// update scene graph

		if ( scene.autoUpdate === true ) scene.updateMatrixWorld();

		// update camera matrices and frustum

		if ( camera.parent === null ) camera.updateMatrixWorld();

		if ( vr.enabled ) {

			camera = vr.getCamera( camera );

		}

		_projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
		_frustum.setFromMatrix( _projScreenMatrix );

		lights.length = 0;
		sprites.length = 0;
		lensFlares.length = 0;

		_localClippingEnabled = this.localClippingEnabled;
		_clippingEnabled = _clipping.init( this.clippingPlanes, _localClippingEnabled, camera );

		currentRenderList = renderLists.get( scene, camera );
		currentRenderList.init();

		projectObject( scene, camera, _this.sortObjects );

		currentRenderList.finish();

		if ( _this.sortObjects === true ) {

			currentRenderList.sort();

		}

		//

		if ( _clippingEnabled ) _clipping.beginShadows();

		setupShadows( lights );

		shadowMap.render( scene, camera );

		setupLights( lights, camera );

		if ( _clippingEnabled ) _clipping.endShadows();

		//

		_infoRender.frame ++;
		_infoRender.calls = 0;
		_infoRender.vertices = 0;
		_infoRender.faces = 0;
		_infoRender.points = 0;

		if ( renderTarget === undefined ) {

			renderTarget = null;

		}

		this.setRenderTarget( renderTarget );

		//

		background.render( scene, camera, forceClear );

		// render scene

		var opaqueObjects = currentRenderList.opaque;
		var transparentObjects = currentRenderList.transparent;

		if ( scene.overrideMaterial ) {

			var overrideMaterial = scene.overrideMaterial;

			if ( opaqueObjects.length ) renderObjects( opaqueObjects, scene, camera, overrideMaterial );
			if ( transparentObjects.length ) renderObjects( transparentObjects, scene, camera, overrideMaterial );

		} else {

			// opaque pass (front-to-back order)

			if ( opaqueObjects.length ) renderObjects( opaqueObjects, scene, camera );

			// transparent pass (back-to-front order)

			if ( transparentObjects.length ) renderObjects( transparentObjects, scene, camera );

		}

		// custom render plugins (post pass)

		spritePlugin.render( scene, camera );
		lensFlarePlugin.render( scene, camera, _currentViewport );

		// Generate mipmap if we're using any kind of mipmap filtering

		if ( renderTarget ) {

			textures.updateRenderTargetMipmap( renderTarget );

		}

		// Ensure depth buffer writing is enabled so it can be cleared on next render

		state.buffers.depth.setTest( true );
		state.buffers.depth.setMask( true );
		state.buffers.color.setMask( true );

		if ( camera.isArrayCamera ) {

			_this.setScissorTest( false );

		}

		if ( vr.enabled ) {

			vr.submitFrame();

		}

		// _gl.finish();

	};

	/*
	// TODO Duplicated code (Frustum)

	var _sphere = new Sphere();

	function isObjectViewable( object ) {

		var geometry = object.geometry;

		if ( geometry.boundingSphere === null )
			geometry.computeBoundingSphere();

		_sphere.copy( geometry.boundingSphere ).
		applyMatrix4( object.matrixWorld );

		return isSphereViewable( _sphere );

	}

	function isSpriteViewable( sprite ) {

		_sphere.center.set( 0, 0, 0 );
		_sphere.radius = 0.7071067811865476;
		_sphere.applyMatrix4( sprite.matrixWorld );

		return isSphereViewable( _sphere );

	}

	function isSphereViewable( sphere ) {

		if ( ! _frustum.intersectsSphere( sphere ) ) return false;

		var numPlanes = _clipping.numPlanes;

		if ( numPlanes === 0 ) return true;

		var planes = _this.clippingPlanes,

			center = sphere.center,
			negRad = - sphere.radius,
			i = 0;

		do {

			// out when deeper than radius in the negative halfspace
			if ( planes[ i ].distanceToPoint( center ) < negRad ) return false;

		} while ( ++ i !== numPlanes );

		return true;

	}
	*/

	function projectObject( object, camera, sortObjects ) {

		if ( ! object.visible ) return;

		var visible = object.layers.test( camera.layers );

		if ( visible ) {

			if ( object.isLight ) {

				lights.push( object );

			} else if ( object.isSprite ) {

				if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) {

					sprites.push( object );

				}

			} else if ( object.isLensFlare ) {

				lensFlares.push( object );

			} else if ( object.isImmediateRenderObject ) {

				if ( sortObjects ) {

					_vector3.setFromMatrixPosition( object.matrixWorld )
						.applyMatrix4( _projScreenMatrix );

				}

				currentRenderList.push( object, null, object.material, _vector3.z, null );

			} else if ( object.isMesh || object.isLine || object.isPoints ) {

				if ( object.isSkinnedMesh ) {

					object.skeleton.update();

				}

				if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) {

					if ( sortObjects ) {

						_vector3.setFromMatrixPosition( object.matrixWorld )
							.applyMatrix4( _projScreenMatrix );

					}

					var geometry = objects.update( object );
					var material = object.material;

					if ( Array.isArray( material ) ) {

						var groups = geometry.groups;

						for ( var i = 0, l = groups.length; i < l; i ++ ) {

							var group = groups[ i ];
							var groupMaterial = material[ group.materialIndex ];

							if ( groupMaterial && groupMaterial.visible ) {

								currentRenderList.push( object, geometry, groupMaterial, _vector3.z, group );

							}

						}

					} else if ( material.visible ) {

						currentRenderList.push( object, geometry, material, _vector3.z, null );

					}

				}

			}

		}

		var children = object.children;

		for ( var i = 0, l = children.length; i < l; i ++ ) {

			projectObject( children[ i ], camera, sortObjects );

		}

	}

	function renderObjects( renderList, scene, camera, overrideMaterial ) {

		for ( var i = 0, l = renderList.length; i < l; i ++ ) {

			var renderItem = renderList[ i ];

			var object = renderItem.object;
			var geometry = renderItem.geometry;
			var material = overrideMaterial === undefined ? renderItem.material : overrideMaterial;
			var group = renderItem.group;

			if ( camera.isArrayCamera ) {

				_currentArrayCamera = camera;

				var cameras = camera.cameras;

				for ( var j = 0, jl = cameras.length; j < jl; j ++ ) {

					var camera2 = cameras[ j ];

					if ( object.layers.test( camera2.layers ) ) {

						var bounds = camera2.bounds;

						var x = bounds.x * _width;
						var y = bounds.y * _height;
						var width = bounds.z * _width;
						var height = bounds.w * _height;

						_this.setViewport( x, y, width, height );
						_this.setScissor( x, y, width, height );
						_this.setScissorTest( true );

						renderObject( object, scene, camera2, geometry, material, group );

					}

				}

			} else {

				_currentArrayCamera = null;

				renderObject( object, scene, camera, geometry, material, group );

			}

		}

	}

	function renderObject( object, scene, camera, geometry, material, group ) {

		object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld );
		object.normalMatrix.getNormalMatrix( object.modelViewMatrix );

		object.onBeforeRender( _this, scene, camera, geometry, material, group );

		if ( object.isImmediateRenderObject ) {

			state.setMaterial( material );

			var program = setProgram( camera, scene.fog, material, object );

			_currentGeometryProgram = '';

			renderObjectImmediate( object, program, material );

		} else {

			_this.renderBufferDirect( camera, scene.fog, geometry, material, object, group );

		}

		object.onAfterRender( _this, scene, camera, geometry, material, group );

	}

	function initMaterial( material, fog, object ) {

		var materialProperties = properties.get( material );

		var parameters = programCache.getParameters(
			material, _lights, fog, _clipping.numPlanes, _clipping.numIntersection, object );

		var code = programCache.getProgramCode( material, parameters );

		var program = materialProperties.program;
		var programChange = true;

		if ( program === undefined ) {

			// new material
			material.addEventListener( 'dispose', onMaterialDispose );

		} else if ( program.code !== code ) {

			// changed glsl or parameters
			releaseMaterialProgramReference( material );

		} else if ( parameters.shaderID !== undefined ) {

			// same glsl and uniform list
			return;

		} else {

			// only rebuild uniform list
			programChange = false;

		}

		if ( programChange ) {

			if ( parameters.shaderID ) {

				var shader = ShaderLib[ parameters.shaderID ];

				materialProperties.shader = {
					name: material.type,
					uniforms: UniformsUtils.clone( shader.uniforms ),
					vertexShader: shader.vertexShader,
					fragmentShader: shader.fragmentShader
				};

			} else {

				materialProperties.shader = {
					name: material.type,
					uniforms: material.uniforms,
					vertexShader: material.vertexShader,
					fragmentShader: material.fragmentShader
				};

			}

			material.onBeforeCompile( materialProperties.shader );

			program = programCache.acquireProgram( material, materialProperties.shader, parameters, code );

			materialProperties.program = program;
			material.program = program;

		}

		var programAttributes = program.getAttributes();

		if ( material.morphTargets ) {

			material.numSupportedMorphTargets = 0;

			for ( var i = 0; i < _this.maxMorphTargets; i ++ ) {

				if ( programAttributes[ 'morphTarget' + i ] >= 0 ) {

					material.numSupportedMorphTargets ++;

				}

			}

		}

		if ( material.morphNormals ) {

			material.numSupportedMorphNormals = 0;

			for ( var i = 0; i < _this.maxMorphNormals; i ++ ) {

				if ( programAttributes[ 'morphNormal' + i ] >= 0 ) {

					material.numSupportedMorphNormals ++;

				}

			}

		}

		var uniforms = materialProperties.shader.uniforms;

		if ( ! material.isShaderMaterial &&
			! material.isRawShaderMaterial ||
			material.clipping === true ) {

			materialProperties.numClippingPlanes = _clipping.numPlanes;
			materialProperties.numIntersection = _clipping.numIntersection;
			uniforms.clippingPlanes = _clipping.uniform;

		}

		materialProperties.fog = fog;

		// store the light setup it was created for

		materialProperties.lightsHash = _lights.hash;

		if ( material.lights ) {

			// wire up the material to this renderer's lighting state

			uniforms.ambientLightColor.value = _lights.ambient;
			uniforms.directionalLights.value = _lights.directional;
			uniforms.spotLights.value = _lights.spot;
			uniforms.rectAreaLights.value = _lights.rectArea;
			uniforms.pointLights.value = _lights.point;
			uniforms.hemisphereLights.value = _lights.hemi;

			uniforms.directionalShadowMap.value = _lights.directionalShadowMap;
			uniforms.directionalShadowMatrix.value = _lights.directionalShadowMatrix;
			uniforms.spotShadowMap.value = _lights.spotShadowMap;
			uniforms.spotShadowMatrix.value = _lights.spotShadowMatrix;
			uniforms.pointShadowMap.value = _lights.pointShadowMap;
			uniforms.pointShadowMatrix.value = _lights.pointShadowMatrix;
			// TODO (abelnation): add area lights shadow info to uniforms

		}

		var progUniforms = materialProperties.program.getUniforms(),
			uniformsList =
				WebGLUniforms.seqWithValue( progUniforms.seq, uniforms );

		materialProperties.uniformsList = uniformsList;

	}

	function setProgram( camera, fog, material, object ) {

		_usedTextureUnits = 0;

		var materialProperties = properties.get( material );

		if ( _clippingEnabled ) {

			if ( _localClippingEnabled || camera !== _currentCamera ) {

				var useCache =
					camera === _currentCamera &&
					material.id === _currentMaterialId;

				// we might want to call this function with some ClippingGroup
				// object instead of the material, once it becomes feasible
				// (#8465, #8379)
				_clipping.setState(
					material.clippingPlanes, material.clipIntersection, material.clipShadows,
					camera, materialProperties, useCache );

			}

		}

		if ( material.needsUpdate === false ) {

			if ( materialProperties.program === undefined ) {

				material.needsUpdate = true;

			} else if ( material.fog && materialProperties.fog !== fog ) {

				material.needsUpdate = true;

			} else if ( material.lights && materialProperties.lightsHash !== _lights.hash ) {

				material.needsUpdate = true;

			} else if ( materialProperties.numClippingPlanes !== undefined &&
				( materialProperties.numClippingPlanes !== _clipping.numPlanes ||
				materialProperties.numIntersection !== _clipping.numIntersection ) ) {

				material.needsUpdate = true;

			}

		}

		if ( material.needsUpdate ) {

			initMaterial( material, fog, object );
			material.needsUpdate = false;

		}

		var refreshProgram = false;
		var refreshMaterial = false;
		var refreshLights = false;

		var program = materialProperties.program,
			p_uniforms = program.getUniforms(),
			m_uniforms = materialProperties.shader.uniforms;

		if ( program.id !== _currentProgram ) {

			_gl.useProgram( program.program );
			_currentProgram = program.id;

			refreshProgram = true;
			refreshMaterial = true;
			refreshLights = true;

		}

		if ( material.id !== _currentMaterialId ) {

			_currentMaterialId = material.id;

			refreshMaterial = true;

		}

		if ( refreshProgram || camera !== _currentCamera ) {

			p_uniforms.setValue( _gl, 'projectionMatrix', camera.projectionMatrix );

			if ( capabilities.logarithmicDepthBuffer ) {

				p_uniforms.setValue( _gl, 'logDepthBufFC',
					2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) );

			}

			// Avoid unneeded uniform updates per ArrayCamera's sub-camera

			if ( _currentCamera !== ( _currentArrayCamera || camera ) ) {

				_currentCamera = ( _currentArrayCamera || camera );

				// lighting uniforms depend on the camera so enforce an update
				// now, in case this material supports lights - or later, when
				// the next material that does gets activated:

				refreshMaterial = true;		// set to true on material change
				refreshLights = true;		// remains set until update done

			}

			// load material specific uniforms
			// (shader material also gets them for the sake of genericity)

			if ( material.isShaderMaterial ||
				material.isMeshPhongMaterial ||
				material.isMeshStandardMaterial ||
				material.envMap ) {

				var uCamPos = p_uniforms.map.cameraPosition;

				if ( uCamPos !== undefined ) {

					uCamPos.setValue( _gl,
						_vector3.setFromMatrixPosition( camera.matrixWorld ) );

				}

			}

			if ( material.isMeshPhongMaterial ||
				material.isMeshLambertMaterial ||
				material.isMeshBasicMaterial ||
				material.isMeshStandardMaterial ||
				material.isShaderMaterial ||
				material.skinning ) {

				p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse );

			}

		}

		// skinning uniforms must be set even if material didn't change
		// auto-setting of texture unit for bone texture must go before other textures
		// not sure why, but otherwise weird things happen

		if ( material.skinning ) {

			p_uniforms.setOptional( _gl, object, 'bindMatrix' );
			p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' );

			var skeleton = object.skeleton;

			if ( skeleton ) {

				var bones = skeleton.bones;

				if ( capabilities.floatVertexTextures ) {

					if ( skeleton.boneTexture === undefined ) {

						// layout (1 matrix = 4 pixels)
						//      RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4)
						//  with  8x8  pixel texture max   16 bones * 4 pixels =  (8 * 8)
						//       16x16 pixel texture max   64 bones * 4 pixels = (16 * 16)
						//       32x32 pixel texture max  256 bones * 4 pixels = (32 * 32)
						//       64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64)


						var size = Math.sqrt( bones.length * 4 ); // 4 pixels needed for 1 matrix
						size = _Math.nextPowerOfTwo( Math.ceil( size ) );
						size = Math.max( size, 4 );

						var boneMatrices = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel
						boneMatrices.set( skeleton.boneMatrices ); // copy current values

						var boneTexture = new DataTexture( boneMatrices, size, size, RGBAFormat, FloatType );

						skeleton.boneMatrices = boneMatrices;
						skeleton.boneTexture = boneTexture;
						skeleton.boneTextureSize = size;

					}

					p_uniforms.setValue( _gl, 'boneTexture', skeleton.boneTexture );
					p_uniforms.setValue( _gl, 'boneTextureSize', skeleton.boneTextureSize );

				} else {

					p_uniforms.setOptional( _gl, skeleton, 'boneMatrices' );

				}

			}

		}

		if ( refreshMaterial ) {

			p_uniforms.setValue( _gl, 'toneMappingExposure', _this.toneMappingExposure );
			p_uniforms.setValue( _gl, 'toneMappingWhitePoint', _this.toneMappingWhitePoint );

			if ( material.lights ) {

				// the current material requires lighting info

				// note: all lighting uniforms are always set correctly
				// they simply reference the renderer's state for their
				// values
				//
				// use the current material's .needsUpdate flags to set
				// the GL state when required

				markUniformsLightsNeedsUpdate( m_uniforms, refreshLights );

			}

			// refresh uniforms common to several materials

			if ( fog && material.fog ) {

				refreshUniformsFog( m_uniforms, fog );

			}

			if ( material.isMeshBasicMaterial ||
				material.isMeshLambertMaterial ||
				material.isMeshPhongMaterial ||
				material.isMeshStandardMaterial ||
				material.isMeshNormalMaterial ||
				material.isMeshDepthMaterial ) {

				refreshUniformsCommon( m_uniforms, material );

			}

			// refresh single material specific uniforms

			if ( material.isLineBasicMaterial ) {

				refreshUniformsLine( m_uniforms, material );

			} else if ( material.isLineDashedMaterial ) {

				refreshUniformsLine( m_uniforms, material );
				refreshUniformsDash( m_uniforms, material );

			} else if ( material.isPointsMaterial ) {

				refreshUniformsPoints( m_uniforms, material );

			} else if ( material.isMeshLambertMaterial ) {

				refreshUniformsLambert( m_uniforms, material );

			} else if ( material.isMeshToonMaterial ) {

				refreshUniformsToon( m_uniforms, material );

			} else if ( material.isMeshPhongMaterial ) {

				refreshUniformsPhong( m_uniforms, material );

			} else if ( material.isMeshPhysicalMaterial ) {

				refreshUniformsPhysical( m_uniforms, material );

			} else if ( material.isMeshStandardMaterial ) {

				refreshUniformsStandard( m_uniforms, material );

			} else if ( material.isMeshDepthMaterial ) {

				if ( material.displacementMap ) {

					m_uniforms.displacementMap.value = material.displacementMap;
					m_uniforms.displacementScale.value = material.displacementScale;
					m_uniforms.displacementBias.value = material.displacementBias;

				}

			} else if ( material.isMeshNormalMaterial ) {

				refreshUniformsNormal( m_uniforms, material );

			}

			// RectAreaLight Texture
			// TODO (mrdoob): Find a nicer implementation

			if ( m_uniforms.ltcMat !== undefined ) m_uniforms.ltcMat.value = UniformsLib.LTC_MAT_TEXTURE;
			if ( m_uniforms.ltcMag !== undefined ) m_uniforms.ltcMag.value = UniformsLib.LTC_MAG_TEXTURE;

			WebGLUniforms.upload(
				_gl, materialProperties.uniformsList, m_uniforms, _this );

		}


		// common matrices

		p_uniforms.setValue( _gl, 'modelViewMatrix', object.modelViewMatrix );
		p_uniforms.setValue( _gl, 'normalMatrix', object.normalMatrix );
		p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld );

		return program;

	}

	// Uniforms (refresh uniforms objects)

	function refreshUniformsCommon( uniforms, material ) {

		uniforms.opacity.value = material.opacity;

		uniforms.diffuse.value = material.color;

		if ( material.emissive ) {

			uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity );

		}

		uniforms.map.value = material.map;
		uniforms.specularMap.value = material.specularMap;
		uniforms.alphaMap.value = material.alphaMap;

		if ( material.lightMap ) {

			uniforms.lightMap.value = material.lightMap;
			uniforms.lightMapIntensity.value = material.lightMapIntensity;

		}

		if ( material.aoMap ) {

			uniforms.aoMap.value = material.aoMap;
			uniforms.aoMapIntensity.value = material.aoMapIntensity;

		}

		// uv repeat and offset setting priorities
		// 1. color map
		// 2. specular map
		// 3. normal map
		// 4. bump map
		// 5. alpha map
		// 6. emissive map

		var uvScaleMap;

		if ( material.map ) {

			uvScaleMap = material.map;

		} else if ( material.specularMap ) {

			uvScaleMap = material.specularMap;

		} else if ( material.displacementMap ) {

			uvScaleMap = material.displacementMap;

		} else if ( material.normalMap ) {

			uvScaleMap = material.normalMap;

		} else if ( material.bumpMap ) {

			uvScaleMap = material.bumpMap;

		} else if ( material.roughnessMap ) {

			uvScaleMap = material.roughnessMap;

		} else if ( material.metalnessMap ) {

			uvScaleMap = material.metalnessMap;

		} else if ( material.alphaMap ) {

			uvScaleMap = material.alphaMap;

		} else if ( material.emissiveMap ) {

			uvScaleMap = material.emissiveMap;

		}

		if ( uvScaleMap !== undefined ) {

			// backwards compatibility
			if ( uvScaleMap.isWebGLRenderTarget ) {

				uvScaleMap = uvScaleMap.texture;

			}

			var offset = uvScaleMap.offset;
			var repeat = uvScaleMap.repeat;

			uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y );

		}

		uniforms.envMap.value = material.envMap;

		// don't flip CubeTexture envMaps, flip everything else:
		//  WebGLRenderTargetCube will be flipped for backwards compatibility
		//  WebGLRenderTargetCube.texture will be flipped because it's a Texture and NOT a CubeTexture
		// this check must be handled differently, or removed entirely, if WebGLRenderTargetCube uses a CubeTexture in the future
		uniforms.flipEnvMap.value = ( ! ( material.envMap && material.envMap.isCubeTexture ) ) ? 1 : - 1;

		uniforms.reflectivity.value = material.reflectivity;
		uniforms.refractionRatio.value = material.refractionRatio;

	}

	function refreshUniformsLine( uniforms, material ) {

		uniforms.diffuse.value = material.color;
		uniforms.opacity.value = material.opacity;

	}

	function refreshUniformsDash( uniforms, material ) {

		uniforms.dashSize.value = material.dashSize;
		uniforms.totalSize.value = material.dashSize + material.gapSize;
		uniforms.scale.value = material.scale;

	}

	function refreshUniformsPoints( uniforms, material ) {

		uniforms.diffuse.value = material.color;
		uniforms.opacity.value = material.opacity;
		uniforms.size.value = material.size * _pixelRatio;
		uniforms.scale.value = _height * 0.5;

		uniforms.map.value = material.map;

		if ( material.map !== null ) {

			var offset = material.map.offset;
			var repeat = material.map.repeat;

			uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y );

		}

	}

	function refreshUniformsFog( uniforms, fog ) {

		uniforms.fogColor.value = fog.color;

		if ( fog.isFog ) {

			uniforms.fogNear.value = fog.near;
			uniforms.fogFar.value = fog.far;

		} else if ( fog.isFogExp2 ) {

			uniforms.fogDensity.value = fog.density;

		}

	}

	function refreshUniformsLambert( uniforms, material ) {

		if ( material.emissiveMap ) {

			uniforms.emissiveMap.value = material.emissiveMap;

		}

	}

	function refreshUniformsPhong( uniforms, material ) {

		uniforms.specular.value = material.specular;
		uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 )

		if ( material.emissiveMap ) {

			uniforms.emissiveMap.value = material.emissiveMap;

		}

		if ( material.bumpMap ) {

			uniforms.bumpMap.value = material.bumpMap;
			uniforms.bumpScale.value = material.bumpScale;

		}

		if ( material.normalMap ) {

			uniforms.normalMap.value = material.normalMap;
			uniforms.normalScale.value.copy( material.normalScale );

		}

		if ( material.displacementMap ) {

			uniforms.displacementMap.value = material.displacementMap;
			uniforms.displacementScale.value = material.displacementScale;
			uniforms.displacementBias.value = material.displacementBias;

		}

	}

	function refreshUniformsToon( uniforms, material ) {

		refreshUniformsPhong( uniforms, material );

		if ( material.gradientMap ) {

			uniforms.gradientMap.value = material.gradientMap;

		}

	}

	function refreshUniformsStandard( uniforms, material ) {

		uniforms.roughness.value = material.roughness;
		uniforms.metalness.value = material.metalness;

		if ( material.roughnessMap ) {

			uniforms.roughnessMap.value = material.roughnessMap;

		}

		if ( material.metalnessMap ) {

			uniforms.metalnessMap.value = material.metalnessMap;

		}

		if ( material.emissiveMap ) {

			uniforms.emissiveMap.value = material.emissiveMap;

		}

		if ( material.bumpMap ) {

			uniforms.bumpMap.value = material.bumpMap;
			uniforms.bumpScale.value = material.bumpScale;

		}

		if ( material.normalMap ) {

			uniforms.normalMap.value = material.normalMap;
			uniforms.normalScale.value.copy( material.normalScale );

		}

		if ( material.displacementMap ) {

			uniforms.displacementMap.value = material.displacementMap;
			uniforms.displacementScale.value = material.displacementScale;
			uniforms.displacementBias.value = material.displacementBias;

		}

		if ( material.envMap ) {

			//uniforms.envMap.value = material.envMap; // part of uniforms common
			uniforms.envMapIntensity.value = material.envMapIntensity;

		}

	}

	function refreshUniformsPhysical( uniforms, material ) {

		uniforms.clearCoat.value = material.clearCoat;
		uniforms.clearCoatRoughness.value = material.clearCoatRoughness;

		refreshUniformsStandard( uniforms, material );

	}

	function refreshUniformsNormal( uniforms, material ) {

		if ( material.bumpMap ) {

			uniforms.bumpMap.value = material.bumpMap;
			uniforms.bumpScale.value = material.bumpScale;

		}

		if ( material.normalMap ) {

			uniforms.normalMap.value = material.normalMap;
			uniforms.normalScale.value.copy( material.normalScale );

		}

		if ( material.displacementMap ) {

			uniforms.displacementMap.value = material.displacementMap;
			uniforms.displacementScale.value = material.displacementScale;
			uniforms.displacementBias.value = material.displacementBias;

		}

	}

	// If uniforms are marked as clean, they don't need to be loaded to the GPU.

	function markUniformsLightsNeedsUpdate( uniforms, value ) {

		uniforms.ambientLightColor.needsUpdate = value;

		uniforms.directionalLights.needsUpdate = value;
		uniforms.pointLights.needsUpdate = value;
		uniforms.spotLights.needsUpdate = value;
		uniforms.rectAreaLights.needsUpdate = value;
		uniforms.hemisphereLights.needsUpdate = value;

	}

	// Lighting

	function setupShadows( lights ) {

		var lightShadowsLength = 0;

		for ( var i = 0, l = lights.length; i < l; i ++ ) {

			var light = lights[ i ];

			if ( light.castShadow ) {

				_lights.shadows[ lightShadowsLength ] = light;
				lightShadowsLength ++;

			}

		}

		_lights.shadows.length = lightShadowsLength;

	}

	function setupLights( lights, camera ) {

		var l, ll, light, shadow,
			r = 0, g = 0, b = 0,
			color,
			intensity,
			distance,
			shadowMap,

			viewMatrix = camera.matrixWorldInverse,

			directionalLength = 0,
			pointLength = 0,
			spotLength = 0,
			rectAreaLength = 0,
			hemiLength = 0;

		for ( l = 0, ll = lights.length; l < ll; l ++ ) {

			light = lights[ l ];

			color = light.color;
			intensity = light.intensity;
			distance = light.distance;

			shadowMap = ( light.shadow && light.shadow.map ) ? light.shadow.map.texture : null;

			if ( light.isAmbientLight ) {

				r += color.r * intensity;
				g += color.g * intensity;
				b += color.b * intensity;

			} else if ( light.isDirectionalLight ) {

				var uniforms = lightCache.get( light );

				uniforms.color.copy( light.color ).multiplyScalar( light.intensity );
				uniforms.direction.setFromMatrixPosition( light.matrixWorld );
				_vector3.setFromMatrixPosition( light.target.matrixWorld );
				uniforms.direction.sub( _vector3 );
				uniforms.direction.transformDirection( viewMatrix );

				uniforms.shadow = light.castShadow;

				if ( light.castShadow ) {

					shadow = light.shadow;

					uniforms.shadowBias = shadow.bias;
					uniforms.shadowRadius = shadow.radius;
					uniforms.shadowMapSize = shadow.mapSize;

				}

				_lights.directionalShadowMap[ directionalLength ] = shadowMap;
				_lights.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix;
				_lights.directional[ directionalLength ] = uniforms;

				directionalLength ++;

			} else if ( light.isSpotLight ) {

				var uniforms = lightCache.get( light );

				uniforms.position.setFromMatrixPosition( light.matrixWorld );
				uniforms.position.applyMatrix4( viewMatrix );

				uniforms.color.copy( color ).multiplyScalar( intensity );
				uniforms.distance = distance;

				uniforms.direction.setFromMatrixPosition( light.matrixWorld );
				_vector3.setFromMatrixPosition( light.target.matrixWorld );
				uniforms.direction.sub( _vector3 );
				uniforms.direction.transformDirection( viewMatrix );

				uniforms.coneCos = Math.cos( light.angle );
				uniforms.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) );
				uniforms.decay = ( light.distance === 0 ) ? 0.0 : light.decay;

				uniforms.shadow = light.castShadow;

				if ( light.castShadow ) {

					shadow = light.shadow;

					uniforms.shadowBias = shadow.bias;
					uniforms.shadowRadius = shadow.radius;
					uniforms.shadowMapSize = shadow.mapSize;

				}

				_lights.spotShadowMap[ spotLength ] = shadowMap;
				_lights.spotShadowMatrix[ spotLength ] = light.shadow.matrix;
				_lights.spot[ spotLength ] = uniforms;

				spotLength ++;

			} else if ( light.isRectAreaLight ) {

				var uniforms = lightCache.get( light );

				// (a) intensity controls irradiance of entire light
				uniforms.color
					.copy( color )
					.multiplyScalar( intensity / ( light.width * light.height ) );

				// (b) intensity controls the radiance per light area
				// uniforms.color.copy( color ).multiplyScalar( intensity );

				uniforms.position.setFromMatrixPosition( light.matrixWorld );
				uniforms.position.applyMatrix4( viewMatrix );

				// extract local rotation of light to derive width/height half vectors
				_matrix42.identity();
				_matrix4.copy( light.matrixWorld );
				_matrix4.premultiply( viewMatrix );
				_matrix42.extractRotation( _matrix4 );

				uniforms.halfWidth.set( light.width * 0.5,                0.0, 0.0 );
				uniforms.halfHeight.set(              0.0, light.height * 0.5, 0.0 );

				uniforms.halfWidth.applyMatrix4( _matrix42 );
				uniforms.halfHeight.applyMatrix4( _matrix42 );

				// TODO (abelnation): RectAreaLight distance?
				// uniforms.distance = distance;

				_lights.rectArea[ rectAreaLength ] = uniforms;

				rectAreaLength ++;

			} else if ( light.isPointLight ) {

				var uniforms = lightCache.get( light );

				uniforms.position.setFromMatrixPosition( light.matrixWorld );
				uniforms.position.applyMatrix4( viewMatrix );

				uniforms.color.copy( light.color ).multiplyScalar( light.intensity );
				uniforms.distance = light.distance;
				uniforms.decay = ( light.distance === 0 ) ? 0.0 : light.decay;

				uniforms.shadow = light.castShadow;

				if ( light.castShadow ) {

					shadow = light.shadow;

					uniforms.shadowBias = shadow.bias;
					uniforms.shadowRadius = shadow.radius;
					uniforms.shadowMapSize = shadow.mapSize;

				}

				_lights.pointShadowMap[ pointLength ] = shadowMap;
				_lights.pointShadowMatrix[ pointLength ] = light.shadow.matrix;
				_lights.point[ pointLength ] = uniforms;

				pointLength ++;

			} else if ( light.isHemisphereLight ) {

				var uniforms = lightCache.get( light );

				uniforms.direction.setFromMatrixPosition( light.matrixWorld );
				uniforms.direction.transformDirection( viewMatrix );
				uniforms.direction.normalize();

				uniforms.skyColor.copy( light.color ).multiplyScalar( intensity );
				uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity );

				_lights.hemi[ hemiLength ] = uniforms;

				hemiLength ++;

			}

		}

		_lights.ambient[ 0 ] = r;
		_lights.ambient[ 1 ] = g;
		_lights.ambient[ 2 ] = b;

		_lights.directional.length = directionalLength;
		_lights.spot.length = spotLength;
		_lights.rectArea.length = rectAreaLength;
		_lights.point.length = pointLength;
		_lights.hemi.length = hemiLength;

		// TODO (sam-g-steel) why aren't we using join
		_lights.hash = directionalLength + ',' + pointLength + ',' + spotLength + ',' + rectAreaLength + ',' + hemiLength + ',' + _lights.shadows.length;

	}

	// GL state setting

	this.setFaceCulling = function ( cullFace, frontFaceDirection ) {

		state.setCullFace( cullFace );
		state.setFlipSided( frontFaceDirection === FrontFaceDirectionCW );

	};

	// Textures

	function allocTextureUnit() {

		var textureUnit = _usedTextureUnits;

		if ( textureUnit >= capabilities.maxTextures ) {

			console.warn( 'THREE.WebGLRenderer: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + capabilities.maxTextures );

		}

		_usedTextureUnits += 1;

		return textureUnit;

	}

	this.allocTextureUnit = allocTextureUnit;

	// this.setTexture2D = setTexture2D;
	this.setTexture2D = ( function () {

		var warned = false;

		// backwards compatibility: peel texture.texture
		return function setTexture2D( texture, slot ) {

			if ( texture && texture.isWebGLRenderTarget ) {

				if ( ! warned ) {

					console.warn( "THREE.WebGLRenderer.setTexture2D: don't use render targets as textures. Use their .texture property instead." );
					warned = true;

				}

				texture = texture.texture;

			}

			textures.setTexture2D( texture, slot );

		};

	}() );

	this.setTexture = ( function () {

		var warned = false;

		return function setTexture( texture, slot ) {

			if ( ! warned ) {

				console.warn( "THREE.WebGLRenderer: .setTexture is deprecated, use setTexture2D instead." );
				warned = true;

			}

			textures.setTexture2D( texture, slot );

		};

	}() );

	this.setTextureCube = ( function () {

		var warned = false;

		return function setTextureCube( texture, slot ) {

			// backwards compatibility: peel texture.texture
			if ( texture && texture.isWebGLRenderTargetCube ) {

				if ( ! warned ) {

					console.warn( "THREE.WebGLRenderer.setTextureCube: don't use cube render targets as textures. Use their .texture property instead." );
					warned = true;

				}

				texture = texture.texture;

			}

			// currently relying on the fact that WebGLRenderTargetCube.texture is a Texture and NOT a CubeTexture
			// TODO: unify these code paths
			if ( ( texture && texture.isCubeTexture ) ||
				( Array.isArray( texture.image ) && texture.image.length === 6 ) ) {

				// CompressedTexture can have Array in image :/

				// this function alone should take care of cube textures
				textures.setTextureCube( texture, slot );

			} else {

				// assumed: texture property of THREE.WebGLRenderTargetCube

				textures.setTextureCubeDynamic( texture, slot );

			}

		};

	}() );

	this.getRenderTarget = function () {

		return _currentRenderTarget;

	};

	this.setRenderTarget = function ( renderTarget ) {

		_currentRenderTarget = renderTarget;

		if ( renderTarget && properties.get( renderTarget ).__webglFramebuffer === undefined ) {

			textures.setupRenderTarget( renderTarget );

		}

		var isCube = ( renderTarget && renderTarget.isWebGLRenderTargetCube );
		var framebuffer;

		if ( renderTarget ) {

			var renderTargetProperties = properties.get( renderTarget );

			if ( isCube ) {

				framebuffer = renderTargetProperties.__webglFramebuffer[ renderTarget.activeCubeFace ];

			} else {

				framebuffer = renderTargetProperties.__webglFramebuffer;

			}

			_currentScissor.copy( renderTarget.scissor );
			_currentScissorTest = renderTarget.scissorTest;

			_currentViewport.copy( renderTarget.viewport );

		} else {

			framebuffer = null;

			_currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio );
			_currentScissorTest = _scissorTest;

			_currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio );

		}

		if ( _currentFramebuffer !== framebuffer ) {

			_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
			_currentFramebuffer = framebuffer;

		}

		state.scissor( _currentScissor );
		state.setScissorTest( _currentScissorTest );

		state.viewport( _currentViewport );

		if ( isCube ) {

			var textureProperties = properties.get( renderTarget.texture );
			_gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + renderTarget.activeCubeFace, textureProperties.__webglTexture, renderTarget.activeMipMapLevel );

		}

	};

	this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer ) {

		if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) {

			console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' );
			return;

		}

		var framebuffer = properties.get( renderTarget ).__webglFramebuffer;

		if ( framebuffer ) {

			var restore = false;

			if ( framebuffer !== _currentFramebuffer ) {

				_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );

				restore = true;

			}

			try {

				var texture = renderTarget.texture;
				var textureFormat = texture.format;
				var textureType = texture.type;

				if ( textureFormat !== RGBAFormat && paramThreeToGL( textureFormat ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_FORMAT ) ) {

					console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' );
					return;

				}

				if ( textureType !== UnsignedByteType && paramThreeToGL( textureType ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_TYPE ) && // IE11, Edge and Chrome Mac < 52 (#9513)
					! ( textureType === FloatType && ( extensions.get( 'OES_texture_float' ) || extensions.get( 'WEBGL_color_buffer_float' ) ) ) && // Chrome Mac >= 52 and Firefox
					! ( textureType === HalfFloatType && extensions.get( 'EXT_color_buffer_half_float' ) ) ) {

					console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' );
					return;

				}

				if ( _gl.checkFramebufferStatus( _gl.FRAMEBUFFER ) === _gl.FRAMEBUFFER_COMPLETE ) {

					// the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)

					if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) {

						_gl.readPixels( x, y, width, height, paramThreeToGL( textureFormat ), paramThreeToGL( textureType ), buffer );

					}

				} else {

					console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.' );

				}

			} finally {

				if ( restore ) {

					_gl.bindFramebuffer( _gl.FRAMEBUFFER, _currentFramebuffer );

				}

			}

		}

	};

	// Map three.js constants to WebGL constants

	function paramThreeToGL( p ) {

		var extension;

		if ( p === RepeatWrapping ) return _gl.REPEAT;
		if ( p === ClampToEdgeWrapping ) return _gl.CLAMP_TO_EDGE;
		if ( p === MirroredRepeatWrapping ) return _gl.MIRRORED_REPEAT;

		if ( p === NearestFilter ) return _gl.NEAREST;
		if ( p === NearestMipMapNearestFilter ) return _gl.NEAREST_MIPMAP_NEAREST;
		if ( p === NearestMipMapLinearFilter ) return _gl.NEAREST_MIPMAP_LINEAR;

		if ( p === LinearFilter ) return _gl.LINEAR;
		if ( p === LinearMipMapNearestFilter ) return _gl.LINEAR_MIPMAP_NEAREST;
		if ( p === LinearMipMapLinearFilter ) return _gl.LINEAR_MIPMAP_LINEAR;

		if ( p === UnsignedByteType ) return _gl.UNSIGNED_BYTE;
		if ( p === UnsignedShort4444Type ) return _gl.UNSIGNED_SHORT_4_4_4_4;
		if ( p === UnsignedShort5551Type ) return _gl.UNSIGNED_SHORT_5_5_5_1;
		if ( p === UnsignedShort565Type ) return _gl.UNSIGNED_SHORT_5_6_5;

		if ( p === ByteType ) return _gl.BYTE;
		if ( p === ShortType ) return _gl.SHORT;
		if ( p === UnsignedShortType ) return _gl.UNSIGNED_SHORT;
		if ( p === IntType ) return _gl.INT;
		if ( p === UnsignedIntType ) return _gl.UNSIGNED_INT;
		if ( p === FloatType ) return _gl.FLOAT;

		if ( p === HalfFloatType ) {

			extension = extensions.get( 'OES_texture_half_float' );

			if ( extension !== null ) return extension.HALF_FLOAT_OES;

		}

		if ( p === AlphaFormat ) return _gl.ALPHA;
		if ( p === RGBFormat ) return _gl.RGB;
		if ( p === RGBAFormat ) return _gl.RGBA;
		if ( p === LuminanceFormat ) return _gl.LUMINANCE;
		if ( p === LuminanceAlphaFormat ) return _gl.LUMINANCE_ALPHA;
		if ( p === DepthFormat ) return _gl.DEPTH_COMPONENT;
		if ( p === DepthStencilFormat ) return _gl.DEPTH_STENCIL;

		if ( p === AddEquation ) return _gl.FUNC_ADD;
		if ( p === SubtractEquation ) return _gl.FUNC_SUBTRACT;
		if ( p === ReverseSubtractEquation ) return _gl.FUNC_REVERSE_SUBTRACT;

		if ( p === ZeroFactor ) return _gl.ZERO;
		if ( p === OneFactor ) return _gl.ONE;
		if ( p === SrcColorFactor ) return _gl.SRC_COLOR;
		if ( p === OneMinusSrcColorFactor ) return _gl.ONE_MINUS_SRC_COLOR;
		if ( p === SrcAlphaFactor ) return _gl.SRC_ALPHA;
		if ( p === OneMinusSrcAlphaFactor ) return _gl.ONE_MINUS_SRC_ALPHA;
		if ( p === DstAlphaFactor ) return _gl.DST_ALPHA;
		if ( p === OneMinusDstAlphaFactor ) return _gl.ONE_MINUS_DST_ALPHA;

		if ( p === DstColorFactor ) return _gl.DST_COLOR;
		if ( p === OneMinusDstColorFactor ) return _gl.ONE_MINUS_DST_COLOR;
		if ( p === SrcAlphaSaturateFactor ) return _gl.SRC_ALPHA_SATURATE;

		if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format ||
			p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) {

			extension = extensions.get( 'WEBGL_compressed_texture_s3tc' );

			if ( extension !== null ) {

				if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT;
				if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT;
				if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT;
				if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT;

			}

		}

		if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format ||
			p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) {

			extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' );

			if ( extension !== null ) {

				if ( p === RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
				if ( p === RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
				if ( p === RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
				if ( p === RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;

			}

		}

		if ( p === RGB_ETC1_Format ) {

			extension = extensions.get( 'WEBGL_compressed_texture_etc1' );

			if ( extension !== null ) return extension.COMPRESSED_RGB_ETC1_WEBGL;

		}

		if ( p === MinEquation || p === MaxEquation ) {

			extension = extensions.get( 'EXT_blend_minmax' );

			if ( extension !== null ) {

				if ( p === MinEquation ) return extension.MIN_EXT;
				if ( p === MaxEquation ) return extension.MAX_EXT;

			}

		}

		if ( p === UnsignedInt248Type ) {

			extension = extensions.get( 'WEBGL_depth_texture' );

			if ( extension !== null ) return extension.UNSIGNED_INT_24_8_WEBGL;

		}

		return 0;

	}

}

/**
 * @author mrdoob / http://mrdoob.com/
 * @author alteredq / http://alteredqualia.com/
 */

function FogExp2 ( color, density ) {

	this.name = '';

	this.color = new Color( color );
	this.density = ( density !== undefined ) ? density : 0.00025;

}

FogExp2.prototype.isFogExp2 = true;

FogExp2.prototype.clone = function () {

	return new FogExp2( this.color.getHex(), this.density );

};

FogExp2.prototype.toJSON = function ( meta ) {

	return {
		type: 'FogExp2',
		color: this.color.getHex(),
		density: this.density
	};

};

/**
 * @author mrdoob / http://mrdoob.com/
 * @author alteredq / http://alteredqualia.com/
 */

function Fog ( color, near, far ) {

	this.name = '';

	this.color = new Color( color );

	this.near = ( near !== undefined ) ? near : 1;
	this.far = ( far !== undefined ) ? far : 1000;

}

Fog.prototype.isFog = true;

Fog.prototype.clone = function () {

	return new Fog( this.color.getHex(), this.near, this.far );

};

Fog.prototype.toJSON = function ( meta ) {

	return {
		type: 'Fog',
		color: this.color.getHex(),
		near: this.near,
		far: this.far
	};

};

/**
 * @author mrdoob / http://mrdoob.com/
 */

function Scene () {

	Object3D.call( this );

	this.type = 'Scene';

	this.background = null;
	this.fog = null;
	this.overrideMaterial = null;

	this.autoUpdate = true; // checked by the renderer

}

Scene.prototype = Object.assign( Object.create( Object3D.prototype ), {

	constructor: Scene,

	copy: function ( source, recursive ) {

		Object3D.prototype.copy.call( this, source, recursive );

		if ( source.background !== null ) this.background = source.background.clone();
		if ( source.fog !== null ) this.fog = source.fog.clone();
		if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone();

		this.autoUpdate = source.autoUpdate;
		this.matrixAutoUpdate = source.matrixAutoUpdate;

		return this;

	},

	toJSON: function ( meta ) {

		var data = Object3D.prototype.toJSON.call( this, meta );

		if ( this.background !== null ) data.object.background = this.background.toJSON( meta );
		if ( this.fog !== null ) data.object.fog = this.fog.toJSON();

		return data;

	}

} );

/**
 * @author mikael emtinger / http://gomo.se/
 * @author alteredq / http://alteredqualia.com/
 */

function LensFlare( texture, size, distance, blending, color ) {

	Object3D.call( this );

	this.lensFlares = [];

	this.positionScreen = new Vector3();
	this.customUpdateCallback = undefined;

	if ( texture !== undefined ) {

		this.add( texture, size, distance, blending, color );

	}

}

LensFlare.prototype = Object.assign( Object.create( Object3D.prototype ), {

	constructor: LensFlare,

	isLensFlare: true,

	copy: function ( source ) {

		Object3D.prototype.copy.call( this, source );

		this.positionScreen.copy( source.positionScreen );
		this.customUpdateCallback = source.customUpdateCallback;

		for ( var i = 0, l = source.lensFlares.length; i < l; i ++ ) {

			this.lensFlares.push( source.lensFlares[ i ] );

		}

		return this;

	},

	add: function ( texture, size, distance, blending, color, opacity ) {

		if ( size === undefined ) size = - 1;
		if ( distance === undefined ) distance = 0;
		if ( opacity === undefined ) opacity = 1;
		if ( color === undefined ) color = new Color( 0xffffff );
		if ( blending === undefined ) blending = NormalBlending;

		distance = Math.min( distance, Math.max( 0, distance ) );

		this.lensFlares.push( {
			texture: texture,	// THREE.Texture
			size: size, 		// size in pixels (-1 = use texture.width)
			distance: distance, 	// distance (0-1) from light source (0=at light source)
			x: 0, y: 0, z: 0,	// screen position (-1 => 1) z = 0 is in front z = 1 is back
			scale: 1, 		// scale
			rotation: 0, 		// rotation
			opacity: opacity,	// opacity
			color: color,		// color
			blending: blending	// blending
		} );

	},

	/*
	 * Update lens flares update positions on all flares based on the screen position
	 * Set myLensFlare.customUpdateCallback to alter the flares in your project specific way.
	 */

	updateLensFlares: function () {

		var f, fl = this.lensFlares.length;
		var flare;
		var vecX = - this.positionScreen.x * 2;
		var vecY = - this.positionScreen.y * 2;

		for ( f = 0; f < fl; f ++ ) {

			flare = this.lensFlares[ f ];

			flare.x = this.positionScreen.x + vecX * flare.distance;
			flare.y = this.positionScreen.y + vecY * flare.distance;

			flare.wantedRotation = flare.x * Math.PI * 0.25;
			flare.rotation += ( flare.wantedRotation - flare.rotation ) * 0.25;

		}

	}

} );

/**
 * @author alteredq / http://alteredqualia.com/
 *
 * parameters = {
 *  color: <hex>,
 *  opacity: <float>,
 *  map: new THREE.Texture( <Image> ),
 *
 *	uvOffset: new THREE.Vector2(),
 *	uvScale: new THREE.Vector2()
 * }
 */

function SpriteMaterial( parameters ) {

	Material.call( this );

	this.type = 'SpriteMaterial';

	this.color = new Color( 0xffffff );
	this.map = null;

	this.rotation = 0;

	this.fog = false;
	this.lights = false;

	this.setValues( parameters );

}

SpriteMaterial.prototype = Object.create( Material.prototype );
SpriteMaterial.prototype.constructor = SpriteMaterial;
SpriteMaterial.prototype.isSpriteMaterial = true;

SpriteMaterial.prototype.copy = function ( source ) {

	Material.prototype.copy.call( this, source );

	this.color.copy( source.color );
	this.map = source.map;

	this.rotation = source.rotation;

	return this;

};

/**
 * @author mikael emtinger / http://gomo.se/
 * @author alteredq / http://alteredqualia.com/
 */

function Sprite( material ) {

	Object3D.call( this );

	this.type = 'Sprite';

	this.material = ( material !== undefined ) ? material : new SpriteMaterial();

}

Sprite.prototype = Object.assign( Object.create( Object3D.prototype ), {

	constructor: Sprite,

	isSprite: true,

	raycast: ( function () {

		var intersectPoint = new Vector3();
		var worldPosition = new Vector3();
		var worldScale = new Vector3();

		return function raycast( raycaster, intersects ) {

			worldPosition.setFromMatrixPosition( this.matrixWorld );
			raycaster.ray.closestPointToPoint( worldPosition, intersectPoint );

			worldScale.setFromMatrixScale( this.matrixWorld );
			var guessSizeSq = worldScale.x * worldScale.y / 4;

			if ( worldPosition.distanceToSquared( intersectPoint ) > guessSizeSq ) return;

			var distance = raycaster.ray.origin.distanceTo( intersectPoint );

			if ( distance < raycaster.near || distance > raycaster.far ) return;

			intersects.push( {

				distance: distance,
				point: intersectPoint.clone(),
				face: null,
				object: this

			} );

		};

	}() ),

	clone: function () {

		return new this.constructor( this.material ).copy( this );

	}

} );

/**
 * @author mikael emtinger / http://gomo.se/
 * @author alteredq / http://alteredqualia.com/
 * @author mrdoob / http://mrdoob.com/
 */

function LOD() {

	Object3D.call( this );

	this.type = 'LOD';

	Object.defineProperties( this, {
		levels: {
			enumerable: true,
			value: []
		}
	} );

}

LOD.prototype = Object.assign( Object.create( Object3D.prototype ), {

	constructor: LOD,

	copy: function ( source ) {

		Object3D.prototype.copy.call( this, source, false );

		var levels = source.levels;

		for ( var i = 0, l = levels.length; i < l; i ++ ) {

			var level = levels[ i ];

			this.addLevel( level.object.clone(), level.distance );

		}

		return this;

	},

	addLevel: function ( object, distance ) {

		if ( distance === undefined ) distance = 0;

		distance = Math.abs( distance );

		var levels = this.levels;

		for ( var l = 0; l < levels.length; l ++ ) {

			if ( distance < levels[ l ].distance ) {

				break;

			}

		}

		levels.splice( l, 0, { distance: distance, object: object } );

		this.add( object );

	},

	getObjectForDistance: function ( distance ) {

		var levels = this.levels;

		for ( var i = 1, l = levels.length; i < l; i ++ ) {

			if ( distance < levels[ i ].distance ) {

				break;

			}

		}

		return levels[ i - 1 ].object;

	},

	raycast: ( function () {

		var matrixPosition = new Vector3();

		return function raycast( raycaster, intersects ) {

			matrixPosition.setFromMatrixPosition( this.matrixWorld );

			var distance = raycaster.ray.origin.distanceTo( matrixPosition );

			this.getObjectForDistance( distance ).raycast( raycaster, intersects );

		};

	}() ),

	update: function () {

		var v1 = new Vector3();
		var v2 = new Vector3();

		return function update( camera ) {

			var levels = this.levels;

			if ( levels.length > 1 ) {

				v1.setFromMatrixPosition( camera.matrixWorld );
				v2.setFromMatrixPosition( this.matrixWorld );

				var distance = v1.distanceTo( v2 );

				levels[ 0 ].object.visible = true;

				for ( var i = 1, l = levels.length; i < l; i ++ ) {

					if ( distance >= levels[ i ].distance ) {

						levels[ i - 1 ].object.visible = false;
						levels[ i ].object.visible = true;

					} else {

						break;

					}

				}

				for ( ; i < l; i ++ ) {

					levels[ i ].object.visible = false;

				}

			}

		};

	}(),

	toJSON: function ( meta ) {

		var data = Object3D.prototype.toJSON.call( this, meta );

		data.object.levels = [];

		var levels = this.levels;

		for ( var i = 0, l = levels.length; i < l; i ++ ) {

			var level = levels[ i ];

			data.object.levels.push( {
				object: level.object.uuid,
				distance: level.distance
			} );

		}

		return data;

	}

} );

/**
 * @author mikael emtinger / http://gomo.se/
 * @author alteredq / http://alteredqualia.com/
 * @author michael guerrero / http://realitymeltdown.com
 * @author ikerr / http://verold.com
 */

function Skeleton( bones, boneInverses ) {

	// copy the bone array

	bones = bones || [];

	this.bones = bones.slice( 0 );
	this.boneMatrices = new Float32Array( this.bones.length * 16 );

	// use the supplied bone inverses or calculate the inverses

	if ( boneInverses === undefined ) {

		this.calculateInverses();

	} else {

		if ( this.bones.length === boneInverses.length ) {

			this.boneInverses = boneInverses.slice( 0 );

		} else {

			console.warn( 'THREE.Skeleton boneInverses is the wrong length.' );

			this.boneInverses = [];

			for ( var i = 0, il = this.bones.length; i < il; i ++ ) {

				this.boneInverses.push( new Matrix4() );

			}

		}

	}

}

Object.assign( Skeleton.prototype, {

	calculateInverses: function () {

		this.boneInverses = [];

		for ( var i = 0, il = this.bones.length; i < il; i ++ ) {

			var inverse = new Matrix4();

			if ( this.bones[ i ] ) {

				inverse.getInverse( this.bones[ i ].matrixWorld );

			}

			this.boneInverses.push( inverse );

		}

	},

	pose: function () {

		var bone, i, il;

		// recover the bind-time world matrices

		for ( i = 0, il = this.bones.length; i < il; i ++ ) {

			bone = this.bones[ i ];

			if ( bone ) {

				bone.matrixWorld.getInverse( this.boneInverses[ i ] );

			}

		}

		// compute the local matrices, positions, rotations and scales

		for ( i = 0, il = this.bones.length; i < il; i ++ ) {

			bone = this.bones[ i ];

			if ( bone ) {

				if ( bone.parent && bone.parent.isBone ) {

					bone.matrix.getInverse( bone.parent.matrixWorld );
					bone.matrix.multiply( bone.matrixWorld );

				} else {

					bone.matrix.copy( bone.matrixWorld );

				}

				bone.matrix.decompose( bone.position, bone.quaternion, bone.scale );

			}

		}

	},

	update: ( function () {

		var offsetMatrix = new Matrix4();
		var identityMatrix = new Matrix4();

		return function update() {

			var bones = this.bones;
			var boneInverses = this.boneInverses;
			var boneMatrices = this.boneMatrices;
			var boneTexture = this.boneTexture;

			// flatten bone matrices to array

			for ( var i = 0, il = bones.length; i < il; i ++ ) {

				// compute the offset between the current and the original transform

				var matrix = bones[ i ] ? bones[ i ].matrixWorld : identityMatrix;

				offsetMatrix.multiplyMatrices( matrix, boneInverses[ i ] );
				offsetMatrix.toArray( boneMatrices, i * 16 );

			}

			if ( boneTexture !== undefined ) {

				boneTexture.needsUpdate = true;

			}

		};

	} )(),

	clone: function () {

		return new Skeleton( this.bones, this.boneInverses );

	}

} );

/**
 * @author mikael emtinger / http://gomo.se/
 * @author alteredq / http://alteredqualia.com/
 * @author ikerr / http://verold.com
 */

function Bone() {

	Object3D.call( this );

	this.type = 'Bone';

}

Bone.prototype = Object.assign( Object.create( Object3D.prototype ), {

	constructor: Bone,

	isBone: true

} );

/**
 * @author mikael emtinger / http://gomo.se/
 * @author alteredq / http://alteredqualia.com/
 * @author ikerr / http://verold.com
 */

function SkinnedMesh( geometry, material ) {

	Mesh.call( this, geometry, material );

	this.type = 'SkinnedMesh';

	this.bindMode = 'attached';
	this.bindMatrix = new Matrix4();
	this.bindMatrixInverse = new Matrix4();

	var bones = this.initBones();
	var skeleton = new Skeleton( bones );

	this.bind( skeleton, this.matrixWorld );

	this.normalizeSkinWeights();

}

SkinnedMesh.prototype = Object.assign( Object.create( Mesh.prototype ), {

	constructor: SkinnedMesh,

	isSkinnedMesh: true,

	initBones: function () {

		var bones = [], bone, gbone;
		var i, il;

		if ( this.geometry && this.geometry.bones !== undefined ) {

			// first, create array of 'Bone' objects from geometry data

			for ( i = 0, il = this.geometry.bones.length; i < il; i ++ ) {

				gbone = this.geometry.bones[ i ];

				// create new 'Bone' object

				bone = new Bone();
				bones.push( bone );

				// apply values

				bone.name = gbone.name;
				bone.position.fromArray( gbone.pos );
				bone.quaternion.fromArray( gbone.rotq );
				if ( gbone.scl !== undefined ) bone.scale.fromArray( gbone.scl );

			}

			// second, create bone hierarchy

			for ( i = 0, il = this.geometry.bones.length; i < il; i ++ ) {

				gbone = this.geometry.bones[ i ];

				if ( ( gbone.parent !== - 1 ) && ( gbone.parent !== null ) && ( bones[ gbone.parent ] !== undefined ) ) {

					// subsequent bones in the hierarchy

					bones[ gbone.parent ].add( bones[ i ] );

				} else {

					// topmost bone, immediate child of the skinned mesh

					this.add( bones[ i ] );

				}

			}

		}

		// now the bones are part of the scene graph and children of the skinned mesh.
		// let's update the corresponding matrices

		this.updateMatrixWorld( true );

		return bones;

	},

	bind: function ( skeleton, bindMatrix ) {

		this.skeleton = skeleton;

		if ( bindMatrix === undefined ) {

			this.updateMatrixWorld( true );

			this.skeleton.calculateInverses();

			bindMatrix = this.matrixWorld;

		}

		this.bindMatrix.copy( bindMatrix );
		this.bindMatrixInverse.getInverse( bindMatrix );

	},

	pose: function () {

		this.skeleton.pose();

	},

	normalizeSkinWeights: function () {

		var scale, i;

		if ( this.geometry && this.geometry.isGeometry ) {

			for ( i = 0; i < this.geometry.skinWeights.length; i ++ ) {

				var sw = this.geometry.skinWeights[ i ];

				scale = 1.0 / sw.lengthManhattan();

				if ( scale !== Infinity ) {

					sw.multiplyScalar( scale );

				} else {

					sw.set( 1, 0, 0, 0 ); // do something reasonable

				}

			}

		} else if ( this.geometry && this.geometry.isBufferGeometry ) {

			var vec = new Vector4();

			var skinWeight = this.geometry.attributes.skinWeight;

			for ( i = 0; i < skinWeight.count; i ++ ) {

				vec.x = skinWeight.getX( i );
				vec.y = skinWeight.getY( i );
				vec.z = skinWeight.getZ( i );
				vec.w = skinWeight.getW( i );

				scale = 1.0 / vec.lengthManhattan();

				if ( scale !== Infinity ) {

					vec.multiplyScalar( scale );

				} else {

					vec.set( 1, 0, 0, 0 ); // do something reasonable

				}

				skinWeight.setXYZW( i, vec.x, vec.y, vec.z, vec.w );

			}

		}

	},

	updateMatrixWorld: function ( force ) {

		Mesh.prototype.updateMatrixWorld.call( this, force );

		if ( this.bindMode === 'attached' ) {

			this.bindMatrixInverse.getInverse( this.matrixWorld );

		} else if ( this.bindMode === 'detached' ) {

			this.bindMatrixInverse.getInverse( this.bindMatrix );

		} else {

			console.warn( 'THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode );

		}

	},

	clone: function () {

		return new this.constructor( this.geometry, this.material ).copy( this );

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 * @author alteredq / http://alteredqualia.com/
 *
 * parameters = {
 *  color: <hex>,
 *  opacity: <float>,
 *
 *  linewidth: <float>,
 *  linecap: "round",
 *  linejoin: "round"
 * }
 */

function LineBasicMaterial( parameters ) {

	Material.call( this );

	this.type = 'LineBasicMaterial';

	this.color = new Color( 0xffffff );

	this.linewidth = 1;
	this.linecap = 'round';
	this.linejoin = 'round';

	this.lights = false;

	this.setValues( parameters );

}

LineBasicMaterial.prototype = Object.create( Material.prototype );
LineBasicMaterial.prototype.constructor = LineBasicMaterial;

LineBasicMaterial.prototype.isLineBasicMaterial = true;

LineBasicMaterial.prototype.copy = function ( source ) {

	Material.prototype.copy.call( this, source );

	this.color.copy( source.color );

	this.linewidth = source.linewidth;
	this.linecap = source.linecap;
	this.linejoin = source.linejoin;

	return this;

};

/**
 * @author mrdoob / http://mrdoob.com/
 */

function Line( geometry, material, mode ) {

	if ( mode === 1 ) {

		console.warn( 'THREE.Line: parameter THREE.LinePieces no longer supported. Created THREE.LineSegments instead.' );
		return new LineSegments( geometry, material );

	}

	Object3D.call( this );

	this.type = 'Line';

	this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
	this.material = material !== undefined ? material : new LineBasicMaterial( { color: Math.random() * 0xffffff } );

}

Line.prototype = Object.assign( Object.create( Object3D.prototype ), {

	constructor: Line,

	isLine: true,

	raycast: ( function () {

		var inverseMatrix = new Matrix4();
		var ray = new Ray();
		var sphere = new Sphere();

		return function raycast( raycaster, intersects ) {

			var precision = raycaster.linePrecision;
			var precisionSq = precision * precision;

			var geometry = this.geometry;
			var matrixWorld = this.matrixWorld;

			// Checking boundingSphere distance to ray

			if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();

			sphere.copy( geometry.boundingSphere );
			sphere.applyMatrix4( matrixWorld );

			if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;

			//

			inverseMatrix.getInverse( matrixWorld );
			ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );

			var vStart = new Vector3();
			var vEnd = new Vector3();
			var interSegment = new Vector3();
			var interRay = new Vector3();
			var step = (this && this.isLineSegments) ? 2 : 1;

			if ( geometry.isBufferGeometry ) {

				var index = geometry.index;
				var attributes = geometry.attributes;
				var positions = attributes.position.array;

				if ( index !== null ) {

					var indices = index.array;

					for ( var i = 0, l = indices.length - 1; i < l; i += step ) {

						var a = indices[ i ];
						var b = indices[ i + 1 ];

						vStart.fromArray( positions, a * 3 );
						vEnd.fromArray( positions, b * 3 );

						var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment );

						if ( distSq > precisionSq ) continue;

						interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation

						var distance = raycaster.ray.origin.distanceTo( interRay );

						if ( distance < raycaster.near || distance > raycaster.far ) continue;

						intersects.push( {

							distance: distance,
							// What do we want? intersection point on the ray or on the segment??
							// point: raycaster.ray.at( distance ),
							point: interSegment.clone().applyMatrix4( this.matrixWorld ),
							index: i,
							face: null,
							faceIndex: null,
							object: this

						} );

					}

				} else {

					for ( var i = 0, l = positions.length / 3 - 1; i < l; i += step ) {

						vStart.fromArray( positions, 3 * i );
						vEnd.fromArray( positions, 3 * i + 3 );

						var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment );

						if ( distSq > precisionSq ) continue;

						interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation

						var distance = raycaster.ray.origin.distanceTo( interRay );

						if ( distance < raycaster.near || distance > raycaster.far ) continue;

						intersects.push( {

							distance: distance,
							// What do we want? intersection point on the ray or on the segment??
							// point: raycaster.ray.at( distance ),
							point: interSegment.clone().applyMatrix4( this.matrixWorld ),
							index: i,
							face: null,
							faceIndex: null,
							object: this

						} );

					}

				}

			} else if ( geometry.isGeometry ) {

				var vertices = geometry.vertices;
				var nbVertices = vertices.length;

				for ( var i = 0; i < nbVertices - 1; i += step ) {

					var distSq = ray.distanceSqToSegment( vertices[ i ], vertices[ i + 1 ], interRay, interSegment );

					if ( distSq > precisionSq ) continue;

					interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation

					var distance = raycaster.ray.origin.distanceTo( interRay );

					if ( distance < raycaster.near || distance > raycaster.far ) continue;

					intersects.push( {

						distance: distance,
						// What do we want? intersection point on the ray or on the segment??
						// point: raycaster.ray.at( distance ),
						point: interSegment.clone().applyMatrix4( this.matrixWorld ),
						index: i,
						face: null,
						faceIndex: null,
						object: this

					} );

				}

			}

		};

	}() ),

	clone: function () {

		return new this.constructor( this.geometry, this.material ).copy( this );

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function LineSegments( geometry, material ) {

	Line.call( this, geometry, material );

	this.type = 'LineSegments';

}

LineSegments.prototype = Object.assign( Object.create( Line.prototype ), {

	constructor: LineSegments,

	isLineSegments: true

} );

/**
 * @author mgreter / http://github.com/mgreter
 */

function LineLoop( geometry, material ) {

	Line.call( this, geometry, material );

	this.type = 'LineLoop';

}

LineLoop.prototype = Object.assign( Object.create( Line.prototype ), {

	constructor: LineLoop,

	isLineLoop: true,

} );

/**
 * @author mrdoob / http://mrdoob.com/
 * @author alteredq / http://alteredqualia.com/
 *
 * parameters = {
 *  color: <hex>,
 *  opacity: <float>,
 *  map: new THREE.Texture( <Image> ),
 *
 *  size: <float>,
 *  sizeAttenuation: <bool>
 * }
 */

function PointsMaterial( parameters ) {

	Material.call( this );

	this.type = 'PointsMaterial';

	this.color = new Color( 0xffffff );

	this.map = null;

	this.size = 1;
	this.sizeAttenuation = true;

	this.lights = false;

	this.setValues( parameters );

}

PointsMaterial.prototype = Object.create( Material.prototype );
PointsMaterial.prototype.constructor = PointsMaterial;

PointsMaterial.prototype.isPointsMaterial = true;

PointsMaterial.prototype.copy = function ( source ) {

	Material.prototype.copy.call( this, source );

	this.color.copy( source.color );

	this.map = source.map;

	this.size = source.size;
	this.sizeAttenuation = source.sizeAttenuation;

	return this;

};

/**
 * @author alteredq / http://alteredqualia.com/
 */

function Points( geometry, material ) {

	Object3D.call( this );

	this.type = 'Points';

	this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
	this.material = material !== undefined ? material : new PointsMaterial( { color: Math.random() * 0xffffff } );

}

Points.prototype = Object.assign( Object.create( Object3D.prototype ), {

	constructor: Points,

	isPoints: true,

	raycast: ( function () {

		var inverseMatrix = new Matrix4();
		var ray = new Ray();
		var sphere = new Sphere();

		return function raycast( raycaster, intersects ) {

			var object = this;
			var geometry = this.geometry;
			var matrixWorld = this.matrixWorld;
			var threshold = raycaster.params.Points.threshold;

			// Checking boundingSphere distance to ray

			if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();

			sphere.copy( geometry.boundingSphere );
			sphere.applyMatrix4( matrixWorld );
			sphere.radius += threshold;

			if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;

			//

			inverseMatrix.getInverse( matrixWorld );
			ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );

			var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 );
			var localThresholdSq = localThreshold * localThreshold;
			var position = new Vector3();

			function testPoint( point, index ) {

				var rayPointDistanceSq = ray.distanceSqToPoint( point );

				if ( rayPointDistanceSq < localThresholdSq ) {

					var intersectPoint = ray.closestPointToPoint( point );
					intersectPoint.applyMatrix4( matrixWorld );

					var distance = raycaster.ray.origin.distanceTo( intersectPoint );

					if ( distance < raycaster.near || distance > raycaster.far ) return;

					intersects.push( {

						distance: distance,
						distanceToRay: Math.sqrt( rayPointDistanceSq ),
						point: intersectPoint.clone(),
						index: index,
						face: null,
						object: object

					} );

				}

			}

			if ( geometry.isBufferGeometry ) {

				var index = geometry.index;
				var attributes = geometry.attributes;
				var positions = attributes.position.array;

				if ( index !== null ) {

					var indices = index.array;

					for ( var i = 0, il = indices.length; i < il; i ++ ) {

						var a = indices[ i ];

						position.fromArray( positions, a * 3 );

						testPoint( position, a );

					}

				} else {

					for ( var i = 0, l = positions.length / 3; i < l; i ++ ) {

						position.fromArray( positions, i * 3 );

						testPoint( position, i );

					}

				}

			} else {

				var vertices = geometry.vertices;

				for ( var i = 0, l = vertices.length; i < l; i ++ ) {

					testPoint( vertices[ i ], i );

				}

			}

		};

	}() ),

	clone: function () {

		return new this.constructor( this.geometry, this.material ).copy( this );

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function Group() {

	Object3D.call( this );

	this.type = 'Group';

}

Group.prototype = Object.assign( Object.create( Object3D.prototype ), {

	constructor: Group

} );

/**
 * @author alteredq / http://alteredqualia.com/
 */

function CompressedTexture( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {

	Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );

	this.image = { width: width, height: height };
	this.mipmaps = mipmaps;

	// no flipping for cube textures
	// (also flipping doesn't work for compressed textures )

	this.flipY = false;

	// can't generate mipmaps for compressed textures
	// mips must be embedded in DDS files

	this.generateMipmaps = false;

}

CompressedTexture.prototype = Object.create( Texture.prototype );
CompressedTexture.prototype.constructor = CompressedTexture;

CompressedTexture.prototype.isCompressedTexture = true;

/**
 * @author mrdoob / http://mrdoob.com/
 */

function CanvasTexture( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {

	Texture.call( this, canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );

	this.needsUpdate = true;

}

CanvasTexture.prototype = Object.create( Texture.prototype );
CanvasTexture.prototype.constructor = CanvasTexture;

/**
 * @author mrdoob / http://mrdoob.com/
 * @author Mugen87 / https://github.com/Mugen87
 */

function WireframeGeometry( geometry ) {

	BufferGeometry.call( this );

	this.type = 'WireframeGeometry';

	// buffer

	var vertices = [];

	// helper variables

	var i, j, l, o, ol;
	var edge = [ 0, 0 ], edges = {}, e, edge1, edge2;
	var key, keys = [ 'a', 'b', 'c' ];
	var vertex;

	// different logic for Geometry and BufferGeometry

	if ( geometry && geometry.isGeometry ) {

		// create a data structure that contains all edges without duplicates

		var faces = geometry.faces;

		for ( i = 0, l = faces.length; i < l; i ++ ) {

			var face = faces[ i ];

			for ( j = 0; j < 3; j ++ ) {

				edge1 = face[ keys[ j ] ];
				edge2 = face[ keys[ ( j + 1 ) % 3 ] ];
				edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates
				edge[ 1 ] = Math.max( edge1, edge2 );

				key = edge[ 0 ] + ',' + edge[ 1 ];

				if ( edges[ key ] === undefined ) {

					edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] };

				}

			}

		}

		// generate vertices

		for ( key in edges ) {

			e = edges[ key ];

			vertex = geometry.vertices[ e.index1 ];
			vertices.push( vertex.x, vertex.y, vertex.z );

			vertex = geometry.vertices[ e.index2 ];
			vertices.push( vertex.x, vertex.y, vertex.z );

		}

	} else if ( geometry && geometry.isBufferGeometry ) {

		var position, indices, groups;
		var group, start, count;
		var index1, index2;

		vertex = new Vector3();

		if ( geometry.index !== null ) {

			// indexed BufferGeometry

			position = geometry.attributes.position;
			indices = geometry.index;
			groups = geometry.groups;

			if ( groups.length === 0 ) {

				groups = [ { start: 0, count: indices.count, materialIndex: 0 } ];

			}

			// create a data structure that contains all eges without duplicates

			for ( o = 0, ol = groups.length; o < ol; ++ o ) {

				group = groups[ o ];

				start = group.start;
				count = group.count;

				for ( i = start, l = ( start + count ); i < l; i += 3 ) {

					for ( j = 0; j < 3; j ++ ) {

						edge1 = indices.getX( i + j );
						edge2 = indices.getX( i + ( j + 1 ) % 3 );
						edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates
						edge[ 1 ] = Math.max( edge1, edge2 );

						key = edge[ 0 ] + ',' + edge[ 1 ];

						if ( edges[ key ] === undefined ) {

							edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] };

						}

					}

				}

			}

			// generate vertices

			for ( key in edges ) {

				e = edges[ key ];

				vertex.fromBufferAttribute( position, e.index1 );
				vertices.push( vertex.x, vertex.y, vertex.z );

				vertex.fromBufferAttribute( position, e.index2 );
				vertices.push( vertex.x, vertex.y, vertex.z );

			}

		} else {

			// non-indexed BufferGeometry

			position = geometry.attributes.position;

			for ( i = 0, l = ( position.count / 3 ); i < l; i ++ ) {

				for ( j = 0; j < 3; j ++ ) {

					// three edges per triangle, an edge is represented as (index1, index2)
					// e.g. the first triangle has the following edges: (0,1),(1,2),(2,0)

					index1 = 3 * i + j;
					vertex.fromBufferAttribute( position, index1 );
					vertices.push( vertex.x, vertex.y, vertex.z );

					index2 = 3 * i + ( ( j + 1 ) % 3 );
					vertex.fromBufferAttribute( position, index2 );
					vertices.push( vertex.x, vertex.y, vertex.z );

				}

			}

		}

	}

	// build geometry

	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );

}

WireframeGeometry.prototype = Object.create( BufferGeometry.prototype );
WireframeGeometry.prototype.constructor = WireframeGeometry;

/**
 * @author zz85 / https://github.com/zz85
 * @author Mugen87 / https://github.com/Mugen87
 *
 * Parametric Surfaces Geometry
 * based on the brilliant article by @prideout http://prideout.net/blog/?p=44
 */

// ParametricGeometry

function ParametricGeometry( func, slices, stacks ) {

	Geometry.call( this );

	this.type = 'ParametricGeometry';

	this.parameters = {
		func: func,
		slices: slices,
		stacks: stacks
	};

	this.fromBufferGeometry( new ParametricBufferGeometry( func, slices, stacks ) );
	this.mergeVertices();

}

ParametricGeometry.prototype = Object.create( Geometry.prototype );
ParametricGeometry.prototype.constructor = ParametricGeometry;

// ParametricBufferGeometry

function ParametricBufferGeometry( func, slices, stacks ) {

	BufferGeometry.call( this );

	this.type = 'ParametricBufferGeometry';

	this.parameters = {
		func: func,
		slices: slices,
		stacks: stacks
	};

	// buffers

	var indices = [];
	var vertices = [];
	var normals = [];
	var uvs = [];

	var EPS = 0.00001;

	var normal = new Vector3();

	var p0 = new Vector3(), p1 = new Vector3();
	var pu = new Vector3(), pv = new Vector3();

	var i, j;

	// generate vertices, normals and uvs

	var sliceCount = slices + 1;

	for ( i = 0; i <= stacks; i ++ ) {

		var v = i / stacks;

		for ( j = 0; j <= slices; j ++ ) {

			var u = j / slices;

			// vertex

			p0 = func( u, v, p0 );
			vertices.push( p0.x, p0.y, p0.z );

			// normal

			// approximate tangent vectors via finite differences

			if ( u - EPS >= 0 ) {

				p1 = func( u - EPS, v, p1 );
				pu.subVectors( p0, p1 );

			} else {

				p1 = func( u + EPS, v, p1 );
				pu.subVectors( p1, p0 );

			}

			if ( v - EPS >= 0 ) {

				p1 = func( u, v - EPS, p1 );
				pv.subVectors( p0, p1 );

			} else {

				p1 = func( u, v + EPS, p1 );
				pv.subVectors( p1, p0 );

			}

			// cross product of tangent vectors returns surface normal

			normal.crossVectors( pu, pv ).normalize();
			normals.push( normal.x, normal.y, normal.z );

			// uv

			uvs.push( u, v );

		}

	}

	// generate indices

	for ( i = 0; i < stacks; i ++ ) {

		for ( j = 0; j < slices; j ++ ) {

			var a = i * sliceCount + j;
			var b = i * sliceCount + j + 1;
			var c = ( i + 1 ) * sliceCount + j + 1;
			var d = ( i + 1 ) * sliceCount + j;

			// faces one and two

			indices.push( a, b, d );
			indices.push( b, c, d );

		}

	}

	// build geometry

	this.setIndex( indices );
	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

}

ParametricBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
ParametricBufferGeometry.prototype.constructor = ParametricBufferGeometry;

/**
 * @author clockworkgeek / https://github.com/clockworkgeek
 * @author timothypratley / https://github.com/timothypratley
 * @author WestLangley / http://github.com/WestLangley
 * @author Mugen87 / https://github.com/Mugen87
 */

// PolyhedronGeometry

function PolyhedronGeometry( vertices, indices, radius, detail ) {

	Geometry.call( this );

	this.type = 'PolyhedronGeometry';

	this.parameters = {
		vertices: vertices,
		indices: indices,
		radius: radius,
		detail: detail
	};

	this.fromBufferGeometry( new PolyhedronBufferGeometry( vertices, indices, radius, detail ) );
	this.mergeVertices();

}

PolyhedronGeometry.prototype = Object.create( Geometry.prototype );
PolyhedronGeometry.prototype.constructor = PolyhedronGeometry;

// PolyhedronBufferGeometry

function PolyhedronBufferGeometry( vertices, indices, radius, detail ) {

	BufferGeometry.call( this );

	this.type = 'PolyhedronBufferGeometry';

	this.parameters = {
		vertices: vertices,
		indices: indices,
		radius: radius,
		detail: detail
	};

	radius = radius || 1;
	detail = detail || 0;

	// default buffer data

	var vertexBuffer = [];
	var uvBuffer = [];

	// the subdivision creates the vertex buffer data

	subdivide( detail );

	// all vertices should lie on a conceptual sphere with a given radius

	appplyRadius( radius );

	// finally, create the uv data

	generateUVs();

	// build non-indexed geometry

	this.addAttribute( 'position', new Float32BufferAttribute( vertexBuffer, 3 ) );
	this.addAttribute( 'normal', new Float32BufferAttribute( vertexBuffer.slice(), 3 ) );
	this.addAttribute( 'uv', new Float32BufferAttribute( uvBuffer, 2 ) );

	if ( detail === 0 ) {

		this.computeVertexNormals(); // flat normals

	} else {

		this.normalizeNormals(); // smooth normals

	}

	// helper functions

	function subdivide( detail ) {

		var a = new Vector3();
		var b = new Vector3();
		var c = new Vector3();

		// iterate over all faces and apply a subdivison with the given detail value

		for ( var i = 0; i < indices.length; i += 3 ) {

			// get the vertices of the face

			getVertexByIndex( indices[ i + 0 ], a );
			getVertexByIndex( indices[ i + 1 ], b );
			getVertexByIndex( indices[ i + 2 ], c );

			// perform subdivision

			subdivideFace( a, b, c, detail );

		}

	}

	function subdivideFace( a, b, c, detail ) {

		var cols = Math.pow( 2, detail );

		// we use this multidimensional array as a data structure for creating the subdivision

		var v = [];

		var i, j;

		// construct all of the vertices for this subdivision

		for ( i = 0; i <= cols; i ++ ) {

			v[ i ] = [];

			var aj = a.clone().lerp( c, i / cols );
			var bj = b.clone().lerp( c, i / cols );

			var rows = cols - i;

			for ( j = 0; j <= rows; j ++ ) {

				if ( j === 0 && i === cols ) {

					v[ i ][ j ] = aj;

				} else {

					v[ i ][ j ] = aj.clone().lerp( bj, j / rows );

				}

			}

		}

		// construct all of the faces

		for ( i = 0; i < cols; i ++ ) {

			for ( j = 0; j < 2 * ( cols - i ) - 1; j ++ ) {

				var k = Math.floor( j / 2 );

				if ( j % 2 === 0 ) {

					pushVertex( v[ i ][ k + 1 ] );
					pushVertex( v[ i + 1 ][ k ] );
					pushVertex( v[ i ][ k ] );

				} else {

					pushVertex( v[ i ][ k + 1 ] );
					pushVertex( v[ i + 1 ][ k + 1 ] );
					pushVertex( v[ i + 1 ][ k ] );

				}

			}

		}

	}

	function appplyRadius( radius ) {

		var vertex = new Vector3();

		// iterate over the entire buffer and apply the radius to each vertex

		for ( var i = 0; i < vertexBuffer.length; i += 3 ) {

			vertex.x = vertexBuffer[ i + 0 ];
			vertex.y = vertexBuffer[ i + 1 ];
			vertex.z = vertexBuffer[ i + 2 ];

			vertex.normalize().multiplyScalar( radius );

			vertexBuffer[ i + 0 ] = vertex.x;
			vertexBuffer[ i + 1 ] = vertex.y;
			vertexBuffer[ i + 2 ] = vertex.z;

		}

	}

	function generateUVs() {

		var vertex = new Vector3();

		for ( var i = 0; i < vertexBuffer.length; i += 3 ) {

			vertex.x = vertexBuffer[ i + 0 ];
			vertex.y = vertexBuffer[ i + 1 ];
			vertex.z = vertexBuffer[ i + 2 ];

			var u = azimuth( vertex ) / 2 / Math.PI + 0.5;
			var v = inclination( vertex ) / Math.PI + 0.5;
			uvBuffer.push( u, 1 - v );

		}

		correctUVs();

		correctSeam();

	}

	function correctSeam() {

		// handle case when face straddles the seam, see #3269

		for ( var i = 0; i < uvBuffer.length; i += 6 ) {

			// uv data of a single face

			var x0 = uvBuffer[ i + 0 ];
			var x1 = uvBuffer[ i + 2 ];
			var x2 = uvBuffer[ i + 4 ];

			var max = Math.max( x0, x1, x2 );
			var min = Math.min( x0, x1, x2 );

			// 0.9 is somewhat arbitrary

			if ( max > 0.9 && min < 0.1 ) {

				if ( x0 < 0.2 ) uvBuffer[ i + 0 ] += 1;
				if ( x1 < 0.2 ) uvBuffer[ i + 2 ] += 1;
				if ( x2 < 0.2 ) uvBuffer[ i + 4 ] += 1;

			}

		}

	}

	function pushVertex( vertex ) {

		vertexBuffer.push( vertex.x, vertex.y, vertex.z );

	}

	function getVertexByIndex( index, vertex ) {

		var stride = index * 3;

		vertex.x = vertices[ stride + 0 ];
		vertex.y = vertices[ stride + 1 ];
		vertex.z = vertices[ stride + 2 ];

	}

	function correctUVs() {

		var a = new Vector3();
		var b = new Vector3();
		var c = new Vector3();

		var centroid = new Vector3();

		var uvA = new Vector2();
		var uvB = new Vector2();
		var uvC = new Vector2();

		for ( var i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6 ) {

			a.set( vertexBuffer[ i + 0 ], vertexBuffer[ i + 1 ], vertexBuffer[ i + 2 ] );
			b.set( vertexBuffer[ i + 3 ], vertexBuffer[ i + 4 ], vertexBuffer[ i + 5 ] );
			c.set( vertexBuffer[ i + 6 ], vertexBuffer[ i + 7 ], vertexBuffer[ i + 8 ] );

			uvA.set( uvBuffer[ j + 0 ], uvBuffer[ j + 1 ] );
			uvB.set( uvBuffer[ j + 2 ], uvBuffer[ j + 3 ] );
			uvC.set( uvBuffer[ j + 4 ], uvBuffer[ j + 5 ] );

			centroid.copy( a ).add( b ).add( c ).divideScalar( 3 );

			var azi = azimuth( centroid );

			correctUV( uvA, j + 0, a, azi );
			correctUV( uvB, j + 2, b, azi );
			correctUV( uvC, j + 4, c, azi );

		}

	}

	function correctUV( uv, stride, vector, azimuth ) {

		if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) {

			uvBuffer[ stride ] = uv.x - 1;

		}

		if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) {

			uvBuffer[ stride ] = azimuth / 2 / Math.PI + 0.5;

		}

	}

	// Angle around the Y axis, counter-clockwise when looking from above.

	function azimuth( vector ) {

		return Math.atan2( vector.z, - vector.x );

	}


	// Angle above the XZ plane.

	function inclination( vector ) {

		return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) );

	}

}

PolyhedronBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
PolyhedronBufferGeometry.prototype.constructor = PolyhedronBufferGeometry;

/**
 * @author timothypratley / https://github.com/timothypratley
 * @author Mugen87 / https://github.com/Mugen87
 */

// TetrahedronGeometry

function TetrahedronGeometry( radius, detail ) {

	Geometry.call( this );

	this.type = 'TetrahedronGeometry';

	this.parameters = {
		radius: radius,
		detail: detail
	};

	this.fromBufferGeometry( new TetrahedronBufferGeometry( radius, detail ) );
	this.mergeVertices();

}

TetrahedronGeometry.prototype = Object.create( Geometry.prototype );
TetrahedronGeometry.prototype.constructor = TetrahedronGeometry;

// TetrahedronBufferGeometry

function TetrahedronBufferGeometry( radius, detail ) {

	var vertices = [
		1,  1,  1,   - 1, - 1,  1,   - 1,  1, - 1,    1, - 1, - 1
	];

	var indices = [
		2,  1,  0,    0,  3,  2,    1,  3,  0,    2,  3,  1
	];

	PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

	this.type = 'TetrahedronBufferGeometry';

	this.parameters = {
		radius: radius,
		detail: detail
	};

}

TetrahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
TetrahedronBufferGeometry.prototype.constructor = TetrahedronBufferGeometry;

/**
 * @author timothypratley / https://github.com/timothypratley
 * @author Mugen87 / https://github.com/Mugen87
 */

// OctahedronGeometry

function OctahedronGeometry( radius, detail ) {

	Geometry.call( this );

	this.type = 'OctahedronGeometry';

	this.parameters = {
		radius: radius,
		detail: detail
	};

	this.fromBufferGeometry( new OctahedronBufferGeometry( radius, detail ) );
	this.mergeVertices();

}

OctahedronGeometry.prototype = Object.create( Geometry.prototype );
OctahedronGeometry.prototype.constructor = OctahedronGeometry;

// OctahedronBufferGeometry

function OctahedronBufferGeometry( radius, detail ) {

	var vertices = [
		1, 0, 0,   - 1, 0, 0,    0, 1, 0,    0, - 1, 0,    0, 0, 1,    0, 0, - 1
	];

	var indices = [
		0, 2, 4,    0, 4, 3,    0, 3, 5,    0, 5, 2,    1, 2, 5,    1, 5, 3,    1, 3, 4,    1, 4, 2
	];

	PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

	this.type = 'OctahedronBufferGeometry';

	this.parameters = {
		radius: radius,
		detail: detail
	};

}

OctahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
OctahedronBufferGeometry.prototype.constructor = OctahedronBufferGeometry;

/**
 * @author timothypratley / https://github.com/timothypratley
 * @author Mugen87 / https://github.com/Mugen87
 */

// IcosahedronGeometry

function IcosahedronGeometry( radius, detail ) {

 	Geometry.call( this );

	this.type = 'IcosahedronGeometry';

	this.parameters = {
		radius: radius,
		detail: detail
	};

	this.fromBufferGeometry( new IcosahedronBufferGeometry( radius, detail ) );
	this.mergeVertices();

}

IcosahedronGeometry.prototype = Object.create( Geometry.prototype );
IcosahedronGeometry.prototype.constructor = IcosahedronGeometry;

// IcosahedronBufferGeometry

function IcosahedronBufferGeometry( radius, detail ) {

	var t = ( 1 + Math.sqrt( 5 ) ) / 2;

	var vertices = [
		- 1,  t,  0,    1,  t,  0,   - 1, - t,  0,    1, - t,  0,
		 0, - 1,  t,    0,  1,  t,    0, - 1, - t,    0,  1, - t,
		 t,  0, - 1,    t,  0,  1,   - t,  0, - 1,   - t,  0,  1
	];

	var indices = [
		 0, 11,  5,    0,  5,  1,    0,  1,  7,    0,  7, 10,    0, 10, 11,
		 1,  5,  9,    5, 11,  4,   11, 10,  2,   10,  7,  6,    7,  1,  8,
		 3,  9,  4,    3,  4,  2,    3,  2,  6,    3,  6,  8,    3,  8,  9,
		 4,  9,  5,    2,  4, 11,    6,  2, 10,    8,  6,  7,    9,  8,  1
	];

	PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

	this.type = 'IcosahedronBufferGeometry';

	this.parameters = {
		radius: radius,
		detail: detail
	};

}

IcosahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
IcosahedronBufferGeometry.prototype.constructor = IcosahedronBufferGeometry;

/**
 * @author Abe Pazos / https://hamoid.com
 * @author Mugen87 / https://github.com/Mugen87
 */

// DodecahedronGeometry

function DodecahedronGeometry( radius, detail ) {

	Geometry.call( this );

	this.type = 'DodecahedronGeometry';

	this.parameters = {
		radius: radius,
		detail: detail
	};

	this.fromBufferGeometry( new DodecahedronBufferGeometry( radius, detail ) );
	this.mergeVertices();

}

DodecahedronGeometry.prototype = Object.create( Geometry.prototype );
DodecahedronGeometry.prototype.constructor = DodecahedronGeometry;

// DodecahedronBufferGeometry

function DodecahedronBufferGeometry( radius, detail ) {

	var t = ( 1 + Math.sqrt( 5 ) ) / 2;
	var r = 1 / t;

	var vertices = [

		// (±1, ±1, ±1)
		- 1, - 1, - 1,    - 1, - 1,  1,
		- 1,  1, - 1,    - 1,  1,  1,
		  1, - 1, - 1,     1, - 1,  1,
		  1,  1, - 1,     1,  1,  1,

		// (0, ±1/φ, ±φ)
		 0, - r, - t,     0, - r,  t,
		 0,  r, - t,     0,  r,  t,

		// (±1/φ, ±φ, 0)
		- r, - t,  0,    - r,  t,  0,
		 r, - t,  0,     r,  t,  0,

		// (±φ, 0, ±1/φ)
		- t,  0, - r,     t,  0, - r,
		- t,  0,  r,     t,  0,  r
	];

	var indices = [
		 3, 11,  7,      3,  7, 15,      3, 15, 13,
		 7, 19, 17,      7, 17,  6,      7,  6, 15,
		17,  4,  8,     17,  8, 10,     17, 10,  6,
		 8,  0, 16,      8, 16,  2,      8,  2, 10,
		 0, 12,  1,      0,  1, 18,      0, 18, 16,
		 6, 10,  2,      6,  2, 13,      6, 13, 15,
		 2, 16, 18,      2, 18,  3,      2,  3, 13,
		18,  1,  9,     18,  9, 11,     18, 11,  3,
		 4, 14, 12,      4, 12,  0,      4,  0,  8,
		11,  9,  5,     11,  5, 19,     11, 19,  7,
		19,  5, 14,     19, 14,  4,     19,  4, 17,
		 1, 12, 14,      1, 14,  5,      1,  5,  9
	];

	PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

	this.type = 'DodecahedronBufferGeometry';

	this.parameters = {
		radius: radius,
		detail: detail
	};

}

DodecahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
DodecahedronBufferGeometry.prototype.constructor = DodecahedronBufferGeometry;

/**
 * @author oosmoxiecode / https://github.com/oosmoxiecode
 * @author WestLangley / https://github.com/WestLangley
 * @author zz85 / https://github.com/zz85
 * @author miningold / https://github.com/miningold
 * @author jonobr1 / https://github.com/jonobr1
 * @author Mugen87 / https://github.com/Mugen87
 *
 */

// TubeGeometry

function TubeGeometry( path, tubularSegments, radius, radialSegments, closed, taper ) {

	Geometry.call( this );

	this.type = 'TubeGeometry';

	this.parameters = {
		path: path,
		tubularSegments: tubularSegments,
		radius: radius,
		radialSegments: radialSegments,
		closed: closed
	};

	if ( taper !== undefined ) console.warn( 'THREE.TubeGeometry: taper has been removed.' );

	var bufferGeometry = new TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed );

	// expose internals

	this.tangents = bufferGeometry.tangents;
	this.normals = bufferGeometry.normals;
	this.binormals = bufferGeometry.binormals;

	// create geometry

	this.fromBufferGeometry( bufferGeometry );
	this.mergeVertices();

}

TubeGeometry.prototype = Object.create( Geometry.prototype );
TubeGeometry.prototype.constructor = TubeGeometry;

// TubeBufferGeometry

function TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed ) {

	BufferGeometry.call( this );

	this.type = 'TubeBufferGeometry';

	this.parameters = {
		path: path,
		tubularSegments: tubularSegments,
		radius: radius,
		radialSegments: radialSegments,
		closed: closed
	};

	tubularSegments = tubularSegments || 64;
	radius = radius || 1;
	radialSegments = radialSegments || 8;
	closed = closed || false;

	var frames = path.computeFrenetFrames( tubularSegments, closed );

	// expose internals

	this.tangents = frames.tangents;
	this.normals = frames.normals;
	this.binormals = frames.binormals;

	// helper variables

	var vertex = new Vector3();
	var normal = new Vector3();
	var uv = new Vector2();

	var i, j;

	// buffer

	var vertices = [];
	var normals = [];
	var uvs = [];
	var indices = [];

	// create buffer data

	generateBufferData();

	// build geometry

	this.setIndex( indices );
	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

	// functions

	function generateBufferData() {

		for ( i = 0; i < tubularSegments; i ++ ) {

			generateSegment( i );

		}

		// if the geometry is not closed, generate the last row of vertices and normals
		// at the regular position on the given path
		//
		// if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ)

		generateSegment( ( closed === false ) ? tubularSegments : 0 );

		// uvs are generated in a separate function.
		// this makes it easy compute correct values for closed geometries

		generateUVs();

		// finally create faces

		generateIndices();

	}

	function generateSegment( i ) {

		// we use getPointAt to sample evenly distributed points from the given path

		var P = path.getPointAt( i / tubularSegments );

		// retrieve corresponding normal and binormal

		var N = frames.normals[ i ];
		var B = frames.binormals[ i ];

		// generate normals and vertices for the current segment

		for ( j = 0; j <= radialSegments; j ++ ) {

			var v = j / radialSegments * Math.PI * 2;

			var sin =   Math.sin( v );
			var cos = - Math.cos( v );

			// normal

			normal.x = ( cos * N.x + sin * B.x );
			normal.y = ( cos * N.y + sin * B.y );
			normal.z = ( cos * N.z + sin * B.z );
			normal.normalize();

			normals.push( normal.x, normal.y, normal.z );

			// vertex

			vertex.x = P.x + radius * normal.x;
			vertex.y = P.y + radius * normal.y;
			vertex.z = P.z + radius * normal.z;

			vertices.push( vertex.x, vertex.y, vertex.z );

		}

	}

	function generateIndices() {

		for ( j = 1; j <= tubularSegments; j ++ ) {

			for ( i = 1; i <= radialSegments; i ++ ) {

				var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
				var b = ( radialSegments + 1 ) * j + ( i - 1 );
				var c = ( radialSegments + 1 ) * j + i;
				var d = ( radialSegments + 1 ) * ( j - 1 ) + i;

				// faces

				indices.push( a, b, d );
				indices.push( b, c, d );

			}

		}

	}

	function generateUVs() {

		for ( i = 0; i <= tubularSegments; i ++ ) {

			for ( j = 0; j <= radialSegments; j ++ ) {

				uv.x = i / tubularSegments;
				uv.y = j / radialSegments;

				uvs.push( uv.x, uv.y );

			}

		}

	}

}

TubeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
TubeBufferGeometry.prototype.constructor = TubeBufferGeometry;

/**
 * @author oosmoxiecode
 * @author Mugen87 / https://github.com/Mugen87
 *
 * based on http://www.blackpawn.com/texts/pqtorus/
 */

// TorusKnotGeometry

function TorusKnotGeometry( radius, tube, tubularSegments, radialSegments, p, q, heightScale ) {

	Geometry.call( this );

	this.type = 'TorusKnotGeometry';

	this.parameters = {
		radius: radius,
		tube: tube,
		tubularSegments: tubularSegments,
		radialSegments: radialSegments,
		p: p,
		q: q
	};

	if ( heightScale !== undefined ) console.warn( 'THREE.TorusKnotGeometry: heightScale has been deprecated. Use .scale( x, y, z ) instead.' );

	this.fromBufferGeometry( new TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) );
	this.mergeVertices();

}

TorusKnotGeometry.prototype = Object.create( Geometry.prototype );
TorusKnotGeometry.prototype.constructor = TorusKnotGeometry;

// TorusKnotBufferGeometry

function TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) {

	BufferGeometry.call( this );

	this.type = 'TorusKnotBufferGeometry';

	this.parameters = {
		radius: radius,
		tube: tube,
		tubularSegments: tubularSegments,
		radialSegments: radialSegments,
		p: p,
		q: q
	};

	radius = radius || 100;
	tube = tube || 40;
	tubularSegments = Math.floor( tubularSegments ) || 64;
	radialSegments = Math.floor( radialSegments ) || 8;
	p = p || 2;
	q = q || 3;

	// buffers

	var indices = [];
	var vertices = [];
	var normals = [];
	var uvs = [];

	// helper variables

	var i, j;

	var vertex = new Vector3();
	var normal = new Vector3();

	var P1 = new Vector3();
	var P2 = new Vector3();

	var B = new Vector3();
	var T = new Vector3();
	var N = new Vector3();

	// generate vertices, normals and uvs

	for ( i = 0; i <= tubularSegments; ++ i ) {

		// the radian "u" is used to calculate the position on the torus curve of the current tubular segement

		var u = i / tubularSegments * p * Math.PI * 2;

		// now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
		// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions

		calculatePositionOnCurve( u, p, q, radius, P1 );
		calculatePositionOnCurve( u + 0.01, p, q, radius, P2 );

		// calculate orthonormal basis

		T.subVectors( P2, P1 );
		N.addVectors( P2, P1 );
		B.crossVectors( T, N );
		N.crossVectors( B, T );

		// normalize B, N. T can be ignored, we don't use it

		B.normalize();
		N.normalize();

		for ( j = 0; j <= radialSegments; ++ j ) {

			// now calculate the vertices. they are nothing more than an extrusion of the torus curve.
			// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.

			var v = j / radialSegments * Math.PI * 2;
			var cx = - tube * Math.cos( v );
			var cy = tube * Math.sin( v );

			// now calculate the final vertex position.
			// first we orient the extrusion with our basis vectos, then we add it to the current position on the curve

			vertex.x = P1.x + ( cx * N.x + cy * B.x );
			vertex.y = P1.y + ( cx * N.y + cy * B.y );
			vertex.z = P1.z + ( cx * N.z + cy * B.z );

			vertices.push( vertex.x, vertex.y, vertex.z );

			// normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)

			normal.subVectors( vertex, P1 ).normalize();

			normals.push( normal.x, normal.y, normal.z );

			// uv

			uvs.push( i / tubularSegments );
			uvs.push( j / radialSegments );

		}

	}

	// generate indices

	for ( j = 1; j <= tubularSegments; j ++ ) {

		for ( i = 1; i <= radialSegments; i ++ ) {

			// indices

			var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
			var b = ( radialSegments + 1 ) * j + ( i - 1 );
			var c = ( radialSegments + 1 ) * j + i;
			var d = ( radialSegments + 1 ) * ( j - 1 ) + i;

			// faces

			indices.push( a, b, d );
			indices.push( b, c, d );

		}

	}

	// build geometry

	this.setIndex( indices );
	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

	// this function calculates the current position on the torus curve

	function calculatePositionOnCurve( u, p, q, radius, position ) {

		var cu = Math.cos( u );
		var su = Math.sin( u );
		var quOverP = q / p * u;
		var cs = Math.cos( quOverP );

		position.x = radius * ( 2 + cs ) * 0.5 * cu;
		position.y = radius * ( 2 + cs ) * su * 0.5;
		position.z = radius * Math.sin( quOverP ) * 0.5;

	}

}

TorusKnotBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
TorusKnotBufferGeometry.prototype.constructor = TorusKnotBufferGeometry;

/**
 * @author oosmoxiecode
 * @author mrdoob / http://mrdoob.com/
 * @author Mugen87 / https://github.com/Mugen87
 */

// TorusGeometry

function TorusGeometry( radius, tube, radialSegments, tubularSegments, arc ) {

	Geometry.call( this );

	this.type = 'TorusGeometry';

	this.parameters = {
		radius: radius,
		tube: tube,
		radialSegments: radialSegments,
		tubularSegments: tubularSegments,
		arc: arc
	};

	this.fromBufferGeometry( new TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) );
	this.mergeVertices();

}

TorusGeometry.prototype = Object.create( Geometry.prototype );
TorusGeometry.prototype.constructor = TorusGeometry;

// TorusBufferGeometry

function TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) {

	BufferGeometry.call( this );

	this.type = 'TorusBufferGeometry';

	this.parameters = {
		radius: radius,
		tube: tube,
		radialSegments: radialSegments,
		tubularSegments: tubularSegments,
		arc: arc
	};

	radius = radius || 100;
	tube = tube || 40;
	radialSegments = Math.floor( radialSegments ) || 8;
	tubularSegments = Math.floor( tubularSegments ) || 6;
	arc = arc || Math.PI * 2;

	// buffers

	var indices = [];
	var vertices = [];
	var normals = [];
	var uvs = [];

	// helper variables

	var center = new Vector3();
	var vertex = new Vector3();
	var normal = new Vector3();

	var j, i;

	// generate vertices, normals and uvs

	for ( j = 0; j <= radialSegments; j ++ ) {

		for ( i = 0; i <= tubularSegments; i ++ ) {

			var u = i / tubularSegments * arc;
			var v = j / radialSegments * Math.PI * 2;

			// vertex

			vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u );
			vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u );
			vertex.z = tube * Math.sin( v );

			vertices.push( vertex.x, vertex.y, vertex.z );

			// normal

			center.x = radius * Math.cos( u );
			center.y = radius * Math.sin( u );
			normal.subVectors( vertex, center ).normalize();

			normals.push( normal.x, normal.y, normal.z );

			// uv

			uvs.push( i / tubularSegments );
			uvs.push( j / radialSegments );

		}

	}

	// generate indices

	for ( j = 1; j <= radialSegments; j ++ ) {

		for ( i = 1; i <= tubularSegments; i ++ ) {

			// indices

			var a = ( tubularSegments + 1 ) * j + i - 1;
			var b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1;
			var c = ( tubularSegments + 1 ) * ( j - 1 ) + i;
			var d = ( tubularSegments + 1 ) * j + i;

			// faces

			indices.push( a, b, d );
			indices.push( b, c, d );

		}

	}

	// build geometry

	this.setIndex( indices );
	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

}

TorusBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
TorusBufferGeometry.prototype.constructor = TorusBufferGeometry;

/**
 * @author zz85 / http://www.lab4games.net/zz85/blog
 */

var ShapeUtils = {

	// calculate area of the contour polygon

	area: function ( contour ) {

		var n = contour.length;
		var a = 0.0;

		for ( var p = n - 1, q = 0; q < n; p = q ++ ) {

			a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y;

		}

		return a * 0.5;

	},

	triangulate: ( function () {

		/**
		 * This code is a quick port of code written in C++ which was submitted to
		 * flipcode.com by John W. Ratcliff  // July 22, 2000
		 * See original code and more information here:
		 * http://www.flipcode.com/archives/Efficient_Polygon_Triangulation.shtml
		 *
		 * ported to actionscript by Zevan Rosser
		 * www.actionsnippet.com
		 *
		 * ported to javascript by Joshua Koo
		 * http://www.lab4games.net/zz85/blog
		 *
		 */

		function snip( contour, u, v, w, n, verts ) {

			var p;
			var ax, ay, bx, by;
			var cx, cy, px, py;

			ax = contour[ verts[ u ] ].x;
			ay = contour[ verts[ u ] ].y;

			bx = contour[ verts[ v ] ].x;
			by = contour[ verts[ v ] ].y;

			cx = contour[ verts[ w ] ].x;
			cy = contour[ verts[ w ] ].y;

			if ( ( bx - ax ) * ( cy - ay ) - ( by - ay ) * ( cx - ax ) <= 0 ) return false;

			var aX, aY, bX, bY, cX, cY;
			var apx, apy, bpx, bpy, cpx, cpy;
			var cCROSSap, bCROSScp, aCROSSbp;

			aX = cx - bx;  aY = cy - by;
			bX = ax - cx;  bY = ay - cy;
			cX = bx - ax;  cY = by - ay;

			for ( p = 0; p < n; p ++ ) {

				px = contour[ verts[ p ] ].x;
				py = contour[ verts[ p ] ].y;

				if ( ( ( px === ax ) && ( py === ay ) ) ||
					 ( ( px === bx ) && ( py === by ) ) ||
					 ( ( px === cx ) && ( py === cy ) ) )	continue;

				apx = px - ax;  apy = py - ay;
				bpx = px - bx;  bpy = py - by;
				cpx = px - cx;  cpy = py - cy;

				// see if p is inside triangle abc

				aCROSSbp = aX * bpy - aY * bpx;
				cCROSSap = cX * apy - cY * apx;
				bCROSScp = bX * cpy - bY * cpx;

				if ( ( aCROSSbp >= - Number.EPSILON ) && ( bCROSScp >= - Number.EPSILON ) && ( cCROSSap >= - Number.EPSILON ) ) return false;

			}

			return true;

		}

		// takes in an contour array and returns

		return function triangulate( contour, indices ) {

			var n = contour.length;

			if ( n < 3 ) return null;

			var result = [],
				verts = [],
				vertIndices = [];

			/* we want a counter-clockwise polygon in verts */

			var u, v, w;

			if ( ShapeUtils.area( contour ) > 0.0 ) {

				for ( v = 0; v < n; v ++ ) verts[ v ] = v;

			} else {

				for ( v = 0; v < n; v ++ ) verts[ v ] = ( n - 1 ) - v;

			}

			var nv = n;

			/*  remove nv - 2 vertices, creating 1 triangle every time */

			var count = 2 * nv;   /* error detection */

			for ( v = nv - 1; nv > 2; ) {

				/* if we loop, it is probably a non-simple polygon */

				if ( ( count -- ) <= 0 ) {

					//** Triangulate: ERROR - probable bad polygon!

					//throw ( "Warning, unable to triangulate polygon!" );
					//return null;
					// Sometimes warning is fine, especially polygons are triangulated in reverse.
					console.warn( 'THREE.ShapeUtils: Unable to triangulate polygon! in triangulate()' );

					if ( indices ) return vertIndices;
					return result;

				}

				/* three consecutive vertices in current polygon, <u,v,w> */

				u = v; 	 	if ( nv <= u ) u = 0;     /* previous */
				v = u + 1;  if ( nv <= v ) v = 0;     /* new v    */
				w = v + 1;  if ( nv <= w ) w = 0;     /* next     */

				if ( snip( contour, u, v, w, nv, verts ) ) {

					var a, b, c, s, t;

					/* true names of the vertices */

					a = verts[ u ];
					b = verts[ v ];
					c = verts[ w ];

					/* output Triangle */

					result.push( [ contour[ a ],
						contour[ b ],
						contour[ c ] ] );


					vertIndices.push( [ verts[ u ], verts[ v ], verts[ w ] ] );

					/* remove v from the remaining polygon */

					for ( s = v, t = v + 1; t < nv; s ++, t ++ ) {

						verts[ s ] = verts[ t ];

					}

					nv --;

					/* reset error detection counter */

					count = 2 * nv;

				}

			}

			if ( indices ) return vertIndices;
			return result;

		}

	} )(),

	triangulateShape: function ( contour, holes ) {

		function removeDupEndPts(points) {

			var l = points.length;

			if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) {

				points.pop();

			}

		}

		removeDupEndPts( contour );
		holes.forEach( removeDupEndPts );

		function point_in_segment_2D_colin( inSegPt1, inSegPt2, inOtherPt ) {

			// inOtherPt needs to be collinear to the inSegment
			if ( inSegPt1.x !== inSegPt2.x ) {

				if ( inSegPt1.x < inSegPt2.x ) {

					return	( ( inSegPt1.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt2.x ) );

				} else {

					return	( ( inSegPt2.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt1.x ) );

				}

			} else {

				if ( inSegPt1.y < inSegPt2.y ) {

					return	( ( inSegPt1.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt2.y ) );

				} else {

					return	( ( inSegPt2.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt1.y ) );

				}

			}

		}

		function intersect_segments_2D( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1, inSeg2Pt2, inExcludeAdjacentSegs ) {

			var seg1dx = inSeg1Pt2.x - inSeg1Pt1.x,   seg1dy = inSeg1Pt2.y - inSeg1Pt1.y;
			var seg2dx = inSeg2Pt2.x - inSeg2Pt1.x,   seg2dy = inSeg2Pt2.y - inSeg2Pt1.y;

			var seg1seg2dx = inSeg1Pt1.x - inSeg2Pt1.x;
			var seg1seg2dy = inSeg1Pt1.y - inSeg2Pt1.y;

			var limit		= seg1dy * seg2dx - seg1dx * seg2dy;
			var perpSeg1	= seg1dy * seg1seg2dx - seg1dx * seg1seg2dy;

			if ( Math.abs( limit ) > Number.EPSILON ) {

				// not parallel

				var perpSeg2;
				if ( limit > 0 ) {

					if ( ( perpSeg1 < 0 ) || ( perpSeg1 > limit ) ) 		return [];
					perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy;
					if ( ( perpSeg2 < 0 ) || ( perpSeg2 > limit ) ) 		return [];

				} else {

					if ( ( perpSeg1 > 0 ) || ( perpSeg1 < limit ) ) 		return [];
					perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy;
					if ( ( perpSeg2 > 0 ) || ( perpSeg2 < limit ) ) 		return [];

				}

				// i.e. to reduce rounding errors
				// intersection at endpoint of segment#1?
				if ( perpSeg2 === 0 ) {

					if ( ( inExcludeAdjacentSegs ) &&
						 ( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) )		return [];
					return [ inSeg1Pt1 ];

				}
				if ( perpSeg2 === limit ) {

					if ( ( inExcludeAdjacentSegs ) &&
						 ( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) )		return [];
					return [ inSeg1Pt2 ];

				}
				// intersection at endpoint of segment#2?
				if ( perpSeg1 === 0 )		return [ inSeg2Pt1 ];
				if ( perpSeg1 === limit )	return [ inSeg2Pt2 ];

				// return real intersection point
				var factorSeg1 = perpSeg2 / limit;
				return	[ { x: inSeg1Pt1.x + factorSeg1 * seg1dx,
							y: inSeg1Pt1.y + factorSeg1 * seg1dy } ];

			} else {

				// parallel or collinear
				if ( ( perpSeg1 !== 0 ) ||
					 ( seg2dy * seg1seg2dx !== seg2dx * seg1seg2dy ) ) 			return [];

				// they are collinear or degenerate
				var seg1Pt = ( ( seg1dx === 0 ) && ( seg1dy === 0 ) );	// segment1 is just a point?
				var seg2Pt = ( ( seg2dx === 0 ) && ( seg2dy === 0 ) );	// segment2 is just a point?
				// both segments are points
				if ( seg1Pt && seg2Pt ) {

					if ( ( inSeg1Pt1.x !== inSeg2Pt1.x ) ||
						 ( inSeg1Pt1.y !== inSeg2Pt1.y ) )		return [];	// they are distinct  points
					return [ inSeg1Pt1 ];                 						// they are the same point

				}
				// segment#1  is a single point
				if ( seg1Pt ) {

					if ( ! point_in_segment_2D_colin( inSeg2Pt1, inSeg2Pt2, inSeg1Pt1 ) )		return [];		// but not in segment#2
					return [ inSeg1Pt1 ];

				}
				// segment#2  is a single point
				if ( seg2Pt ) {

					if ( ! point_in_segment_2D_colin( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1 ) )		return [];		// but not in segment#1
					return [ inSeg2Pt1 ];

				}

				// they are collinear segments, which might overlap
				var seg1min, seg1max, seg1minVal, seg1maxVal;
				var seg2min, seg2max, seg2minVal, seg2maxVal;
				if ( seg1dx !== 0 ) {

					// the segments are NOT on a vertical line
					if ( inSeg1Pt1.x < inSeg1Pt2.x ) {

						seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.x;
						seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.x;

					} else {

						seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.x;
						seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.x;

					}
					if ( inSeg2Pt1.x < inSeg2Pt2.x ) {

						seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.x;
						seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.x;

					} else {

						seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.x;
						seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.x;

					}

				} else {

					// the segments are on a vertical line
					if ( inSeg1Pt1.y < inSeg1Pt2.y ) {

						seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.y;
						seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.y;

					} else {

						seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.y;
						seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.y;

					}
					if ( inSeg2Pt1.y < inSeg2Pt2.y ) {

						seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.y;
						seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.y;

					} else {

						seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.y;
						seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.y;

					}

				}
				if ( seg1minVal <= seg2minVal ) {

					if ( seg1maxVal <  seg2minVal )	return [];
					if ( seg1maxVal === seg2minVal )	{

						if ( inExcludeAdjacentSegs )		return [];
						return [ seg2min ];

					}
					if ( seg1maxVal <= seg2maxVal )	return [ seg2min, seg1max ];
					return	[ seg2min, seg2max ];

				} else {

					if ( seg1minVal >  seg2maxVal )	return [];
					if ( seg1minVal === seg2maxVal )	{

						if ( inExcludeAdjacentSegs )		return [];
						return [ seg1min ];

					}
					if ( seg1maxVal <= seg2maxVal )	return [ seg1min, seg1max ];
					return	[ seg1min, seg2max ];

				}

			}

		}

		function isPointInsideAngle( inVertex, inLegFromPt, inLegToPt, inOtherPt ) {

			// The order of legs is important

			// translation of all points, so that Vertex is at (0,0)
			var legFromPtX	= inLegFromPt.x - inVertex.x,  legFromPtY	= inLegFromPt.y - inVertex.y;
			var legToPtX	= inLegToPt.x	- inVertex.x,  legToPtY		= inLegToPt.y	- inVertex.y;
			var otherPtX	= inOtherPt.x	- inVertex.x,  otherPtY		= inOtherPt.y	- inVertex.y;

			// main angle >0: < 180 deg.; 0: 180 deg.; <0: > 180 deg.
			var from2toAngle	= legFromPtX * legToPtY - legFromPtY * legToPtX;
			var from2otherAngle	= legFromPtX * otherPtY - legFromPtY * otherPtX;

			if ( Math.abs( from2toAngle ) > Number.EPSILON ) {

				// angle != 180 deg.

				var other2toAngle		= otherPtX * legToPtY - otherPtY * legToPtX;
				// console.log( "from2to: " + from2toAngle + ", from2other: " + from2otherAngle + ", other2to: " + other2toAngle );

				if ( from2toAngle > 0 ) {

					// main angle < 180 deg.
					return	( ( from2otherAngle >= 0 ) && ( other2toAngle >= 0 ) );

				} else {

					// main angle > 180 deg.
					return	( ( from2otherAngle >= 0 ) || ( other2toAngle >= 0 ) );

				}

			} else {

				// angle == 180 deg.
				// console.log( "from2to: 180 deg., from2other: " + from2otherAngle  );
				return	( from2otherAngle > 0 );

			}

		}


		function removeHoles( contour, holes ) {

			var shape = contour.concat(); // work on this shape
			var hole;

			function isCutLineInsideAngles( inShapeIdx, inHoleIdx ) {

				// Check if hole point lies within angle around shape point
				var lastShapeIdx = shape.length - 1;

				var prevShapeIdx = inShapeIdx - 1;
				if ( prevShapeIdx < 0 )			prevShapeIdx = lastShapeIdx;

				var nextShapeIdx = inShapeIdx + 1;
				if ( nextShapeIdx > lastShapeIdx )	nextShapeIdx = 0;

				var insideAngle = isPointInsideAngle( shape[ inShapeIdx ], shape[ prevShapeIdx ], shape[ nextShapeIdx ], hole[ inHoleIdx ] );
				if ( ! insideAngle ) {

					// console.log( "Vertex (Shape): " + inShapeIdx + ", Point: " + hole[inHoleIdx].x + "/" + hole[inHoleIdx].y );
					return	false;

				}

				// Check if shape point lies within angle around hole point
				var lastHoleIdx = hole.length - 1;

				var prevHoleIdx = inHoleIdx - 1;
				if ( prevHoleIdx < 0 )			prevHoleIdx = lastHoleIdx;

				var nextHoleIdx = inHoleIdx + 1;
				if ( nextHoleIdx > lastHoleIdx )	nextHoleIdx = 0;

				insideAngle = isPointInsideAngle( hole[ inHoleIdx ], hole[ prevHoleIdx ], hole[ nextHoleIdx ], shape[ inShapeIdx ] );
				if ( ! insideAngle ) {

					// console.log( "Vertex (Hole): " + inHoleIdx + ", Point: " + shape[inShapeIdx].x + "/" + shape[inShapeIdx].y );
					return	false;

				}

				return	true;

			}

			function intersectsShapeEdge( inShapePt, inHolePt ) {

				// checks for intersections with shape edges
				var sIdx, nextIdx, intersection;
				for ( sIdx = 0; sIdx < shape.length; sIdx ++ ) {

					nextIdx = sIdx + 1; nextIdx %= shape.length;
					intersection = intersect_segments_2D( inShapePt, inHolePt, shape[ sIdx ], shape[ nextIdx ], true );
					if ( intersection.length > 0 )		return	true;

				}

				return	false;

			}

			var indepHoles = [];

			function intersectsHoleEdge( inShapePt, inHolePt ) {

				// checks for intersections with hole edges
				var ihIdx, chkHole,
					hIdx, nextIdx, intersection;
				for ( ihIdx = 0; ihIdx < indepHoles.length; ihIdx ++ ) {

					chkHole = holes[ indepHoles[ ihIdx ]];
					for ( hIdx = 0; hIdx < chkHole.length; hIdx ++ ) {

						nextIdx = hIdx + 1; nextIdx %= chkHole.length;
						intersection = intersect_segments_2D( inShapePt, inHolePt, chkHole[ hIdx ], chkHole[ nextIdx ], true );
						if ( intersection.length > 0 )		return	true;

					}

				}
				return	false;

			}

			var holeIndex, shapeIndex,
				shapePt, holePt,
				holeIdx, cutKey, failedCuts = [],
				tmpShape1, tmpShape2,
				tmpHole1, tmpHole2;

			for ( var h = 0, hl = holes.length; h < hl; h ++ ) {

				indepHoles.push( h );

			}

			var minShapeIndex = 0;
			var counter = indepHoles.length * 2;
			while ( indepHoles.length > 0 ) {

				counter --;
				if ( counter < 0 ) {

					console.log( "Infinite Loop! Holes left:" + indepHoles.length + ", Probably Hole outside Shape!" );
					break;

				}

				// search for shape-vertex and hole-vertex,
				// which can be connected without intersections
				for ( shapeIndex = minShapeIndex; shapeIndex < shape.length; shapeIndex ++ ) {

					shapePt = shape[ shapeIndex ];
					holeIndex	= - 1;

					// search for hole which can be reached without intersections
					for ( var h = 0; h < indepHoles.length; h ++ ) {

						holeIdx = indepHoles[ h ];

						// prevent multiple checks
						cutKey = shapePt.x + ":" + shapePt.y + ":" + holeIdx;
						if ( failedCuts[ cutKey ] !== undefined )			continue;

						hole = holes[ holeIdx ];
						for ( var h2 = 0; h2 < hole.length; h2 ++ ) {

							holePt = hole[ h2 ];
							if ( ! isCutLineInsideAngles( shapeIndex, h2 ) )		continue;
							if ( intersectsShapeEdge( shapePt, holePt ) )		continue;
							if ( intersectsHoleEdge( shapePt, holePt ) )		continue;

							holeIndex = h2;
							indepHoles.splice( h, 1 );

							tmpShape1 = shape.slice( 0, shapeIndex + 1 );
							tmpShape2 = shape.slice( shapeIndex );
							tmpHole1 = hole.slice( holeIndex );
							tmpHole2 = hole.slice( 0, holeIndex + 1 );

							shape = tmpShape1.concat( tmpHole1 ).concat( tmpHole2 ).concat( tmpShape2 );

							minShapeIndex = shapeIndex;

							// Debug only, to show the selected cuts
							// glob_CutLines.push( [ shapePt, holePt ] );

							break;

						}
						if ( holeIndex >= 0 )	break;		// hole-vertex found

						failedCuts[ cutKey ] = true;			// remember failure

					}
					if ( holeIndex >= 0 )	break;		// hole-vertex found

				}

			}

			return shape; 			/* shape with no holes */

		}


		var i, il, f, face,
			key, index,
			allPointsMap = {};

		// To maintain reference to old shape, one must match coordinates, or offset the indices from original arrays. It's probably easier to do the first.

		var allpoints = contour.concat();

		for ( var h = 0, hl = holes.length; h < hl; h ++ ) {

			Array.prototype.push.apply( allpoints, holes[ h ] );

		}

		//console.log( "allpoints",allpoints, allpoints.length );

		// prepare all points map

		for ( i = 0, il = allpoints.length; i < il; i ++ ) {

			key = allpoints[ i ].x + ":" + allpoints[ i ].y;

			if ( allPointsMap[ key ] !== undefined ) {

				console.warn( "THREE.ShapeUtils: Duplicate point", key, i );

			}

			allPointsMap[ key ] = i;

		}

		// remove holes by cutting paths to holes and adding them to the shape
		var shapeWithoutHoles = removeHoles( contour, holes );

		var triangles = ShapeUtils.triangulate( shapeWithoutHoles, false ); // True returns indices for points of spooled shape
		//console.log( "triangles",triangles, triangles.length );

		// check all face vertices against all points map

		for ( i = 0, il = triangles.length; i < il; i ++ ) {

			face = triangles[ i ];

			for ( f = 0; f < 3; f ++ ) {

				key = face[ f ].x + ":" + face[ f ].y;

				index = allPointsMap[ key ];

				if ( index !== undefined ) {

					face[ f ] = index;

				}

			}

		}

		return triangles.concat();

	},

	isClockWise: function ( pts ) {

		return ShapeUtils.area( pts ) < 0;

	}

};

/**
 * @author zz85 / http://www.lab4games.net/zz85/blog
 *
 * Creates extruded geometry from a path shape.
 *
 * parameters = {
 *
 *  curveSegments: <int>, // number of points on the curves
 *  steps: <int>, // number of points for z-side extrusions / used for subdividing segments of extrude spline too
 *  amount: <int>, // Depth to extrude the shape
 *
 *  bevelEnabled: <bool>, // turn on bevel
 *  bevelThickness: <float>, // how deep into the original shape bevel goes
 *  bevelSize: <float>, // how far from shape outline is bevel
 *  bevelSegments: <int>, // number of bevel layers
 *
 *  extrudePath: <THREE.Curve> // curve to extrude shape along
 *  frames: <Object> // containing arrays of tangents, normals, binormals
 *
 *  UVGenerator: <Object> // object that provides UV generator functions
 *
 * }
 */

// ExtrudeGeometry

function ExtrudeGeometry( shapes, options ) {

	Geometry.call( this );

	this.type = 'ExtrudeGeometry';

	this.parameters = {
		shapes: shapes,
		options: options
	};

	this.fromBufferGeometry( new ExtrudeBufferGeometry( shapes, options ) );
	this.mergeVertices();

}

ExtrudeGeometry.prototype = Object.create( Geometry.prototype );
ExtrudeGeometry.prototype.constructor = ExtrudeGeometry;

// ExtrudeBufferGeometry

function ExtrudeBufferGeometry( shapes, options ) {

	if ( typeof ( shapes ) === "undefined" ) {

		return;

	}

	BufferGeometry.call( this );

	this.type = 'ExtrudeBufferGeometry';

	shapes = Array.isArray( shapes ) ? shapes : [ shapes ];

	this.addShapeList( shapes, options );

	this.computeVertexNormals();

	// can't really use automatic vertex normals
	// as then front and back sides get smoothed too
	// should do separate smoothing just for sides

	//this.computeVertexNormals();

	//console.log( "took", ( Date.now() - startTime ) );

}

ExtrudeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
ExtrudeBufferGeometry.prototype.constructor = ExtrudeBufferGeometry;

ExtrudeBufferGeometry.prototype.getArrays = function () {

	var positionAttribute = this.getAttribute( "position" );
	var verticesArray = positionAttribute ? Array.prototype.slice.call( positionAttribute.array ) : [];

	var uvAttribute = this.getAttribute( "uv" );
	var uvArray = uvAttribute ? Array.prototype.slice.call( uvAttribute.array ) : [];

	var IndexAttribute = this.index;
	var indicesArray = IndexAttribute ? Array.prototype.slice.call( IndexAttribute.array ) : [];

	return {
		position: verticesArray,
		uv: uvArray,
		index: indicesArray
	};

};

ExtrudeBufferGeometry.prototype.addShapeList = function ( shapes, options ) {

	var sl = shapes.length;
	options.arrays = this.getArrays();

	for ( var s = 0; s < sl; s ++ ) {

		var shape = shapes[ s ];
		this.addShape( shape, options );

	}

	this.setIndex( options.arrays.index );
	this.addAttribute( 'position', new Float32BufferAttribute( options.arrays.position, 3 ) );
	this.addAttribute( 'uv', new Float32BufferAttribute( options.arrays.uv, 2 ) );

};

ExtrudeBufferGeometry.prototype.addShape = function ( shape, options ) {

	var arrays = options.arrays ? options.arrays : this.getArrays();
	var verticesArray = arrays.position;
	var indicesArray = arrays.index;
	var uvArray = arrays.uv;

	var placeholder = [];


	var amount = options.amount !== undefined ? options.amount : 100;

	var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6; // 10
	var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2; // 8
	var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;

	var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; // false

	var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;

	var steps = options.steps !== undefined ? options.steps : 1;

	var extrudePath = options.extrudePath;
	var extrudePts, extrudeByPath = false;

	// Use default WorldUVGenerator if no UV generators are specified.
	var uvgen = options.UVGenerator !== undefined ? options.UVGenerator : ExtrudeGeometry.WorldUVGenerator;

	var splineTube, binormal, normal, position2;
	if ( extrudePath ) {

		extrudePts = extrudePath.getSpacedPoints( steps );

		extrudeByPath = true;
		bevelEnabled = false; // bevels not supported for path extrusion

		// SETUP TNB variables

		// TODO1 - have a .isClosed in spline?

		splineTube = options.frames !== undefined ? options.frames : extrudePath.computeFrenetFrames( steps, false );

		// console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);

		binormal = new Vector3();
		normal = new Vector3();
		position2 = new Vector3();

	}

	// Safeguards if bevels are not enabled

	if ( ! bevelEnabled ) {

		bevelSegments = 0;
		bevelThickness = 0;
		bevelSize = 0;

	}

	// Variables initialization

	var ahole, h, hl; // looping of holes
	var scope = this;

	var shapePoints = shape.extractPoints( curveSegments );

	var vertices = shapePoints.shape;
	var holes = shapePoints.holes;

	var reverse = ! ShapeUtils.isClockWise( vertices );

	if ( reverse ) {

		vertices = vertices.reverse();

		// Maybe we should also check if holes are in the opposite direction, just to be safe ...

		for ( h = 0, hl = holes.length; h < hl; h ++ ) {

			ahole = holes[ h ];

			if ( ShapeUtils.isClockWise( ahole ) ) {

				holes[ h ] = ahole.reverse();

			}

		}

	}


	var faces = ShapeUtils.triangulateShape( vertices, holes );

	/* Vertices */

	var contour = vertices; // vertices has all points but contour has only points of circumference

	for ( h = 0, hl = holes.length; h < hl; h ++ ) {

		ahole = holes[ h ];

		vertices = vertices.concat( ahole );

	}


	function scalePt2( pt, vec, size ) {

		if ( ! vec ) console.error( "THREE.ExtrudeGeometry: vec does not exist" );

		return vec.clone().multiplyScalar( size ).add( pt );

	}

	var b, bs, t, z,
		vert, vlen = vertices.length,
		face, flen = faces.length;


	// Find directions for point movement


	function getBevelVec( inPt, inPrev, inNext ) {

		// computes for inPt the corresponding point inPt' on a new contour
		//   shifted by 1 unit (length of normalized vector) to the left
		// if we walk along contour clockwise, this new contour is outside the old one
		//
		// inPt' is the intersection of the two lines parallel to the two
		//  adjacent edges of inPt at a distance of 1 unit on the left side.

		var v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt

		// good reading for geometry algorithms (here: line-line intersection)
		// http://geomalgorithms.com/a05-_intersect-1.html

		var v_prev_x = inPt.x - inPrev.x,
			v_prev_y = inPt.y - inPrev.y;
		var v_next_x = inNext.x - inPt.x,
			v_next_y = inNext.y - inPt.y;

		var v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y );

		// check for collinear edges
		var collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x );

		if ( Math.abs( collinear0 ) > Number.EPSILON ) {

			// not collinear

			// length of vectors for normalizing

			var v_prev_len = Math.sqrt( v_prev_lensq );
			var v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y );

			// shift adjacent points by unit vectors to the left

			var ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len );
			var ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len );

			var ptNextShift_x = ( inNext.x - v_next_y / v_next_len );
			var ptNextShift_y = ( inNext.y + v_next_x / v_next_len );

			// scaling factor for v_prev to intersection point

			var sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y -
					( ptNextShift_y - ptPrevShift_y ) * v_next_x ) /
				( v_prev_x * v_next_y - v_prev_y * v_next_x );

			// vector from inPt to intersection point

			v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x );
			v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y );

			// Don't normalize!, otherwise sharp corners become ugly
			//  but prevent crazy spikes
			var v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y );
			if ( v_trans_lensq <= 2 ) {

				return new Vector2( v_trans_x, v_trans_y );

			} else {

				shrink_by = Math.sqrt( v_trans_lensq / 2 );

			}

		} else {

			// handle special case of collinear edges

			var direction_eq = false; // assumes: opposite
			if ( v_prev_x > Number.EPSILON ) {

				if ( v_next_x > Number.EPSILON ) {

					direction_eq = true;

				}

			} else {

				if ( v_prev_x < - Number.EPSILON ) {

					if ( v_next_x < - Number.EPSILON ) {

						direction_eq = true;

					}

				} else {

					if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) {

						direction_eq = true;

					}

				}

			}

			if ( direction_eq ) {

				// console.log("Warning: lines are a straight sequence");
				v_trans_x = - v_prev_y;
				v_trans_y = v_prev_x;
				shrink_by = Math.sqrt( v_prev_lensq );

			} else {

				// console.log("Warning: lines are a straight spike");
				v_trans_x = v_prev_x;
				v_trans_y = v_prev_y;
				shrink_by = Math.sqrt( v_prev_lensq / 2 );

			}

		}

		return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by );

	}


	var contourMovements = [];

	for ( var i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {

		if ( j === il ) j = 0;
		if ( k === il ) k = 0;

		//  (j)---(i)---(k)
		// console.log('i,j,k', i, j , k)

		contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] );

	}

	var holesMovements = [],
		oneHoleMovements, verticesMovements = contourMovements.concat();

	for ( h = 0, hl = holes.length; h < hl; h ++ ) {

		ahole = holes[ h ];

		oneHoleMovements = [];

		for ( i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {

			if ( j === il ) j = 0;
			if ( k === il ) k = 0;

			//  (j)---(i)---(k)
			oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] );

		}

		holesMovements.push( oneHoleMovements );
		verticesMovements = verticesMovements.concat( oneHoleMovements );

	}


	// Loop bevelSegments, 1 for the front, 1 for the back

	for ( b = 0; b < bevelSegments; b ++ ) {

		//for ( b = bevelSegments; b > 0; b -- ) {

		t = b / bevelSegments;
		z = bevelThickness * Math.cos( t * Math.PI / 2 );
		bs = bevelSize * Math.sin( t * Math.PI / 2 );

		// contract shape

		for ( i = 0, il = contour.length; i < il; i ++ ) {

			vert = scalePt2( contour[ i ], contourMovements[ i ], bs );

			v( vert.x, vert.y, - z );

		}

		// expand holes

		for ( h = 0, hl = holes.length; h < hl; h ++ ) {

			ahole = holes[ h ];
			oneHoleMovements = holesMovements[ h ];

			for ( i = 0, il = ahole.length; i < il; i ++ ) {

				vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );

				v( vert.x, vert.y, - z );

			}

		}

	}

	bs = bevelSize;

	// Back facing vertices

	for ( i = 0; i < vlen; i ++ ) {

		vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];

		if ( ! extrudeByPath ) {

			v( vert.x, vert.y, 0 );

		} else {

			// v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );

			normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x );
			binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y );

			position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal );

			v( position2.x, position2.y, position2.z );

		}

	}

	// Add stepped vertices...
	// Including front facing vertices

	var s;

	for ( s = 1; s <= steps; s ++ ) {

		for ( i = 0; i < vlen; i ++ ) {

			vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];

			if ( ! extrudeByPath ) {

				v( vert.x, vert.y, amount / steps * s );

			} else {

				// v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );

				normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x );
				binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y );

				position2.copy( extrudePts[ s ] ).add( normal ).add( binormal );

				v( position2.x, position2.y, position2.z );

			}

		}

	}


	// Add bevel segments planes

	//for ( b = 1; b <= bevelSegments; b ++ ) {
	for ( b = bevelSegments - 1; b >= 0; b -- ) {

		t = b / bevelSegments;
		z = bevelThickness * Math.cos( t * Math.PI / 2 );
		bs = bevelSize * Math.sin( t * Math.PI / 2 );

		// contract shape

		for ( i = 0, il = contour.length; i < il; i ++ ) {

			vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
			v( vert.x, vert.y, amount + z );

		}

		// expand holes

		for ( h = 0, hl = holes.length; h < hl; h ++ ) {

			ahole = holes[ h ];
			oneHoleMovements = holesMovements[ h ];

			for ( i = 0, il = ahole.length; i < il; i ++ ) {

				vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );

				if ( ! extrudeByPath ) {

					v( vert.x, vert.y, amount + z );

				} else {

					v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z );

				}

			}

		}

	}

	/* Faces */

	// Top and bottom faces

	buildLidFaces();

	// Sides faces

	buildSideFaces();


	/////  Internal functions

	function buildLidFaces() {

		var start = verticesArray.length/3;

		if ( bevelEnabled ) {

			var layer = 0; // steps + 1
			var offset = vlen * layer;

			// Bottom faces

			for ( i = 0; i < flen; i ++ ) {

				face = faces[ i ];
				f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset );

			}

			layer = steps + bevelSegments * 2;
			offset = vlen * layer;

			// Top faces

			for ( i = 0; i < flen; i ++ ) {

				face = faces[ i ];
				f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset );

			}

		} else {

			// Bottom faces

			for ( i = 0; i < flen; i ++ ) {

				face = faces[ i ];
				f3( face[ 2 ], face[ 1 ], face[ 0 ] );

			}

			// Top faces

			for ( i = 0; i < flen; i ++ ) {

				face = faces[ i ];
				f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps );

			}

		}

		scope.addGroup( start, verticesArray.length/3 -start, options.material !== undefined ? options.material : 0);

	}

	// Create faces for the z-sides of the shape

	function buildSideFaces() {

		var start = verticesArray.length/3;
		var layeroffset = 0;
		sidewalls( contour, layeroffset );
		layeroffset += contour.length;

		for ( h = 0, hl = holes.length; h < hl; h ++ ) {

			ahole = holes[ h ];
			sidewalls( ahole, layeroffset );

			//, true
			layeroffset += ahole.length;

		}


		scope.addGroup( start, verticesArray.length/3 -start, options.extrudeMaterial !== undefined ? options.extrudeMaterial : 1);


	}

	function sidewalls( contour, layeroffset ) {

		var j, k;
		i = contour.length;

		while ( -- i >= 0 ) {

			j = i;
			k = i - 1;
			if ( k < 0 ) k = contour.length - 1;

			//console.log('b', i,j, i-1, k,vertices.length);

			var s = 0,
				sl = steps + bevelSegments * 2;

			for ( s = 0; s < sl; s ++ ) {

				var slen1 = vlen * s;
				var slen2 = vlen * ( s + 1 );

				var a = layeroffset + j + slen1,
					b = layeroffset + k + slen1,
					c = layeroffset + k + slen2,
					d = layeroffset + j + slen2;

				f4( a, b, c, d, contour, s, sl, j, k );

			}

		}

	}

	function v( x, y, z ) {

		placeholder.push( x );
		placeholder.push( y );
		placeholder.push( z );

	}


	function f3( a, b, c ) {

		addVertex( a );
		addVertex( b );
		addVertex( c );

		var nextIndex = verticesArray.length / 3;
		var uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 );

		addUV( uvs[ 0 ] );
		addUV( uvs[ 1 ] );
		addUV( uvs[ 2 ] );

	}

	function f4( a, b, c, d, wallContour, stepIndex, stepsLength, contourIndex1, contourIndex2 ) {

		addVertex( a );
		addVertex( b );
		addVertex( d );

		addVertex( b );
		addVertex( c );
		addVertex( d );


		var nextIndex = verticesArray.length / 3;
		var uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 );

		addUV( uvs[ 0 ] );
		addUV( uvs[ 1 ] );
		addUV( uvs[ 3 ] );

		addUV( uvs[ 1 ] );
		addUV( uvs[ 2 ] );
		addUV( uvs[ 3 ] );

	}

	function addVertex( index ) {

		indicesArray.push( verticesArray.length / 3 );
		verticesArray.push( placeholder[ index * 3 + 0 ] );
		verticesArray.push( placeholder[ index * 3 + 1 ] );
		verticesArray.push( placeholder[ index * 3 + 2 ] );

	}


	function addUV( vector2 ) {

		uvArray.push( vector2.x );
		uvArray.push( vector2.y );

	}

	if ( ! options.arrays ) {

		this.setIndex( indicesArray );
		this.addAttribute( 'position', new Float32BufferAttribute( verticesArray, 3 ) );
		this.addAttribute( 'uv', new Float32BufferAttribute( options.arrays.uv, 2 ) );

	}

};

ExtrudeGeometry.WorldUVGenerator = {

	generateTopUV: function ( geometry, vertices, indexA, indexB, indexC ) {

		var a_x = vertices[ indexA * 3 ];
		var a_y = vertices[ indexA * 3 + 1 ];
		var b_x = vertices[ indexB * 3 ];
		var b_y = vertices[ indexB * 3 + 1 ];
		var c_x = vertices[ indexC * 3 ];
		var c_y = vertices[ indexC * 3 + 1 ];

		return [
			new Vector2( a_x, a_y ),
			new Vector2( b_x, b_y ),
			new Vector2( c_x, c_y )
		];

	},

	generateSideWallUV: function ( geometry, vertices, indexA, indexB, indexC, indexD ) {

		var a_x = vertices[ indexA * 3 ];
		var a_y = vertices[ indexA * 3 + 1 ];
		var a_z = vertices[ indexA * 3 + 2 ];
		var b_x = vertices[ indexB * 3 ];
		var b_y = vertices[ indexB * 3 + 1 ];
		var b_z = vertices[ indexB * 3 + 2 ];
		var c_x = vertices[ indexC * 3 ];
		var c_y = vertices[ indexC * 3 + 1 ];
		var c_z = vertices[ indexC * 3 + 2 ];
		var d_x = vertices[ indexD * 3 ];
		var d_y = vertices[ indexD * 3 + 1 ];
		var d_z = vertices[ indexD * 3 + 2 ];

		if ( Math.abs( a_y - b_y ) < 0.01 ) {

			return [
				new Vector2( a_x, 1 - a_z ),
				new Vector2( b_x, 1 - b_z ),
				new Vector2( c_x, 1 - c_z ),
				new Vector2( d_x, 1 - d_z )
			];

		} else {

			return [
				new Vector2( a_y, 1 - a_z ),
				new Vector2( b_y, 1 - b_z ),
				new Vector2( c_y, 1 - c_z ),
				new Vector2( d_y, 1 - d_z )
			];

		}

	}
};

/**
 * @author zz85 / http://www.lab4games.net/zz85/blog
 * @author alteredq / http://alteredqualia.com/
 *
 * Text = 3D Text
 *
 * parameters = {
 *  font: <THREE.Font>, // font
 *
 *  size: <float>, // size of the text
 *  height: <float>, // thickness to extrude text
 *  curveSegments: <int>, // number of points on the curves
 *
 *  bevelEnabled: <bool>, // turn on bevel
 *  bevelThickness: <float>, // how deep into text bevel goes
 *  bevelSize: <float> // how far from text outline is bevel
 * }
 */

// TextGeometry

function TextGeometry(  text, parameters ) {

	Geometry.call( this );

	this.type = 'TextGeometry';

	this.parameters = {
		text: text,
		parameters: parameters
	};

	this.fromBufferGeometry( new TextBufferGeometry( text, parameters ) );
	this.mergeVertices();

}

TextGeometry.prototype = Object.create( Geometry.prototype );
TextGeometry.prototype.constructor = TextGeometry;

// TextBufferGeometry

function TextBufferGeometry( text, parameters ) {

	parameters = parameters || {};

	var font = parameters.font;

	if ( ! ( font && font.isFont ) ) {

		console.error( 'THREE.TextGeometry: font parameter is not an instance of THREE.Font.' );
		return new Geometry();

	}

	var shapes = font.generateShapes( text, parameters.size, parameters.curveSegments );

	// translate parameters to ExtrudeGeometry API

	parameters.amount = parameters.height !== undefined ? parameters.height : 50;

	// defaults

	if ( parameters.bevelThickness === undefined ) parameters.bevelThickness = 10;
	if ( parameters.bevelSize === undefined ) parameters.bevelSize = 8;
	if ( parameters.bevelEnabled === undefined ) parameters.bevelEnabled = false;

	ExtrudeBufferGeometry.call( this, shapes, parameters );

	this.type = 'TextBufferGeometry';

}

TextBufferGeometry.prototype = Object.create( ExtrudeBufferGeometry.prototype );
TextBufferGeometry.prototype.constructor = TextBufferGeometry;

/**
 * @author mrdoob / http://mrdoob.com/
 * @author benaadams / https://twitter.com/ben_a_adams
 * @author Mugen87 / https://github.com/Mugen87
 */

// SphereGeometry

function SphereGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {

	Geometry.call( this );

	this.type = 'SphereGeometry';

	this.parameters = {
		radius: radius,
		widthSegments: widthSegments,
		heightSegments: heightSegments,
		phiStart: phiStart,
		phiLength: phiLength,
		thetaStart: thetaStart,
		thetaLength: thetaLength
	};

	this.fromBufferGeometry( new SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) );
	this.mergeVertices();

}

SphereGeometry.prototype = Object.create( Geometry.prototype );
SphereGeometry.prototype.constructor = SphereGeometry;

// SphereBufferGeometry

function SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {

	BufferGeometry.call( this );

	this.type = 'SphereBufferGeometry';

	this.parameters = {
		radius: radius,
		widthSegments: widthSegments,
		heightSegments: heightSegments,
		phiStart: phiStart,
		phiLength: phiLength,
		thetaStart: thetaStart,
		thetaLength: thetaLength
	};

	radius = radius || 50;

	widthSegments = Math.max( 3, Math.floor( widthSegments ) || 8 );
	heightSegments = Math.max( 2, Math.floor( heightSegments ) || 6 );

	phiStart = phiStart !== undefined ? phiStart : 0;
	phiLength = phiLength !== undefined ? phiLength : Math.PI * 2;

	thetaStart = thetaStart !== undefined ? thetaStart : 0;
	thetaLength = thetaLength !== undefined ? thetaLength : Math.PI;

	var thetaEnd = thetaStart + thetaLength;

	var ix, iy;

	var index = 0;
	var grid = [];

	var vertex = new Vector3();
	var normal = new Vector3();

	// buffers

	var indices = [];
	var vertices = [];
	var normals = [];
	var uvs = [];

	// generate vertices, normals and uvs

	for ( iy = 0; iy <= heightSegments; iy ++ ) {

		var verticesRow = [];

		var v = iy / heightSegments;

		for ( ix = 0; ix <= widthSegments; ix ++ ) {

			var u = ix / widthSegments;

			// vertex

			vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
			vertex.y = radius * Math.cos( thetaStart + v * thetaLength );
			vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );

			vertices.push( vertex.x, vertex.y, vertex.z );

			// normal

			normal.set( vertex.x, vertex.y, vertex.z ).normalize();
			normals.push( normal.x, normal.y, normal.z );

			// uv

			uvs.push( u, 1 - v );

			verticesRow.push( index ++ );

		}

		grid.push( verticesRow );

	}

	// indices

	for ( iy = 0; iy < heightSegments; iy ++ ) {

		for ( ix = 0; ix < widthSegments; ix ++ ) {

			var a = grid[ iy ][ ix + 1 ];
			var b = grid[ iy ][ ix ];
			var c = grid[ iy + 1 ][ ix ];
			var d = grid[ iy + 1 ][ ix + 1 ];

			if ( iy !== 0 || thetaStart > 0 ) indices.push( a, b, d );
			if ( iy !== heightSegments - 1 || thetaEnd < Math.PI ) indices.push( b, c, d );

		}

	}

	// build geometry

	this.setIndex( indices );
	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

}

SphereBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
SphereBufferGeometry.prototype.constructor = SphereBufferGeometry;

/**
 * @author Kaleb Murphy
 * @author Mugen87 / https://github.com/Mugen87
 */

// RingGeometry

function RingGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {

	Geometry.call( this );

	this.type = 'RingGeometry';

	this.parameters = {
		innerRadius: innerRadius,
		outerRadius: outerRadius,
		thetaSegments: thetaSegments,
		phiSegments: phiSegments,
		thetaStart: thetaStart,
		thetaLength: thetaLength
	};

	this.fromBufferGeometry( new RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) );
	this.mergeVertices();

}

RingGeometry.prototype = Object.create( Geometry.prototype );
RingGeometry.prototype.constructor = RingGeometry;

// RingBufferGeometry

function RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {

	BufferGeometry.call( this );

	this.type = 'RingBufferGeometry';

	this.parameters = {
		innerRadius: innerRadius,
		outerRadius: outerRadius,
		thetaSegments: thetaSegments,
		phiSegments: phiSegments,
		thetaStart: thetaStart,
		thetaLength: thetaLength
	};

	innerRadius = innerRadius || 20;
	outerRadius = outerRadius || 50;

	thetaStart = thetaStart !== undefined ? thetaStart : 0;
	thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;

	thetaSegments = thetaSegments !== undefined ? Math.max( 3, thetaSegments ) : 8;
	phiSegments = phiSegments !== undefined ? Math.max( 1, phiSegments ) : 1;

	// buffers

	var indices = [];
	var vertices = [];
	var normals = [];
	var uvs = [];

	// some helper variables

	var segment;
	var radius = innerRadius;
	var radiusStep = ( ( outerRadius - innerRadius ) / phiSegments );
	var vertex = new Vector3();
	var uv = new Vector2();
	var j, i;

	// generate vertices, normals and uvs

	for ( j = 0; j <= phiSegments; j ++ ) {

		for ( i = 0; i <= thetaSegments; i ++ ) {

			// values are generate from the inside of the ring to the outside

			segment = thetaStart + i / thetaSegments * thetaLength;

			// vertex

			vertex.x = radius * Math.cos( segment );
			vertex.y = radius * Math.sin( segment );

			vertices.push( vertex.x, vertex.y, vertex.z );

			// normal

			normals.push( 0, 0, 1 );

			// uv

			uv.x = ( vertex.x / outerRadius + 1 ) / 2;
			uv.y = ( vertex.y / outerRadius + 1 ) / 2;

			uvs.push( uv.x, uv.y );

		}

		// increase the radius for next row of vertices

		radius += radiusStep;

	}

	// indices

	for ( j = 0; j < phiSegments; j ++ ) {

		var thetaSegmentLevel = j * ( thetaSegments + 1 );

		for ( i = 0; i < thetaSegments; i ++ ) {

			segment = i + thetaSegmentLevel;

			var a = segment;
			var b = segment + thetaSegments + 1;
			var c = segment + thetaSegments + 2;
			var d = segment + 1;

			// faces

			indices.push( a, b, d );
			indices.push( b, c, d );

		}

	}

	// build geometry

	this.setIndex( indices );
	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

}

RingBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
RingBufferGeometry.prototype.constructor = RingBufferGeometry;

/**
 * @author astrodud / http://astrodud.isgreat.org/
 * @author zz85 / https://github.com/zz85
 * @author bhouston / http://clara.io
 * @author Mugen87 / https://github.com/Mugen87
 */

// LatheGeometry

function LatheGeometry( points, segments, phiStart, phiLength ) {

	Geometry.call( this );

	this.type = 'LatheGeometry';

	this.parameters = {
		points: points,
		segments: segments,
		phiStart: phiStart,
		phiLength: phiLength
	};

	this.fromBufferGeometry( new LatheBufferGeometry( points, segments, phiStart, phiLength ) );
	this.mergeVertices();

}

LatheGeometry.prototype = Object.create( Geometry.prototype );
LatheGeometry.prototype.constructor = LatheGeometry;

// LatheBufferGeometry

function LatheBufferGeometry( points, segments, phiStart, phiLength ) {

	BufferGeometry.call( this );

	this.type = 'LatheBufferGeometry';

	this.parameters = {
		points: points,
		segments: segments,
		phiStart: phiStart,
		phiLength: phiLength
	};

	segments = Math.floor( segments ) || 12;
	phiStart = phiStart || 0;
	phiLength = phiLength || Math.PI * 2;

	// clamp phiLength so it's in range of [ 0, 2PI ]

	phiLength = _Math.clamp( phiLength, 0, Math.PI * 2 );


	// buffers

	var indices = [];
	var vertices = [];
	var uvs = [];

	// helper variables

	var base;
	var inverseSegments = 1.0 / segments;
	var vertex = new Vector3();
	var uv = new Vector2();
	var i, j;

	// generate vertices and uvs

	for ( i = 0; i <= segments; i ++ ) {

		var phi = phiStart + i * inverseSegments * phiLength;

		var sin = Math.sin( phi );
		var cos = Math.cos( phi );

		for ( j = 0; j <= ( points.length - 1 ); j ++ ) {

			// vertex

			vertex.x = points[ j ].x * sin;
			vertex.y = points[ j ].y;
			vertex.z = points[ j ].x * cos;

			vertices.push( vertex.x, vertex.y, vertex.z );

			// uv

			uv.x = i / segments;
			uv.y = j / ( points.length - 1 );

			uvs.push( uv.x, uv.y );


		}

	}

	// indices

	for ( i = 0; i < segments; i ++ ) {

		for ( j = 0; j < ( points.length - 1 ); j ++ ) {

			base = j + i * points.length;

			var a = base;
			var b = base + points.length;
			var c = base + points.length + 1;
			var d = base + 1;

			// faces

			indices.push( a, b, d );
			indices.push( b, c, d );

		}

	}

	// build geometry

	this.setIndex( indices );
	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

	// generate normals

	this.computeVertexNormals();

	// if the geometry is closed, we need to average the normals along the seam.
	// because the corresponding vertices are identical (but still have different UVs).

	if ( phiLength === Math.PI * 2 ) {

		var normals = this.attributes.normal.array;
		var n1 = new Vector3();
		var n2 = new Vector3();
		var n = new Vector3();

		// this is the buffer offset for the last line of vertices

		base = segments * points.length * 3;

		for ( i = 0, j = 0; i < points.length; i ++, j += 3 ) {

			// select the normal of the vertex in the first line

			n1.x = normals[ j + 0 ];
			n1.y = normals[ j + 1 ];
			n1.z = normals[ j + 2 ];

			// select the normal of the vertex in the last line

			n2.x = normals[ base + j + 0 ];
			n2.y = normals[ base + j + 1 ];
			n2.z = normals[ base + j + 2 ];

			// average normals

			n.addVectors( n1, n2 ).normalize();

			// assign the new values to both normals

			normals[ j + 0 ] = normals[ base + j + 0 ] = n.x;
			normals[ j + 1 ] = normals[ base + j + 1 ] = n.y;
			normals[ j + 2 ] = normals[ base + j + 2 ] = n.z;

		}

	}

}

LatheBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
LatheBufferGeometry.prototype.constructor = LatheBufferGeometry;

/**
 * @author jonobr1 / http://jonobr1.com
 * @author Mugen87 / https://github.com/Mugen87
 */

// ShapeGeometry

function ShapeGeometry( shapes, curveSegments ) {

	Geometry.call( this );

	this.type = 'ShapeGeometry';

	if ( typeof curveSegments === 'object' ) {

		console.warn( 'THREE.ShapeGeometry: Options parameter has been removed.' );

		curveSegments = curveSegments.curveSegments;

	}

	this.parameters = {
		shapes: shapes,
		curveSegments: curveSegments
	};

	this.fromBufferGeometry( new ShapeBufferGeometry( shapes, curveSegments ) );
	this.mergeVertices();

}

ShapeGeometry.prototype = Object.create( Geometry.prototype );
ShapeGeometry.prototype.constructor = ShapeGeometry;

// ShapeBufferGeometry

function ShapeBufferGeometry( shapes, curveSegments ) {

	BufferGeometry.call( this );

	this.type = 'ShapeBufferGeometry';

	this.parameters = {
		shapes: shapes,
		curveSegments: curveSegments
	};

	curveSegments = curveSegments || 12;

	// buffers

	var indices = [];
	var vertices = [];
	var normals = [];
	var uvs = [];

	// helper variables

	var groupStart = 0;
	var groupCount = 0;

	// allow single and array values for "shapes" parameter

	if ( Array.isArray( shapes ) === false ) {

		addShape( shapes );

	} else {

		for ( var i = 0; i < shapes.length; i ++ ) {

			addShape( shapes[ i ] );

			this.addGroup( groupStart, groupCount, i ); // enables MultiMaterial support

			groupStart += groupCount;
			groupCount = 0;

		}

	}

	// build geometry

	this.setIndex( indices );
	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );


	// helper functions

	function addShape( shape ) {

		var i, l, shapeHole;

		var indexOffset = vertices.length / 3;
		var points = shape.extractPoints( curveSegments );

		var shapeVertices = points.shape;
		var shapeHoles = points.holes;

		// check direction of vertices

		if ( ShapeUtils.isClockWise( shapeVertices ) === false ) {

			shapeVertices = shapeVertices.reverse();

			// also check if holes are in the opposite direction

			for ( i = 0, l = shapeHoles.length; i < l; i ++ ) {

				shapeHole = shapeHoles[ i ];

				if ( ShapeUtils.isClockWise( shapeHole ) === true ) {

					shapeHoles[ i ] = shapeHole.reverse();

				}

			}

		}

		var faces = ShapeUtils.triangulateShape( shapeVertices, shapeHoles );

		// join vertices of inner and outer paths to a single array

		for ( i = 0, l = shapeHoles.length; i < l; i ++ ) {

			shapeHole = shapeHoles[ i ];
			shapeVertices = shapeVertices.concat( shapeHole );

		}

		// vertices, normals, uvs

		for ( i = 0, l = shapeVertices.length; i < l; i ++ ) {

			var vertex = shapeVertices[ i ];

			vertices.push( vertex.x, vertex.y, 0 );
			normals.push( 0, 0, 1 );
			uvs.push( vertex.x, vertex.y ); // world uvs

		}

		// incides

		for ( i = 0, l = faces.length; i < l; i ++ ) {

			var face = faces[ i ];

			var a = face[ 0 ] + indexOffset;
			var b = face[ 1 ] + indexOffset;
			var c = face[ 2 ] + indexOffset;

			indices.push( a, b, c );
			groupCount += 3;

		}

	}

}

ShapeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
ShapeBufferGeometry.prototype.constructor = ShapeBufferGeometry;

/**
 * @author WestLangley / http://github.com/WestLangley
 * @author Mugen87 / https://github.com/Mugen87
 */

function EdgesGeometry( geometry, thresholdAngle ) {

	BufferGeometry.call( this );

	this.type = 'EdgesGeometry';

	this.parameters = {
		thresholdAngle: thresholdAngle
	};

	thresholdAngle = ( thresholdAngle !== undefined ) ? thresholdAngle : 1;

	// buffer

	var vertices = [];

	// helper variables

	var thresholdDot = Math.cos( _Math.DEG2RAD * thresholdAngle );
	var edge = [ 0, 0 ], edges = {}, edge1, edge2;
	var key, keys = [ 'a', 'b', 'c' ];

	// prepare source geometry

	var geometry2;

	if ( geometry.isBufferGeometry ) {

		geometry2 = new Geometry();
		geometry2.fromBufferGeometry( geometry );

	} else {

		geometry2 = geometry.clone();

	}

	geometry2.mergeVertices();
	geometry2.computeFaceNormals();

	var sourceVertices = geometry2.vertices;
	var faces = geometry2.faces;

	// now create a data structure where each entry represents an edge with its adjoining faces

	for ( var i = 0, l = faces.length; i < l; i ++ ) {

		var face = faces[ i ];

		for ( var j = 0; j < 3; j ++ ) {

			edge1 = face[ keys[ j ] ];
			edge2 = face[ keys[ ( j + 1 ) % 3 ] ];
			edge[ 0 ] = Math.min( edge1, edge2 );
			edge[ 1 ] = Math.max( edge1, edge2 );

			key = edge[ 0 ] + ',' + edge[ 1 ];

			if ( edges[ key ] === undefined ) {

				edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ], face1: i, face2: undefined };

			} else {

				edges[ key ].face2 = i;

			}

		}

	}

	// generate vertices

	for ( key in edges ) {

		var e = edges[ key ];

		// an edge is only rendered if the angle (in degrees) between the face normals of the adjoining faces exceeds this value. default = 1 degree.

		if ( e.face2 === undefined || faces[ e.face1 ].normal.dot( faces[ e.face2 ].normal ) <= thresholdDot ) {

			var vertex = sourceVertices[ e.index1 ];
			vertices.push( vertex.x, vertex.y, vertex.z );

			vertex = sourceVertices[ e.index2 ];
			vertices.push( vertex.x, vertex.y, vertex.z );

		}

	}

	// build geometry

	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );

}

EdgesGeometry.prototype = Object.create( BufferGeometry.prototype );
EdgesGeometry.prototype.constructor = EdgesGeometry;

/**
 * @author mrdoob / http://mrdoob.com/
 * @author Mugen87 / https://github.com/Mugen87
 */

// CylinderGeometry

function CylinderGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

	Geometry.call( this );

	this.type = 'CylinderGeometry';

	this.parameters = {
		radiusTop: radiusTop,
		radiusBottom: radiusBottom,
		height: height,
		radialSegments: radialSegments,
		heightSegments: heightSegments,
		openEnded: openEnded,
		thetaStart: thetaStart,
		thetaLength: thetaLength
	};

	this.fromBufferGeometry( new CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) );
	this.mergeVertices();

}

CylinderGeometry.prototype = Object.create( Geometry.prototype );
CylinderGeometry.prototype.constructor = CylinderGeometry;

// CylinderBufferGeometry

function CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

	BufferGeometry.call( this );

	this.type = 'CylinderBufferGeometry';

	this.parameters = {
		radiusTop: radiusTop,
		radiusBottom: radiusBottom,
		height: height,
		radialSegments: radialSegments,
		heightSegments: heightSegments,
		openEnded: openEnded,
		thetaStart: thetaStart,
		thetaLength: thetaLength
	};

	var scope = this;

	radiusTop = radiusTop !== undefined ? radiusTop : 20;
	radiusBottom = radiusBottom !== undefined ? radiusBottom : 20;
	height = height !== undefined ? height : 100;

	radialSegments = Math.floor( radialSegments ) || 8;
	heightSegments = Math.floor( heightSegments ) || 1;

	openEnded = openEnded !== undefined ? openEnded : false;
	thetaStart = thetaStart !== undefined ? thetaStart : 0.0;
	thetaLength = thetaLength !== undefined ? thetaLength : 2.0 * Math.PI;

	// buffers

	var indices = [];
	var vertices = [];
	var normals = [];
	var uvs = [];

	// helper variables

	var index = 0;
	var indexArray = [];
	var halfHeight = height / 2;
	var groupStart = 0;

	// generate geometry

	generateTorso();

	if ( openEnded === false ) {

		if ( radiusTop > 0 ) generateCap( true );
		if ( radiusBottom > 0 ) generateCap( false );

	}

	// build geometry

	this.setIndex( indices );
	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

	function generateTorso() {

		var x, y;
		var normal = new Vector3();
		var vertex = new Vector3();

		var groupCount = 0;

		// this will be used to calculate the normal
		var slope = ( radiusBottom - radiusTop ) / height;

		// generate vertices, normals and uvs

		for ( y = 0; y <= heightSegments; y ++ ) {

			var indexRow = [];

			var v = y / heightSegments;

			// calculate the radius of the current row

			var radius = v * ( radiusBottom - radiusTop ) + radiusTop;

			for ( x = 0; x <= radialSegments; x ++ ) {

				var u = x / radialSegments;

				var theta = u * thetaLength + thetaStart;

				var sinTheta = Math.sin( theta );
				var cosTheta = Math.cos( theta );

				// vertex

				vertex.x = radius * sinTheta;
				vertex.y = - v * height + halfHeight;
				vertex.z = radius * cosTheta;
				vertices.push( vertex.x, vertex.y, vertex.z );

				// normal

				normal.set( sinTheta, slope, cosTheta ).normalize();
				normals.push( normal.x, normal.y, normal.z );

				// uv

				uvs.push( u, 1 - v );

				// save index of vertex in respective row

				indexRow.push( index ++ );

			}

			// now save vertices of the row in our index array

			indexArray.push( indexRow );

		}

		// generate indices

		for ( x = 0; x < radialSegments; x ++ ) {

			for ( y = 0; y < heightSegments; y ++ ) {

				// we use the index array to access the correct indices

				var a = indexArray[ y ][ x ];
				var b = indexArray[ y + 1 ][ x ];
				var c = indexArray[ y + 1 ][ x + 1 ];
				var d = indexArray[ y ][ x + 1 ];

				// faces

				indices.push( a, b, d );
				indices.push( b, c, d );

				// update group counter

				groupCount += 6;

			}

		}

		// add a group to the geometry. this will ensure multi material support

		scope.addGroup( groupStart, groupCount, 0 );

		// calculate new start value for groups

		groupStart += groupCount;

	}

	function generateCap( top ) {

		var x, centerIndexStart, centerIndexEnd;

		var uv = new Vector2();
		var vertex = new Vector3();

		var groupCount = 0;

		var radius = ( top === true ) ? radiusTop : radiusBottom;
		var sign = ( top === true ) ? 1 : - 1;

		// save the index of the first center vertex
		centerIndexStart = index;

		// first we generate the center vertex data of the cap.
		// because the geometry needs one set of uvs per face,
		// we must generate a center vertex per face/segment

		for ( x = 1; x <= radialSegments; x ++ ) {

			// vertex

			vertices.push( 0, halfHeight * sign, 0 );

			// normal

			normals.push( 0, sign, 0 );

			// uv

			uvs.push( 0.5, 0.5 );

			// increase index

			index ++;

		}

		// save the index of the last center vertex

		centerIndexEnd = index;

		// now we generate the surrounding vertices, normals and uvs

		for ( x = 0; x <= radialSegments; x ++ ) {

			var u = x / radialSegments;
			var theta = u * thetaLength + thetaStart;

			var cosTheta = Math.cos( theta );
			var sinTheta = Math.sin( theta );

			// vertex

			vertex.x = radius * sinTheta;
			vertex.y = halfHeight * sign;
			vertex.z = radius * cosTheta;
			vertices.push( vertex.x, vertex.y, vertex.z );

			// normal

			normals.push( 0, sign, 0 );

			// uv

			uv.x = ( cosTheta * 0.5 ) + 0.5;
			uv.y = ( sinTheta * 0.5 * sign ) + 0.5;
			uvs.push( uv.x, uv.y );

			// increase index

			index ++;

		}

		// generate indices

		for ( x = 0; x < radialSegments; x ++ ) {

			var c = centerIndexStart + x;
			var i = centerIndexEnd + x;

			if ( top === true ) {

				// face top

				indices.push( i, i + 1, c );

			} else {

				// face bottom

				indices.push( i + 1, i, c );

			}

			groupCount += 3;

		}

		// add a group to the geometry. this will ensure multi material support

		scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 );

		// calculate new start value for groups

		groupStart += groupCount;

	}

}

CylinderBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
CylinderBufferGeometry.prototype.constructor = CylinderBufferGeometry;

/**
 * @author abelnation / http://github.com/abelnation
 */

// ConeGeometry

function ConeGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

	CylinderGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength );

	this.type = 'ConeGeometry';

	this.parameters = {
		radius: radius,
		height: height,
		radialSegments: radialSegments,
		heightSegments: heightSegments,
		openEnded: openEnded,
		thetaStart: thetaStart,
		thetaLength: thetaLength
	};

}

ConeGeometry.prototype = Object.create( CylinderGeometry.prototype );
ConeGeometry.prototype.constructor = ConeGeometry;

// ConeBufferGeometry

function ConeBufferGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

	CylinderBufferGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength );

	this.type = 'ConeBufferGeometry';

	this.parameters = {
		radius: radius,
		height: height,
		radialSegments: radialSegments,
		heightSegments: heightSegments,
		openEnded: openEnded,
		thetaStart: thetaStart,
		thetaLength: thetaLength
	};

}

ConeBufferGeometry.prototype = Object.create( CylinderBufferGeometry.prototype );
ConeBufferGeometry.prototype.constructor = ConeBufferGeometry;

/**
 * @author benaadams / https://twitter.com/ben_a_adams
 * @author Mugen87 / https://github.com/Mugen87
 * @author hughes
 */

// CircleGeometry

function CircleGeometry( radius, segments, thetaStart, thetaLength ) {

	Geometry.call( this );

	this.type = 'CircleGeometry';

	this.parameters = {
		radius: radius,
		segments: segments,
		thetaStart: thetaStart,
		thetaLength: thetaLength
	};

	this.fromBufferGeometry( new CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) );
	this.mergeVertices();

}

CircleGeometry.prototype = Object.create( Geometry.prototype );
CircleGeometry.prototype.constructor = CircleGeometry;

// CircleBufferGeometry

function CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) {

	BufferGeometry.call( this );

	this.type = 'CircleBufferGeometry';

	this.parameters = {
		radius: radius,
		segments: segments,
		thetaStart: thetaStart,
		thetaLength: thetaLength
	};

	radius = radius || 50;
	segments = segments !== undefined ? Math.max( 3, segments ) : 8;

	thetaStart = thetaStart !== undefined ? thetaStart : 0;
	thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;

	// buffers

	var indices = [];
	var vertices = [];
	var normals = [];
	var uvs = [];

	// helper variables

	var i, s;
	var vertex = new Vector3();
	var uv = new Vector2();

	// center point

	vertices.push( 0, 0, 0 );
	normals.push( 0, 0, 1 );
	uvs.push( 0.5, 0.5 );

	for ( s = 0, i = 3; s <= segments; s ++, i += 3 ) {

		var segment = thetaStart + s / segments * thetaLength;

		// vertex

		vertex.x = radius * Math.cos( segment );
		vertex.y = radius * Math.sin( segment );

		vertices.push( vertex.x, vertex.y, vertex.z );

		// normal

		normals.push( 0, 0, 1 );

		// uvs

		uv.x = ( vertices[ i ] / radius + 1 ) / 2;
		uv.y = ( vertices[ i + 1 ] / radius + 1 ) / 2;

		uvs.push( uv.x, uv.y );

	}

	// indices

	for ( i = 1; i <= segments; i ++ ) {

		indices.push( i, i + 1, 0 );

	}

	// build geometry

	this.setIndex( indices );
	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

}

CircleBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
CircleBufferGeometry.prototype.constructor = CircleBufferGeometry;



var Geometries = Object.freeze({
	WireframeGeometry: WireframeGeometry,
	ParametricGeometry: ParametricGeometry,
	ParametricBufferGeometry: ParametricBufferGeometry,
	TetrahedronGeometry: TetrahedronGeometry,
	TetrahedronBufferGeometry: TetrahedronBufferGeometry,
	OctahedronGeometry: OctahedronGeometry,
	OctahedronBufferGeometry: OctahedronBufferGeometry,
	IcosahedronGeometry: IcosahedronGeometry,
	IcosahedronBufferGeometry: IcosahedronBufferGeometry,
	DodecahedronGeometry: DodecahedronGeometry,
	DodecahedronBufferGeometry: DodecahedronBufferGeometry,
	PolyhedronGeometry: PolyhedronGeometry,
	PolyhedronBufferGeometry: PolyhedronBufferGeometry,
	TubeGeometry: TubeGeometry,
	TubeBufferGeometry: TubeBufferGeometry,
	TorusKnotGeometry: TorusKnotGeometry,
	TorusKnotBufferGeometry: TorusKnotBufferGeometry,
	TorusGeometry: TorusGeometry,
	TorusBufferGeometry: TorusBufferGeometry,
	TextGeometry: TextGeometry,
	TextBufferGeometry: TextBufferGeometry,
	SphereGeometry: SphereGeometry,
	SphereBufferGeometry: SphereBufferGeometry,
	RingGeometry: RingGeometry,
	RingBufferGeometry: RingBufferGeometry,
	PlaneGeometry: PlaneGeometry,
	PlaneBufferGeometry: PlaneBufferGeometry,
	LatheGeometry: LatheGeometry,
	LatheBufferGeometry: LatheBufferGeometry,
	ShapeGeometry: ShapeGeometry,
	ShapeBufferGeometry: ShapeBufferGeometry,
	ExtrudeGeometry: ExtrudeGeometry,
	ExtrudeBufferGeometry: ExtrudeBufferGeometry,
	EdgesGeometry: EdgesGeometry,
	ConeGeometry: ConeGeometry,
	ConeBufferGeometry: ConeBufferGeometry,
	CylinderGeometry: CylinderGeometry,
	CylinderBufferGeometry: CylinderBufferGeometry,
	CircleGeometry: CircleGeometry,
	CircleBufferGeometry: CircleBufferGeometry,
	BoxGeometry: BoxGeometry,
	BoxBufferGeometry: BoxBufferGeometry
});

/**
 * @author mrdoob / http://mrdoob.com/
 *
 * parameters = {
 *  opacity: <float>
 * }
 */

function ShadowMaterial( parameters ) {

	ShaderMaterial.call( this, {
		uniforms: UniformsUtils.merge( [
			UniformsLib.lights,
			{
				opacity: { value: 1.0 }
			}
		] ),
		vertexShader: ShaderChunk[ 'shadow_vert' ],
		fragmentShader: ShaderChunk[ 'shadow_frag' ]
	} );

	this.lights = true;
	this.transparent = true;

	Object.defineProperties( this, {
		opacity: {
			enumerable: true,
			get: function () {
				return this.uniforms.opacity.value;
			},
			set: function ( value ) {
				this.uniforms.opacity.value = value;
			}
		}
	} );

	this.setValues( parameters );

}

ShadowMaterial.prototype = Object.create( ShaderMaterial.prototype );
ShadowMaterial.prototype.constructor = ShadowMaterial;

ShadowMaterial.prototype.isShadowMaterial = true;

/**
 * @author mrdoob / http://mrdoob.com/
 */

function RawShaderMaterial( parameters ) {

	ShaderMaterial.call( this, parameters );

	this.type = 'RawShaderMaterial';

}

RawShaderMaterial.prototype = Object.create( ShaderMaterial.prototype );
RawShaderMaterial.prototype.constructor = RawShaderMaterial;

RawShaderMaterial.prototype.isRawShaderMaterial = true;

/**
 * @author WestLangley / http://github.com/WestLangley
 *
 * parameters = {
 *  color: <hex>,
 *  roughness: <float>,
 *  metalness: <float>,
 *  opacity: <float>,
 *
 *  map: new THREE.Texture( <Image> ),
 *
 *  lightMap: new THREE.Texture( <Image> ),
 *  lightMapIntensity: <float>
 *
 *  aoMap: new THREE.Texture( <Image> ),
 *  aoMapIntensity: <float>
 *
 *  emissive: <hex>,
 *  emissiveIntensity: <float>
 *  emissiveMap: new THREE.Texture( <Image> ),
 *
 *  bumpMap: new THREE.Texture( <Image> ),
 *  bumpScale: <float>,
 *
 *  normalMap: new THREE.Texture( <Image> ),
 *  normalScale: <Vector2>,
 *
 *  displacementMap: new THREE.Texture( <Image> ),
 *  displacementScale: <float>,
 *  displacementBias: <float>,
 *
 *  roughnessMap: new THREE.Texture( <Image> ),
 *
 *  metalnessMap: new THREE.Texture( <Image> ),
 *
 *  alphaMap: new THREE.Texture( <Image> ),
 *
 *  envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
 *  envMapIntensity: <float>
 *
 *  refractionRatio: <float>,
 *
 *  wireframe: <boolean>,
 *  wireframeLinewidth: <float>,
 *
 *  skinning: <bool>,
 *  morphTargets: <bool>,
 *  morphNormals: <bool>
 * }
 */

function MeshStandardMaterial( parameters ) {

	Material.call( this );

	this.defines = { 'STANDARD': '' };

	this.type = 'MeshStandardMaterial';

	this.color = new Color( 0xffffff ); // diffuse
	this.roughness = 0.5;
	this.metalness = 0.5;

	this.map = null;

	this.lightMap = null;
	this.lightMapIntensity = 1.0;

	this.aoMap = null;
	this.aoMapIntensity = 1.0;

	this.emissive = new Color( 0x000000 );
	this.emissiveIntensity = 1.0;
	this.emissiveMap = null;

	this.bumpMap = null;
	this.bumpScale = 1;

	this.normalMap = null;
	this.normalScale = new Vector2( 1, 1 );

	this.displacementMap = null;
	this.displacementScale = 1;
	this.displacementBias = 0;

	this.roughnessMap = null;

	this.metalnessMap = null;

	this.alphaMap = null;

	this.envMap = null;
	this.envMapIntensity = 1.0;

	this.refractionRatio = 0.98;

	this.wireframe = false;
	this.wireframeLinewidth = 1;
	this.wireframeLinecap = 'round';
	this.wireframeLinejoin = 'round';

	this.skinning = false;
	this.morphTargets = false;
	this.morphNormals = false;

	this.setValues( parameters );

}

MeshStandardMaterial.prototype = Object.create( Material.prototype );
MeshStandardMaterial.prototype.constructor = MeshStandardMaterial;

MeshStandardMaterial.prototype.isMeshStandardMaterial = true;

MeshStandardMaterial.prototype.copy = function ( source ) {

	Material.prototype.copy.call( this, source );

	this.defines = { 'STANDARD': '' };

	this.color.copy( source.color );
	this.roughness = source.roughness;
	this.metalness = source.metalness;

	this.map = source.map;

	this.lightMap = source.lightMap;
	this.lightMapIntensity = source.lightMapIntensity;

	this.aoMap = source.aoMap;
	this.aoMapIntensity = source.aoMapIntensity;

	this.emissive.copy( source.emissive );
	this.emissiveMap = source.emissiveMap;
	this.emissiveIntensity = source.emissiveIntensity;

	this.bumpMap = source.bumpMap;
	this.bumpScale = source.bumpScale;

	this.normalMap = source.normalMap;
	this.normalScale.copy( source.normalScale );

	this.displacementMap = source.displacementMap;
	this.displacementScale = source.displacementScale;
	this.displacementBias = source.displacementBias;

	this.roughnessMap = source.roughnessMap;

	this.metalnessMap = source.metalnessMap;

	this.alphaMap = source.alphaMap;

	this.envMap = source.envMap;
	this.envMapIntensity = source.envMapIntensity;

	this.refractionRatio = source.refractionRatio;

	this.wireframe = source.wireframe;
	this.wireframeLinewidth = source.wireframeLinewidth;
	this.wireframeLinecap = source.wireframeLinecap;
	this.wireframeLinejoin = source.wireframeLinejoin;

	this.skinning = source.skinning;
	this.morphTargets = source.morphTargets;
	this.morphNormals = source.morphNormals;

	return this;

};

/**
 * @author WestLangley / http://github.com/WestLangley
 *
 * parameters = {
 *  reflectivity: <float>
 * }
 */

function MeshPhysicalMaterial( parameters ) {

	MeshStandardMaterial.call( this );

	this.defines = { 'PHYSICAL': '' };

	this.type = 'MeshPhysicalMaterial';

	this.reflectivity = 0.5; // maps to F0 = 0.04

	this.clearCoat = 0.0;
	this.clearCoatRoughness = 0.0;

	this.setValues( parameters );

}

MeshPhysicalMaterial.prototype = Object.create( MeshStandardMaterial.prototype );
MeshPhysicalMaterial.prototype.constructor = MeshPhysicalMaterial;

MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true;

MeshPhysicalMaterial.prototype.copy = function ( source ) {

	MeshStandardMaterial.prototype.copy.call( this, source );

	this.defines = { 'PHYSICAL': '' };

	this.reflectivity = source.reflectivity;

	this.clearCoat = source.clearCoat;
	this.clearCoatRoughness = source.clearCoatRoughness;

	return this;

};

/**
 * @author mrdoob / http://mrdoob.com/
 * @author alteredq / http://alteredqualia.com/
 *
 * parameters = {
 *  color: <hex>,
 *  specular: <hex>,
 *  shininess: <float>,
 *  opacity: <float>,
 *
 *  map: new THREE.Texture( <Image> ),
 *
 *  lightMap: new THREE.Texture( <Image> ),
 *  lightMapIntensity: <float>
 *
 *  aoMap: new THREE.Texture( <Image> ),
 *  aoMapIntensity: <float>
 *
 *  emissive: <hex>,
 *  emissiveIntensity: <float>
 *  emissiveMap: new THREE.Texture( <Image> ),
 *
 *  bumpMap: new THREE.Texture( <Image> ),
 *  bumpScale: <float>,
 *
 *  normalMap: new THREE.Texture( <Image> ),
 *  normalScale: <Vector2>,
 *
 *  displacementMap: new THREE.Texture( <Image> ),
 *  displacementScale: <float>,
 *  displacementBias: <float>,
 *
 *  specularMap: new THREE.Texture( <Image> ),
 *
 *  alphaMap: new THREE.Texture( <Image> ),
 *
 *  envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
 *  combine: THREE.Multiply,
 *  reflectivity: <float>,
 *  refractionRatio: <float>,
 *
 *  wireframe: <boolean>,
 *  wireframeLinewidth: <float>,
 *
 *  skinning: <bool>,
 *  morphTargets: <bool>,
 *  morphNormals: <bool>
 * }
 */

function MeshPhongMaterial( parameters ) {

	Material.call( this );

	this.type = 'MeshPhongMaterial';

	this.color = new Color( 0xffffff ); // diffuse
	this.specular = new Color( 0x111111 );
	this.shininess = 30;

	this.map = null;

	this.lightMap = null;
	this.lightMapIntensity = 1.0;

	this.aoMap = null;
	this.aoMapIntensity = 1.0;

	this.emissive = new Color( 0x000000 );
	this.emissiveIntensity = 1.0;
	this.emissiveMap = null;

	this.bumpMap = null;
	this.bumpScale = 1;

	this.normalMap = null;
	this.normalScale = new Vector2( 1, 1 );

	this.displacementMap = null;
	this.displacementScale = 1;
	this.displacementBias = 0;

	this.specularMap = null;

	this.alphaMap = null;

	this.envMap = null;
	this.combine = MultiplyOperation;
	this.reflectivity = 1;
	this.refractionRatio = 0.98;

	this.wireframe = false;
	this.wireframeLinewidth = 1;
	this.wireframeLinecap = 'round';
	this.wireframeLinejoin = 'round';

	this.skinning = false;
	this.morphTargets = false;
	this.morphNormals = false;

	this.setValues( parameters );

}

MeshPhongMaterial.prototype = Object.create( Material.prototype );
MeshPhongMaterial.prototype.constructor = MeshPhongMaterial;

MeshPhongMaterial.prototype.isMeshPhongMaterial = true;

MeshPhongMaterial.prototype.copy = function ( source ) {

	Material.prototype.copy.call( this, source );

	this.color.copy( source.color );
	this.specular.copy( source.specular );
	this.shininess = source.shininess;

	this.map = source.map;

	this.lightMap = source.lightMap;
	this.lightMapIntensity = source.lightMapIntensity;

	this.aoMap = source.aoMap;
	this.aoMapIntensity = source.aoMapIntensity;

	this.emissive.copy( source.emissive );
	this.emissiveMap = source.emissiveMap;
	this.emissiveIntensity = source.emissiveIntensity;

	this.bumpMap = source.bumpMap;
	this.bumpScale = source.bumpScale;

	this.normalMap = source.normalMap;
	this.normalScale.copy( source.normalScale );

	this.displacementMap = source.displacementMap;
	this.displacementScale = source.displacementScale;
	this.displacementBias = source.displacementBias;

	this.specularMap = source.specularMap;

	this.alphaMap = source.alphaMap;

	this.envMap = source.envMap;
	this.combine = source.combine;
	this.reflectivity = source.reflectivity;
	this.refractionRatio = source.refractionRatio;

	this.wireframe = source.wireframe;
	this.wireframeLinewidth = source.wireframeLinewidth;
	this.wireframeLinecap = source.wireframeLinecap;
	this.wireframeLinejoin = source.wireframeLinejoin;

	this.skinning = source.skinning;
	this.morphTargets = source.morphTargets;
	this.morphNormals = source.morphNormals;

	return this;

};

/**
 * @author takahirox / http://github.com/takahirox
 *
 * parameters = {
 *  gradientMap: new THREE.Texture( <Image> )
 * }
 */

function MeshToonMaterial( parameters ) {

	MeshPhongMaterial.call( this );

	this.defines = { 'TOON': '' };

	this.type = 'MeshToonMaterial';

	this.gradientMap = null;

	this.setValues( parameters );

}

MeshToonMaterial.prototype = Object.create( MeshPhongMaterial.prototype );
MeshToonMaterial.prototype.constructor = MeshToonMaterial;

MeshToonMaterial.prototype.isMeshToonMaterial = true;

MeshToonMaterial.prototype.copy = function ( source ) {

	MeshPhongMaterial.prototype.copy.call( this, source );

	this.gradientMap = source.gradientMap;

	return this;

};

/**
 * @author mrdoob / http://mrdoob.com/
 * @author WestLangley / http://github.com/WestLangley
 *
 * parameters = {
 *  opacity: <float>,
 *
 *  bumpMap: new THREE.Texture( <Image> ),
 *  bumpScale: <float>,
 *
 *  normalMap: new THREE.Texture( <Image> ),
 *  normalScale: <Vector2>,
 *
 *  displacementMap: new THREE.Texture( <Image> ),
 *  displacementScale: <float>,
 *  displacementBias: <float>,
 *
 *  wireframe: <boolean>,
 *  wireframeLinewidth: <float>
 *
 *  skinning: <bool>,
 *  morphTargets: <bool>,
 *  morphNormals: <bool>
 * }
 */

function MeshNormalMaterial( parameters ) {

	Material.call( this );

	this.type = 'MeshNormalMaterial';

	this.bumpMap = null;
	this.bumpScale = 1;

	this.normalMap = null;
	this.normalScale = new Vector2( 1, 1 );

	this.displacementMap = null;
	this.displacementScale = 1;
	this.displacementBias = 0;

	this.wireframe = false;
	this.wireframeLinewidth = 1;

	this.fog = false;
	this.lights = false;

	this.skinning = false;
	this.morphTargets = false;
	this.morphNormals = false;

	this.setValues( parameters );

}

MeshNormalMaterial.prototype = Object.create( Material.prototype );
MeshNormalMaterial.prototype.constructor = MeshNormalMaterial;

MeshNormalMaterial.prototype.isMeshNormalMaterial = true;

MeshNormalMaterial.prototype.copy = function ( source ) {

	Material.prototype.copy.call( this, source );

	this.bumpMap = source.bumpMap;
	this.bumpScale = source.bumpScale;

	this.normalMap = source.normalMap;
	this.normalScale.copy( source.normalScale );

	this.displacementMap = source.displacementMap;
	this.displacementScale = source.displacementScale;
	this.displacementBias = source.displacementBias;

	this.wireframe = source.wireframe;
	this.wireframeLinewidth = source.wireframeLinewidth;

	this.skinning = source.skinning;
	this.morphTargets = source.morphTargets;
	this.morphNormals = source.morphNormals;

	return this;

};

/**
 * @author mrdoob / http://mrdoob.com/
 * @author alteredq / http://alteredqualia.com/
 *
 * parameters = {
 *  color: <hex>,
 *  opacity: <float>,
 *
 *  map: new THREE.Texture( <Image> ),
 *
 *  lightMap: new THREE.Texture( <Image> ),
 *  lightMapIntensity: <float>
 *
 *  aoMap: new THREE.Texture( <Image> ),
 *  aoMapIntensity: <float>
 *
 *  emissive: <hex>,
 *  emissiveIntensity: <float>
 *  emissiveMap: new THREE.Texture( <Image> ),
 *
 *  specularMap: new THREE.Texture( <Image> ),
 *
 *  alphaMap: new THREE.Texture( <Image> ),
 *
 *  envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
 *  combine: THREE.Multiply,
 *  reflectivity: <float>,
 *  refractionRatio: <float>,
 *
 *  wireframe: <boolean>,
 *  wireframeLinewidth: <float>,
 *
 *  skinning: <bool>,
 *  morphTargets: <bool>,
 *  morphNormals: <bool>
 * }
 */

function MeshLambertMaterial( parameters ) {

	Material.call( this );

	this.type = 'MeshLambertMaterial';

	this.color = new Color( 0xffffff ); // diffuse

	this.map = null;

	this.lightMap = null;
	this.lightMapIntensity = 1.0;

	this.aoMap = null;
	this.aoMapIntensity = 1.0;

	this.emissive = new Color( 0x000000 );
	this.emissiveIntensity = 1.0;
	this.emissiveMap = null;

	this.specularMap = null;

	this.alphaMap = null;

	this.envMap = null;
	this.combine = MultiplyOperation;
	this.reflectivity = 1;
	this.refractionRatio = 0.98;

	this.wireframe = false;
	this.wireframeLinewidth = 1;
	this.wireframeLinecap = 'round';
	this.wireframeLinejoin = 'round';

	this.skinning = false;
	this.morphTargets = false;
	this.morphNormals = false;

	this.setValues( parameters );

}

MeshLambertMaterial.prototype = Object.create( Material.prototype );
MeshLambertMaterial.prototype.constructor = MeshLambertMaterial;

MeshLambertMaterial.prototype.isMeshLambertMaterial = true;

MeshLambertMaterial.prototype.copy = function ( source ) {

	Material.prototype.copy.call( this, source );

	this.color.copy( source.color );

	this.map = source.map;

	this.lightMap = source.lightMap;
	this.lightMapIntensity = source.lightMapIntensity;

	this.aoMap = source.aoMap;
	this.aoMapIntensity = source.aoMapIntensity;

	this.emissive.copy( source.emissive );
	this.emissiveMap = source.emissiveMap;
	this.emissiveIntensity = source.emissiveIntensity;

	this.specularMap = source.specularMap;

	this.alphaMap = source.alphaMap;

	this.envMap = source.envMap;
	this.combine = source.combine;
	this.reflectivity = source.reflectivity;
	this.refractionRatio = source.refractionRatio;

	this.wireframe = source.wireframe;
	this.wireframeLinewidth = source.wireframeLinewidth;
	this.wireframeLinecap = source.wireframeLinecap;
	this.wireframeLinejoin = source.wireframeLinejoin;

	this.skinning = source.skinning;
	this.morphTargets = source.morphTargets;
	this.morphNormals = source.morphNormals;

	return this;

};

/**
 * @author alteredq / http://alteredqualia.com/
 *
 * parameters = {
 *  color: <hex>,
 *  opacity: <float>,
 *
 *  linewidth: <float>,
 *
 *  scale: <float>,
 *  dashSize: <float>,
 *  gapSize: <float>
 * }
 */

function LineDashedMaterial( parameters ) {

	Material.call( this );

	this.type = 'LineDashedMaterial';

	this.color = new Color( 0xffffff );

	this.linewidth = 1;

	this.scale = 1;
	this.dashSize = 3;
	this.gapSize = 1;

	this.lights = false;

	this.setValues( parameters );

}

LineDashedMaterial.prototype = Object.create( Material.prototype );
LineDashedMaterial.prototype.constructor = LineDashedMaterial;

LineDashedMaterial.prototype.isLineDashedMaterial = true;

LineDashedMaterial.prototype.copy = function ( source ) {

	Material.prototype.copy.call( this, source );

	this.color.copy( source.color );

	this.linewidth = source.linewidth;

	this.scale = source.scale;
	this.dashSize = source.dashSize;
	this.gapSize = source.gapSize;

	return this;

};



var Materials = Object.freeze({
	ShadowMaterial: ShadowMaterial,
	SpriteMaterial: SpriteMaterial,
	RawShaderMaterial: RawShaderMaterial,
	ShaderMaterial: ShaderMaterial,
	PointsMaterial: PointsMaterial,
	MeshPhysicalMaterial: MeshPhysicalMaterial,
	MeshStandardMaterial: MeshStandardMaterial,
	MeshPhongMaterial: MeshPhongMaterial,
	MeshToonMaterial: MeshToonMaterial,
	MeshNormalMaterial: MeshNormalMaterial,
	MeshLambertMaterial: MeshLambertMaterial,
	MeshDepthMaterial: MeshDepthMaterial,
	MeshBasicMaterial: MeshBasicMaterial,
	LineDashedMaterial: LineDashedMaterial,
	LineBasicMaterial: LineBasicMaterial,
	Material: Material
});

/**
 * @author mrdoob / http://mrdoob.com/
 */

var Cache = {

	enabled: false,

	files: {},

	add: function ( key, file ) {

		if ( this.enabled === false ) return;

		// console.log( 'THREE.Cache', 'Adding key:', key );

		this.files[ key ] = file;

	},

	get: function ( key ) {

		if ( this.enabled === false ) return;

		// console.log( 'THREE.Cache', 'Checking key:', key );

		return this.files[ key ];

	},

	remove: function ( key ) {

		delete this.files[ key ];

	},

	clear: function () {

		this.files = {};

	}

};

/**
 * @author mrdoob / http://mrdoob.com/
 */

function LoadingManager( onLoad, onProgress, onError ) {

	var scope = this;

	var isLoading = false, itemsLoaded = 0, itemsTotal = 0;

	this.onStart = undefined;
	this.onLoad = onLoad;
	this.onProgress = onProgress;
	this.onError = onError;

	this.itemStart = function ( url ) {

		itemsTotal ++;

		if ( isLoading === false ) {

			if ( scope.onStart !== undefined ) {

				scope.onStart( url, itemsLoaded, itemsTotal );

			}

		}

		isLoading = true;

	};

	this.itemEnd = function ( url ) {

		itemsLoaded ++;

		if ( scope.onProgress !== undefined ) {

			scope.onProgress( url, itemsLoaded, itemsTotal );

		}

		if ( itemsLoaded === itemsTotal ) {

			isLoading = false;

			if ( scope.onLoad !== undefined ) {

				scope.onLoad();

			}

		}

	};

	this.itemError = function ( url ) {

		if ( scope.onError !== undefined ) {

			scope.onError( url );

		}

	};

}

var DefaultLoadingManager = new LoadingManager();

/**
 * @author mrdoob / http://mrdoob.com/
 */

function FileLoader( manager ) {

	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

}

Object.assign( FileLoader.prototype, {

	load: function ( url, onLoad, onProgress, onError ) {

		if ( url === undefined ) url = '';

		if ( this.path !== undefined ) url = this.path + url;

		var scope = this;

		var cached = Cache.get( url );

		if ( cached !== undefined ) {

			scope.manager.itemStart( url );

			setTimeout( function () {

				if ( onLoad ) onLoad( cached );

				scope.manager.itemEnd( url );

			}, 0 );

			return cached;

		}

		// Check for data: URI
		var dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/;
		var dataUriRegexResult = url.match( dataUriRegex );

		// Safari can not handle Data URIs through XMLHttpRequest so process manually
		if ( dataUriRegexResult ) {

			var mimeType = dataUriRegexResult[ 1 ];
			var isBase64 = !! dataUriRegexResult[ 2 ];
			var data = dataUriRegexResult[ 3 ];

			data = window.decodeURIComponent( data );

			if ( isBase64 ) data = window.atob( data );

			try {

				var response;
				var responseType = ( this.responseType || '' ).toLowerCase();

				switch ( responseType ) {

					case 'arraybuffer':
					case 'blob':

					 	response = new ArrayBuffer( data.length );

						var view = new Uint8Array( response );

						for ( var i = 0; i < data.length; i ++ ) {

							view[ i ] = data.charCodeAt( i );

						}

						if ( responseType === 'blob' ) {

							response = new Blob( [ response ], { type: mimeType } );

						}

						break;

					case 'document':

						var parser = new DOMParser();
						response = parser.parseFromString( data, mimeType );

						break;

					case 'json':

						response = JSON.parse( data );

						break;

					default: // 'text' or other

						response = data;

						break;

				}

				// Wait for next browser tick
				window.setTimeout( function () {

					if ( onLoad ) onLoad( response );

					scope.manager.itemEnd( url );

				}, 0 );

			} catch ( error ) {

				// Wait for next browser tick
				window.setTimeout( function () {

					if ( onError ) onError( error );

					scope.manager.itemEnd( url );
					scope.manager.itemError( url );

				}, 0 );

			}

		} else {

			var request = new XMLHttpRequest();
			request.open( 'GET', url, true );

			request.addEventListener( 'load', function ( event ) {

				var response = event.target.response;

				Cache.add( url, response );

				if ( this.status === 200 ) {

					if ( onLoad ) onLoad( response );

					scope.manager.itemEnd( url );

				} else if ( this.status === 0 ) {

					// Some browsers return HTTP Status 0 when using non-http protocol
					// e.g. 'file://' or 'data://'. Handle as success.

					console.warn( 'THREE.FileLoader: HTTP Status 0 received.' );

					if ( onLoad ) onLoad( response );

					scope.manager.itemEnd( url );

				} else {

					if ( onError ) onError( event );

					scope.manager.itemEnd( url );
					scope.manager.itemError( url );

				}

			}, false );

			if ( onProgress !== undefined ) {

				request.addEventListener( 'progress', function ( event ) {

					onProgress( event );

				}, false );

			}

			request.addEventListener( 'error', function ( event ) {

				if ( onError ) onError( event );

				scope.manager.itemEnd( url );
				scope.manager.itemError( url );

			}, false );

			if ( this.responseType !== undefined ) request.responseType = this.responseType;
			if ( this.withCredentials !== undefined ) request.withCredentials = this.withCredentials;

			if ( request.overrideMimeType ) request.overrideMimeType( this.mimeType !== undefined ? this.mimeType : 'text/plain' );

			for ( var header in this.requestHeader ) {

				request.setRequestHeader( header, this.requestHeader[ header ] );

			}

			request.send( null );

		}

		scope.manager.itemStart( url );

		return request;

	},

	setPath: function ( value ) {

		this.path = value;
		return this;

	},

	setResponseType: function ( value ) {

		this.responseType = value;
		return this;

	},

	setWithCredentials: function ( value ) {

		this.withCredentials = value;
		return this;

	},

	setMimeType: function ( value ) {

		this.mimeType = value;
		return this;

	},

	setRequestHeader: function ( value ) {

		this.requestHeader = value;
		return this;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 *
 * Abstract Base class to block based textures loader (dds, pvr, ...)
 */

function CompressedTextureLoader( manager ) {

	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

	// override in sub classes
	this._parser = null;

}

Object.assign( CompressedTextureLoader.prototype, {

	load: function ( url, onLoad, onProgress, onError ) {

		var scope = this;

		var images = [];

		var texture = new CompressedTexture();
		texture.image = images;

		var loader = new FileLoader( this.manager );
		loader.setPath( this.path );
		loader.setResponseType( 'arraybuffer' );

		function loadTexture( i ) {

			loader.load( url[ i ], function ( buffer ) {

				var texDatas = scope._parser( buffer, true );

				images[ i ] = {
					width: texDatas.width,
					height: texDatas.height,
					format: texDatas.format,
					mipmaps: texDatas.mipmaps
				};

				loaded += 1;

				if ( loaded === 6 ) {

					if ( texDatas.mipmapCount === 1 )
						texture.minFilter = LinearFilter;

					texture.format = texDatas.format;
					texture.needsUpdate = true;

					if ( onLoad ) onLoad( texture );

				}

			}, onProgress, onError );

		}

		if ( Array.isArray( url ) ) {

			var loaded = 0;

			for ( var i = 0, il = url.length; i < il; ++ i ) {

				loadTexture( i );

			}

		} else {

			// compressed cubemap texture stored in a single DDS file

			loader.load( url, function ( buffer ) {

				var texDatas = scope._parser( buffer, true );

				if ( texDatas.isCubemap ) {

					var faces = texDatas.mipmaps.length / texDatas.mipmapCount;

					for ( var f = 0; f < faces; f ++ ) {

						images[ f ] = { mipmaps : [] };

						for ( var i = 0; i < texDatas.mipmapCount; i ++ ) {

							images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] );
							images[ f ].format = texDatas.format;
							images[ f ].width = texDatas.width;
							images[ f ].height = texDatas.height;

						}

					}

				} else {

					texture.image.width = texDatas.width;
					texture.image.height = texDatas.height;
					texture.mipmaps = texDatas.mipmaps;

				}

				if ( texDatas.mipmapCount === 1 ) {

					texture.minFilter = LinearFilter;

				}

				texture.format = texDatas.format;
				texture.needsUpdate = true;

				if ( onLoad ) onLoad( texture );

			}, onProgress, onError );

		}

		return texture;

	},

	setPath: function ( value ) {

		this.path = value;
		return this;

	}

} );

/**
 * @author Nikos M. / https://github.com/foo123/
 *
 * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...)
 */

function DataTextureLoader( manager ) {

	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

	// override in sub classes
	this._parser = null;

}

Object.assign( DataTextureLoader.prototype, {

	load: function ( url, onLoad, onProgress, onError ) {

		var scope = this;

		var texture = new DataTexture();

		var loader = new FileLoader( this.manager );
		loader.setResponseType( 'arraybuffer' );

		loader.load( url, function ( buffer ) {

			var texData = scope._parser( buffer );

			if ( ! texData ) return;

			if ( undefined !== texData.image ) {

				texture.image = texData.image;

			} else if ( undefined !== texData.data ) {

				texture.image.width = texData.width;
				texture.image.height = texData.height;
				texture.image.data = texData.data;

			}

			texture.wrapS = undefined !== texData.wrapS ? texData.wrapS : ClampToEdgeWrapping;
			texture.wrapT = undefined !== texData.wrapT ? texData.wrapT : ClampToEdgeWrapping;

			texture.magFilter = undefined !== texData.magFilter ? texData.magFilter : LinearFilter;
			texture.minFilter = undefined !== texData.minFilter ? texData.minFilter : LinearMipMapLinearFilter;

			texture.anisotropy = undefined !== texData.anisotropy ? texData.anisotropy : 1;

			if ( undefined !== texData.format ) {

				texture.format = texData.format;

			}
			if ( undefined !== texData.type ) {

				texture.type = texData.type;

			}

			if ( undefined !== texData.mipmaps ) {

				texture.mipmaps = texData.mipmaps;

			}

			if ( 1 === texData.mipmapCount ) {

				texture.minFilter = LinearFilter;

			}

			texture.needsUpdate = true;

			if ( onLoad ) onLoad( texture, texData );

		}, onProgress, onError );


		return texture;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function ImageLoader( manager ) {

	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

}

Object.assign( ImageLoader.prototype, {

	load: function ( url, onLoad, onProgress, onError ) {

		if ( url === undefined ) url = '';

		if ( this.path !== undefined ) url = this.path + url;

		var scope = this;

		var cached = Cache.get( url );

		if ( cached !== undefined ) {

			scope.manager.itemStart( url );

			setTimeout( function () {

				if ( onLoad ) onLoad( cached );

				scope.manager.itemEnd( url );

			}, 0 );

			return cached;

		}

		var image = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'img' );

		image.addEventListener( 'load', function () {

			Cache.add( url, this );

			if ( onLoad ) onLoad( this );

			scope.manager.itemEnd( url );

		}, false );

		/*
		image.addEventListener( 'progress', function ( event ) {

			if ( onProgress ) onProgress( event );

		}, false );
		*/

		image.addEventListener( 'error', function ( event ) {

			if ( onError ) onError( event );

			scope.manager.itemEnd( url );
			scope.manager.itemError( url );

		}, false );

		if ( url.substr( 0, 5 ) !== 'data:' ) {

			if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin;

		}

		scope.manager.itemStart( url );

		image.src = url;

		return image;

	},

	setCrossOrigin: function ( value ) {

		this.crossOrigin = value;
		return this;

	},

	setPath: function ( value ) {

		this.path = value;
		return this;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function CubeTextureLoader( manager ) {

	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

}

Object.assign( CubeTextureLoader.prototype, {

	load: function ( urls, onLoad, onProgress, onError ) {

		var texture = new CubeTexture();

		var loader = new ImageLoader( this.manager );
		loader.setCrossOrigin( this.crossOrigin );
		loader.setPath( this.path );

		var loaded = 0;

		function loadTexture( i ) {

			loader.load( urls[ i ], function ( image ) {

				texture.images[ i ] = image;

				loaded ++;

				if ( loaded === 6 ) {

					texture.needsUpdate = true;

					if ( onLoad ) onLoad( texture );

				}

			}, undefined, onError );

		}

		for ( var i = 0; i < urls.length; ++ i ) {

			loadTexture( i );

		}

		return texture;

	},

	setCrossOrigin: function ( value ) {

		this.crossOrigin = value;
		return this;

	},

	setPath: function ( value ) {

		this.path = value;
		return this;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function TextureLoader( manager ) {

	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

}

Object.assign( TextureLoader.prototype, {

	load: function ( url, onLoad, onProgress, onError ) {

		var loader = new ImageLoader( this.manager );
		loader.setCrossOrigin( this.crossOrigin );
		loader.setPath( this.path );

		var texture = new Texture();
		texture.image = loader.load( url, function () {

			// JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB.
			var isJPEG = url.search( /\.(jpg|jpeg)$/ ) > 0 || url.search( /^data\:image\/jpeg/ ) === 0;

			texture.format = isJPEG ? RGBFormat : RGBAFormat;
			texture.needsUpdate = true;

			if ( onLoad !== undefined ) {

				onLoad( texture );

			}

		}, onProgress, onError );

		return texture;

	},

	setCrossOrigin: function ( value ) {

		this.crossOrigin = value;
		return this;

	},

	setPath: function ( value ) {

		this.path = value;
		return this;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 * @author alteredq / http://alteredqualia.com/
 */

function Light( color, intensity ) {

	Object3D.call( this );

	this.type = 'Light';

	this.color = new Color( color );
	this.intensity = intensity !== undefined ? intensity : 1;

	this.receiveShadow = undefined;

}

Light.prototype = Object.assign( Object.create( Object3D.prototype ), {

	constructor: Light,

	isLight: true,

	copy: function ( source ) {

		Object3D.prototype.copy.call( this, source );

		this.color.copy( source.color );
		this.intensity = source.intensity;

		return this;

	},

	toJSON: function ( meta ) {

		var data = Object3D.prototype.toJSON.call( this, meta );

		data.object.color = this.color.getHex();
		data.object.intensity = this.intensity;

		if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex();

		if ( this.distance !== undefined ) data.object.distance = this.distance;
		if ( this.angle !== undefined ) data.object.angle = this.angle;
		if ( this.decay !== undefined ) data.object.decay = this.decay;
		if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra;

		if ( this.shadow !== undefined ) data.object.shadow = this.shadow.toJSON();

		return data;

	}

} );

/**
 * @author alteredq / http://alteredqualia.com/
 */

function HemisphereLight( skyColor, groundColor, intensity ) {

	Light.call( this, skyColor, intensity );

	this.type = 'HemisphereLight';

	this.castShadow = undefined;

	this.position.copy( Object3D.DefaultUp );
	this.updateMatrix();

	this.groundColor = new Color( groundColor );

}

HemisphereLight.prototype = Object.assign( Object.create( Light.prototype ), {

	constructor: HemisphereLight,

	isHemisphereLight: true,

	copy: function ( source ) {

		Light.prototype.copy.call( this, source );

		this.groundColor.copy( source.groundColor );

		return this;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function LightShadow( camera ) {

	this.camera = camera;

	this.bias = 0;
	this.radius = 1;

	this.mapSize = new Vector2( 512, 512 );

	this.map = null;
	this.matrix = new Matrix4();

}

Object.assign( LightShadow.prototype, {

	copy: function ( source ) {

		this.camera = source.camera.clone();

		this.bias = source.bias;
		this.radius = source.radius;

		this.mapSize.copy( source.mapSize );

		return this;

	},

	clone: function () {

		return new this.constructor().copy( this );

	},

	toJSON: function () {

		var object = {};

		if ( this.bias !== 0 ) object.bias = this.bias;
		if ( this.radius !== 1 ) object.radius = this.radius;
		if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) object.mapSize = this.mapSize.toArray();

		object.camera = this.camera.toJSON( false ).object;
		delete object.camera.matrix;

		return object;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function SpotLightShadow() {

	LightShadow.call( this, new PerspectiveCamera( 50, 1, 0.5, 500 ) );

}

SpotLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {

	constructor: SpotLightShadow,

	isSpotLightShadow: true,

	update: function ( light ) {

		var camera = this.camera;

		var fov = _Math.RAD2DEG * 2 * light.angle;
		var aspect = this.mapSize.width / this.mapSize.height;
		var far = light.distance || camera.far;

		if ( fov !== camera.fov || aspect !== camera.aspect || far !== camera.far ) {

			camera.fov = fov;
			camera.aspect = aspect;
			camera.far = far;
			camera.updateProjectionMatrix();

		}

	}

} );

/**
 * @author alteredq / http://alteredqualia.com/
 */

function SpotLight( color, intensity, distance, angle, penumbra, decay ) {

	Light.call( this, color, intensity );

	this.type = 'SpotLight';

	this.position.copy( Object3D.DefaultUp );
	this.updateMatrix();

	this.target = new Object3D();

	Object.defineProperty( this, 'power', {
		get: function () {
			// intensity = power per solid angle.
			// ref: equation (17) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf
			return this.intensity * Math.PI;
		},
		set: function ( power ) {
			// intensity = power per solid angle.
			// ref: equation (17) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf
			this.intensity = power / Math.PI;
		}
	} );

	this.distance = ( distance !== undefined ) ? distance : 0;
	this.angle = ( angle !== undefined ) ? angle : Math.PI / 3;
	this.penumbra = ( penumbra !== undefined ) ? penumbra : 0;
	this.decay = ( decay !== undefined ) ? decay : 1;	// for physically correct lights, should be 2.

	this.shadow = new SpotLightShadow();

}

SpotLight.prototype = Object.assign( Object.create( Light.prototype ), {

	constructor: SpotLight,

	isSpotLight: true,

	copy: function ( source ) {

		Light.prototype.copy.call( this, source );

		this.distance = source.distance;
		this.angle = source.angle;
		this.penumbra = source.penumbra;
		this.decay = source.decay;

		this.target = source.target.clone();

		this.shadow = source.shadow.clone();

		return this;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */


function PointLight( color, intensity, distance, decay ) {

	Light.call( this, color, intensity );

	this.type = 'PointLight';

	Object.defineProperty( this, 'power', {
		get: function () {
			// intensity = power per solid angle.
			// ref: equation (15) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf
			return this.intensity * 4 * Math.PI;

		},
		set: function ( power ) {
			// intensity = power per solid angle.
			// ref: equation (15) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf
			this.intensity = power / ( 4 * Math.PI );
		}
	} );

	this.distance = ( distance !== undefined ) ? distance : 0;
	this.decay = ( decay !== undefined ) ? decay : 1;	// for physically correct lights, should be 2.

	this.shadow = new LightShadow( new PerspectiveCamera( 90, 1, 0.5, 500 ) );

}

PointLight.prototype = Object.assign( Object.create( Light.prototype ), {

	constructor: PointLight,

	isPointLight: true,

	copy: function ( source ) {

		Light.prototype.copy.call( this, source );

		this.distance = source.distance;
		this.decay = source.decay;

		this.shadow = source.shadow.clone();

		return this;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function DirectionalLightShadow( ) {

	LightShadow.call( this, new OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) );

}

DirectionalLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {

	constructor: DirectionalLightShadow

} );

/**
 * @author mrdoob / http://mrdoob.com/
 * @author alteredq / http://alteredqualia.com/
 */

function DirectionalLight( color, intensity ) {

	Light.call( this, color, intensity );

	this.type = 'DirectionalLight';

	this.position.copy( Object3D.DefaultUp );
	this.updateMatrix();

	this.target = new Object3D();

	this.shadow = new DirectionalLightShadow();

}

DirectionalLight.prototype = Object.assign( Object.create( Light.prototype ), {

	constructor: DirectionalLight,

	isDirectionalLight: true,

	copy: function ( source ) {

		Light.prototype.copy.call( this, source );

		this.target = source.target.clone();

		this.shadow = source.shadow.clone();

		return this;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function AmbientLight( color, intensity ) {

	Light.call( this, color, intensity );

	this.type = 'AmbientLight';

	this.castShadow = undefined;

}

AmbientLight.prototype = Object.assign( Object.create( Light.prototype ), {

	constructor: AmbientLight,

	isAmbientLight: true

} );

/**
 * @author abelnation / http://github.com/abelnation
 */

function RectAreaLight( color, intensity, width, height ) {

	Light.call( this, color, intensity );

	this.type = 'RectAreaLight';

	this.position.set( 0, 1, 0 );
	this.updateMatrix();

	this.width = ( width !== undefined ) ? width : 10;
	this.height = ( height !== undefined ) ? height : 10;

	// TODO (abelnation): distance/decay

	// TODO (abelnation): update method for RectAreaLight to update transform to lookat target

	// TODO (abelnation): shadows

}

// TODO (abelnation): RectAreaLight update when light shape is changed
RectAreaLight.prototype = Object.assign( Object.create( Light.prototype ), {

	constructor: RectAreaLight,

	isRectAreaLight: true,

	copy: function ( source ) {

		Light.prototype.copy.call( this, source );

		this.width = source.width;
		this.height = source.height;

		return this;

	},

	toJSON: function ( meta ) {

		var data = Light.prototype.toJSON.call( this, meta );

		data.object.width = this.width;
		data.object.height = this.height;

		return data;

	}

} );

/**
 * @author tschw
 * @author Ben Houston / http://clara.io/
 * @author David Sarno / http://lighthaus.us/
 */

var AnimationUtils = {

	// same as Array.prototype.slice, but also works on typed arrays
	arraySlice: function ( array, from, to ) {

		if ( AnimationUtils.isTypedArray( array ) ) {

			// in ios9 array.subarray(from, undefined) will return empty array
			// but array.subarray(from) or array.subarray(from, len) is correct
			return new array.constructor( array.subarray( from, to !== undefined ? to : array.length ) );

		}

		return array.slice( from, to );

	},

	// converts an array to a specific type
	convertArray: function ( array, type, forceClone ) {

		if ( ! array || // let 'undefined' and 'null' pass
				! forceClone && array.constructor === type ) return array;

		if ( typeof type.BYTES_PER_ELEMENT === 'number' ) {

			return new type( array ); // create typed array

		}

		return Array.prototype.slice.call( array ); // create Array

	},

	isTypedArray: function ( object ) {

		return ArrayBuffer.isView( object ) &&
				! ( object instanceof DataView );

	},

	// returns an array by which times and values can be sorted
	getKeyframeOrder: function ( times ) {

		function compareTime( i, j ) {

			return times[ i ] - times[ j ];

		}

		var n = times.length;
		var result = new Array( n );
		for ( var i = 0; i !== n; ++ i ) result[ i ] = i;

		result.sort( compareTime );

		return result;

	},

	// uses the array previously returned by 'getKeyframeOrder' to sort data
	sortedArray: function ( values, stride, order ) {

		var nValues = values.length;
		var result = new values.constructor( nValues );

		for ( var i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) {

			var srcOffset = order[ i ] * stride;

			for ( var j = 0; j !== stride; ++ j ) {

				result[ dstOffset ++ ] = values[ srcOffset + j ];

			}

		}

		return result;

	},

	// function for parsing AOS keyframe formats
	flattenJSON: function ( jsonKeys, times, values, valuePropertyName ) {

		var i = 1, key = jsonKeys[ 0 ];

		while ( key !== undefined && key[ valuePropertyName ] === undefined ) {

			key = jsonKeys[ i ++ ];

		}

		if ( key === undefined ) return; // no data

		var value = key[ valuePropertyName ];
		if ( value === undefined ) return; // no data

		if ( Array.isArray( value ) ) {

			do {

				value = key[ valuePropertyName ];

				if ( value !== undefined ) {

					times.push( key.time );
					values.push.apply( values, value ); // push all elements

				}

				key = jsonKeys[ i ++ ];

			} while ( key !== undefined );

		} else if ( value.toArray !== undefined ) {

			// ...assume THREE.Math-ish

			do {

				value = key[ valuePropertyName ];

				if ( value !== undefined ) {

					times.push( key.time );
					value.toArray( values, values.length );

				}

				key = jsonKeys[ i ++ ];

			} while ( key !== undefined );

		} else {

			// otherwise push as-is

			do {

				value = key[ valuePropertyName ];

				if ( value !== undefined ) {

					times.push( key.time );
					values.push( value );

				}

				key = jsonKeys[ i ++ ];

			} while ( key !== undefined );

		}

	}

};

/**
 * Abstract base class of interpolants over parametric samples.
 *
 * The parameter domain is one dimensional, typically the time or a path
 * along a curve defined by the data.
 *
 * The sample values can have any dimensionality and derived classes may
 * apply special interpretations to the data.
 *
 * This class provides the interval seek in a Template Method, deferring
 * the actual interpolation to derived classes.
 *
 * Time complexity is O(1) for linear access crossing at most two points
 * and O(log N) for random access, where N is the number of positions.
 *
 * References:
 *
 * 		http://www.oodesign.com/template-method-pattern.html
 *
 * @author tschw
 */

function Interpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

	this.parameterPositions = parameterPositions;
	this._cachedIndex = 0;

	this.resultBuffer = resultBuffer !== undefined ?
			resultBuffer : new sampleValues.constructor( sampleSize );
	this.sampleValues = sampleValues;
	this.valueSize = sampleSize;

}

Object.assign( Interpolant.prototype, {

	evaluate: function( t ) {

		var pp = this.parameterPositions,
			i1 = this._cachedIndex,

			t1 = pp[   i1   ],
			t0 = pp[ i1 - 1 ];

		validate_interval: {

			seek: {

				var right;

				linear_scan: {
					//- See http://jsperf.com/comparison-to-undefined/3
					//- slower code:
					//-
					//- 				if ( t >= t1 || t1 === undefined ) {
					forward_scan: if ( ! ( t < t1 ) ) {

						for ( var giveUpAt = i1 + 2; ;) {

							if ( t1 === undefined ) {

								if ( t < t0 ) break forward_scan;

								// after end

								i1 = pp.length;
								this._cachedIndex = i1;
								return this.afterEnd_( i1 - 1, t, t0 );

							}

							if ( i1 === giveUpAt ) break; // this loop

							t0 = t1;
							t1 = pp[ ++ i1 ];

							if ( t < t1 ) {

								// we have arrived at the sought interval
								break seek;

							}

						}

						// prepare binary search on the right side of the index
						right = pp.length;
						break linear_scan;

					}

					//- slower code:
					//-					if ( t < t0 || t0 === undefined ) {
					if ( ! ( t >= t0 ) ) {

						// looping?

						var t1global = pp[ 1 ];

						if ( t < t1global ) {

							i1 = 2; // + 1, using the scan for the details
							t0 = t1global;

						}

						// linear reverse scan

						for ( var giveUpAt = i1 - 2; ;) {

							if ( t0 === undefined ) {

								// before start

								this._cachedIndex = 0;
								return this.beforeStart_( 0, t, t1 );

							}

							if ( i1 === giveUpAt ) break; // this loop

							t1 = t0;
							t0 = pp[ -- i1 - 1 ];

							if ( t >= t0 ) {

								// we have arrived at the sought interval
								break seek;

							}

						}

						// prepare binary search on the left side of the index
						right = i1;
						i1 = 0;
						break linear_scan;

					}

					// the interval is valid

					break validate_interval;

				} // linear scan

				// binary search

				while ( i1 < right ) {

					var mid = ( i1 + right ) >>> 1;

					if ( t < pp[ mid ] ) {

						right = mid;

					} else {

						i1 = mid + 1;

					}

				}

				t1 = pp[   i1   ];
				t0 = pp[ i1 - 1 ];

				// check boundary cases, again

				if ( t0 === undefined ) {

					this._cachedIndex = 0;
					return this.beforeStart_( 0, t, t1 );

				}

				if ( t1 === undefined ) {

					i1 = pp.length;
					this._cachedIndex = i1;
					return this.afterEnd_( i1 - 1, t0, t );

				}

			} // seek

			this._cachedIndex = i1;

			this.intervalChanged_( i1, t0, t1 );

		} // validate_interval

		return this.interpolate_( i1, t0, t, t1 );

	},

	settings: null, // optional, subclass-specific settings structure
	// Note: The indirection allows central control of many interpolants.

	// --- Protected interface

	DefaultSettings_: {},

	getSettings_: function() {

		return this.settings || this.DefaultSettings_;

	},

	copySampleValue_: function( index ) {

		// copies a sample value to the result buffer

		var result = this.resultBuffer,
			values = this.sampleValues,
			stride = this.valueSize,
			offset = index * stride;

		for ( var i = 0; i !== stride; ++ i ) {

			result[ i ] = values[ offset + i ];

		}

		return result;

	},

	// Template methods for derived classes:

	interpolate_: function( i1, t0, t, t1 ) {

		throw new Error( "call to abstract method" );
		// implementations shall return this.resultBuffer

	},

	intervalChanged_: function( i1, t0, t1 ) {

		// empty

	}

} );

//!\ DECLARE ALIAS AFTER assign prototype !
Object.assign( Interpolant.prototype, {

	//( 0, t, t0 ), returns this.resultBuffer
	beforeStart_: Interpolant.prototype.copySampleValue_,

	//( N-1, tN-1, t ), returns this.resultBuffer
	afterEnd_: Interpolant.prototype.copySampleValue_,

} );

/**
 * Fast and simple cubic spline interpolant.
 *
 * It was derived from a Hermitian construction setting the first derivative
 * at each sample position to the linear slope between neighboring positions
 * over their parameter interval.
 *
 * @author tschw
 */

function CubicInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

	Interpolant.call(
			this, parameterPositions, sampleValues, sampleSize, resultBuffer );

	this._weightPrev = -0;
	this._offsetPrev = -0;
	this._weightNext = -0;
	this._offsetNext = -0;

}

CubicInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

	constructor: CubicInterpolant,

	DefaultSettings_: {

		endingStart: 	ZeroCurvatureEnding,
		endingEnd:		ZeroCurvatureEnding

	},

	intervalChanged_: function( i1, t0, t1 ) {

		var pp = this.parameterPositions,
			iPrev = i1 - 2,
			iNext = i1 + 1,

			tPrev = pp[ iPrev ],
			tNext = pp[ iNext ];

		if ( tPrev === undefined ) {

			switch ( this.getSettings_().endingStart ) {

				case ZeroSlopeEnding:

					// f'(t0) = 0
					iPrev = i1;
					tPrev = 2 * t0 - t1;

					break;

				case WrapAroundEnding:

					// use the other end of the curve
					iPrev = pp.length - 2;
					tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ];

					break;

				default: // ZeroCurvatureEnding

					// f''(t0) = 0 a.k.a. Natural Spline
					iPrev = i1;
					tPrev = t1;

			}

		}

		if ( tNext === undefined ) {

			switch ( this.getSettings_().endingEnd ) {

				case ZeroSlopeEnding:

					// f'(tN) = 0
					iNext = i1;
					tNext = 2 * t1 - t0;

					break;

				case WrapAroundEnding:

					// use the other end of the curve
					iNext = 1;
					tNext = t1 + pp[ 1 ] - pp[ 0 ];

					break;

				default: // ZeroCurvatureEnding

					// f''(tN) = 0, a.k.a. Natural Spline
					iNext = i1 - 1;
					tNext = t0;

			}

		}

		var halfDt = ( t1 - t0 ) * 0.5,
			stride = this.valueSize;

		this._weightPrev = halfDt / ( t0 - tPrev );
		this._weightNext = halfDt / ( tNext - t1 );
		this._offsetPrev = iPrev * stride;
		this._offsetNext = iNext * stride;

	},

	interpolate_: function( i1, t0, t, t1 ) {

		var result = this.resultBuffer,
			values = this.sampleValues,
			stride = this.valueSize,

			o1 = i1 * stride,		o0 = o1 - stride,
			oP = this._offsetPrev, 	oN = this._offsetNext,
			wP = this._weightPrev,	wN = this._weightNext,

			p = ( t - t0 ) / ( t1 - t0 ),
			pp = p * p,
			ppp = pp * p;

		// evaluate polynomials

		var sP =     - wP   * ppp   +         2 * wP    * pp    -          wP   * p;
		var s0 = ( 1 + wP ) * ppp   + (-1.5 - 2 * wP )  * pp    + ( -0.5 + wP ) * p     + 1;
		var s1 = (-1 - wN ) * ppp   + ( 1.5 +   wN   )  * pp    +    0.5        * p;
		var sN =       wN   * ppp   -           wN      * pp;

		// combine data linearly

		for ( var i = 0; i !== stride; ++ i ) {

			result[ i ] =
					sP * values[ oP + i ] +
					s0 * values[ o0 + i ] +
					s1 * values[ o1 + i ] +
					sN * values[ oN + i ];

		}

		return result;

	}

} );

/**
 * @author tschw
 */

function LinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

	Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

}

LinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

	constructor: LinearInterpolant,

	interpolate_: function( i1, t0, t, t1 ) {

		var result = this.resultBuffer,
			values = this.sampleValues,
			stride = this.valueSize,

			offset1 = i1 * stride,
			offset0 = offset1 - stride,

			weight1 = ( t - t0 ) / ( t1 - t0 ),
			weight0 = 1 - weight1;

		for ( var i = 0; i !== stride; ++ i ) {

			result[ i ] =
					values[ offset0 + i ] * weight0 +
					values[ offset1 + i ] * weight1;

		}

		return result;

	}

} );

/**
 *
 * Interpolant that evaluates to the sample value at the position preceeding
 * the parameter.
 *
 * @author tschw
 */

function DiscreteInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

	Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

}

DiscreteInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

	constructor: DiscreteInterpolant,

	interpolate_: function( i1, t0, t, t1 ) {

		return this.copySampleValue_( i1 - 1 );

	}

} );

var KeyframeTrackPrototype;

KeyframeTrackPrototype = {

	TimeBufferType: Float32Array,
	ValueBufferType: Float32Array,

	DefaultInterpolation: InterpolateLinear,

	InterpolantFactoryMethodDiscrete: function ( result ) {

		return new DiscreteInterpolant(
				this.times, this.values, this.getValueSize(), result );

	},

	InterpolantFactoryMethodLinear: function ( result ) {

		return new LinearInterpolant(
				this.times, this.values, this.getValueSize(), result );

	},

	InterpolantFactoryMethodSmooth: function ( result ) {

		return new CubicInterpolant(
				this.times, this.values, this.getValueSize(), result );

	},

	setInterpolation: function ( interpolation ) {

		var factoryMethod;

		switch ( interpolation ) {

			case InterpolateDiscrete:

				factoryMethod = this.InterpolantFactoryMethodDiscrete;

				break;

			case InterpolateLinear:

				factoryMethod = this.InterpolantFactoryMethodLinear;

				break;

			case InterpolateSmooth:

				factoryMethod = this.InterpolantFactoryMethodSmooth;

				break;

		}

		if ( factoryMethod === undefined ) {

			var message = "unsupported interpolation for " +
					this.ValueTypeName + " keyframe track named " + this.name;

			if ( this.createInterpolant === undefined ) {

				// fall back to default, unless the default itself is messed up
				if ( interpolation !== this.DefaultInterpolation ) {

					this.setInterpolation( this.DefaultInterpolation );

				} else {

					throw new Error( message ); // fatal, in this case

				}

			}

			console.warn( 'THREE.KeyframeTrackPrototype:', message );
			return;

		}

		this.createInterpolant = factoryMethod;

	},

	getInterpolation: function () {

		switch ( this.createInterpolant ) {

			case this.InterpolantFactoryMethodDiscrete:

				return InterpolateDiscrete;

			case this.InterpolantFactoryMethodLinear:

				return InterpolateLinear;

			case this.InterpolantFactoryMethodSmooth:

				return InterpolateSmooth;

		}

	},

	getValueSize: function () {

		return this.values.length / this.times.length;

	},

	// move all keyframes either forwards or backwards in time
	shift: function ( timeOffset ) {

		if ( timeOffset !== 0.0 ) {

			var times = this.times;

			for ( var i = 0, n = times.length; i !== n; ++ i ) {

				times[ i ] += timeOffset;

			}

		}

		return this;

	},

	// scale all keyframe times by a factor (useful for frame <-> seconds conversions)
	scale: function ( timeScale ) {

		if ( timeScale !== 1.0 ) {

			var times = this.times;

			for ( var i = 0, n = times.length; i !== n; ++ i ) {

				times[ i ] *= timeScale;

			}

		}

		return this;

	},

	// removes keyframes before and after animation without changing any values within the range [startTime, endTime].
	// IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values
	trim: function ( startTime, endTime ) {

		var times = this.times,
			nKeys = times.length,
			from = 0,
			to = nKeys - 1;

		while ( from !== nKeys && times[ from ] < startTime ) ++ from;
		while ( to !== - 1 && times[ to ] > endTime ) -- to;

		++ to; // inclusive -> exclusive bound

		if ( from !== 0 || to !== nKeys ) {

			// empty tracks are forbidden, so keep at least one keyframe
			if ( from >= to ) to = Math.max( to, 1 ), from = to - 1;

			var stride = this.getValueSize();
			this.times = AnimationUtils.arraySlice( times, from, to );
			this.values = AnimationUtils.
					arraySlice( this.values, from * stride, to * stride );

		}

		return this;

	},

	// ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable
	validate: function () {

		var valid = true;

		var valueSize = this.getValueSize();
		if ( valueSize - Math.floor( valueSize ) !== 0 ) {

			console.error( 'THREE.KeyframeTrackPrototype: Invalid value size in track.', this );
			valid = false;

		}

		var times = this.times,
			values = this.values,

			nKeys = times.length;

		if ( nKeys === 0 ) {

			console.error( 'THREE.KeyframeTrackPrototype: Track is empty.', this );
			valid = false;

		}

		var prevTime = null;

		for ( var i = 0; i !== nKeys; i ++ ) {

			var currTime = times[ i ];

			if ( typeof currTime === 'number' && isNaN( currTime ) ) {

				console.error( 'THREE.KeyframeTrackPrototype: Time is not a valid number.', this, i, currTime );
				valid = false;
				break;

			}

			if ( prevTime !== null && prevTime > currTime ) {

				console.error( 'THREE.KeyframeTrackPrototype: Out of order keys.', this, i, currTime, prevTime );
				valid = false;
				break;

			}

			prevTime = currTime;

		}

		if ( values !== undefined ) {

			if ( AnimationUtils.isTypedArray( values ) ) {

				for ( var i = 0, n = values.length; i !== n; ++ i ) {

					var value = values[ i ];

					if ( isNaN( value ) ) {

						console.error( 'THREE.KeyframeTrackPrototype: Value is not a valid number.', this, i, value );
						valid = false;
						break;

					}

				}

			}

		}

		return valid;

	},

	// removes equivalent sequential keys as common in morph target sequences
	// (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)
	optimize: function () {

		var times = this.times,
			values = this.values,
			stride = this.getValueSize(),

			smoothInterpolation = this.getInterpolation() === InterpolateSmooth,

			writeIndex = 1,
			lastIndex = times.length - 1;

		for ( var i = 1; i < lastIndex; ++ i ) {

			var keep = false;

			var time = times[ i ];
			var timeNext = times[ i + 1 ];

			// remove adjacent keyframes scheduled at the same time

			if ( time !== timeNext && ( i !== 1 || time !== time[ 0 ] ) ) {

				if ( ! smoothInterpolation ) {

					// remove unnecessary keyframes same as their neighbors

					var offset = i * stride,
						offsetP = offset - stride,
						offsetN = offset + stride;

					for ( var j = 0; j !== stride; ++ j ) {

						var value = values[ offset + j ];

						if ( value !== values[ offsetP + j ] ||
								value !== values[ offsetN + j ] ) {

							keep = true;
							break;

						}

					}

				} else keep = true;

			}

			// in-place compaction

			if ( keep ) {

				if ( i !== writeIndex ) {

					times[ writeIndex ] = times[ i ];

					var readOffset = i * stride,
						writeOffset = writeIndex * stride;

					for ( var j = 0; j !== stride; ++ j )

						values[ writeOffset + j ] = values[ readOffset + j ];

				}

				++ writeIndex;

			}

		}

		// flush last keyframe (compaction looks ahead)

		if ( lastIndex > 0 ) {

			times[ writeIndex ] = times[ lastIndex ];

			for ( var readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++ j )

				values[ writeOffset + j ] = values[ readOffset + j ];

			++ writeIndex;

		}

		if ( writeIndex !== times.length ) {

			this.times = AnimationUtils.arraySlice( times, 0, writeIndex );
			this.values = AnimationUtils.arraySlice( values, 0, writeIndex * stride );

		}

		return this;

	}

};

function KeyframeTrackConstructor( name, times, values, interpolation ) {

	if ( name === undefined ) throw new Error( "track name is undefined" );

	if ( times === undefined || times.length === 0 ) {

		throw new Error( "no keyframes in track named " + name );

	}

	this.name = name;

	this.times = AnimationUtils.convertArray( times, this.TimeBufferType );
	this.values = AnimationUtils.convertArray( values, this.ValueBufferType );

	this.setInterpolation( interpolation || this.DefaultInterpolation );

	this.validate();
	this.optimize();

}

/**
 *
 * A Track of vectored keyframe values.
 *
 *
 * @author Ben Houston / http://clara.io/
 * @author David Sarno / http://lighthaus.us/
 * @author tschw
 */

function VectorKeyframeTrack( name, times, values, interpolation ) {

	KeyframeTrackConstructor.call( this, name, times, values, interpolation );

}

VectorKeyframeTrack.prototype =
		Object.assign( Object.create( KeyframeTrackPrototype ), {

	constructor: VectorKeyframeTrack,

	ValueTypeName: 'vector'

	// ValueBufferType is inherited

	// DefaultInterpolation is inherited

} );

/**
 * Spherical linear unit quaternion interpolant.
 *
 * @author tschw
 */

function QuaternionLinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

	Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

}

QuaternionLinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

	constructor: QuaternionLinearInterpolant,

	interpolate_: function( i1, t0, t, t1 ) {

		var result = this.resultBuffer,
			values = this.sampleValues,
			stride = this.valueSize,

			offset = i1 * stride,

			alpha = ( t - t0 ) / ( t1 - t0 );

		for ( var end = offset + stride; offset !== end; offset += 4 ) {

			Quaternion.slerpFlat( result, 0,
					values, offset - stride, values, offset, alpha );

		}

		return result;

	}

} );

/**
 *
 * A Track of quaternion keyframe values.
 *
 * @author Ben Houston / http://clara.io/
 * @author David Sarno / http://lighthaus.us/
 * @author tschw
 */

function QuaternionKeyframeTrack( name, times, values, interpolation ) {

	KeyframeTrackConstructor.call( this, name, times, values, interpolation );

}

QuaternionKeyframeTrack.prototype =
		Object.assign( Object.create( KeyframeTrackPrototype ), {

	constructor: QuaternionKeyframeTrack,

	ValueTypeName: 'quaternion',

	// ValueBufferType is inherited

	DefaultInterpolation: InterpolateLinear,

	InterpolantFactoryMethodLinear: function( result ) {

		return new QuaternionLinearInterpolant(
				this.times, this.values, this.getValueSize(), result );

	},

	InterpolantFactoryMethodSmooth: undefined // not yet implemented

} );

/**
 *
 * A Track of numeric keyframe values.
 *
 * @author Ben Houston / http://clara.io/
 * @author David Sarno / http://lighthaus.us/
 * @author tschw
 */

function NumberKeyframeTrack( name, times, values, interpolation ) {

	KeyframeTrackConstructor.call( this, name, times, values, interpolation );

}

NumberKeyframeTrack.prototype =
		Object.assign( Object.create( KeyframeTrackPrototype ), {

	constructor: NumberKeyframeTrack,

	ValueTypeName: 'number'

	// ValueBufferType is inherited

	// DefaultInterpolation is inherited

} );

/**
 *
 * A Track that interpolates Strings
 *
 *
 * @author Ben Houston / http://clara.io/
 * @author David Sarno / http://lighthaus.us/
 * @author tschw
 */

function StringKeyframeTrack( name, times, values, interpolation ) {

	KeyframeTrackConstructor.call( this, name, times, values, interpolation );

}

StringKeyframeTrack.prototype =
		Object.assign( Object.create( KeyframeTrackPrototype ), {

	constructor: StringKeyframeTrack,

	ValueTypeName: 'string',
	ValueBufferType: Array,

	DefaultInterpolation: InterpolateDiscrete,

	InterpolantFactoryMethodLinear: undefined,

	InterpolantFactoryMethodSmooth: undefined

} );

/**
 *
 * A Track of Boolean keyframe values.
 *
 *
 * @author Ben Houston / http://clara.io/
 * @author David Sarno / http://lighthaus.us/
 * @author tschw
 */

function BooleanKeyframeTrack( name, times, values ) {

	KeyframeTrackConstructor.call( this, name, times, values );

}

BooleanKeyframeTrack.prototype =
		Object.assign( Object.create( KeyframeTrackPrototype ), {

	constructor: BooleanKeyframeTrack,

	ValueTypeName: 'bool',
	ValueBufferType: Array,

	DefaultInterpolation: InterpolateDiscrete,

	InterpolantFactoryMethodLinear: undefined,
	InterpolantFactoryMethodSmooth: undefined

	// Note: Actually this track could have a optimized / compressed
	// representation of a single value and a custom interpolant that
	// computes "firstValue ^ isOdd( index )".

} );

/**
 *
 * A Track of keyframe values that represent color.
 *
 *
 * @author Ben Houston / http://clara.io/
 * @author David Sarno / http://lighthaus.us/
 * @author tschw
 */

function ColorKeyframeTrack( name, times, values, interpolation ) {

	KeyframeTrackConstructor.call( this, name, times, values, interpolation );

}

ColorKeyframeTrack.prototype =
		Object.assign( Object.create( KeyframeTrackPrototype ), {

	constructor: ColorKeyframeTrack,

	ValueTypeName: 'color'

	// ValueBufferType is inherited

	// DefaultInterpolation is inherited


	// Note: Very basic implementation and nothing special yet.
	// However, this is the place for color space parameterization.

} );

/**
 *
 * A timed sequence of keyframes for a specific property.
 *
 *
 * @author Ben Houston / http://clara.io/
 * @author David Sarno / http://lighthaus.us/
 * @author tschw
 */

function KeyframeTrack( name, times, values, interpolation ) {

	KeyframeTrackConstructor.apply( this, arguments );

}

KeyframeTrack.prototype = KeyframeTrackPrototype;
KeyframeTrackPrototype.constructor = KeyframeTrack;

// Static methods:

Object.assign( KeyframeTrack, {

	// Serialization (in static context, because of constructor invocation
	// and automatic invocation of .toJSON):

	parse: function( json ) {

		if( json.type === undefined ) {

			throw new Error( "track type undefined, can not parse" );

		}

		var trackType = KeyframeTrack._getTrackTypeForValueTypeName( json.type );

		if ( json.times === undefined ) {

			var times = [], values = [];

			AnimationUtils.flattenJSON( json.keys, times, values, 'value' );

			json.times = times;
			json.values = values;

		}

		// derived classes can define a static parse method
		if ( trackType.parse !== undefined ) {

			return trackType.parse( json );

		} else {

			// by default, we asssume a constructor compatible with the base
			return new trackType(
					json.name, json.times, json.values, json.interpolation );

		}

	},

	toJSON: function( track ) {

		var trackType = track.constructor;

		var json;

		// derived classes can define a static toJSON method
		if ( trackType.toJSON !== undefined ) {

			json = trackType.toJSON( track );

		} else {

			// by default, we assume the data can be serialized as-is
			json = {

				'name': track.name,
				'times': AnimationUtils.convertArray( track.times, Array ),
				'values': AnimationUtils.convertArray( track.values, Array )

			};

			var interpolation = track.getInterpolation();

			if ( interpolation !== track.DefaultInterpolation ) {

				json.interpolation = interpolation;

			}

		}

		json.type = track.ValueTypeName; // mandatory

		return json;

	},

	_getTrackTypeForValueTypeName: function( typeName ) {

		switch( typeName.toLowerCase() ) {

			case "scalar":
			case "double":
			case "float":
			case "number":
			case "integer":

				return NumberKeyframeTrack;

			case "vector":
			case "vector2":
			case "vector3":
			case "vector4":

				return VectorKeyframeTrack;

			case "color":

				return ColorKeyframeTrack;

			case "quaternion":

				return QuaternionKeyframeTrack;

			case "bool":
			case "boolean":

				return BooleanKeyframeTrack;

			case "string":

				return StringKeyframeTrack;

		}

		throw new Error( "Unsupported typeName: " + typeName );

	}

} );

/**
 *
 * Reusable set of Tracks that represent an animation.
 *
 * @author Ben Houston / http://clara.io/
 * @author David Sarno / http://lighthaus.us/
 */

function AnimationClip( name, duration, tracks ) {

	this.name = name;
	this.tracks = tracks;
	this.duration = ( duration !== undefined ) ? duration : - 1;

	this.uuid = _Math.generateUUID();

	// this means it should figure out its duration by scanning the tracks
	if ( this.duration < 0 ) {

		this.resetDuration();

	}

	this.optimize();

}

Object.assign( AnimationClip, {

	parse: function ( json ) {

		var tracks = [],
			jsonTracks = json.tracks,
			frameTime = 1.0 / ( json.fps || 1.0 );

		for ( var i = 0, n = jsonTracks.length; i !== n; ++ i ) {

			tracks.push( KeyframeTrack.parse( jsonTracks[ i ] ).scale( frameTime ) );

		}

		return new AnimationClip( json.name, json.duration, tracks );

	},

	toJSON: function ( clip ) {

		var tracks = [],
			clipTracks = clip.tracks;

		var json = {

			'name': clip.name,
			'duration': clip.duration,
			'tracks': tracks

		};

		for ( var i = 0, n = clipTracks.length; i !== n; ++ i ) {

			tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) );

		}

		return json;

	},

	CreateFromMorphTargetSequence: function ( name, morphTargetSequence, fps, noLoop ) {

		var numMorphTargets = morphTargetSequence.length;
		var tracks = [];

		for ( var i = 0; i < numMorphTargets; i ++ ) {

			var times = [];
			var values = [];

			times.push(
					( i + numMorphTargets - 1 ) % numMorphTargets,
					i,
					( i + 1 ) % numMorphTargets );

			values.push( 0, 1, 0 );

			var order = AnimationUtils.getKeyframeOrder( times );
			times = AnimationUtils.sortedArray( times, 1, order );
			values = AnimationUtils.sortedArray( values, 1, order );

			// if there is a key at the first frame, duplicate it as the
			// last frame as well for perfect loop.
			if ( ! noLoop && times[ 0 ] === 0 ) {

				times.push( numMorphTargets );
				values.push( values[ 0 ] );

			}

			tracks.push(
					new NumberKeyframeTrack(
						'.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']',
						times, values
					).scale( 1.0 / fps ) );

		}

		return new AnimationClip( name, - 1, tracks );

	},

	findByName: function ( objectOrClipArray, name ) {

		var clipArray = objectOrClipArray;

		if ( ! Array.isArray( objectOrClipArray ) ) {

			var o = objectOrClipArray;
			clipArray = o.geometry && o.geometry.animations || o.animations;

		}

		for ( var i = 0; i < clipArray.length; i ++ ) {

			if ( clipArray[ i ].name === name ) {

				return clipArray[ i ];

			}

		}

		return null;

	},

	CreateClipsFromMorphTargetSequences: function ( morphTargets, fps, noLoop ) {

		var animationToMorphTargets = {};

		// tested with https://regex101.com/ on trick sequences
		// such flamingo_flyA_003, flamingo_run1_003, crdeath0059
		var pattern = /^([\w-]*?)([\d]+)$/;

		// sort morph target names into animation groups based
		// patterns like Walk_001, Walk_002, Run_001, Run_002
		for ( var i = 0, il = morphTargets.length; i < il; i ++ ) {

			var morphTarget = morphTargets[ i ];
			var parts = morphTarget.name.match( pattern );

			if ( parts && parts.length > 1 ) {

				var name = parts[ 1 ];

				var animationMorphTargets = animationToMorphTargets[ name ];
				if ( ! animationMorphTargets ) {

					animationToMorphTargets[ name ] = animationMorphTargets = [];

				}

				animationMorphTargets.push( morphTarget );

			}

		}

		var clips = [];

		for ( var name in animationToMorphTargets ) {

			clips.push( AnimationClip.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) );

		}

		return clips;

	},

	// parse the animation.hierarchy format
	parseAnimation: function ( animation, bones ) {

		if ( ! animation ) {

			console.error( 'THREE.AnimationClip: No animation in JSONLoader data.' );
			return null;

		}

		var addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) {

			// only return track if there are actually keys.
			if ( animationKeys.length !== 0 ) {

				var times = [];
				var values = [];

				AnimationUtils.flattenJSON( animationKeys, times, values, propertyName );

				// empty keys are filtered out, so check again
				if ( times.length !== 0 ) {

					destTracks.push( new trackType( trackName, times, values ) );

				}

			}

		};

		var tracks = [];

		var clipName = animation.name || 'default';
		// automatic length determination in AnimationClip.
		var duration = animation.length || - 1;
		var fps = animation.fps || 30;

		var hierarchyTracks = animation.hierarchy || [];

		for ( var h = 0; h < hierarchyTracks.length; h ++ ) {

			var animationKeys = hierarchyTracks[ h ].keys;

			// skip empty tracks
			if ( ! animationKeys || animationKeys.length === 0 ) continue;

			// process morph targets
			if ( animationKeys[ 0 ].morphTargets ) {

				// figure out all morph targets used in this track
				var morphTargetNames = {};

				for ( var k = 0; k < animationKeys.length; k ++ ) {

					if ( animationKeys[ k ].morphTargets ) {

						for ( var m = 0; m < animationKeys[ k ].morphTargets.length; m ++ ) {

							morphTargetNames[ animationKeys[ k ].morphTargets[ m ] ] = - 1;

						}

					}

				}

				// create a track for each morph target with all zero
				// morphTargetInfluences except for the keys in which
				// the morphTarget is named.
				for ( var morphTargetName in morphTargetNames ) {

					var times = [];
					var values = [];

					for ( var m = 0; m !== animationKeys[ k ].morphTargets.length; ++ m ) {

						var animationKey = animationKeys[ k ];

						times.push( animationKey.time );
						values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 );

					}

					tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) );

				}

				duration = morphTargetNames.length * ( fps || 1.0 );

			} else {

				// ...assume skeletal animation

				var boneName = '.bones[' + bones[ h ].name + ']';

				addNonemptyTrack(
						VectorKeyframeTrack, boneName + '.position',
						animationKeys, 'pos', tracks );

				addNonemptyTrack(
						QuaternionKeyframeTrack, boneName + '.quaternion',
						animationKeys, 'rot', tracks );

				addNonemptyTrack(
						VectorKeyframeTrack, boneName + '.scale',
						animationKeys, 'scl', tracks );

			}

		}

		if ( tracks.length === 0 ) {

			return null;

		}

		var clip = new AnimationClip( clipName, duration, tracks );

		return clip;

	}

} );

Object.assign( AnimationClip.prototype, {

	resetDuration: function () {

		var tracks = this.tracks, duration = 0;

		for ( var i = 0, n = tracks.length; i !== n; ++ i ) {

			var track = this.tracks[ i ];

			duration = Math.max( duration, track.times[ track.times.length - 1 ] );

		}

		this.duration = duration;

	},

	trim: function () {

		for ( var i = 0; i < this.tracks.length; i ++ ) {

			this.tracks[ i ].trim( 0, this.duration );

		}

		return this;

	},

	optimize: function () {

		for ( var i = 0; i < this.tracks.length; i ++ ) {

			this.tracks[ i ].optimize();

		}

		return this;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function MaterialLoader( manager ) {

	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
	this.textures = {};

}

Object.assign( MaterialLoader.prototype, {

	load: function ( url, onLoad, onProgress, onError ) {

		var scope = this;

		var loader = new FileLoader( scope.manager );
		loader.load( url, function ( text ) {

			onLoad( scope.parse( JSON.parse( text ) ) );

		}, onProgress, onError );

	},

	setTextures: function ( value ) {

		this.textures = value;

	},

	parse: function ( json ) {

		var textures = this.textures;

		function getTexture( name ) {

			if ( textures[ name ] === undefined ) {

				console.warn( 'THREE.MaterialLoader: Undefined texture', name );

			}

			return textures[ name ];

		}

		var material = new Materials[ json.type ]();

		if ( json.uuid !== undefined ) material.uuid = json.uuid;
		if ( json.name !== undefined ) material.name = json.name;
		if ( json.color !== undefined ) material.color.setHex( json.color );
		if ( json.roughness !== undefined ) material.roughness = json.roughness;
		if ( json.metalness !== undefined ) material.metalness = json.metalness;
		if ( json.emissive !== undefined ) material.emissive.setHex( json.emissive );
		if ( json.specular !== undefined ) material.specular.setHex( json.specular );
		if ( json.shininess !== undefined ) material.shininess = json.shininess;
		if ( json.clearCoat !== undefined ) material.clearCoat = json.clearCoat;
		if ( json.clearCoatRoughness !== undefined ) material.clearCoatRoughness = json.clearCoatRoughness;
		if ( json.uniforms !== undefined ) material.uniforms = json.uniforms;
		if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader;
		if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader;
		if ( json.vertexColors !== undefined ) material.vertexColors = json.vertexColors;
		if ( json.fog !== undefined ) material.fog = json.fog;
		if ( json.shading !== undefined ) material.shading = json.shading;
		if ( json.blending !== undefined ) material.blending = json.blending;
		if ( json.side !== undefined ) material.side = json.side;
		if ( json.opacity !== undefined ) material.opacity = json.opacity;
		if ( json.transparent !== undefined ) material.transparent = json.transparent;
		if ( json.alphaTest !== undefined ) material.alphaTest = json.alphaTest;
		if ( json.depthTest !== undefined ) material.depthTest = json.depthTest;
		if ( json.depthWrite !== undefined ) material.depthWrite = json.depthWrite;
		if ( json.colorWrite !== undefined ) material.colorWrite = json.colorWrite;
		if ( json.wireframe !== undefined ) material.wireframe = json.wireframe;
		if ( json.wireframeLinewidth !== undefined ) material.wireframeLinewidth = json.wireframeLinewidth;
		if ( json.wireframeLinecap !== undefined ) material.wireframeLinecap = json.wireframeLinecap;
		if ( json.wireframeLinejoin !== undefined ) material.wireframeLinejoin = json.wireframeLinejoin;
		if ( json.skinning !== undefined ) material.skinning = json.skinning;
		if ( json.morphTargets !== undefined ) material.morphTargets = json.morphTargets;

		// for PointsMaterial

		if ( json.size !== undefined ) material.size = json.size;
		if ( json.sizeAttenuation !== undefined ) material.sizeAttenuation = json.sizeAttenuation;

		// maps

		if ( json.map !== undefined ) material.map = getTexture( json.map );

		if ( json.alphaMap !== undefined ) {

			material.alphaMap = getTexture( json.alphaMap );
			material.transparent = true;

		}

		if ( json.bumpMap !== undefined ) material.bumpMap = getTexture( json.bumpMap );
		if ( json.bumpScale !== undefined ) material.bumpScale = json.bumpScale;

		if ( json.normalMap !== undefined ) material.normalMap = getTexture( json.normalMap );
		if ( json.normalScale !== undefined ) {

			var normalScale = json.normalScale;

			if ( Array.isArray( normalScale ) === false ) {

				// Blender exporter used to export a scalar. See #7459

				normalScale = [ normalScale, normalScale ];

			}

			material.normalScale = new Vector2().fromArray( normalScale );

		}

		if ( json.displacementMap !== undefined ) material.displacementMap = getTexture( json.displacementMap );
		if ( json.displacementScale !== undefined ) material.displacementScale = json.displacementScale;
		if ( json.displacementBias !== undefined ) material.displacementBias = json.displacementBias;

		if ( json.roughnessMap !== undefined ) material.roughnessMap = getTexture( json.roughnessMap );
		if ( json.metalnessMap !== undefined ) material.metalnessMap = getTexture( json.metalnessMap );

		if ( json.emissiveMap !== undefined ) material.emissiveMap = getTexture( json.emissiveMap );
		if ( json.emissiveIntensity !== undefined ) material.emissiveIntensity = json.emissiveIntensity;

		if ( json.specularMap !== undefined ) material.specularMap = getTexture( json.specularMap );

		if ( json.envMap !== undefined ) material.envMap = getTexture( json.envMap );

		if ( json.reflectivity !== undefined ) material.reflectivity = json.reflectivity;

		if ( json.lightMap !== undefined ) material.lightMap = getTexture( json.lightMap );
		if ( json.lightMapIntensity !== undefined ) material.lightMapIntensity = json.lightMapIntensity;

		if ( json.aoMap !== undefined ) material.aoMap = getTexture( json.aoMap );
		if ( json.aoMapIntensity !== undefined ) material.aoMapIntensity = json.aoMapIntensity;

		if ( json.gradientMap !== undefined ) material.gradientMap = getTexture( json.gradientMap );

		return material;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function BufferGeometryLoader( manager ) {

	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

}

Object.assign( BufferGeometryLoader.prototype, {

	load: function ( url, onLoad, onProgress, onError ) {

		var scope = this;

		var loader = new FileLoader( scope.manager );
		loader.load( url, function ( text ) {

			onLoad( scope.parse( JSON.parse( text ) ) );

		}, onProgress, onError );

	},

	parse: function ( json ) {

		var geometry = new BufferGeometry();

		var index = json.data.index;

		if ( index !== undefined ) {

			var typedArray = new TYPED_ARRAYS[ index.type ]( index.array );
			geometry.setIndex( new BufferAttribute( typedArray, 1 ) );

		}

		var attributes = json.data.attributes;

		for ( var key in attributes ) {

			var attribute = attributes[ key ];
			var typedArray = new TYPED_ARRAYS[ attribute.type ]( attribute.array );

			geometry.addAttribute( key, new BufferAttribute( typedArray, attribute.itemSize, attribute.normalized ) );

		}

		var groups = json.data.groups || json.data.drawcalls || json.data.offsets;

		if ( groups !== undefined ) {

			for ( var i = 0, n = groups.length; i !== n; ++ i ) {

				var group = groups[ i ];

				geometry.addGroup( group.start, group.count, group.materialIndex );

			}

		}

		var boundingSphere = json.data.boundingSphere;

		if ( boundingSphere !== undefined ) {

			var center = new Vector3();

			if ( boundingSphere.center !== undefined ) {

				center.fromArray( boundingSphere.center );

			}

			geometry.boundingSphere = new Sphere( center, boundingSphere.radius );

		}

		return geometry;

	}

} );

var TYPED_ARRAYS = {
	Int8Array: Int8Array,
	Uint8Array: Uint8Array,
	// Workaround for IE11 pre KB2929437. See #11440
	Uint8ClampedArray: typeof Uint8ClampedArray !== 'undefined' ? Uint8ClampedArray : Uint8Array,
	Int16Array: Int16Array,
	Uint16Array: Uint16Array,
	Int32Array: Int32Array,
	Uint32Array: Uint32Array,
	Float32Array: Float32Array,
	Float64Array: Float64Array
};

/**
 * @author alteredq / http://alteredqualia.com/
 */

function Loader() {

	this.onLoadStart = function () {};
	this.onLoadProgress = function () {};
	this.onLoadComplete = function () {};

}

Loader.Handlers = {

	handlers: [],

	add: function ( regex, loader ) {

		this.handlers.push( regex, loader );

	},

	get: function ( file ) {

		var handlers = this.handlers;

		for ( var i = 0, l = handlers.length; i < l; i += 2 ) {

			var regex = handlers[ i ];
			var loader = handlers[ i + 1 ];

			if ( regex.test( file ) ) {

				return loader;

			}

		}

		return null;

	}

};

Object.assign( Loader.prototype, {

	crossOrigin: undefined,

	extractUrlBase: function ( url ) {

		var parts = url.split( '/' );

		if ( parts.length === 1 ) return './';

		parts.pop();

		return parts.join( '/' ) + '/';

	},

	initMaterials: function ( materials, texturePath, crossOrigin ) {

		var array = [];

		for ( var i = 0; i < materials.length; ++ i ) {

			array[ i ] = this.createMaterial( materials[ i ], texturePath, crossOrigin );

		}

		return array;

	},

	createMaterial: ( function () {

		var BlendingMode = {
			NoBlending: NoBlending,
			NormalBlending: NormalBlending,
			AdditiveBlending: AdditiveBlending,
			SubtractiveBlending: SubtractiveBlending,
			MultiplyBlending: MultiplyBlending,
			CustomBlending: CustomBlending
		};

		var color = new Color();
		var textureLoader = new TextureLoader();
		var materialLoader = new MaterialLoader();

		return function createMaterial( m, texturePath, crossOrigin ) {

			// convert from old material format

			var textures = {};

			function loadTexture( path, repeat, offset, wrap, anisotropy ) {

				var fullPath = texturePath + path;
				var loader = Loader.Handlers.get( fullPath );

				var texture;

				if ( loader !== null ) {

					texture = loader.load( fullPath );

				} else {

					textureLoader.setCrossOrigin( crossOrigin );
					texture = textureLoader.load( fullPath );

				}

				if ( repeat !== undefined ) {

					texture.repeat.fromArray( repeat );

					if ( repeat[ 0 ] !== 1 ) texture.wrapS = RepeatWrapping;
					if ( repeat[ 1 ] !== 1 ) texture.wrapT = RepeatWrapping;

				}

				if ( offset !== undefined ) {

					texture.offset.fromArray( offset );

				}

				if ( wrap !== undefined ) {

					if ( wrap[ 0 ] === 'repeat' ) texture.wrapS = RepeatWrapping;
					if ( wrap[ 0 ] === 'mirror' ) texture.wrapS = MirroredRepeatWrapping;

					if ( wrap[ 1 ] === 'repeat' ) texture.wrapT = RepeatWrapping;
					if ( wrap[ 1 ] === 'mirror' ) texture.wrapT = MirroredRepeatWrapping;

				}

				if ( anisotropy !== undefined ) {

					texture.anisotropy = anisotropy;

				}

				var uuid = _Math.generateUUID();

				textures[ uuid ] = texture;

				return uuid;

			}

			//

			var json = {
				uuid: _Math.generateUUID(),
				type: 'MeshLambertMaterial'
			};

			for ( var name in m ) {

				var value = m[ name ];

				switch ( name ) {

					case 'DbgColor':
					case 'DbgIndex':
					case 'opticalDensity':
					case 'illumination':
						break;
					case 'DbgName':
						json.name = value;
						break;
					case 'blending':
						json.blending = BlendingMode[ value ];
						break;
					case 'colorAmbient':
					case 'mapAmbient':
						console.warn( 'THREE.Loader.createMaterial:', name, 'is no longer supported.' );
						break;
					case 'colorDiffuse':
						json.color = color.fromArray( value ).getHex();
						break;
					case 'colorSpecular':
						json.specular = color.fromArray( value ).getHex();
						break;
					case 'colorEmissive':
						json.emissive = color.fromArray( value ).getHex();
						break;
					case 'specularCoef':
						json.shininess = value;
						break;
					case 'shading':
						if ( value.toLowerCase() === 'basic' ) json.type = 'MeshBasicMaterial';
						if ( value.toLowerCase() === 'phong' ) json.type = 'MeshPhongMaterial';
						if ( value.toLowerCase() === 'standard' ) json.type = 'MeshStandardMaterial';
						break;
					case 'mapDiffuse':
						json.map = loadTexture( value, m.mapDiffuseRepeat, m.mapDiffuseOffset, m.mapDiffuseWrap, m.mapDiffuseAnisotropy );
						break;
					case 'mapDiffuseRepeat':
					case 'mapDiffuseOffset':
					case 'mapDiffuseWrap':
					case 'mapDiffuseAnisotropy':
						break;
					case 'mapEmissive':
						json.emissiveMap = loadTexture( value, m.mapEmissiveRepeat, m.mapEmissiveOffset, m.mapEmissiveWrap, m.mapEmissiveAnisotropy );
						break;
					case 'mapEmissiveRepeat':
					case 'mapEmissiveOffset':
					case 'mapEmissiveWrap':
					case 'mapEmissiveAnisotropy':
						break;
					case 'mapLight':
						json.lightMap = loadTexture( value, m.mapLightRepeat, m.mapLightOffset, m.mapLightWrap, m.mapLightAnisotropy );
						break;
					case 'mapLightRepeat':
					case 'mapLightOffset':
					case 'mapLightWrap':
					case 'mapLightAnisotropy':
						break;
					case 'mapAO':
						json.aoMap = loadTexture( value, m.mapAORepeat, m.mapAOOffset, m.mapAOWrap, m.mapAOAnisotropy );
						break;
					case 'mapAORepeat':
					case 'mapAOOffset':
					case 'mapAOWrap':
					case 'mapAOAnisotropy':
						break;
					case 'mapBump':
						json.bumpMap = loadTexture( value, m.mapBumpRepeat, m.mapBumpOffset, m.mapBumpWrap, m.mapBumpAnisotropy );
						break;
					case 'mapBumpScale':
						json.bumpScale = value;
						break;
					case 'mapBumpRepeat':
					case 'mapBumpOffset':
					case 'mapBumpWrap':
					case 'mapBumpAnisotropy':
						break;
					case 'mapNormal':
						json.normalMap = loadTexture( value, m.mapNormalRepeat, m.mapNormalOffset, m.mapNormalWrap, m.mapNormalAnisotropy );
						break;
					case 'mapNormalFactor':
						json.normalScale = [ value, value ];
						break;
					case 'mapNormalRepeat':
					case 'mapNormalOffset':
					case 'mapNormalWrap':
					case 'mapNormalAnisotropy':
						break;
					case 'mapSpecular':
						json.specularMap = loadTexture( value, m.mapSpecularRepeat, m.mapSpecularOffset, m.mapSpecularWrap, m.mapSpecularAnisotropy );
						break;
					case 'mapSpecularRepeat':
					case 'mapSpecularOffset':
					case 'mapSpecularWrap':
					case 'mapSpecularAnisotropy':
						break;
					case 'mapMetalness':
						json.metalnessMap = loadTexture( value, m.mapMetalnessRepeat, m.mapMetalnessOffset, m.mapMetalnessWrap, m.mapMetalnessAnisotropy );
						break;
					case 'mapMetalnessRepeat':
					case 'mapMetalnessOffset':
					case 'mapMetalnessWrap':
					case 'mapMetalnessAnisotropy':
						break;
					case 'mapRoughness':
						json.roughnessMap = loadTexture( value, m.mapRoughnessRepeat, m.mapRoughnessOffset, m.mapRoughnessWrap, m.mapRoughnessAnisotropy );
						break;
					case 'mapRoughnessRepeat':
					case 'mapRoughnessOffset':
					case 'mapRoughnessWrap':
					case 'mapRoughnessAnisotropy':
						break;
					case 'mapAlpha':
						json.alphaMap = loadTexture( value, m.mapAlphaRepeat, m.mapAlphaOffset, m.mapAlphaWrap, m.mapAlphaAnisotropy );
						break;
					case 'mapAlphaRepeat':
					case 'mapAlphaOffset':
					case 'mapAlphaWrap':
					case 'mapAlphaAnisotropy':
						break;
					case 'flipSided':
						json.side = BackSide;
						break;
					case 'doubleSided':
						json.side = DoubleSide;
						break;
					case 'transparency':
						console.warn( 'THREE.Loader.createMaterial: transparency has been renamed to opacity' );
						json.opacity = value;
						break;
					case 'depthTest':
					case 'depthWrite':
					case 'colorWrite':
					case 'opacity':
					case 'reflectivity':
					case 'transparent':
					case 'visible':
					case 'wireframe':
						json[ name ] = value;
						break;
					case 'vertexColors':
						if ( value === true ) json.vertexColors = VertexColors;
						if ( value === 'face' ) json.vertexColors = FaceColors;
						break;
					default:
						console.error( 'THREE.Loader.createMaterial: Unsupported', name, value );
						break;

				}

			}

			if ( json.type === 'MeshBasicMaterial' ) delete json.emissive;
			if ( json.type !== 'MeshPhongMaterial' ) delete json.specular;

			if ( json.opacity < 1 ) json.transparent = true;

			materialLoader.setTextures( textures );

			return materialLoader.parse( json );

		};

	} )()

} );

/**
 * @author mrdoob / http://mrdoob.com/
 * @author alteredq / http://alteredqualia.com/
 */

function JSONLoader( manager ) {

	if ( typeof manager === 'boolean' ) {

		console.warn( 'THREE.JSONLoader: showStatus parameter has been removed from constructor.' );
		manager = undefined;

	}

	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

	this.withCredentials = false;

}

Object.assign( JSONLoader.prototype, {

	load: function ( url, onLoad, onProgress, onError ) {

		var scope = this;

		var texturePath = this.texturePath && ( typeof this.texturePath === "string" ) ? this.texturePath : Loader.prototype.extractUrlBase( url );

		var loader = new FileLoader( this.manager );
		loader.setWithCredentials( this.withCredentials );
		loader.load( url, function ( text ) {

			var json = JSON.parse( text );
			var metadata = json.metadata;

			if ( metadata !== undefined ) {

				var type = metadata.type;

				if ( type !== undefined ) {

					if ( type.toLowerCase() === 'object' ) {

						console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.ObjectLoader instead.' );
						return;

					}

					if ( type.toLowerCase() === 'scene' ) {

						console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.SceneLoader instead.' );
						return;

					}

				}

			}

			var object = scope.parse( json, texturePath );
			onLoad( object.geometry, object.materials );

		}, onProgress, onError );

	},

	setTexturePath: function ( value ) {

		this.texturePath = value;

	},

	parse: ( function () {

		function parseModel( json, geometry ) {

			function isBitSet( value, position ) {

				return value & ( 1 << position );

			}

			var i, j, fi,

				offset, zLength,

				colorIndex, normalIndex, uvIndex, materialIndex,

				type,
				isQuad,
				hasMaterial,
				hasFaceVertexUv,
				hasFaceNormal, hasFaceVertexNormal,
				hasFaceColor, hasFaceVertexColor,

				vertex, face, faceA, faceB, hex, normal,

				uvLayer, uv, u, v,

				faces = json.faces,
				vertices = json.vertices,
				normals = json.normals,
				colors = json.colors,

				scale = json.scale,

				nUvLayers = 0;


			if ( json.uvs !== undefined ) {

				// disregard empty arrays

				for ( i = 0; i < json.uvs.length; i ++ ) {

					if ( json.uvs[ i ].length ) nUvLayers ++;

				}

				for ( i = 0; i < nUvLayers; i ++ ) {

					geometry.faceVertexUvs[ i ] = [];

				}

			}

			offset = 0;
			zLength = vertices.length;

			while ( offset < zLength ) {

				vertex = new Vector3();

				vertex.x = vertices[ offset ++ ] * scale;
				vertex.y = vertices[ offset ++ ] * scale;
				vertex.z = vertices[ offset ++ ] * scale;

				geometry.vertices.push( vertex );

			}

			offset = 0;
			zLength = faces.length;

			while ( offset < zLength ) {

				type = faces[ offset ++ ];

				isQuad = isBitSet( type, 0 );
				hasMaterial = isBitSet( type, 1 );
				hasFaceVertexUv = isBitSet( type, 3 );
				hasFaceNormal = isBitSet( type, 4 );
				hasFaceVertexNormal = isBitSet( type, 5 );
				hasFaceColor = isBitSet( type, 6 );
				hasFaceVertexColor = isBitSet( type, 7 );

				// console.log("type", type, "bits", isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor);

				if ( isQuad ) {

					faceA = new Face3();
					faceA.a = faces[ offset ];
					faceA.b = faces[ offset + 1 ];
					faceA.c = faces[ offset + 3 ];

					faceB = new Face3();
					faceB.a = faces[ offset + 1 ];
					faceB.b = faces[ offset + 2 ];
					faceB.c = faces[ offset + 3 ];

					offset += 4;

					if ( hasMaterial ) {

						materialIndex = faces[ offset ++ ];
						faceA.materialIndex = materialIndex;
						faceB.materialIndex = materialIndex;

					}

					// to get face <=> uv index correspondence

					fi = geometry.faces.length;

					if ( hasFaceVertexUv ) {

						for ( i = 0; i < nUvLayers; i ++ ) {

							uvLayer = json.uvs[ i ];

							geometry.faceVertexUvs[ i ][ fi ] = [];
							geometry.faceVertexUvs[ i ][ fi + 1 ] = [];

							for ( j = 0; j < 4; j ++ ) {

								uvIndex = faces[ offset ++ ];

								u = uvLayer[ uvIndex * 2 ];
								v = uvLayer[ uvIndex * 2 + 1 ];

								uv = new Vector2( u, v );

								if ( j !== 2 ) geometry.faceVertexUvs[ i ][ fi ].push( uv );
								if ( j !== 0 ) geometry.faceVertexUvs[ i ][ fi + 1 ].push( uv );

							}

						}

					}

					if ( hasFaceNormal ) {

						normalIndex = faces[ offset ++ ] * 3;

						faceA.normal.set(
							normals[ normalIndex ++ ],
							normals[ normalIndex ++ ],
							normals[ normalIndex ]
						);

						faceB.normal.copy( faceA.normal );

					}

					if ( hasFaceVertexNormal ) {

						for ( i = 0; i < 4; i ++ ) {

							normalIndex = faces[ offset ++ ] * 3;

							normal = new Vector3(
								normals[ normalIndex ++ ],
								normals[ normalIndex ++ ],
								normals[ normalIndex ]
							);


							if ( i !== 2 ) faceA.vertexNormals.push( normal );
							if ( i !== 0 ) faceB.vertexNormals.push( normal );

						}

					}


					if ( hasFaceColor ) {

						colorIndex = faces[ offset ++ ];
						hex = colors[ colorIndex ];

						faceA.color.setHex( hex );
						faceB.color.setHex( hex );

					}


					if ( hasFaceVertexColor ) {

						for ( i = 0; i < 4; i ++ ) {

							colorIndex = faces[ offset ++ ];
							hex = colors[ colorIndex ];

							if ( i !== 2 ) faceA.vertexColors.push( new Color( hex ) );
							if ( i !== 0 ) faceB.vertexColors.push( new Color( hex ) );

						}

					}

					geometry.faces.push( faceA );
					geometry.faces.push( faceB );

				} else {

					face = new Face3();
					face.a = faces[ offset ++ ];
					face.b = faces[ offset ++ ];
					face.c = faces[ offset ++ ];

					if ( hasMaterial ) {

						materialIndex = faces[ offset ++ ];
						face.materialIndex = materialIndex;

					}

					// to get face <=> uv index correspondence

					fi = geometry.faces.length;

					if ( hasFaceVertexUv ) {

						for ( i = 0; i < nUvLayers; i ++ ) {

							uvLayer = json.uvs[ i ];

							geometry.faceVertexUvs[ i ][ fi ] = [];

							for ( j = 0; j < 3; j ++ ) {

								uvIndex = faces[ offset ++ ];

								u = uvLayer[ uvIndex * 2 ];
								v = uvLayer[ uvIndex * 2 + 1 ];

								uv = new Vector2( u, v );

								geometry.faceVertexUvs[ i ][ fi ].push( uv );

							}

						}

					}

					if ( hasFaceNormal ) {

						normalIndex = faces[ offset ++ ] * 3;

						face.normal.set(
							normals[ normalIndex ++ ],
							normals[ normalIndex ++ ],
							normals[ normalIndex ]
						);

					}

					if ( hasFaceVertexNormal ) {

						for ( i = 0; i < 3; i ++ ) {

							normalIndex = faces[ offset ++ ] * 3;

							normal = new Vector3(
								normals[ normalIndex ++ ],
								normals[ normalIndex ++ ],
								normals[ normalIndex ]
							);

							face.vertexNormals.push( normal );

						}

					}


					if ( hasFaceColor ) {

						colorIndex = faces[ offset ++ ];
						face.color.setHex( colors[ colorIndex ] );

					}


					if ( hasFaceVertexColor ) {

						for ( i = 0; i < 3; i ++ ) {

							colorIndex = faces[ offset ++ ];
							face.vertexColors.push( new Color( colors[ colorIndex ] ) );

						}

					}

					geometry.faces.push( face );

				}

			}

		}

		function parseSkin( json, geometry ) {

			var influencesPerVertex = ( json.influencesPerVertex !== undefined ) ? json.influencesPerVertex : 2;

			if ( json.skinWeights ) {

				for ( var i = 0, l = json.skinWeights.length; i < l; i += influencesPerVertex ) {

					var x = json.skinWeights[ i ];
					var y = ( influencesPerVertex > 1 ) ? json.skinWeights[ i + 1 ] : 0;
					var z = ( influencesPerVertex > 2 ) ? json.skinWeights[ i + 2 ] : 0;
					var w = ( influencesPerVertex > 3 ) ? json.skinWeights[ i + 3 ] : 0;

					geometry.skinWeights.push( new Vector4( x, y, z, w ) );

				}

			}

			if ( json.skinIndices ) {

				for ( var i = 0, l = json.skinIndices.length; i < l; i += influencesPerVertex ) {

					var a = json.skinIndices[ i ];
					var b = ( influencesPerVertex > 1 ) ? json.skinIndices[ i + 1 ] : 0;
					var c = ( influencesPerVertex > 2 ) ? json.skinIndices[ i + 2 ] : 0;
					var d = ( influencesPerVertex > 3 ) ? json.skinIndices[ i + 3 ] : 0;

					geometry.skinIndices.push( new Vector4( a, b, c, d ) );

				}

			}

			geometry.bones = json.bones;

			if ( geometry.bones && geometry.bones.length > 0 && ( geometry.skinWeights.length !== geometry.skinIndices.length || geometry.skinIndices.length !== geometry.vertices.length ) ) {

				console.warn( 'When skinning, number of vertices (' + geometry.vertices.length + '), skinIndices (' +
					geometry.skinIndices.length + '), and skinWeights (' + geometry.skinWeights.length + ') should match.' );

			}

		}

		function parseMorphing( json, geometry ) {

			var scale = json.scale;

			if ( json.morphTargets !== undefined ) {

				for ( var i = 0, l = json.morphTargets.length; i < l; i ++ ) {

					geometry.morphTargets[ i ] = {};
					geometry.morphTargets[ i ].name = json.morphTargets[ i ].name;
					geometry.morphTargets[ i ].vertices = [];

					var dstVertices = geometry.morphTargets[ i ].vertices;
					var srcVertices = json.morphTargets[ i ].vertices;

					for ( var v = 0, vl = srcVertices.length; v < vl; v += 3 ) {

						var vertex = new Vector3();
						vertex.x = srcVertices[ v ] * scale;
						vertex.y = srcVertices[ v + 1 ] * scale;
						vertex.z = srcVertices[ v + 2 ] * scale;

						dstVertices.push( vertex );

					}

				}

			}

			if ( json.morphColors !== undefined && json.morphColors.length > 0 ) {

				console.warn( 'THREE.JSONLoader: "morphColors" no longer supported. Using them as face colors.' );

				var faces = geometry.faces;
				var morphColors = json.morphColors[ 0 ].colors;

				for ( var i = 0, l = faces.length; i < l; i ++ ) {

					faces[ i ].color.fromArray( morphColors, i * 3 );

				}

			}

		}

		function parseAnimations( json, geometry ) {

			var outputAnimations = [];

			// parse old style Bone/Hierarchy animations
			var animations = [];

			if ( json.animation !== undefined ) {

				animations.push( json.animation );

			}

			if ( json.animations !== undefined ) {

				if ( json.animations.length ) {

					animations = animations.concat( json.animations );

				} else {

					animations.push( json.animations );

				}

			}

			for ( var i = 0; i < animations.length; i ++ ) {

				var clip = AnimationClip.parseAnimation( animations[ i ], geometry.bones );
				if ( clip ) outputAnimations.push( clip );

			}

			// parse implicit morph animations
			if ( geometry.morphTargets ) {

				// TODO: Figure out what an appropraite FPS is for morph target animations -- defaulting to 10, but really it is completely arbitrary.
				var morphAnimationClips = AnimationClip.CreateClipsFromMorphTargetSequences( geometry.morphTargets, 10 );
				outputAnimations = outputAnimations.concat( morphAnimationClips );

			}

			if ( outputAnimations.length > 0 ) geometry.animations = outputAnimations;

		}

		return function ( json, texturePath ) {

			if ( json.data !== undefined ) {

				// Geometry 4.0 spec
				json = json.data;

			}

			if ( json.scale !== undefined ) {

				json.scale = 1.0 / json.scale;

			} else {

				json.scale = 1.0;

			}

			var geometry = new Geometry();

			parseModel( json, geometry );
			parseSkin( json, geometry );
			parseMorphing( json, geometry );
			parseAnimations( json, geometry );

			geometry.computeFaceNormals();
			geometry.computeBoundingSphere();

			if ( json.materials === undefined || json.materials.length === 0 ) {

				return { geometry: geometry };

			} else {

				var materials = Loader.prototype.initMaterials( json.materials, texturePath, this.crossOrigin );

				return { geometry: geometry, materials: materials };

			}

		};

	} )()

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function ObjectLoader( manager ) {

	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
	this.texturePath = '';

}

Object.assign( ObjectLoader.prototype, {

	load: function ( url, onLoad, onProgress, onError ) {

		if ( this.texturePath === '' ) {

			this.texturePath = url.substring( 0, url.lastIndexOf( '/' ) + 1 );

		}

		var scope = this;

		var loader = new FileLoader( scope.manager );
		loader.load( url, function ( text ) {

			var json = null;

			try {

				json = JSON.parse( text );

			} catch ( error ) {

				if ( onError !== undefined ) onError( error );

				console.error( 'THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message );

				return;

			}

			var metadata = json.metadata;

			if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) {

				console.error( 'THREE.ObjectLoader: Can\'t load ' + url + '. Use THREE.JSONLoader instead.' );
				return;

			}

			scope.parse( json, onLoad );

		}, onProgress, onError );

	},

	setTexturePath: function ( value ) {

		this.texturePath = value;

	},

	setCrossOrigin: function ( value ) {

		this.crossOrigin = value;

	},

	parse: function ( json, onLoad ) {

		var geometries = this.parseGeometries( json.geometries );

		var images = this.parseImages( json.images, function () {

			if ( onLoad !== undefined ) onLoad( object );

		} );

		var textures = this.parseTextures( json.textures, images );
		var materials = this.parseMaterials( json.materials, textures );

		var object = this.parseObject( json.object, geometries, materials );

		if ( json.animations ) {

			object.animations = this.parseAnimations( json.animations );

		}

		if ( json.images === undefined || json.images.length === 0 ) {

			if ( onLoad !== undefined ) onLoad( object );

		}

		return object;

	},

	parseGeometries: function ( json ) {

		var geometries = {};

		if ( json !== undefined ) {

			var geometryLoader = new JSONLoader();
			var bufferGeometryLoader = new BufferGeometryLoader();

			for ( var i = 0, l = json.length; i < l; i ++ ) {

				var geometry;
				var data = json[ i ];

				switch ( data.type ) {

					case 'PlaneGeometry':
					case 'PlaneBufferGeometry':

						geometry = new Geometries[ data.type ](
							data.width,
							data.height,
							data.widthSegments,
							data.heightSegments
						);

						break;

					case 'BoxGeometry':
					case 'BoxBufferGeometry':
					case 'CubeGeometry': // backwards compatible

						geometry = new Geometries[ data.type ](
							data.width,
							data.height,
							data.depth,
							data.widthSegments,
							data.heightSegments,
							data.depthSegments
						);

						break;

					case 'CircleGeometry':
					case 'CircleBufferGeometry':

						geometry = new Geometries[ data.type ](
							data.radius,
							data.segments,
							data.thetaStart,
							data.thetaLength
						);

						break;

					case 'CylinderGeometry':
					case 'CylinderBufferGeometry':

						geometry = new Geometries[ data.type ](
							data.radiusTop,
							data.radiusBottom,
							data.height,
							data.radialSegments,
							data.heightSegments,
							data.openEnded,
							data.thetaStart,
							data.thetaLength
						);

						break;

					case 'ConeGeometry':
					case 'ConeBufferGeometry':

						geometry = new Geometries[ data.type ](
							data.radius,
							data.height,
							data.radialSegments,
							data.heightSegments,
							data.openEnded,
							data.thetaStart,
							data.thetaLength
						);

						break;

					case 'SphereGeometry':
					case 'SphereBufferGeometry':

						geometry = new Geometries[ data.type ](
							data.radius,
							data.widthSegments,
							data.heightSegments,
							data.phiStart,
							data.phiLength,
							data.thetaStart,
							data.thetaLength
						);

						break;

					case 'DodecahedronGeometry':
					case 'IcosahedronGeometry':
					case 'OctahedronGeometry':
					case 'TetrahedronGeometry':

						geometry = new Geometries[ data.type ](
							data.radius,
							data.detail
						);

						break;

					case 'RingGeometry':
					case 'RingBufferGeometry':

						geometry = new Geometries[ data.type ](
							data.innerRadius,
							data.outerRadius,
							data.thetaSegments,
							data.phiSegments,
							data.thetaStart,
							data.thetaLength
						);

						break;

					case 'TorusGeometry':
					case 'TorusBufferGeometry':

						geometry = new Geometries[ data.type ](
							data.radius,
							data.tube,
							data.radialSegments,
							data.tubularSegments,
							data.arc
						);

						break;

					case 'TorusKnotGeometry':
					case 'TorusKnotBufferGeometry':

						geometry = new Geometries[ data.type ](
							data.radius,
							data.tube,
							data.tubularSegments,
							data.radialSegments,
							data.p,
							data.q
						);

						break;

					case 'LatheGeometry':
					case 'LatheBufferGeometry':

						geometry = new Geometries[ data.type ](
							data.points,
							data.segments,
							data.phiStart,
							data.phiLength
						);

						break;

					case 'BufferGeometry':

						geometry = bufferGeometryLoader.parse( data );

						break;

					case 'Geometry':

						geometry = geometryLoader.parse( data, this.texturePath ).geometry;

						break;

					default:

						console.warn( 'THREE.ObjectLoader: Unsupported geometry type "' + data.type + '"' );

						continue;

				}

				geometry.uuid = data.uuid;

				if ( data.name !== undefined ) geometry.name = data.name;

				geometries[ data.uuid ] = geometry;

			}

		}

		return geometries;

	},

	parseMaterials: function ( json, textures ) {

		var materials = {};

		if ( json !== undefined ) {

			var loader = new MaterialLoader();
			loader.setTextures( textures );

			for ( var i = 0, l = json.length; i < l; i ++ ) {

				var data = json[ i ];

				if ( data.type === 'MultiMaterial' ) {

					// Deprecated

					var array = [];

					for ( var j = 0; j < data.materials.length; j ++ ) {

						array.push( loader.parse( data.materials[ j ] ) );

					}

					materials[ data.uuid ] = array;

				} else {

					materials[ data.uuid ] = loader.parse( data );

				}

			}

		}

		return materials;

	},

	parseAnimations: function ( json ) {

		var animations = [];

		for ( var i = 0; i < json.length; i ++ ) {

			var clip = AnimationClip.parse( json[ i ] );

			animations.push( clip );

		}

		return animations;

	},

	parseImages: function ( json, onLoad ) {

		var scope = this;
		var images = {};

		function loadImage( url ) {

			scope.manager.itemStart( url );

			return loader.load( url, function () {

				scope.manager.itemEnd( url );

			}, undefined, function () {

				scope.manager.itemEnd( url );
				scope.manager.itemError( url );

			} );

		}

		if ( json !== undefined && json.length > 0 ) {

			var manager = new LoadingManager( onLoad );

			var loader = new ImageLoader( manager );
			loader.setCrossOrigin( this.crossOrigin );

			for ( var i = 0, l = json.length; i < l; i ++ ) {

				var image = json[ i ];
				var path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( image.url ) ? image.url : scope.texturePath + image.url;

				images[ image.uuid ] = loadImage( path );

			}

		}

		return images;

	},

	parseTextures: function ( json, images ) {

		function parseConstant( value, type ) {

			if ( typeof( value ) === 'number' ) return value;

			console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value );

			return type[ value ];

		}

		var textures = {};

		if ( json !== undefined ) {

			for ( var i = 0, l = json.length; i < l; i ++ ) {

				var data = json[ i ];

				if ( data.image === undefined ) {

					console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid );

				}

				if ( images[ data.image ] === undefined ) {

					console.warn( 'THREE.ObjectLoader: Undefined image', data.image );

				}

				var texture = new Texture( images[ data.image ] );
				texture.needsUpdate = true;

				texture.uuid = data.uuid;

				if ( data.name !== undefined ) texture.name = data.name;

				if ( data.mapping !== undefined ) texture.mapping = parseConstant( data.mapping, TEXTURE_MAPPING );

				if ( data.offset !== undefined ) texture.offset.fromArray( data.offset );
				if ( data.repeat !== undefined ) texture.repeat.fromArray( data.repeat );
				if ( data.wrap !== undefined ) {

					texture.wrapS = parseConstant( data.wrap[ 0 ], TEXTURE_WRAPPING );
					texture.wrapT = parseConstant( data.wrap[ 1 ], TEXTURE_WRAPPING );

				}

				if ( data.minFilter !== undefined ) texture.minFilter = parseConstant( data.minFilter, TEXTURE_FILTER );
				if ( data.magFilter !== undefined ) texture.magFilter = parseConstant( data.magFilter, TEXTURE_FILTER );
				if ( data.anisotropy !== undefined ) texture.anisotropy = data.anisotropy;

				if ( data.flipY !== undefined ) texture.flipY = data.flipY;

				textures[ data.uuid ] = texture;

			}

		}

		return textures;

	},

	parseObject: function () {

		var matrix = new Matrix4();

		return function parseObject( data, geometries, materials ) {

			var object;

			function getGeometry( name ) {

				if ( geometries[ name ] === undefined ) {

					console.warn( 'THREE.ObjectLoader: Undefined geometry', name );

				}

				return geometries[ name ];

			}

			function getMaterial( name ) {

				if ( name === undefined ) return undefined;

				if ( Array.isArray( name ) ) {

					var array = [];

					for ( var i = 0, l = name.length; i < l; i ++ ) {

						var uuid = name[ i ];

						if ( materials[ uuid ] === undefined ) {

							console.warn( 'THREE.ObjectLoader: Undefined material', uuid );

						}

						array.push( materials[ uuid ] );

					}

					return array;

				}

				if ( materials[ name ] === undefined ) {

					console.warn( 'THREE.ObjectLoader: Undefined material', name );

				}

				return materials[ name ];

			}

			switch ( data.type ) {

				case 'Scene':

					object = new Scene();

					if ( data.background !== undefined ) {

						if ( Number.isInteger( data.background ) ) {

							object.background = new Color( data.background );

						}

					}

					if ( data.fog !== undefined ) {

						if ( data.fog.type === 'Fog' ) {

							object.fog = new Fog( data.fog.color, data.fog.near, data.fog.far );

						} else if ( data.fog.type === 'FogExp2' ) {

							object.fog = new FogExp2( data.fog.color, data.fog.density );

						}

					}

					break;

				case 'PerspectiveCamera':

					object = new PerspectiveCamera( data.fov, data.aspect, data.near, data.far );

					if ( data.focus !== undefined ) object.focus = data.focus;
					if ( data.zoom !== undefined ) object.zoom = data.zoom;
					if ( data.filmGauge !== undefined ) object.filmGauge = data.filmGauge;
					if ( data.filmOffset !== undefined ) object.filmOffset = data.filmOffset;
					if ( data.view !== undefined ) object.view = Object.assign( {}, data.view );

					break;

				case 'OrthographicCamera':

					object = new OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far );

					break;

				case 'AmbientLight':

					object = new AmbientLight( data.color, data.intensity );

					break;

				case 'DirectionalLight':

					object = new DirectionalLight( data.color, data.intensity );

					break;

				case 'PointLight':

					object = new PointLight( data.color, data.intensity, data.distance, data.decay );

					break;

				case 'RectAreaLight':

					object = new RectAreaLight( data.color, data.intensity, data.width, data.height );

					break;

				case 'SpotLight':

					object = new SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay );

					break;

				case 'HemisphereLight':

					object = new HemisphereLight( data.color, data.groundColor, data.intensity );

					break;

				case 'SkinnedMesh':

					console.warn( 'THREE.ObjectLoader.parseObject() does not support SkinnedMesh yet.' );

				case 'Mesh':

					var geometry = getGeometry( data.geometry );
					var material = getMaterial( data.material );

					if ( geometry.bones && geometry.bones.length > 0 ) {

						object = new SkinnedMesh( geometry, material );

					} else {

						object = new Mesh( geometry, material );

					}

					break;

				case 'LOD':

					object = new LOD();

					break;

				case 'Line':

					object = new Line( getGeometry( data.geometry ), getMaterial( data.material ), data.mode );

					break;

				case 'LineLoop':

					object = new LineLoop( getGeometry( data.geometry ), getMaterial( data.material ) );

					break;

				case 'LineSegments':

					object = new LineSegments( getGeometry( data.geometry ), getMaterial( data.material ) );

					break;

				case 'PointCloud':
				case 'Points':

					object = new Points( getGeometry( data.geometry ), getMaterial( data.material ) );

					break;

				case 'Sprite':

					object = new Sprite( getMaterial( data.material ) );

					break;

				case 'Group':

					object = new Group();

					break;

				default:

					object = new Object3D();

			}

			object.uuid = data.uuid;

			if ( data.name !== undefined ) object.name = data.name;
			if ( data.matrix !== undefined ) {

				matrix.fromArray( data.matrix );
				matrix.decompose( object.position, object.quaternion, object.scale );

			} else {

				if ( data.position !== undefined ) object.position.fromArray( data.position );
				if ( data.rotation !== undefined ) object.rotation.fromArray( data.rotation );
				if ( data.quaternion !== undefined ) object.quaternion.fromArray( data.quaternion );
				if ( data.scale !== undefined ) object.scale.fromArray( data.scale );

			}

			if ( data.castShadow !== undefined ) object.castShadow = data.castShadow;
			if ( data.receiveShadow !== undefined ) object.receiveShadow = data.receiveShadow;

			if ( data.shadow ) {

				if ( data.shadow.bias !== undefined ) object.shadow.bias = data.shadow.bias;
				if ( data.shadow.radius !== undefined ) object.shadow.radius = data.shadow.radius;
				if ( data.shadow.mapSize !== undefined ) object.shadow.mapSize.fromArray( data.shadow.mapSize );
				if ( data.shadow.camera !== undefined ) object.shadow.camera = this.parseObject( data.shadow.camera );

			}

			if ( data.visible !== undefined ) object.visible = data.visible;
			if ( data.userData !== undefined ) object.userData = data.userData;

			if ( data.children !== undefined ) {

				for ( var child in data.children ) {

					object.add( this.parseObject( data.children[ child ], geometries, materials ) );

				}

			}

			if ( data.type === 'LOD' ) {

				var levels = data.levels;

				for ( var l = 0; l < levels.length; l ++ ) {

					var level = levels[ l ];
					var child = object.getObjectByProperty( 'uuid', level.object );

					if ( child !== undefined ) {

						object.addLevel( child, level.distance );

					}

				}

			}

			return object;

		};

	}()

} );

var TEXTURE_MAPPING = {
	UVMapping: UVMapping,
	CubeReflectionMapping: CubeReflectionMapping,
	CubeRefractionMapping: CubeRefractionMapping,
	EquirectangularReflectionMapping: EquirectangularReflectionMapping,
	EquirectangularRefractionMapping: EquirectangularRefractionMapping,
	SphericalReflectionMapping: SphericalReflectionMapping,
	CubeUVReflectionMapping: CubeUVReflectionMapping,
	CubeUVRefractionMapping: CubeUVRefractionMapping
};

var TEXTURE_WRAPPING = {
	RepeatWrapping: RepeatWrapping,
	ClampToEdgeWrapping: ClampToEdgeWrapping,
	MirroredRepeatWrapping: MirroredRepeatWrapping
};

var TEXTURE_FILTER = {
	NearestFilter: NearestFilter,
	NearestMipMapNearestFilter: NearestMipMapNearestFilter,
	NearestMipMapLinearFilter: NearestMipMapLinearFilter,
	LinearFilter: LinearFilter,
	LinearMipMapNearestFilter: LinearMipMapNearestFilter,
	LinearMipMapLinearFilter: LinearMipMapLinearFilter
};

/**
 * @author zz85 / http://www.lab4games.net/zz85/blog
 *
 * Bezier Curves formulas obtained from
 * http://en.wikipedia.org/wiki/Bézier_curve
 */

function CatmullRom( t, p0, p1, p2, p3 ) {

	var v0 = ( p2 - p0 ) * 0.5;
	var v1 = ( p3 - p1 ) * 0.5;
	var t2 = t * t;
	var t3 = t * t2;
	return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1;

}

//

function QuadraticBezierP0( t, p ) {

	var k = 1 - t;
	return k * k * p;

}

function QuadraticBezierP1( t, p ) {

	return 2 * ( 1 - t ) * t * p;

}

function QuadraticBezierP2( t, p ) {

	return t * t * p;

}

function QuadraticBezier( t, p0, p1, p2 ) {

	return QuadraticBezierP0( t, p0 ) + QuadraticBezierP1( t, p1 ) +
		QuadraticBezierP2( t, p2 );

}

//

function CubicBezierP0( t, p ) {

	var k = 1 - t;
	return k * k * k * p;

}

function CubicBezierP1( t, p ) {

	var k = 1 - t;
	return 3 * k * k * t * p;

}

function CubicBezierP2( t, p ) {

	return 3 * ( 1 - t ) * t * t * p;

}

function CubicBezierP3( t, p ) {

	return t * t * t * p;

}

function CubicBezier( t, p0, p1, p2, p3 ) {

	return CubicBezierP0( t, p0 ) + CubicBezierP1( t, p1 ) + CubicBezierP2( t, p2 ) +
		CubicBezierP3( t, p3 );

}

/**
 * @author zz85 / http://www.lab4games.net/zz85/blog
 * Extensible curve object
 *
 * Some common of curve methods:
 * .getPoint(t), getTangent(t)
 * .getPointAt(u), getTangentAt(u)
 * .getPoints(), .getSpacedPoints()
 * .getLength()
 * .updateArcLengths()
 *
 * This following curves inherit from THREE.Curve:
 *
 * -- 2D curves --
 * THREE.ArcCurve
 * THREE.CubicBezierCurve
 * THREE.EllipseCurve
 * THREE.LineCurve
 * THREE.QuadraticBezierCurve
 * THREE.SplineCurve
 *
 * -- 3D curves --
 * THREE.CatmullRomCurve3
 * THREE.CubicBezierCurve3
 * THREE.LineCurve3
 * THREE.QuadraticBezierCurve3
 *
 * A series of curves can be represented as a THREE.CurvePath.
 *
 **/

/**************************************************************
 *	Abstract Curve base class
 **************************************************************/

function Curve() {

	this.arcLengthDivisions = 200;

}

Object.assign( Curve.prototype, {

	// Virtual base class method to overwrite and implement in subclasses
	//	- t [0 .. 1]

	getPoint: function () {

		console.warn( 'THREE.Curve: .getPoint() not implemented.' );
		return null;

	},

	// Get point at relative position in curve according to arc length
	// - u [0 .. 1]

	getPointAt: function ( u ) {

		var t = this.getUtoTmapping( u );
		return this.getPoint( t );

	},

	// Get sequence of points using getPoint( t )

	getPoints: function ( divisions ) {

		if ( divisions === undefined ) divisions = 5;

		var points = [];

		for ( var d = 0; d <= divisions; d ++ ) {

			points.push( this.getPoint( d / divisions ) );

		}

		return points;

	},

	// Get sequence of points using getPointAt( u )

	getSpacedPoints: function ( divisions ) {

		if ( divisions === undefined ) divisions = 5;

		var points = [];

		for ( var d = 0; d <= divisions; d ++ ) {

			points.push( this.getPointAt( d / divisions ) );

		}

		return points;

	},

	// Get total curve arc length

	getLength: function () {

		var lengths = this.getLengths();
		return lengths[ lengths.length - 1 ];

	},

	// Get list of cumulative segment lengths

	getLengths: function ( divisions ) {

		if ( divisions === undefined ) divisions = this.arcLengthDivisions;

		if ( this.cacheArcLengths &&
			( this.cacheArcLengths.length === divisions + 1 ) &&
			! this.needsUpdate ) {

			return this.cacheArcLengths;

		}

		this.needsUpdate = false;

		var cache = [];
		var current, last = this.getPoint( 0 );
		var p, sum = 0;

		cache.push( 0 );

		for ( p = 1; p <= divisions; p ++ ) {

			current = this.getPoint( p / divisions );
			sum += current.distanceTo( last );
			cache.push( sum );
			last = current;

		}

		this.cacheArcLengths = cache;

		return cache; // { sums: cache, sum: sum }; Sum is in the last element.

	},

	updateArcLengths: function () {

		this.needsUpdate = true;
		this.getLengths();

	},

	// Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant

	getUtoTmapping: function ( u, distance ) {

		var arcLengths = this.getLengths();

		var i = 0, il = arcLengths.length;

		var targetArcLength; // The targeted u distance value to get

		if ( distance ) {

			targetArcLength = distance;

		} else {

			targetArcLength = u * arcLengths[ il - 1 ];

		}

		// binary search for the index with largest value smaller than target u distance

		var low = 0, high = il - 1, comparison;

		while ( low <= high ) {

			i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats

			comparison = arcLengths[ i ] - targetArcLength;

			if ( comparison < 0 ) {

				low = i + 1;

			} else if ( comparison > 0 ) {

				high = i - 1;

			} else {

				high = i;
				break;

				// DONE

			}

		}

		i = high;

		if ( arcLengths[ i ] === targetArcLength ) {

			return i / ( il - 1 );

		}

		// we could get finer grain at lengths, or use simple interpolation between two points

		var lengthBefore = arcLengths[ i ];
		var lengthAfter = arcLengths[ i + 1 ];

		var segmentLength = lengthAfter - lengthBefore;

		// determine where we are between the 'before' and 'after' points

		var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;

		// add that fractional amount to t

		var t = ( i + segmentFraction ) / ( il - 1 );

		return t;

	},

	// Returns a unit vector tangent at t
	// In case any sub curve does not implement its tangent derivation,
	// 2 points a small delta apart will be used to find its gradient
	// which seems to give a reasonable approximation

	getTangent: function ( t ) {

		var delta = 0.0001;
		var t1 = t - delta;
		var t2 = t + delta;

		// Capping in case of danger

		if ( t1 < 0 ) t1 = 0;
		if ( t2 > 1 ) t2 = 1;

		var pt1 = this.getPoint( t1 );
		var pt2 = this.getPoint( t2 );

		var vec = pt2.clone().sub( pt1 );
		return vec.normalize();

	},

	getTangentAt: function ( u ) {

		var t = this.getUtoTmapping( u );
		return this.getTangent( t );

	},

	computeFrenetFrames: function ( segments, closed ) {

		// see http://www.cs.indiana.edu/pub/techreports/TR425.pdf

		var normal = new Vector3();

		var tangents = [];
		var normals = [];
		var binormals = [];

		var vec = new Vector3();
		var mat = new Matrix4();

		var i, u, theta;

		// compute the tangent vectors for each segment on the curve

		for ( i = 0; i <= segments; i ++ ) {

			u = i / segments;

			tangents[ i ] = this.getTangentAt( u );
			tangents[ i ].normalize();

		}

		// select an initial normal vector perpendicular to the first tangent vector,
		// and in the direction of the minimum tangent xyz component

		normals[ 0 ] = new Vector3();
		binormals[ 0 ] = new Vector3();
		var min = Number.MAX_VALUE;
		var tx = Math.abs( tangents[ 0 ].x );
		var ty = Math.abs( tangents[ 0 ].y );
		var tz = Math.abs( tangents[ 0 ].z );

		if ( tx <= min ) {

			min = tx;
			normal.set( 1, 0, 0 );

		}

		if ( ty <= min ) {

			min = ty;
			normal.set( 0, 1, 0 );

		}

		if ( tz <= min ) {

			normal.set( 0, 0, 1 );

		}

		vec.crossVectors( tangents[ 0 ], normal ).normalize();

		normals[ 0 ].crossVectors( tangents[ 0 ], vec );
		binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] );


		// compute the slowly-varying normal and binormal vectors for each segment on the curve

		for ( i = 1; i <= segments; i ++ ) {

			normals[ i ] = normals[ i - 1 ].clone();

			binormals[ i ] = binormals[ i - 1 ].clone();

			vec.crossVectors( tangents[ i - 1 ], tangents[ i ] );

			if ( vec.length() > Number.EPSILON ) {

				vec.normalize();

				theta = Math.acos( _Math.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors

				normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) );

			}

			binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );

		}

		// if the curve is closed, postprocess the vectors so the first and last normal vectors are the same

		if ( closed === true ) {

			theta = Math.acos( _Math.clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) );
			theta /= segments;

			if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) {

				theta = - theta;

			}

			for ( i = 1; i <= segments; i ++ ) {

				// twist a little...
				normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) );
				binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );

			}

		}

		return {
			tangents: tangents,
			normals: normals,
			binormals: binormals
		};

	}

} );

function LineCurve( v1, v2 ) {

	Curve.call( this );

	this.v1 = v1;
	this.v2 = v2;

}

LineCurve.prototype = Object.create( Curve.prototype );
LineCurve.prototype.constructor = LineCurve;

LineCurve.prototype.isLineCurve = true;

LineCurve.prototype.getPoint = function ( t ) {

	if ( t === 1 ) {

		return this.v2.clone();

	}

	var point = this.v2.clone().sub( this.v1 );
	point.multiplyScalar( t ).add( this.v1 );

	return point;

};

// Line curve is linear, so we can overwrite default getPointAt

LineCurve.prototype.getPointAt = function ( u ) {

	return this.getPoint( u );

};

LineCurve.prototype.getTangent = function ( t ) {

	var tangent = this.v2.clone().sub( this.v1 );

	return tangent.normalize();

};

/**
 * @author zz85 / http://www.lab4games.net/zz85/blog
 *
 **/

/**************************************************************
 *	Curved Path - a curve path is simply a array of connected
 *  curves, but retains the api of a curve
 **************************************************************/

function CurvePath() {

	Curve.call( this );

	this.curves = [];

	this.autoClose = false; // Automatically closes the path

}

CurvePath.prototype = Object.assign( Object.create( Curve.prototype ), {

	constructor: CurvePath,

	add: function ( curve ) {

		this.curves.push( curve );

	},

	closePath: function () {

		// Add a line curve if start and end of lines are not connected
		var startPoint = this.curves[ 0 ].getPoint( 0 );
		var endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 );

		if ( ! startPoint.equals( endPoint ) ) {

			this.curves.push( new LineCurve( endPoint, startPoint ) );

		}

	},

	// To get accurate point with reference to
	// entire path distance at time t,
	// following has to be done:

	// 1. Length of each sub path have to be known
	// 2. Locate and identify type of curve
	// 3. Get t for the curve
	// 4. Return curve.getPointAt(t')

	getPoint: function ( t ) {

		var d = t * this.getLength();
		var curveLengths = this.getCurveLengths();
		var i = 0;

		// To think about boundaries points.

		while ( i < curveLengths.length ) {

			if ( curveLengths[ i ] >= d ) {

				var diff = curveLengths[ i ] - d;
				var curve = this.curves[ i ];

				var segmentLength = curve.getLength();
				var u = segmentLength === 0 ? 0 : 1 - diff / segmentLength;

				return curve.getPointAt( u );

			}

			i ++;

		}

		return null;

		// loop where sum != 0, sum > d , sum+1 <d

	},

	// We cannot use the default THREE.Curve getPoint() with getLength() because in
	// THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath
	// getPoint() depends on getLength

	getLength: function () {

		var lens = this.getCurveLengths();
		return lens[ lens.length - 1 ];

	},

	// cacheLengths must be recalculated.
	updateArcLengths: function () {

		this.needsUpdate = true;
		this.cacheLengths = null;
		this.getCurveLengths();

	},

	// Compute lengths and cache them
	// We cannot overwrite getLengths() because UtoT mapping uses it.

	getCurveLengths: function () {

		// We use cache values if curves and cache array are same length

		if ( this.cacheLengths && this.cacheLengths.length === this.curves.length ) {

			return this.cacheLengths;

		}

		// Get length of sub-curve
		// Push sums into cached array

		var lengths = [], sums = 0;

		for ( var i = 0, l = this.curves.length; i < l; i ++ ) {

			sums += this.curves[ i ].getLength();
			lengths.push( sums );

		}

		this.cacheLengths = lengths;

		return lengths;

	},

	getSpacedPoints: function ( divisions ) {

		if ( divisions === undefined ) divisions = 40;

		var points = [];

		for ( var i = 0; i <= divisions; i ++ ) {

			points.push( this.getPoint( i / divisions ) );

		}

		if ( this.autoClose ) {

			points.push( points[ 0 ] );

		}

		return points;

	},

	getPoints: function ( divisions ) {

		divisions = divisions || 12;

		var points = [], last;

		for ( var i = 0, curves = this.curves; i < curves.length; i ++ ) {

			var curve = curves[ i ];
			var resolution = (curve && curve.isEllipseCurve) ? divisions * 2
				: (curve && curve.isLineCurve) ? 1
				: (curve && curve.isSplineCurve) ? divisions * curve.points.length
				: divisions;

			var pts = curve.getPoints( resolution );

			for ( var j = 0; j < pts.length; j++ ) {

				var point = pts[ j ];

				if ( last && last.equals( point ) ) continue; // ensures no consecutive points are duplicates

				points.push( point );
				last = point;

			}

		}

		if ( this.autoClose && points.length > 1 && !points[ points.length - 1 ].equals( points[ 0 ] ) ) {

			points.push( points[ 0 ] );

		}

		return points;

	},

	/**************************************************************
	 *	Create Geometries Helpers
	 **************************************************************/

	/// Generate geometry from path points (for Line or Points objects)

	createPointsGeometry: function ( divisions ) {

		var pts = this.getPoints( divisions );
		return this.createGeometry( pts );

	},

	// Generate geometry from equidistant sampling along the path

	createSpacedPointsGeometry: function ( divisions ) {

		var pts = this.getSpacedPoints( divisions );
		return this.createGeometry( pts );

	},

	createGeometry: function ( points ) {

		var geometry = new Geometry();

		for ( var i = 0, l = points.length; i < l; i ++ ) {

			var point = points[ i ];
			geometry.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) );

		}

		return geometry;

	}

} );

function EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {

	Curve.call( this );

	this.aX = aX;
	this.aY = aY;

	this.xRadius = xRadius;
	this.yRadius = yRadius;

	this.aStartAngle = aStartAngle;
	this.aEndAngle = aEndAngle;

	this.aClockwise = aClockwise;

	this.aRotation = aRotation || 0;

}

EllipseCurve.prototype = Object.create( Curve.prototype );
EllipseCurve.prototype.constructor = EllipseCurve;

EllipseCurve.prototype.isEllipseCurve = true;

EllipseCurve.prototype.getPoint = function ( t ) {

	var twoPi = Math.PI * 2;
	var deltaAngle = this.aEndAngle - this.aStartAngle;
	var samePoints = Math.abs( deltaAngle ) < Number.EPSILON;

	// ensures that deltaAngle is 0 .. 2 PI
	while ( deltaAngle < 0 ) deltaAngle += twoPi;
	while ( deltaAngle > twoPi ) deltaAngle -= twoPi;

	if ( deltaAngle < Number.EPSILON ) {

		if ( samePoints ) {

			deltaAngle = 0;

		} else {

			deltaAngle = twoPi;

		}

	}

	if ( this.aClockwise === true && ! samePoints ) {

		if ( deltaAngle === twoPi ) {

			deltaAngle = - twoPi;

		} else {

			deltaAngle = deltaAngle - twoPi;

		}

	}

	var angle = this.aStartAngle + t * deltaAngle;
	var x = this.aX + this.xRadius * Math.cos( angle );
	var y = this.aY + this.yRadius * Math.sin( angle );

	if ( this.aRotation !== 0 ) {

		var cos = Math.cos( this.aRotation );
		var sin = Math.sin( this.aRotation );

		var tx = x - this.aX;
		var ty = y - this.aY;

		// Rotate the point about the center of the ellipse.
		x = tx * cos - ty * sin + this.aX;
		y = tx * sin + ty * cos + this.aY;

	}

	return new Vector2( x, y );

};

function SplineCurve( points /* array of Vector2 */ ) {

	Curve.call( this );

	this.points = ( points === undefined ) ? [] : points;

}

SplineCurve.prototype = Object.create( Curve.prototype );
SplineCurve.prototype.constructor = SplineCurve;

SplineCurve.prototype.isSplineCurve = true;

SplineCurve.prototype.getPoint = function ( t ) {

	var points = this.points;
	var point = ( points.length - 1 ) * t;

	var intPoint = Math.floor( point );
	var weight = point - intPoint;

	var point0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ];
	var point1 = points[ intPoint ];
	var point2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ];
	var point3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ];

	return new Vector2(
		CatmullRom( weight, point0.x, point1.x, point2.x, point3.x ),
		CatmullRom( weight, point0.y, point1.y, point2.y, point3.y )
	);

};

function CubicBezierCurve( v0, v1, v2, v3 ) {

	Curve.call( this );

	this.v0 = v0;
	this.v1 = v1;
	this.v2 = v2;
	this.v3 = v3;

}

CubicBezierCurve.prototype = Object.create( Curve.prototype );
CubicBezierCurve.prototype.constructor = CubicBezierCurve;

CubicBezierCurve.prototype.getPoint = function ( t ) {

	var v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3;

	return new Vector2(
		CubicBezier( t, v0.x, v1.x, v2.x, v3.x ),
		CubicBezier( t, v0.y, v1.y, v2.y, v3.y )
	);

};

function QuadraticBezierCurve( v0, v1, v2 ) {

	Curve.call( this );

	this.v0 = v0;
	this.v1 = v1;
	this.v2 = v2;

}

QuadraticBezierCurve.prototype = Object.create( Curve.prototype );
QuadraticBezierCurve.prototype.constructor = QuadraticBezierCurve;

QuadraticBezierCurve.prototype.getPoint = function ( t ) {

	var v0 = this.v0, v1 = this.v1, v2 = this.v2;

	return new Vector2(
		QuadraticBezier( t, v0.x, v1.x, v2.x ),
		QuadraticBezier( t, v0.y, v1.y, v2.y )
	);

};

var PathPrototype = Object.assign( Object.create( CurvePath.prototype ), {

	fromPoints: function ( vectors ) {

		this.moveTo( vectors[ 0 ].x, vectors[ 0 ].y );

		for ( var i = 1, l = vectors.length; i < l; i ++ ) {

			this.lineTo( vectors[ i ].x, vectors[ i ].y );

		}

	},

	moveTo: function ( x, y ) {

		this.currentPoint.set( x, y ); // TODO consider referencing vectors instead of copying?

	},

	lineTo: function ( x, y ) {

		var curve = new LineCurve( this.currentPoint.clone(), new Vector2( x, y ) );
		this.curves.push( curve );

		this.currentPoint.set( x, y );

	},

	quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) {

		var curve = new QuadraticBezierCurve(
			this.currentPoint.clone(),
			new Vector2( aCPx, aCPy ),
			new Vector2( aX, aY )
		);

		this.curves.push( curve );

		this.currentPoint.set( aX, aY );

	},

	bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) {

		var curve = new CubicBezierCurve(
			this.currentPoint.clone(),
			new Vector2( aCP1x, aCP1y ),
			new Vector2( aCP2x, aCP2y ),
			new Vector2( aX, aY )
		);

		this.curves.push( curve );

		this.currentPoint.set( aX, aY );

	},

	splineThru: function ( pts /*Array of Vector*/ ) {

		var npts = [ this.currentPoint.clone() ].concat( pts );

		var curve = new SplineCurve( npts );
		this.curves.push( curve );

		this.currentPoint.copy( pts[ pts.length - 1 ] );

	},

	arc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {

		var x0 = this.currentPoint.x;
		var y0 = this.currentPoint.y;

		this.absarc( aX + x0, aY + y0, aRadius,
			aStartAngle, aEndAngle, aClockwise );

	},

	absarc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {

		this.absellipse( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );

	},

	ellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {

		var x0 = this.currentPoint.x;
		var y0 = this.currentPoint.y;

		this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );

	},

	absellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {

		var curve = new EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );

		if ( this.curves.length > 0 ) {

			// if a previous curve is present, attempt to join
			var firstPoint = curve.getPoint( 0 );

			if ( ! firstPoint.equals( this.currentPoint ) ) {

				this.lineTo( firstPoint.x, firstPoint.y );

			}

		}

		this.curves.push( curve );

		var lastPoint = curve.getPoint( 1 );
		this.currentPoint.copy( lastPoint );

	}

} );

/**
 * @author zz85 / http://www.lab4games.net/zz85/blog
 * Creates free form 2d path using series of points, lines or curves.
 **/

function Path( points ) {

	CurvePath.call( this );
	this.currentPoint = new Vector2();

	if ( points ) {

		this.fromPoints( points );

	}

}

Path.prototype = PathPrototype;
PathPrototype.constructor = Path;

/**
 * @author zz85 / http://www.lab4games.net/zz85/blog
 * Defines a 2d shape plane using paths.
 **/

// STEP 1 Create a path.
// STEP 2 Turn path into shape.
// STEP 3 ExtrudeGeometry takes in Shape/Shapes
// STEP 3a - Extract points from each shape, turn to vertices
// STEP 3b - Triangulate each shape, add faces.

function Shape() {

	Path.apply( this, arguments );

	this.holes = [];

}

Shape.prototype = Object.assign( Object.create( PathPrototype ), {

	constructor: Shape,

	getPointsHoles: function ( divisions ) {

		var holesPts = [];

		for ( var i = 0, l = this.holes.length; i < l; i ++ ) {

			holesPts[ i ] = this.holes[ i ].getPoints( divisions );

		}

		return holesPts;

	},

	// Get points of shape and holes (keypoints based on segments parameter)

	extractAllPoints: function ( divisions ) {

		return {

			shape: this.getPoints( divisions ),
			holes: this.getPointsHoles( divisions )

		};

	},

	extractPoints: function ( divisions ) {

		return this.extractAllPoints( divisions );

	}

} );

/**
 * @author zz85 / http://www.lab4games.net/zz85/blog
 * minimal class for proxing functions to Path. Replaces old "extractSubpaths()"
 **/

function ShapePath() {

	this.subPaths = [];
	this.currentPath = null;

}

Object.assign( ShapePath.prototype, {

	moveTo: function ( x, y ) {

		this.currentPath = new Path();
		this.subPaths.push( this.currentPath );
		this.currentPath.moveTo( x, y );

	},

	lineTo: function ( x, y ) {

		this.currentPath.lineTo( x, y );

	},

	quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) {

		this.currentPath.quadraticCurveTo( aCPx, aCPy, aX, aY );

	},

	bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) {

		this.currentPath.bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY );

	},

	splineThru: function ( pts ) {

		this.currentPath.splineThru( pts );

	},

	toShapes: function ( isCCW, noHoles ) {

		function toShapesNoHoles( inSubpaths ) {

			var shapes = [];

			for ( var i = 0, l = inSubpaths.length; i < l; i ++ ) {

				var tmpPath = inSubpaths[ i ];

				var tmpShape = new Shape();
				tmpShape.curves = tmpPath.curves;

				shapes.push( tmpShape );

			}

			return shapes;

		}

		function isPointInsidePolygon( inPt, inPolygon ) {

			var polyLen = inPolygon.length;

			// inPt on polygon contour => immediate success    or
			// toggling of inside/outside at every single! intersection point of an edge
			//  with the horizontal line through inPt, left of inPt
			//  not counting lowerY endpoints of edges and whole edges on that line
			var inside = false;
			for ( var p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) {

				var edgeLowPt  = inPolygon[ p ];
				var edgeHighPt = inPolygon[ q ];

				var edgeDx = edgeHighPt.x - edgeLowPt.x;
				var edgeDy = edgeHighPt.y - edgeLowPt.y;

				if ( Math.abs( edgeDy ) > Number.EPSILON ) {

					// not parallel
					if ( edgeDy < 0 ) {

						edgeLowPt  = inPolygon[ q ]; edgeDx = - edgeDx;
						edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy;

					}
					if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) 		continue;

					if ( inPt.y === edgeLowPt.y ) {

						if ( inPt.x === edgeLowPt.x )		return	true;		// inPt is on contour ?
						// continue;				// no intersection or edgeLowPt => doesn't count !!!

					} else {

						var perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y );
						if ( perpEdge === 0 )				return	true;		// inPt is on contour ?
						if ( perpEdge < 0 ) 				continue;
						inside = ! inside;		// true intersection left of inPt

					}

				} else {

					// parallel or collinear
					if ( inPt.y !== edgeLowPt.y ) 		continue;			// parallel
					// edge lies on the same horizontal line as inPt
					if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) ||
						 ( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) )		return	true;	// inPt: Point on contour !
					// continue;

				}

			}

			return	inside;

		}

		var isClockWise = ShapeUtils.isClockWise;

		var subPaths = this.subPaths;
		if ( subPaths.length === 0 ) return [];

		if ( noHoles === true )	return	toShapesNoHoles( subPaths );


		var solid, tmpPath, tmpShape, shapes = [];

		if ( subPaths.length === 1 ) {

			tmpPath = subPaths[ 0 ];
			tmpShape = new Shape();
			tmpShape.curves = tmpPath.curves;
			shapes.push( tmpShape );
			return shapes;

		}

		var holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() );
		holesFirst = isCCW ? ! holesFirst : holesFirst;

		// console.log("Holes first", holesFirst);

		var betterShapeHoles = [];
		var newShapes = [];
		var newShapeHoles = [];
		var mainIdx = 0;
		var tmpPoints;

		newShapes[ mainIdx ] = undefined;
		newShapeHoles[ mainIdx ] = [];

		for ( var i = 0, l = subPaths.length; i < l; i ++ ) {

			tmpPath = subPaths[ i ];
			tmpPoints = tmpPath.getPoints();
			solid = isClockWise( tmpPoints );
			solid = isCCW ? ! solid : solid;

			if ( solid ) {

				if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) )	mainIdx ++;

				newShapes[ mainIdx ] = { s: new Shape(), p: tmpPoints };
				newShapes[ mainIdx ].s.curves = tmpPath.curves;

				if ( holesFirst )	mainIdx ++;
				newShapeHoles[ mainIdx ] = [];

				//console.log('cw', i);

			} else {

				newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } );

				//console.log('ccw', i);

			}

		}

		// only Holes? -> probably all Shapes with wrong orientation
		if ( ! newShapes[ 0 ] )	return	toShapesNoHoles( subPaths );


		if ( newShapes.length > 1 ) {

			var ambiguous = false;
			var toChange = [];

			for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {

				betterShapeHoles[ sIdx ] = [];

			}

			for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {

				var sho = newShapeHoles[ sIdx ];

				for ( var hIdx = 0; hIdx < sho.length; hIdx ++ ) {

					var ho = sho[ hIdx ];
					var hole_unassigned = true;

					for ( var s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) {

						if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) {

							if ( sIdx !== s2Idx )	toChange.push( { froms: sIdx, tos: s2Idx, hole: hIdx } );
							if ( hole_unassigned ) {

								hole_unassigned = false;
								betterShapeHoles[ s2Idx ].push( ho );

							} else {

								ambiguous = true;

							}

						}

					}
					if ( hole_unassigned ) {

						betterShapeHoles[ sIdx ].push( ho );

					}

				}

			}
			// console.log("ambiguous: ", ambiguous);
			if ( toChange.length > 0 ) {

				// console.log("to change: ", toChange);
				if ( ! ambiguous )	newShapeHoles = betterShapeHoles;

			}

		}

		var tmpHoles;

		for ( var i = 0, il = newShapes.length; i < il; i ++ ) {

			tmpShape = newShapes[ i ].s;
			shapes.push( tmpShape );
			tmpHoles = newShapeHoles[ i ];

			for ( var j = 0, jl = tmpHoles.length; j < jl; j ++ ) {

				tmpShape.holes.push( tmpHoles[ j ].h );

			}

		}

		//console.log("shape", shapes);

		return shapes;

	}

} );

/**
 * @author zz85 / http://www.lab4games.net/zz85/blog
 * @author mrdoob / http://mrdoob.com/
 */

function Font( data ) {

	this.data = data;

}

Object.assign( Font.prototype, {

	isFont: true,

	generateShapes: function ( text, size, divisions ) {

		function createPaths( text ) {

			var chars = String( text ).split( '' );
			var scale = size / data.resolution;
			var line_height = ( data.boundingBox.yMax - data.boundingBox.yMin + data.underlineThickness ) * scale;

			var offsetX = 0, offsetY = 0;

			var paths = [];

			for ( var i = 0; i < chars.length; i ++ ) {

				var char = chars[ i ];

				if ( char === '\n' ) {

					offsetX = 0;
					offsetY -= line_height;

				} else {

					var ret = createPath( char, scale, offsetX, offsetY );
					offsetX += ret.offsetX;
					paths.push( ret.path );

				}

			}

			return paths;

		}

		function createPath( c, scale, offsetX, offsetY ) {

			var glyph = data.glyphs[ c ] || data.glyphs[ '?' ];

			if ( ! glyph ) return;

			var path = new ShapePath();

			var pts = [];
			var x, y, cpx, cpy, cpx0, cpy0, cpx1, cpy1, cpx2, cpy2, laste;

			if ( glyph.o ) {

				var outline = glyph._cachedOutline || ( glyph._cachedOutline = glyph.o.split( ' ' ) );

				for ( var i = 0, l = outline.length; i < l; ) {

					var action = outline[ i ++ ];

					switch ( action ) {

						case 'm': // moveTo

							x = outline[ i ++ ] * scale + offsetX;
							y = outline[ i ++ ] * scale + offsetY;

							path.moveTo( x, y );

							break;

						case 'l': // lineTo

							x = outline[ i ++ ] * scale + offsetX;
							y = outline[ i ++ ] * scale + offsetY;

							path.lineTo( x, y );

							break;

						case 'q': // quadraticCurveTo

							cpx  = outline[ i ++ ] * scale + offsetX;
							cpy  = outline[ i ++ ] * scale + offsetY;
							cpx1 = outline[ i ++ ] * scale + offsetX;
							cpy1 = outline[ i ++ ] * scale + offsetY;

							path.quadraticCurveTo( cpx1, cpy1, cpx, cpy );

							laste = pts[ pts.length - 1 ];

							if ( laste ) {

								cpx0 = laste.x;
								cpy0 = laste.y;

								for ( var i2 = 1; i2 <= divisions; i2 ++ ) {

									var t = i2 / divisions;
									QuadraticBezier( t, cpx0, cpx1, cpx );
									QuadraticBezier( t, cpy0, cpy1, cpy );

								}

							}

							break;

						case 'b': // bezierCurveTo

							cpx  = outline[ i ++ ] * scale + offsetX;
							cpy  = outline[ i ++ ] * scale + offsetY;
							cpx1 = outline[ i ++ ] * scale + offsetX;
							cpy1 = outline[ i ++ ] * scale + offsetY;
							cpx2 = outline[ i ++ ] * scale + offsetX;
							cpy2 = outline[ i ++ ] * scale + offsetY;

							path.bezierCurveTo( cpx1, cpy1, cpx2, cpy2, cpx, cpy );

							laste = pts[ pts.length - 1 ];

							if ( laste ) {

								cpx0 = laste.x;
								cpy0 = laste.y;

								for ( var i2 = 1; i2 <= divisions; i2 ++ ) {

									var t = i2 / divisions;
									CubicBezier( t, cpx0, cpx1, cpx2, cpx );
									CubicBezier( t, cpy0, cpy1, cpy2, cpy );

								}

							}

							break;

					}

				}

			}

			return { offsetX: glyph.ha * scale, path: path };

		}

		//

		if ( size === undefined ) size = 100;
		if ( divisions === undefined ) divisions = 4;

		var data = this.data;

		var paths = createPaths( text );
		var shapes = [];

		for ( var p = 0, pl = paths.length; p < pl; p ++ ) {

			Array.prototype.push.apply( shapes, paths[ p ].toShapes() );

		}

		return shapes;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function FontLoader( manager ) {

	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

}

Object.assign( FontLoader.prototype, {

	load: function ( url, onLoad, onProgress, onError ) {

		var scope = this;

		var loader = new FileLoader( this.manager );
		loader.load( url, function ( text ) {

			var json;

			try {

				json = JSON.parse( text );

			} catch ( e ) {

				console.warn( 'THREE.FontLoader: typeface.js support is being deprecated. Use typeface.json instead.' );
				json = JSON.parse( text.substring( 65, text.length - 2 ) );

			}

			var font = scope.parse( json );

			if ( onLoad ) onLoad( font );

		}, onProgress, onError );

	},

	parse: function ( json ) {

		return new Font( json );

	}

} );

var context;

var AudioContext = {

	getContext: function () {

		if ( context === undefined ) {

			context = new ( window.AudioContext || window.webkitAudioContext )();

		}

		return context;

	},

	setContext: function ( value ) {

		context = value;

	}

};

/**
 * @author Reece Aaron Lecrivain / http://reecenotes.com/
 */

function AudioLoader( manager ) {

	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

}

Object.assign( AudioLoader.prototype, {

	load: function ( url, onLoad, onProgress, onError ) {

		var loader = new FileLoader( this.manager );
		loader.setResponseType( 'arraybuffer' );
		loader.load( url, function ( buffer ) {

			var context = AudioContext.getContext();

			context.decodeAudioData( buffer, function ( audioBuffer ) {

				onLoad( audioBuffer );

			} );

		}, onProgress, onError );

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function StereoCamera() {

	this.type = 'StereoCamera';

	this.aspect = 1;

	this.eyeSep = 0.064;

	this.cameraL = new PerspectiveCamera();
	this.cameraL.layers.enable( 1 );
	this.cameraL.matrixAutoUpdate = false;

	this.cameraR = new PerspectiveCamera();
	this.cameraR.layers.enable( 2 );
	this.cameraR.matrixAutoUpdate = false;

}

Object.assign( StereoCamera.prototype, {

	update: ( function () {

		var instance, focus, fov, aspect, near, far, zoom, eyeSep;

		var eyeRight = new Matrix4();
		var eyeLeft = new Matrix4();

		return function update( camera ) {

			var needsUpdate = instance !== this || focus !== camera.focus || fov !== camera.fov ||
												aspect !== camera.aspect * this.aspect || near !== camera.near ||
												far !== camera.far || zoom !== camera.zoom || eyeSep !== this.eyeSep;

			if ( needsUpdate ) {

				instance = this;
				focus = camera.focus;
				fov = camera.fov;
				aspect = camera.aspect * this.aspect;
				near = camera.near;
				far = camera.far;
				zoom = camera.zoom;

				// Off-axis stereoscopic effect based on
				// http://paulbourke.net/stereographics/stereorender/

				var projectionMatrix = camera.projectionMatrix.clone();
				eyeSep = this.eyeSep / 2;
				var eyeSepOnProjection = eyeSep * near / focus;
				var ymax = ( near * Math.tan( _Math.DEG2RAD * fov * 0.5 ) ) / zoom;
				var xmin, xmax;

				// translate xOffset

				eyeLeft.elements[ 12 ] = - eyeSep;
				eyeRight.elements[ 12 ] = eyeSep;

				// for left eye

				xmin = - ymax * aspect + eyeSepOnProjection;
				xmax = ymax * aspect + eyeSepOnProjection;

				projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin );
				projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );

				this.cameraL.projectionMatrix.copy( projectionMatrix );

				// for right eye

				xmin = - ymax * aspect - eyeSepOnProjection;
				xmax = ymax * aspect - eyeSepOnProjection;

				projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin );
				projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );

				this.cameraR.projectionMatrix.copy( projectionMatrix );

			}

			this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( eyeLeft );
			this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( eyeRight );

		};

	} )()

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function AudioListener() {

	Object3D.call( this );

	this.type = 'AudioListener';

	this.context = AudioContext.getContext();

	this.gain = this.context.createGain();
	this.gain.connect( this.context.destination );

	this.filter = null;

}

AudioListener.prototype = Object.assign( Object.create( Object3D.prototype ), {

	constructor: AudioListener,

	getInput: function () {

		return this.gain;

	},

	removeFilter: function ( ) {

		if ( this.filter !== null ) {

			this.gain.disconnect( this.filter );
			this.filter.disconnect( this.context.destination );
			this.gain.connect( this.context.destination );
			this.filter = null;

		}

	},

	getFilter: function () {

		return this.filter;

	},

	setFilter: function ( value ) {

		if ( this.filter !== null ) {

			this.gain.disconnect( this.filter );
			this.filter.disconnect( this.context.destination );

		} else {

			this.gain.disconnect( this.context.destination );

		}

		this.filter = value;
		this.gain.connect( this.filter );
		this.filter.connect( this.context.destination );

	},

	getMasterVolume: function () {

		return this.gain.gain.value;

	},

	setMasterVolume: function ( value ) {

		this.gain.gain.value = value;

	},

	updateMatrixWorld: ( function () {

		var position = new Vector3();
		var quaternion = new Quaternion();
		var scale = new Vector3();

		var orientation = new Vector3();

		return function updateMatrixWorld( force ) {

			Object3D.prototype.updateMatrixWorld.call( this, force );

			var listener = this.context.listener;
			var up = this.up;

			this.matrixWorld.decompose( position, quaternion, scale );

			orientation.set( 0, 0, - 1 ).applyQuaternion( quaternion );

			if ( listener.positionX ) {

				listener.positionX.setValueAtTime( position.x, this.context.currentTime );
				listener.positionY.setValueAtTime( position.y, this.context.currentTime );
				listener.positionZ.setValueAtTime( position.z, this.context.currentTime );
				listener.forwardX.setValueAtTime( orientation.x, this.context.currentTime );
				listener.forwardY.setValueAtTime( orientation.y, this.context.currentTime );
				listener.forwardZ.setValueAtTime( orientation.z, this.context.currentTime );
				listener.upX.setValueAtTime( up.x, this.context.currentTime );
				listener.upY.setValueAtTime( up.y, this.context.currentTime );
				listener.upZ.setValueAtTime( up.z, this.context.currentTime );

			} else {

				listener.setPosition( position.x, position.y, position.z );
				listener.setOrientation( orientation.x, orientation.y, orientation.z, up.x, up.y, up.z );

			}

		};

	} )()

} );

/**
 * @author mrdoob / http://mrdoob.com/
 * @author Reece Aaron Lecrivain / http://reecenotes.com/
 */

function Audio( listener ) {

	Object3D.call( this );

	this.type = 'Audio';

	this.context = listener.context;

	this.gain = this.context.createGain();
	this.gain.connect( listener.getInput() );

	this.autoplay = false;

	this.buffer = null;
	this.loop = false;
	this.startTime = 0;
	this.playbackRate = 1;
	this.isPlaying = false;
	this.hasPlaybackControl = true;
	this.sourceType = 'empty';

	this.filters = [];

}

Audio.prototype = Object.assign( Object.create( Object3D.prototype ), {

	constructor: Audio,

	getOutput: function () {

		return this.gain;

	},

	setNodeSource: function ( audioNode ) {

		this.hasPlaybackControl = false;
		this.sourceType = 'audioNode';
		this.source = audioNode;
		this.connect();

		return this;

	},

	setBuffer: function ( audioBuffer ) {

		this.buffer = audioBuffer;
		this.sourceType = 'buffer';

		if ( this.autoplay ) this.play();

		return this;

	},

	play: function () {

		if ( this.isPlaying === true ) {

			console.warn( 'THREE.Audio: Audio is already playing.' );
			return;

		}

		if ( this.hasPlaybackControl === false ) {

			console.warn( 'THREE.Audio: this Audio has no playback control.' );
			return;

		}

		var source = this.context.createBufferSource();

		source.buffer = this.buffer;
		source.loop = this.loop;
		source.onended = this.onEnded.bind( this );
		source.playbackRate.setValueAtTime( this.playbackRate, this.startTime );
		source.start( 0, this.startTime );

		this.isPlaying = true;

		this.source = source;

		return this.connect();

	},

	pause: function () {

		if ( this.hasPlaybackControl === false ) {

			console.warn( 'THREE.Audio: this Audio has no playback control.' );
			return;

		}

		this.source.stop();
		this.startTime = this.context.currentTime;
		this.isPlaying = false;

		return this;

	},

	stop: function () {

		if ( this.hasPlaybackControl === false ) {

			console.warn( 'THREE.Audio: this Audio has no playback control.' );
			return;

		}

		this.source.stop();
		this.startTime = 0;
		this.isPlaying = false;

		return this;

	},

	connect: function () {

		if ( this.filters.length > 0 ) {

			this.source.connect( this.filters[ 0 ] );

			for ( var i = 1, l = this.filters.length; i < l; i ++ ) {

				this.filters[ i - 1 ].connect( this.filters[ i ] );

			}

			this.filters[ this.filters.length - 1 ].connect( this.getOutput() );

		} else {

			this.source.connect( this.getOutput() );

		}

		return this;

	},

	disconnect: function () {

		if ( this.filters.length > 0 ) {

			this.source.disconnect( this.filters[ 0 ] );

			for ( var i = 1, l = this.filters.length; i < l; i ++ ) {

				this.filters[ i - 1 ].disconnect( this.filters[ i ] );

			}

			this.filters[ this.filters.length - 1 ].disconnect( this.getOutput() );

		} else {

			this.source.disconnect( this.getOutput() );

		}

		return this;

	},

	getFilters: function () {

		return this.filters;

	},

	setFilters: function ( value ) {

		if ( ! value ) value = [];

		if ( this.isPlaying === true ) {

			this.disconnect();
			this.filters = value;
			this.connect();

		} else {

			this.filters = value;

		}

		return this;

	},

	getFilter: function () {

		return this.getFilters()[ 0 ];

	},

	setFilter: function ( filter ) {

		return this.setFilters( filter ? [ filter ] : [] );

	},

	setPlaybackRate: function ( value ) {

		if ( this.hasPlaybackControl === false ) {

			console.warn( 'THREE.Audio: this Audio has no playback control.' );
			return;

		}

		this.playbackRate = value;

		if ( this.isPlaying === true ) {

			this.source.playbackRate.setValueAtTime( this.playbackRate, this.context.currentTime );

		}

		return this;

	},

	getPlaybackRate: function () {

		return this.playbackRate;

	},

	onEnded: function () {

		this.isPlaying = false;

	},

	getLoop: function () {

		if ( this.hasPlaybackControl === false ) {

			console.warn( 'THREE.Audio: this Audio has no playback control.' );
			return false;

		}

		return this.loop;

	},

	setLoop: function ( value ) {

		if ( this.hasPlaybackControl === false ) {

			console.warn( 'THREE.Audio: this Audio has no playback control.' );
			return;

		}

		this.loop = value;

		if ( this.isPlaying === true ) {

			this.source.loop = this.loop;

		}

		return this;

	},

	getVolume: function () {

		return this.gain.gain.value;

	},
	
	setVolume: function ( value ) {

		this.gain.gain.value = value;

		return this;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function PositionalAudio( listener ) {

	Audio.call( this, listener );

	this.panner = this.context.createPanner();
	this.panner.connect( this.gain );

}

PositionalAudio.prototype = Object.assign( Object.create( Audio.prototype ), {

	constructor: PositionalAudio,

	getOutput: function () {

		return this.panner;

	},

	getRefDistance: function () {

		return this.panner.refDistance;

	},

	setRefDistance: function ( value ) {

		this.panner.refDistance = value;

	},

	getRolloffFactor: function () {

		return this.panner.rolloffFactor;

	},

	setRolloffFactor: function ( value ) {

		this.panner.rolloffFactor = value;

	},

	getDistanceModel: function () {

		return this.panner.distanceModel;

	},

	setDistanceModel: function ( value ) {

		this.panner.distanceModel = value;

	},

	getMaxDistance: function () {

		return this.panner.maxDistance;

	},

	setMaxDistance: function ( value ) {

		this.panner.maxDistance = value;

	},

	updateMatrixWorld: ( function () {

		var position = new Vector3();

		return function updateMatrixWorld( force ) {

			Object3D.prototype.updateMatrixWorld.call( this, force );

			position.setFromMatrixPosition( this.matrixWorld );

			this.panner.setPosition( position.x, position.y, position.z );

		};

	} )()


} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function AudioAnalyser( audio, fftSize ) {

	this.analyser = audio.context.createAnalyser();
	this.analyser.fftSize = fftSize !== undefined ? fftSize : 2048;

	this.data = new Uint8Array( this.analyser.frequencyBinCount );

	audio.getOutput().connect( this.analyser );

}

Object.assign( AudioAnalyser.prototype, {

	getFrequencyData: function () {

		this.analyser.getByteFrequencyData( this.data );

		return this.data;

	},

	getAverageFrequency: function () {

		var value = 0, data = this.getFrequencyData();

		for ( var i = 0; i < data.length; i ++ ) {

			value += data[ i ];

		}

		return value / data.length;

	}

} );

/**
 *
 * Buffered scene graph property that allows weighted accumulation.
 *
 *
 * @author Ben Houston / http://clara.io/
 * @author David Sarno / http://lighthaus.us/
 * @author tschw
 */

function PropertyMixer( binding, typeName, valueSize ) {

	this.binding = binding;
	this.valueSize = valueSize;

	var bufferType = Float64Array,
		mixFunction;

	switch ( typeName ) {

		case 'quaternion':
			mixFunction = this._slerp;
			break;

		case 'string':
		case 'bool':
			bufferType = Array;
			mixFunction = this._select;
			break;

		default:
			mixFunction = this._lerp;

	}

	this.buffer = new bufferType( valueSize * 4 );
	// layout: [ incoming | accu0 | accu1 | orig ]
	//
	// interpolators can use .buffer as their .result
	// the data then goes to 'incoming'
	//
	// 'accu0' and 'accu1' are used frame-interleaved for
	// the cumulative result and are compared to detect
	// changes
	//
	// 'orig' stores the original state of the property

	this._mixBufferRegion = mixFunction;

	this.cumulativeWeight = 0;

	this.useCount = 0;
	this.referenceCount = 0;

}

Object.assign( PropertyMixer.prototype, {

	// accumulate data in the 'incoming' region into 'accu<i>'
	accumulate: function ( accuIndex, weight ) {

		// note: happily accumulating nothing when weight = 0, the caller knows
		// the weight and shouldn't have made the call in the first place

		var buffer = this.buffer,
			stride = this.valueSize,
			offset = accuIndex * stride + stride,

			currentWeight = this.cumulativeWeight;

		if ( currentWeight === 0 ) {

			// accuN := incoming * weight

			for ( var i = 0; i !== stride; ++ i ) {

				buffer[ offset + i ] = buffer[ i ];

			}

			currentWeight = weight;

		} else {

			// accuN := accuN + incoming * weight

			currentWeight += weight;
			var mix = weight / currentWeight;
			this._mixBufferRegion( buffer, offset, 0, mix, stride );

		}

		this.cumulativeWeight = currentWeight;

	},

	// apply the state of 'accu<i>' to the binding when accus differ
	apply: function ( accuIndex ) {

		var stride = this.valueSize,
			buffer = this.buffer,
			offset = accuIndex * stride + stride,

			weight = this.cumulativeWeight,

			binding = this.binding;

		this.cumulativeWeight = 0;

		if ( weight < 1 ) {

			// accuN := accuN + original * ( 1 - cumulativeWeight )

			var originalValueOffset = stride * 3;

			this._mixBufferRegion(
				buffer, offset, originalValueOffset, 1 - weight, stride );

		}

		for ( var i = stride, e = stride + stride; i !== e; ++ i ) {

			if ( buffer[ i ] !== buffer[ i + stride ] ) {

				// value has changed -> update scene graph

				binding.setValue( buffer, offset );
				break;

			}

		}

	},

	// remember the state of the bound property and copy it to both accus
	saveOriginalState: function () {

		var binding = this.binding;

		var buffer = this.buffer,
			stride = this.valueSize,

			originalValueOffset = stride * 3;

		binding.getValue( buffer, originalValueOffset );

		// accu[0..1] := orig -- initially detect changes against the original
		for ( var i = stride, e = originalValueOffset; i !== e; ++ i ) {

			buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ];

		}

		this.cumulativeWeight = 0;

	},

	// apply the state previously taken via 'saveOriginalState' to the binding
	restoreOriginalState: function () {

		var originalValueOffset = this.valueSize * 3;
		this.binding.setValue( this.buffer, originalValueOffset );

	},


	// mix functions

	_select: function ( buffer, dstOffset, srcOffset, t, stride ) {

		if ( t >= 0.5 ) {

			for ( var i = 0; i !== stride; ++ i ) {

				buffer[ dstOffset + i ] = buffer[ srcOffset + i ];

			}

		}

	},

	_slerp: function ( buffer, dstOffset, srcOffset, t ) {

		Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t );

	},

	_lerp: function ( buffer, dstOffset, srcOffset, t, stride ) {

		var s = 1 - t;

		for ( var i = 0; i !== stride; ++ i ) {

			var j = dstOffset + i;

			buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t;

		}

	}

} );

/**
 *
 * A reference to a real property in the scene graph.
 *
 *
 * @author Ben Houston / http://clara.io/
 * @author David Sarno / http://lighthaus.us/
 * @author tschw
 */

function Composite( targetGroup, path, optionalParsedPath ) {

	var parsedPath = optionalParsedPath || PropertyBinding.parseTrackName( path );

	this._targetGroup = targetGroup;
	this._bindings = targetGroup.subscribe_( path, parsedPath );

}

Object.assign( Composite.prototype, {

	getValue: function ( array, offset ) {

		this.bind(); // bind all binding

		var firstValidIndex = this._targetGroup.nCachedObjects_,
			binding = this._bindings[ firstValidIndex ];

		// and only call .getValue on the first
		if ( binding !== undefined ) binding.getValue( array, offset );

	},

	setValue: function ( array, offset ) {

		var bindings = this._bindings;

		for ( var i = this._targetGroup.nCachedObjects_,
				  n = bindings.length; i !== n; ++ i ) {

			bindings[ i ].setValue( array, offset );

		}

	},

	bind: function () {

		var bindings = this._bindings;

		for ( var i = this._targetGroup.nCachedObjects_,
				  n = bindings.length; i !== n; ++ i ) {

			bindings[ i ].bind();

		}

	},

	unbind: function () {

		var bindings = this._bindings;

		for ( var i = this._targetGroup.nCachedObjects_,
				  n = bindings.length; i !== n; ++ i ) {

			bindings[ i ].unbind();

		}

	}

} );


function PropertyBinding( rootNode, path, parsedPath ) {

	this.path = path;
	this.parsedPath = parsedPath || PropertyBinding.parseTrackName( path );

	this.node = PropertyBinding.findNode( rootNode, this.parsedPath.nodeName ) || rootNode;

	this.rootNode = rootNode;

}

Object.assign( PropertyBinding, {

	Composite: Composite,

	create: function ( root, path, parsedPath ) {

		if ( ! ( root && root.isAnimationObjectGroup ) ) {

			return new PropertyBinding( root, path, parsedPath );

		} else {

			return new PropertyBinding.Composite( root, path, parsedPath );

		}

	},

	/**
	 * Replaces spaces with underscores and removes unsupported characters from
	 * node names, to ensure compatibility with parseTrackName().
	 *
	 * @param  {string} name Node name to be sanitized.
	 * @return {string}
	 */
	sanitizeNodeName: function ( name ) {

		return name.replace( /\s/g, '_' ).replace( /[^\w-]/g, '' );

	},

	parseTrackName: function () {

		// Parent directories, delimited by '/' or ':'. Currently unused, but must
		// be matched to parse the rest of the track name.
		var directoryRe = /((?:[\w-]+[\/:])*)/;

		// Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'.
		var nodeRe = /([\w-\.]+)?/;

		// Object on target node, and accessor. Name may contain only word
		// characters. Accessor may contain any character except closing bracket.
		var objectRe = /(?:\.([\w-]+)(?:\[(.+)\])?)?/;

		// Property and accessor. May contain only word characters. Accessor may
		// contain any non-bracket characters.
		var propertyRe = /\.([\w-]+)(?:\[(.+)\])?/;

		var trackRe = new RegExp(''
			+ '^'
			+ directoryRe.source
			+ nodeRe.source
			+ objectRe.source
			+ propertyRe.source
			+ '$'
		);

		var supportedObjectNames = [ 'material', 'materials', 'bones' ];

		return function ( trackName ) {

				var matches = trackRe.exec( trackName );

				if ( ! matches ) {

					throw new Error( 'PropertyBinding: Cannot parse trackName: ' + trackName );

				}

				var results = {
					// directoryName: matches[ 1 ], // (tschw) currently unused
					nodeName: matches[ 2 ],
					objectName: matches[ 3 ],
					objectIndex: matches[ 4 ],
					propertyName: matches[ 5 ],     // required
					propertyIndex: matches[ 6 ]
				};

				var lastDot = results.nodeName && results.nodeName.lastIndexOf( '.' );

				if ( lastDot !== undefined && lastDot !== -1 ) {

					var objectName = results.nodeName.substring( lastDot + 1 );

					// Object names must be checked against a whitelist. Otherwise, there
					// is no way to parse 'foo.bar.baz': 'baz' must be a property, but
					// 'bar' could be the objectName, or part of a nodeName (which can
					// include '.' characters).
					if ( supportedObjectNames.indexOf( objectName ) !== -1 ) {

						results.nodeName = results.nodeName.substring( 0, lastDot );
						results.objectName = objectName;

					}

				}

				if ( results.propertyName === null || results.propertyName.length === 0 ) {

					throw new Error( 'PropertyBinding: can not parse propertyName from trackName: ' + trackName );

				}

				return results;

			};

	}(),

	findNode: function ( root, nodeName ) {

		if ( ! nodeName || nodeName === "" || nodeName === "root" || nodeName === "." || nodeName === - 1 || nodeName === root.name || nodeName === root.uuid ) {

			return root;

		}

		// search into skeleton bones.
		if ( root.skeleton ) {

			var searchSkeleton = function ( skeleton ) {

				for ( var i = 0; i < skeleton.bones.length; i ++ ) {

					var bone = skeleton.bones[ i ];

					if ( bone.name === nodeName ) {

						return bone;

					}

				}

				return null;

			};

			var bone = searchSkeleton( root.skeleton );

			if ( bone ) {

				return bone;

			}

		}

		// search into node subtree.
		if ( root.children ) {

			var searchNodeSubtree = function ( children ) {

				for ( var i = 0; i < children.length; i ++ ) {

					var childNode = children[ i ];

					if ( childNode.name === nodeName || childNode.uuid === nodeName ) {

						return childNode;

					}

					var result = searchNodeSubtree( childNode.children );

					if ( result ) return result;

				}

				return null;

			};

			var subTreeNode = searchNodeSubtree( root.children );

			if ( subTreeNode ) {

				return subTreeNode;

			}

		}

		return null;

	}

} );

Object.assign( PropertyBinding.prototype, { // prototype, continued

	// these are used to "bind" a nonexistent property
	_getValue_unavailable: function () {},
	_setValue_unavailable: function () {},

	BindingType: {
		Direct: 0,
		EntireArray: 1,
		ArrayElement: 2,
		HasFromToArray: 3
	},

	Versioning: {
		None: 0,
		NeedsUpdate: 1,
		MatrixWorldNeedsUpdate: 2
	},

	GetterByBindingType: [

		function getValue_direct( buffer, offset ) {

			buffer[ offset ] = this.node[ this.propertyName ];

		},

		function getValue_array( buffer, offset ) {

			var source = this.resolvedProperty;

			for ( var i = 0, n = source.length; i !== n; ++ i ) {

				buffer[ offset ++ ] = source[ i ];

			}

		},

		function getValue_arrayElement( buffer, offset ) {

			buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ];

		},

		function getValue_toArray( buffer, offset ) {

			this.resolvedProperty.toArray( buffer, offset );

		}

	],

	SetterByBindingTypeAndVersioning: [

		[
			// Direct

			function setValue_direct( buffer, offset ) {

				this.node[ this.propertyName ] = buffer[ offset ];

			},

			function setValue_direct_setNeedsUpdate( buffer, offset ) {

				this.node[ this.propertyName ] = buffer[ offset ];
				this.targetObject.needsUpdate = true;

			},

			function setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) {

				this.node[ this.propertyName ] = buffer[ offset ];
				this.targetObject.matrixWorldNeedsUpdate = true;

			}

		], [

			// EntireArray

			function setValue_array( buffer, offset ) {

				var dest = this.resolvedProperty;

				for ( var i = 0, n = dest.length; i !== n; ++ i ) {

					dest[ i ] = buffer[ offset ++ ];

				}

			},

			function setValue_array_setNeedsUpdate( buffer, offset ) {

				var dest = this.resolvedProperty;

				for ( var i = 0, n = dest.length; i !== n; ++ i ) {

					dest[ i ] = buffer[ offset ++ ];

				}

				this.targetObject.needsUpdate = true;

			},

			function setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) {

				var dest = this.resolvedProperty;

				for ( var i = 0, n = dest.length; i !== n; ++ i ) {

					dest[ i ] = buffer[ offset ++ ];

				}

				this.targetObject.matrixWorldNeedsUpdate = true;

			}

		], [

			// ArrayElement

			function setValue_arrayElement( buffer, offset ) {

				this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];

			},

			function setValue_arrayElement_setNeedsUpdate( buffer, offset ) {

				this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
				this.targetObject.needsUpdate = true;

			},

			function setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) {

				this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
				this.targetObject.matrixWorldNeedsUpdate = true;

			}

		], [

			// HasToFromArray

			function setValue_fromArray( buffer, offset ) {

				this.resolvedProperty.fromArray( buffer, offset );

			},

			function setValue_fromArray_setNeedsUpdate( buffer, offset ) {

				this.resolvedProperty.fromArray( buffer, offset );
				this.targetObject.needsUpdate = true;

			},

			function setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) {

				this.resolvedProperty.fromArray( buffer, offset );
				this.targetObject.matrixWorldNeedsUpdate = true;

			}

		]

	],

	getValue: function getValue_unbound( targetArray, offset ) {

		this.bind();
		this.getValue( targetArray, offset );

		// Note: This class uses a State pattern on a per-method basis:
		// 'bind' sets 'this.getValue' / 'setValue' and shadows the
		// prototype version of these methods with one that represents
		// the bound state. When the property is not found, the methods
		// become no-ops.

	},

	setValue: function getValue_unbound( sourceArray, offset ) {

		this.bind();
		this.setValue( sourceArray, offset );

	},

	// create getter / setter pair for a property in the scene graph
	bind: function () {

		var targetObject = this.node,
			parsedPath = this.parsedPath,

			objectName = parsedPath.objectName,
			propertyName = parsedPath.propertyName,
			propertyIndex = parsedPath.propertyIndex;

		if ( ! targetObject ) {

			targetObject = PropertyBinding.findNode(
					this.rootNode, parsedPath.nodeName ) || this.rootNode;

			this.node = targetObject;

		}

		// set fail state so we can just 'return' on error
		this.getValue = this._getValue_unavailable;
		this.setValue = this._setValue_unavailable;

		// ensure there is a value node
		if ( ! targetObject ) {

			console.error( 'THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.' );
			return;

		}

		if ( objectName ) {

			var objectIndex = parsedPath.objectIndex;

			// special cases were we need to reach deeper into the hierarchy to get the face materials....
			switch ( objectName ) {

				case 'materials':

					if ( ! targetObject.material ) {

						console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this );
						return;

					}

					if ( ! targetObject.material.materials ) {

						console.error( 'THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this );
						return;

					}

					targetObject = targetObject.material.materials;

					break;

				case 'bones':

					if ( ! targetObject.skeleton ) {

						console.error( 'THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this );
						return;

					}

					// potential future optimization: skip this if propertyIndex is already an integer
					// and convert the integer string to a true integer.

					targetObject = targetObject.skeleton.bones;

					// support resolving morphTarget names into indices.
					for ( var i = 0; i < targetObject.length; i ++ ) {

						if ( targetObject[ i ].name === objectIndex ) {

							objectIndex = i;
							break;

						}

					}

					break;

				default:

					if ( targetObject[ objectName ] === undefined ) {

						console.error( 'THREE.PropertyBinding: Can not bind to objectName of node undefined.', this );
						return;

					}

					targetObject = targetObject[ objectName ];

			}


			if ( objectIndex !== undefined ) {

				if ( targetObject[ objectIndex ] === undefined ) {

					console.error( 'THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject );
					return;

				}

				targetObject = targetObject[ objectIndex ];

			}

		}

		// resolve property
		var nodeProperty = targetObject[ propertyName ];

		if ( nodeProperty === undefined ) {

			var nodeName = parsedPath.nodeName;

			console.error( 'THREE.PropertyBinding: Trying to update property for track: ' + nodeName +
				'.' + propertyName + ' but it wasn\'t found.', targetObject );
			return;

		}

		// determine versioning scheme
		var versioning = this.Versioning.None;

		if ( targetObject.needsUpdate !== undefined ) { // material

			versioning = this.Versioning.NeedsUpdate;
			this.targetObject = targetObject;

		} else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform

			versioning = this.Versioning.MatrixWorldNeedsUpdate;
			this.targetObject = targetObject;

		}

		// determine how the property gets bound
		var bindingType = this.BindingType.Direct;

		if ( propertyIndex !== undefined ) {

			// access a sub element of the property array (only primitives are supported right now)

			if ( propertyName === "morphTargetInfluences" ) {

				// potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer.

				// support resolving morphTarget names into indices.
				if ( ! targetObject.geometry ) {

					console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this );
					return;

				}

				if ( targetObject.geometry.isBufferGeometry ) {

					if ( ! targetObject.geometry.morphAttributes ) {

						console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this );
						return;

					}

					for ( var i = 0; i < this.node.geometry.morphAttributes.position.length; i ++ ) {

						if ( targetObject.geometry.morphAttributes.position[ i ].name === propertyIndex ) {

							propertyIndex = i;
							break;

						}

					}


				} else {

					if ( ! targetObject.geometry.morphTargets ) {

						console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphTargets.', this );
						return;

					}

					for ( var i = 0; i < this.node.geometry.morphTargets.length; i ++ ) {

						if ( targetObject.geometry.morphTargets[ i ].name === propertyIndex ) {

							propertyIndex = i;
							break;

						}

					}

				}

			}

			bindingType = this.BindingType.ArrayElement;

			this.resolvedProperty = nodeProperty;
			this.propertyIndex = propertyIndex;

		} else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) {

			// must use copy for Object3D.Euler/Quaternion

			bindingType = this.BindingType.HasFromToArray;

			this.resolvedProperty = nodeProperty;

		} else if ( Array.isArray( nodeProperty ) ) {

			bindingType = this.BindingType.EntireArray;

			this.resolvedProperty = nodeProperty;

		} else {

			this.propertyName = propertyName;

		}

		// select getter / setter
		this.getValue = this.GetterByBindingType[ bindingType ];
		this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ];

	},

	unbind: function () {

		this.node = null;

		// back to the prototype version of getValue / setValue
		// note: avoiding to mutate the shape of 'this' via 'delete'
		this.getValue = this._getValue_unbound;
		this.setValue = this._setValue_unbound;

	}

} );

//!\ DECLARE ALIAS AFTER assign prototype !
Object.assign( PropertyBinding.prototype, {

	// initial state of these methods that calls 'bind'
	_getValue_unbound: PropertyBinding.prototype.getValue,
	_setValue_unbound: PropertyBinding.prototype.setValue,

} );

/**
 *
 * A group of objects that receives a shared animation state.
 *
 * Usage:
 *
 * 	-	Add objects you would otherwise pass as 'root' to the
 * 		constructor or the .clipAction method of AnimationMixer.
 *
 * 	-	Instead pass this object as 'root'.
 *
 * 	-	You can also add and remove objects later when the mixer
 * 		is running.
 *
 * Note:
 *
 *  	Objects of this class appear as one object to the mixer,
 *  	so cache control of the individual objects must be done
 *  	on the group.
 *
 * Limitation:
 *
 * 	- 	The animated properties must be compatible among the
 * 		all objects in the group.
 *
 *  -	A single property can either be controlled through a
 *  	target group or directly, but not both.
 *
 * @author tschw
 */

function AnimationObjectGroup( var_args ) {

	this.uuid = _Math.generateUUID();

	// cached objects followed by the active ones
	this._objects = Array.prototype.slice.call( arguments );

	this.nCachedObjects_ = 0;			// threshold
	// note: read by PropertyBinding.Composite

	var indices = {};
	this._indicesByUUID = indices;		// for bookkeeping

	for ( var i = 0, n = arguments.length; i !== n; ++ i ) {

		indices[ arguments[ i ].uuid ] = i;

	}

	this._paths = [];					// inside: string
	this._parsedPaths = [];				// inside: { we don't care, here }
	this._bindings = []; 				// inside: Array< PropertyBinding >
	this._bindingsIndicesByPath = {}; 	// inside: indices in these arrays

	var scope = this;

	this.stats = {

		objects: {
			get total() { return scope._objects.length; },
			get inUse() { return this.total - scope.nCachedObjects_; }
		},

		get bindingsPerObject() { return scope._bindings.length; }

	};

}

Object.assign( AnimationObjectGroup.prototype, {

	isAnimationObjectGroup: true,

	add: function( var_args ) {

		var objects = this._objects,
			nObjects = objects.length,
			nCachedObjects = this.nCachedObjects_,
			indicesByUUID = this._indicesByUUID,
			paths = this._paths,
			parsedPaths = this._parsedPaths,
			bindings = this._bindings,
			nBindings = bindings.length;

		for ( var i = 0, n = arguments.length; i !== n; ++ i ) {

			var object = arguments[ i ],
				uuid = object.uuid,
				index = indicesByUUID[ uuid ],
				knownObject = undefined;

			if ( index === undefined ) {

				// unknown object -> add it to the ACTIVE region

				index = nObjects ++;
				indicesByUUID[ uuid ] = index;
				objects.push( object );

				// accounting is done, now do the same for all bindings

				for ( var j = 0, m = nBindings; j !== m; ++ j ) {

					bindings[ j ].push(
							new PropertyBinding(
								object, paths[ j ], parsedPaths[ j ] ) );

				}

			} else if ( index < nCachedObjects ) {

				knownObject = objects[ index ];

				// move existing object to the ACTIVE region

				var firstActiveIndex = -- nCachedObjects,
					lastCachedObject = objects[ firstActiveIndex ];

				indicesByUUID[ lastCachedObject.uuid ] = index;
				objects[ index ] = lastCachedObject;

				indicesByUUID[ uuid ] = firstActiveIndex;
				objects[ firstActiveIndex ] = object;

				// accounting is done, now do the same for all bindings

				for ( var j = 0, m = nBindings; j !== m; ++ j ) {

					var bindingsForPath = bindings[ j ],
						lastCached = bindingsForPath[ firstActiveIndex ],
						binding = bindingsForPath[ index ];

					bindingsForPath[ index ] = lastCached;

					if ( binding === undefined ) {

						// since we do not bother to create new bindings
						// for objects that are cached, the binding may
						// or may not exist

						binding = new PropertyBinding(
								object, paths[ j ], parsedPaths[ j ] );

					}

					bindingsForPath[ firstActiveIndex ] = binding;

				}

			} else if ( objects[ index ] !== knownObject ) {

				console.error( 'THREE.AnimationObjectGroup: Different objects with the same UUID ' +
						'detected. Clean the caches or recreate your infrastructure when reloading scenes.' );

			} // else the object is already where we want it to be

		} // for arguments

		this.nCachedObjects_ = nCachedObjects;

	},

	remove: function( var_args ) {

		var objects = this._objects,
			nCachedObjects = this.nCachedObjects_,
			indicesByUUID = this._indicesByUUID,
			bindings = this._bindings,
			nBindings = bindings.length;

		for ( var i = 0, n = arguments.length; i !== n; ++ i ) {

			var object = arguments[ i ],
				uuid = object.uuid,
				index = indicesByUUID[ uuid ];

			if ( index !== undefined && index >= nCachedObjects ) {

				// move existing object into the CACHED region

				var lastCachedIndex = nCachedObjects ++,
					firstActiveObject = objects[ lastCachedIndex ];

				indicesByUUID[ firstActiveObject.uuid ] = index;
				objects[ index ] = firstActiveObject;

				indicesByUUID[ uuid ] = lastCachedIndex;
				objects[ lastCachedIndex ] = object;

				// accounting is done, now do the same for all bindings

				for ( var j = 0, m = nBindings; j !== m; ++ j ) {

					var bindingsForPath = bindings[ j ],
						firstActive = bindingsForPath[ lastCachedIndex ],
						binding = bindingsForPath[ index ];

					bindingsForPath[ index ] = firstActive;
					bindingsForPath[ lastCachedIndex ] = binding;

				}

			}

		} // for arguments

		this.nCachedObjects_ = nCachedObjects;

	},

	// remove & forget
	uncache: function( var_args ) {

		var objects = this._objects,
			nObjects = objects.length,
			nCachedObjects = this.nCachedObjects_,
			indicesByUUID = this._indicesByUUID,
			bindings = this._bindings,
			nBindings = bindings.length;

		for ( var i = 0, n = arguments.length; i !== n; ++ i ) {

			var object = arguments[ i ],
				uuid = object.uuid,
				index = indicesByUUID[ uuid ];

			if ( index !== undefined ) {

				delete indicesByUUID[ uuid ];

				if ( index < nCachedObjects ) {

					// object is cached, shrink the CACHED region

					var firstActiveIndex = -- nCachedObjects,
						lastCachedObject = objects[ firstActiveIndex ],
						lastIndex = -- nObjects,
						lastObject = objects[ lastIndex ];

					// last cached object takes this object's place
					indicesByUUID[ lastCachedObject.uuid ] = index;
					objects[ index ] = lastCachedObject;

					// last object goes to the activated slot and pop
					indicesByUUID[ lastObject.uuid ] = firstActiveIndex;
					objects[ firstActiveIndex ] = lastObject;
					objects.pop();

					// accounting is done, now do the same for all bindings

					for ( var j = 0, m = nBindings; j !== m; ++ j ) {

						var bindingsForPath = bindings[ j ],
							lastCached = bindingsForPath[ firstActiveIndex ],
							last = bindingsForPath[ lastIndex ];

						bindingsForPath[ index ] = lastCached;
						bindingsForPath[ firstActiveIndex ] = last;
						bindingsForPath.pop();

					}

				} else {

					// object is active, just swap with the last and pop

					var lastIndex = -- nObjects,
						lastObject = objects[ lastIndex ];

					indicesByUUID[ lastObject.uuid ] = index;
					objects[ index ] = lastObject;
					objects.pop();

					// accounting is done, now do the same for all bindings

					for ( var j = 0, m = nBindings; j !== m; ++ j ) {

						var bindingsForPath = bindings[ j ];

						bindingsForPath[ index ] = bindingsForPath[ lastIndex ];
						bindingsForPath.pop();

					}

				} // cached or active

			} // if object is known

		} // for arguments

		this.nCachedObjects_ = nCachedObjects;

	},

	// Internal interface used by befriended PropertyBinding.Composite:

	subscribe_: function ( path, parsedPath ) {

		// returns an array of bindings for the given path that is changed
		// according to the contained objects in the group

		var indicesByPath = this._bindingsIndicesByPath,
			index = indicesByPath[ path ],
			bindings = this._bindings;

		if ( index !== undefined ) return bindings[ index ];

		var paths = this._paths,
			parsedPaths = this._parsedPaths,
			objects = this._objects,
			nObjects = objects.length,
			nCachedObjects = this.nCachedObjects_,
			bindingsForPath = new Array( nObjects );

		index = bindings.length;

		indicesByPath[ path ] = index;

		paths.push( path );
		parsedPaths.push( parsedPath );
		bindings.push( bindingsForPath );

		for ( var i = nCachedObjects, n = objects.length; i !== n; ++ i ) {

			var object = objects[ i ];
			bindingsForPath[ i ] = new PropertyBinding( object, path, parsedPath );

		}

		return bindingsForPath;

	},

	unsubscribe_: function ( path ) {

		// tells the group to forget about a property path and no longer
		// update the array previously obtained with 'subscribe_'

		var indicesByPath = this._bindingsIndicesByPath,
			index = indicesByPath[ path ];

		if ( index !== undefined ) {

			var paths = this._paths,
				parsedPaths = this._parsedPaths,
				bindings = this._bindings,
				lastBindingsIndex = bindings.length - 1,
				lastBindings = bindings[ lastBindingsIndex ],
				lastBindingsPath = path[ lastBindingsIndex ];

			indicesByPath[ lastBindingsPath ] = index;

			bindings[ index ] = lastBindings;
			bindings.pop();

			parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ];
			parsedPaths.pop();

			paths[ index ] = paths[ lastBindingsIndex ];
			paths.pop();

		}

	}

} );

/**
 *
 * Action provided by AnimationMixer for scheduling clip playback on specific
 * objects.
 *
 * @author Ben Houston / http://clara.io/
 * @author David Sarno / http://lighthaus.us/
 * @author tschw
 *
 */

function AnimationAction( mixer, clip, localRoot ) {

	this._mixer = mixer;
	this._clip = clip;
	this._localRoot = localRoot || null;

	var tracks = clip.tracks,
		nTracks = tracks.length,
		interpolants = new Array( nTracks );

	var interpolantSettings = {
			endingStart: 	ZeroCurvatureEnding,
			endingEnd:		ZeroCurvatureEnding
	};

	for ( var i = 0; i !== nTracks; ++ i ) {

		var interpolant = tracks[ i ].createInterpolant( null );
		interpolants[ i ] = interpolant;
		interpolant.settings = interpolantSettings;

	}

	this._interpolantSettings = interpolantSettings;

	this._interpolants = interpolants;	// bound by the mixer

	// inside: PropertyMixer (managed by the mixer)
	this._propertyBindings = new Array( nTracks );

	this._cacheIndex = null;			// for the memory manager
	this._byClipCacheIndex = null;		// for the memory manager

	this._timeScaleInterpolant = null;
	this._weightInterpolant = null;

	this.loop = LoopRepeat;
	this._loopCount = -1;

	// global mixer time when the action is to be started
	// it's set back to 'null' upon start of the action
	this._startTime = null;

	// scaled local time of the action
	// gets clamped or wrapped to 0..clip.duration according to loop
	this.time = 0;

	this.timeScale = 1;
	this._effectiveTimeScale = 1;

	this.weight = 1;
	this._effectiveWeight = 1;

	this.repetitions = Infinity; 		// no. of repetitions when looping

	this.paused = false;				// true -> zero effective time scale
	this.enabled = true;				// false -> zero effective weight

	this.clampWhenFinished 	= false;	// keep feeding the last frame?

	this.zeroSlopeAtStart 	= true;		// for smooth interpolation w/o separate
	this.zeroSlopeAtEnd		= true;		// clips for start, loop and end

}

Object.assign( AnimationAction.prototype, {

	// State & Scheduling

	play: function() {

		this._mixer._activateAction( this );

		return this;

	},

	stop: function() {

		this._mixer._deactivateAction( this );

		return this.reset();

	},

	reset: function() {

		this.paused = false;
		this.enabled = true;

		this.time = 0;			// restart clip
		this._loopCount = -1;	// forget previous loops
		this._startTime = null;	// forget scheduling

		return this.stopFading().stopWarping();

	},

	isRunning: function() {

		return this.enabled && ! this.paused && this.timeScale !== 0 &&
				this._startTime === null && this._mixer._isActiveAction( this );

	},

	// return true when play has been called
	isScheduled: function() {

		return this._mixer._isActiveAction( this );

	},

	startAt: function( time ) {

		this._startTime = time;

		return this;

	},

	setLoop: function( mode, repetitions ) {

		this.loop = mode;
		this.repetitions = repetitions;

		return this;

	},

	// Weight

	// set the weight stopping any scheduled fading
	// although .enabled = false yields an effective weight of zero, this
	// method does *not* change .enabled, because it would be confusing
	setEffectiveWeight: function( weight ) {

		this.weight = weight;

		// note: same logic as when updated at runtime
		this._effectiveWeight = this.enabled ? weight : 0;

		return this.stopFading();

	},

	// return the weight considering fading and .enabled
	getEffectiveWeight: function() {

		return this._effectiveWeight;

	},

	fadeIn: function( duration ) {

		return this._scheduleFading( duration, 0, 1 );

	},

	fadeOut: function( duration ) {

		return this._scheduleFading( duration, 1, 0 );

	},

	crossFadeFrom: function( fadeOutAction, duration, warp ) {

		fadeOutAction.fadeOut( duration );
		this.fadeIn( duration );

		if( warp ) {

			var fadeInDuration = this._clip.duration,
				fadeOutDuration = fadeOutAction._clip.duration,

				startEndRatio = fadeOutDuration / fadeInDuration,
				endStartRatio = fadeInDuration / fadeOutDuration;

			fadeOutAction.warp( 1.0, startEndRatio, duration );
			this.warp( endStartRatio, 1.0, duration );

		}

		return this;

	},

	crossFadeTo: function( fadeInAction, duration, warp ) {

		return fadeInAction.crossFadeFrom( this, duration, warp );

	},

	stopFading: function() {

		var weightInterpolant = this._weightInterpolant;

		if ( weightInterpolant !== null ) {

			this._weightInterpolant = null;
			this._mixer._takeBackControlInterpolant( weightInterpolant );

		}

		return this;

	},

	// Time Scale Control

	// set the time scale stopping any scheduled warping
	// although .paused = true yields an effective time scale of zero, this
	// method does *not* change .paused, because it would be confusing
	setEffectiveTimeScale: function( timeScale ) {

		this.timeScale = timeScale;
		this._effectiveTimeScale = this.paused ? 0 :timeScale;

		return this.stopWarping();

	},

	// return the time scale considering warping and .paused
	getEffectiveTimeScale: function() {

		return this._effectiveTimeScale;

	},

	setDuration: function( duration ) {

		this.timeScale = this._clip.duration / duration;

		return this.stopWarping();

	},

	syncWith: function( action ) {

		this.time = action.time;
		this.timeScale = action.timeScale;

		return this.stopWarping();

	},

	halt: function( duration ) {

		return this.warp( this._effectiveTimeScale, 0, duration );

	},

	warp: function( startTimeScale, endTimeScale, duration ) {

		var mixer = this._mixer, now = mixer.time,
			interpolant = this._timeScaleInterpolant,

			timeScale = this.timeScale;

		if ( interpolant === null ) {

			interpolant = mixer._lendControlInterpolant();
			this._timeScaleInterpolant = interpolant;

		}

		var times = interpolant.parameterPositions,
			values = interpolant.sampleValues;

		times[ 0 ] = now;
		times[ 1 ] = now + duration;

		values[ 0 ] = startTimeScale / timeScale;
		values[ 1 ] = endTimeScale / timeScale;

		return this;

	},

	stopWarping: function() {

		var timeScaleInterpolant = this._timeScaleInterpolant;

		if ( timeScaleInterpolant !== null ) {

			this._timeScaleInterpolant = null;
			this._mixer._takeBackControlInterpolant( timeScaleInterpolant );

		}

		return this;

	},

	// Object Accessors

	getMixer: function() {

		return this._mixer;

	},

	getClip: function() {

		return this._clip;

	},

	getRoot: function() {

		return this._localRoot || this._mixer._root;

	},

	// Interna

	_update: function( time, deltaTime, timeDirection, accuIndex ) {

		// called by the mixer

		if ( ! this.enabled ) {

			// call ._updateWeight() to update ._effectiveWeight

			this._updateWeight( time );
			return;

		}

		var startTime = this._startTime;

		if ( startTime !== null ) {

			// check for scheduled start of action

			var timeRunning = ( time - startTime ) * timeDirection;
			if ( timeRunning < 0 || timeDirection === 0 ) {

				return; // yet to come / don't decide when delta = 0

			}

			// start

			this._startTime = null; // unschedule
			deltaTime = timeDirection * timeRunning;

		}

		// apply time scale and advance time

		deltaTime *= this._updateTimeScale( time );
		var clipTime = this._updateTime( deltaTime );

		// note: _updateTime may disable the action resulting in
		// an effective weight of 0

		var weight = this._updateWeight( time );

		if ( weight > 0 ) {

			var interpolants = this._interpolants;
			var propertyMixers = this._propertyBindings;

			for ( var j = 0, m = interpolants.length; j !== m; ++ j ) {

				interpolants[ j ].evaluate( clipTime );
				propertyMixers[ j ].accumulate( accuIndex, weight );

			}

		}

	},

	_updateWeight: function( time ) {

		var weight = 0;

		if ( this.enabled ) {

			weight = this.weight;
			var interpolant = this._weightInterpolant;

			if ( interpolant !== null ) {

				var interpolantValue = interpolant.evaluate( time )[ 0 ];

				weight *= interpolantValue;

				if ( time > interpolant.parameterPositions[ 1 ] ) {

					this.stopFading();

					if ( interpolantValue === 0 ) {

						// faded out, disable
						this.enabled = false;

					}

				}

			}

		}

		this._effectiveWeight = weight;
		return weight;

	},

	_updateTimeScale: function( time ) {

		var timeScale = 0;

		if ( ! this.paused ) {

			timeScale = this.timeScale;

			var interpolant = this._timeScaleInterpolant;

			if ( interpolant !== null ) {

				var interpolantValue = interpolant.evaluate( time )[ 0 ];

				timeScale *= interpolantValue;

				if ( time > interpolant.parameterPositions[ 1 ] ) {

					this.stopWarping();

					if ( timeScale === 0 ) {

						// motion has halted, pause
						this.paused = true;

					} else {

						// warp done - apply final time scale
						this.timeScale = timeScale;

					}

				}

			}

		}

		this._effectiveTimeScale = timeScale;
		return timeScale;

	},

	_updateTime: function( deltaTime ) {

		var time = this.time + deltaTime;

		if ( deltaTime === 0 ) return time;

		var duration = this._clip.duration,

			loop = this.loop,
			loopCount = this._loopCount;

		if ( loop === LoopOnce ) {

			if ( loopCount === -1 ) {
				// just started

				this._loopCount = 0;
				this._setEndings( true, true, false );

			}

			handle_stop: {

				if ( time >= duration ) {

					time = duration;

				} else if ( time < 0 ) {

					time = 0;

				} else break handle_stop;

				if ( this.clampWhenFinished ) this.paused = true;
				else this.enabled = false;

				this._mixer.dispatchEvent( {
					type: 'finished', action: this,
					direction: deltaTime < 0 ? -1 : 1
				} );

			}

		} else { // repetitive Repeat or PingPong

			var pingPong = ( loop === LoopPingPong );

			if ( loopCount === -1 ) {
				// just started

				if ( deltaTime >= 0 ) {

					loopCount = 0;

					this._setEndings(
							true, this.repetitions === 0, pingPong );

				} else {

					// when looping in reverse direction, the initial
					// transition through zero counts as a repetition,
					// so leave loopCount at -1

					this._setEndings(
							this.repetitions === 0, true, pingPong );

				}

			}

			if ( time >= duration || time < 0 ) {
				// wrap around

				var loopDelta = Math.floor( time / duration ); // signed
				time -= duration * loopDelta;

				loopCount += Math.abs( loopDelta );

				var pending = this.repetitions - loopCount;

				if ( pending < 0 ) {
					// have to stop (switch state, clamp time, fire event)

					if ( this.clampWhenFinished ) this.paused = true;
					else this.enabled = false;

					time = deltaTime > 0 ? duration : 0;

					this._mixer.dispatchEvent( {
						type: 'finished', action: this,
						direction: deltaTime > 0 ? 1 : -1
					} );

				} else {
					// keep running

					if ( pending === 0 ) {
						// entering the last round

						var atStart = deltaTime < 0;
						this._setEndings( atStart, ! atStart, pingPong );

					} else {

						this._setEndings( false, false, pingPong );

					}

					this._loopCount = loopCount;

					this._mixer.dispatchEvent( {
						type: 'loop', action: this, loopDelta: loopDelta
					} );

				}

			}

			if ( pingPong && ( loopCount & 1 ) === 1 ) {
				// invert time for the "pong round"

				this.time = time;
				return duration - time;

			}

		}

		this.time = time;
		return time;

	},

	_setEndings: function( atStart, atEnd, pingPong ) {

		var settings = this._interpolantSettings;

		if ( pingPong ) {

			settings.endingStart 	= ZeroSlopeEnding;
			settings.endingEnd		= ZeroSlopeEnding;

		} else {

			// assuming for LoopOnce atStart == atEnd == true

			if ( atStart ) {

				settings.endingStart = this.zeroSlopeAtStart ?
						ZeroSlopeEnding : ZeroCurvatureEnding;

			} else {

				settings.endingStart = WrapAroundEnding;

			}

			if ( atEnd ) {

				settings.endingEnd = this.zeroSlopeAtEnd ?
						ZeroSlopeEnding : ZeroCurvatureEnding;

			} else {

				settings.endingEnd 	 = WrapAroundEnding;

			}

		}

	},

	_scheduleFading: function( duration, weightNow, weightThen ) {

		var mixer = this._mixer, now = mixer.time,
			interpolant = this._weightInterpolant;

		if ( interpolant === null ) {

			interpolant = mixer._lendControlInterpolant();
			this._weightInterpolant = interpolant;

		}

		var times = interpolant.parameterPositions,
			values = interpolant.sampleValues;

		times[ 0 ] = now; 				values[ 0 ] = weightNow;
		times[ 1 ] = now + duration;	values[ 1 ] = weightThen;

		return this;

	}

} );

/**
 *
 * Player for AnimationClips.
 *
 *
 * @author Ben Houston / http://clara.io/
 * @author David Sarno / http://lighthaus.us/
 * @author tschw
 */

function AnimationMixer( root ) {

	this._root = root;
	this._initMemoryManager();
	this._accuIndex = 0;

	this.time = 0;

	this.timeScale = 1.0;

}

Object.assign( AnimationMixer.prototype, EventDispatcher.prototype, {

	_bindAction: function ( action, prototypeAction ) {

		var root = action._localRoot || this._root,
			tracks = action._clip.tracks,
			nTracks = tracks.length,
			bindings = action._propertyBindings,
			interpolants = action._interpolants,
			rootUuid = root.uuid,
			bindingsByRoot = this._bindingsByRootAndName,
			bindingsByName = bindingsByRoot[ rootUuid ];

		if ( bindingsByName === undefined ) {

			bindingsByName = {};
			bindingsByRoot[ rootUuid ] = bindingsByName;

		}

		for ( var i = 0; i !== nTracks; ++ i ) {

			var track = tracks[ i ],
				trackName = track.name,
				binding = bindingsByName[ trackName ];

			if ( binding !== undefined ) {

				bindings[ i ] = binding;

			} else {

				binding = bindings[ i ];

				if ( binding !== undefined ) {

					// existing binding, make sure the cache knows

					if ( binding._cacheIndex === null ) {

						++ binding.referenceCount;
						this._addInactiveBinding( binding, rootUuid, trackName );

					}

					continue;

				}

				var path = prototypeAction && prototypeAction.
						_propertyBindings[ i ].binding.parsedPath;

				binding = new PropertyMixer(
					PropertyBinding.create( root, trackName, path ),
					track.ValueTypeName, track.getValueSize() );

				++ binding.referenceCount;
				this._addInactiveBinding( binding, rootUuid, trackName );

				bindings[ i ] = binding;

			}

			interpolants[ i ].resultBuffer = binding.buffer;

		}

	},

	_activateAction: function ( action ) {

		if ( ! this._isActiveAction( action ) ) {

			if ( action._cacheIndex === null ) {

				// this action has been forgotten by the cache, but the user
				// appears to be still using it -> rebind

				var rootUuid = ( action._localRoot || this._root ).uuid,
					clipUuid = action._clip.uuid,
					actionsForClip = this._actionsByClip[ clipUuid ];

				this._bindAction( action,
					actionsForClip && actionsForClip.knownActions[ 0 ] );

				this._addInactiveAction( action, clipUuid, rootUuid );

			}

			var bindings = action._propertyBindings;

			// increment reference counts / sort out state
			for ( var i = 0, n = bindings.length; i !== n; ++ i ) {

				var binding = bindings[ i ];

				if ( binding.useCount ++ === 0 ) {

					this._lendBinding( binding );
					binding.saveOriginalState();

				}

			}

			this._lendAction( action );

		}

	},

	_deactivateAction: function ( action ) {

		if ( this._isActiveAction( action ) ) {

			var bindings = action._propertyBindings;

			// decrement reference counts / sort out state
			for ( var i = 0, n = bindings.length; i !== n; ++ i ) {

				var binding = bindings[ i ];

				if ( -- binding.useCount === 0 ) {

					binding.restoreOriginalState();
					this._takeBackBinding( binding );

				}

			}

			this._takeBackAction( action );

		}

	},

	// Memory manager

	_initMemoryManager: function () {

		this._actions = []; // 'nActiveActions' followed by inactive ones
		this._nActiveActions = 0;

		this._actionsByClip = {};
		// inside:
		// {
		// 		knownActions: Array< AnimationAction >	- used as prototypes
		// 		actionByRoot: AnimationAction			- lookup
		// }


		this._bindings = []; // 'nActiveBindings' followed by inactive ones
		this._nActiveBindings = 0;

		this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer >


		this._controlInterpolants = []; // same game as above
		this._nActiveControlInterpolants = 0;

		var scope = this;

		this.stats = {

			actions: {
				get total() { return scope._actions.length; },
				get inUse() { return scope._nActiveActions; }
			},
			bindings: {
				get total() { return scope._bindings.length; },
				get inUse() { return scope._nActiveBindings; }
			},
			controlInterpolants: {
				get total() { return scope._controlInterpolants.length; },
				get inUse() { return scope._nActiveControlInterpolants; }
			}

		};

	},

	// Memory management for AnimationAction objects

	_isActiveAction: function ( action ) {

		var index = action._cacheIndex;
		return index !== null && index < this._nActiveActions;

	},

	_addInactiveAction: function ( action, clipUuid, rootUuid ) {

		var actions = this._actions,
			actionsByClip = this._actionsByClip,
			actionsForClip = actionsByClip[ clipUuid ];

		if ( actionsForClip === undefined ) {

			actionsForClip = {

				knownActions: [ action ],
				actionByRoot: {}

			};

			action._byClipCacheIndex = 0;

			actionsByClip[ clipUuid ] = actionsForClip;

		} else {

			var knownActions = actionsForClip.knownActions;

			action._byClipCacheIndex = knownActions.length;
			knownActions.push( action );

		}

		action._cacheIndex = actions.length;
		actions.push( action );

		actionsForClip.actionByRoot[ rootUuid ] = action;

	},

	_removeInactiveAction: function ( action ) {

		var actions = this._actions,
			lastInactiveAction = actions[ actions.length - 1 ],
			cacheIndex = action._cacheIndex;

		lastInactiveAction._cacheIndex = cacheIndex;
		actions[ cacheIndex ] = lastInactiveAction;
		actions.pop();

		action._cacheIndex = null;


		var clipUuid = action._clip.uuid,
			actionsByClip = this._actionsByClip,
			actionsForClip = actionsByClip[ clipUuid ],
			knownActionsForClip = actionsForClip.knownActions,

			lastKnownAction =
				knownActionsForClip[ knownActionsForClip.length - 1 ],

			byClipCacheIndex = action._byClipCacheIndex;

		lastKnownAction._byClipCacheIndex = byClipCacheIndex;
		knownActionsForClip[ byClipCacheIndex ] = lastKnownAction;
		knownActionsForClip.pop();

		action._byClipCacheIndex = null;


		var actionByRoot = actionsForClip.actionByRoot,
			rootUuid = ( action._localRoot || this._root ).uuid;

		delete actionByRoot[ rootUuid ];

		if ( knownActionsForClip.length === 0 ) {

			delete actionsByClip[ clipUuid ];

		}

		this._removeInactiveBindingsForAction( action );

	},

	_removeInactiveBindingsForAction: function ( action ) {

		var bindings = action._propertyBindings;
		for ( var i = 0, n = bindings.length; i !== n; ++ i ) {

			var binding = bindings[ i ];

			if ( -- binding.referenceCount === 0 ) {

				this._removeInactiveBinding( binding );

			}

		}

	},

	_lendAction: function ( action ) {

		// [ active actions |  inactive actions  ]
		// [  active actions >| inactive actions ]
		//                 s        a
		//                  <-swap->
		//                 a        s

		var actions = this._actions,
			prevIndex = action._cacheIndex,

			lastActiveIndex = this._nActiveActions ++,

			firstInactiveAction = actions[ lastActiveIndex ];

		action._cacheIndex = lastActiveIndex;
		actions[ lastActiveIndex ] = action;

		firstInactiveAction._cacheIndex = prevIndex;
		actions[ prevIndex ] = firstInactiveAction;

	},

	_takeBackAction: function ( action ) {

		// [  active actions  | inactive actions ]
		// [ active actions |< inactive actions  ]
		//        a        s
		//         <-swap->
		//        s        a

		var actions = this._actions,
			prevIndex = action._cacheIndex,

			firstInactiveIndex = -- this._nActiveActions,

			lastActiveAction = actions[ firstInactiveIndex ];

		action._cacheIndex = firstInactiveIndex;
		actions[ firstInactiveIndex ] = action;

		lastActiveAction._cacheIndex = prevIndex;
		actions[ prevIndex ] = lastActiveAction;

	},

	// Memory management for PropertyMixer objects

	_addInactiveBinding: function ( binding, rootUuid, trackName ) {

		var bindingsByRoot = this._bindingsByRootAndName,
			bindingByName = bindingsByRoot[ rootUuid ],

			bindings = this._bindings;

		if ( bindingByName === undefined ) {

			bindingByName = {};
			bindingsByRoot[ rootUuid ] = bindingByName;

		}

		bindingByName[ trackName ] = binding;

		binding._cacheIndex = bindings.length;
		bindings.push( binding );

	},

	_removeInactiveBinding: function ( binding ) {

		var bindings = this._bindings,
			propBinding = binding.binding,
			rootUuid = propBinding.rootNode.uuid,
			trackName = propBinding.path,
			bindingsByRoot = this._bindingsByRootAndName,
			bindingByName = bindingsByRoot[ rootUuid ],

			lastInactiveBinding = bindings[ bindings.length - 1 ],
			cacheIndex = binding._cacheIndex;

		lastInactiveBinding._cacheIndex = cacheIndex;
		bindings[ cacheIndex ] = lastInactiveBinding;
		bindings.pop();

		delete bindingByName[ trackName ];

		remove_empty_map: {

			for ( var _ in bindingByName ) break remove_empty_map;

			delete bindingsByRoot[ rootUuid ];

		}

	},

	_lendBinding: function ( binding ) {

		var bindings = this._bindings,
			prevIndex = binding._cacheIndex,

			lastActiveIndex = this._nActiveBindings ++,

			firstInactiveBinding = bindings[ lastActiveIndex ];

		binding._cacheIndex = lastActiveIndex;
		bindings[ lastActiveIndex ] = binding;

		firstInactiveBinding._cacheIndex = prevIndex;
		bindings[ prevIndex ] = firstInactiveBinding;

	},

	_takeBackBinding: function ( binding ) {

		var bindings = this._bindings,
			prevIndex = binding._cacheIndex,

			firstInactiveIndex = -- this._nActiveBindings,

			lastActiveBinding = bindings[ firstInactiveIndex ];

		binding._cacheIndex = firstInactiveIndex;
		bindings[ firstInactiveIndex ] = binding;

		lastActiveBinding._cacheIndex = prevIndex;
		bindings[ prevIndex ] = lastActiveBinding;

	},


	// Memory management of Interpolants for weight and time scale

	_lendControlInterpolant: function () {

		var interpolants = this._controlInterpolants,
			lastActiveIndex = this._nActiveControlInterpolants ++,
			interpolant = interpolants[ lastActiveIndex ];

		if ( interpolant === undefined ) {

			interpolant = new LinearInterpolant(
				new Float32Array( 2 ), new Float32Array( 2 ),
				1, this._controlInterpolantsResultBuffer );

			interpolant.__cacheIndex = lastActiveIndex;
			interpolants[ lastActiveIndex ] = interpolant;

		}

		return interpolant;

	},

	_takeBackControlInterpolant: function ( interpolant ) {

		var interpolants = this._controlInterpolants,
			prevIndex = interpolant.__cacheIndex,

			firstInactiveIndex = -- this._nActiveControlInterpolants,

			lastActiveInterpolant = interpolants[ firstInactiveIndex ];

		interpolant.__cacheIndex = firstInactiveIndex;
		interpolants[ firstInactiveIndex ] = interpolant;

		lastActiveInterpolant.__cacheIndex = prevIndex;
		interpolants[ prevIndex ] = lastActiveInterpolant;

	},

	_controlInterpolantsResultBuffer: new Float32Array( 1 ),

	// return an action for a clip optionally using a custom root target
	// object (this method allocates a lot of dynamic memory in case a
	// previously unknown clip/root combination is specified)
	clipAction: function ( clip, optionalRoot ) {

		var root = optionalRoot || this._root,
			rootUuid = root.uuid,

			clipObject = typeof clip === 'string' ?
				AnimationClip.findByName( root, clip ) : clip,

			clipUuid = clipObject !== null ? clipObject.uuid : clip,

			actionsForClip = this._actionsByClip[ clipUuid ],
			prototypeAction = null;

		if ( actionsForClip !== undefined ) {

			var existingAction =
					actionsForClip.actionByRoot[ rootUuid ];

			if ( existingAction !== undefined ) {

				return existingAction;

			}

			// we know the clip, so we don't have to parse all
			// the bindings again but can just copy
			prototypeAction = actionsForClip.knownActions[ 0 ];

			// also, take the clip from the prototype action
			if ( clipObject === null )
				clipObject = prototypeAction._clip;

		}

		// clip must be known when specified via string
		if ( clipObject === null ) return null;

		// allocate all resources required to run it
		var newAction = new AnimationAction( this, clipObject, optionalRoot );

		this._bindAction( newAction, prototypeAction );

		// and make the action known to the memory manager
		this._addInactiveAction( newAction, clipUuid, rootUuid );

		return newAction;

	},

	// get an existing action
	existingAction: function ( clip, optionalRoot ) {

		var root = optionalRoot || this._root,
			rootUuid = root.uuid,

			clipObject = typeof clip === 'string' ?
				AnimationClip.findByName( root, clip ) : clip,

			clipUuid = clipObject ? clipObject.uuid : clip,

			actionsForClip = this._actionsByClip[ clipUuid ];

		if ( actionsForClip !== undefined ) {

			return actionsForClip.actionByRoot[ rootUuid ] || null;

		}

		return null;

	},

	// deactivates all previously scheduled actions
	stopAllAction: function () {

		var actions = this._actions,
			nActions = this._nActiveActions,
			bindings = this._bindings,
			nBindings = this._nActiveBindings;

		this._nActiveActions = 0;
		this._nActiveBindings = 0;

		for ( var i = 0; i !== nActions; ++ i ) {

			actions[ i ].reset();

		}

		for ( var i = 0; i !== nBindings; ++ i ) {

			bindings[ i ].useCount = 0;

		}

		return this;

	},

	// advance the time and update apply the animation
	update: function ( deltaTime ) {

		deltaTime *= this.timeScale;

		var actions = this._actions,
			nActions = this._nActiveActions,

			time = this.time += deltaTime,
			timeDirection = Math.sign( deltaTime ),

			accuIndex = this._accuIndex ^= 1;

		// run active actions

		for ( var i = 0; i !== nActions; ++ i ) {

			var action = actions[ i ];

			action._update( time, deltaTime, timeDirection, accuIndex );

		}

		// update scene graph

		var bindings = this._bindings,
			nBindings = this._nActiveBindings;

		for ( var i = 0; i !== nBindings; ++ i ) {

			bindings[ i ].apply( accuIndex );

		}

		return this;

	},

	// return this mixer's root target object
	getRoot: function () {

		return this._root;

	},

	// free all resources specific to a particular clip
	uncacheClip: function ( clip ) {

		var actions = this._actions,
			clipUuid = clip.uuid,
			actionsByClip = this._actionsByClip,
			actionsForClip = actionsByClip[ clipUuid ];

		if ( actionsForClip !== undefined ) {

			// note: just calling _removeInactiveAction would mess up the
			// iteration state and also require updating the state we can
			// just throw away

			var actionsToRemove = actionsForClip.knownActions;

			for ( var i = 0, n = actionsToRemove.length; i !== n; ++ i ) {

				var action = actionsToRemove[ i ];

				this._deactivateAction( action );

				var cacheIndex = action._cacheIndex,
					lastInactiveAction = actions[ actions.length - 1 ];

				action._cacheIndex = null;
				action._byClipCacheIndex = null;

				lastInactiveAction._cacheIndex = cacheIndex;
				actions[ cacheIndex ] = lastInactiveAction;
				actions.pop();

				this._removeInactiveBindingsForAction( action );

			}

			delete actionsByClip[ clipUuid ];

		}

	},

	// free all resources specific to a particular root target object
	uncacheRoot: function ( root ) {

		var rootUuid = root.uuid,
			actionsByClip = this._actionsByClip;

		for ( var clipUuid in actionsByClip ) {

			var actionByRoot = actionsByClip[ clipUuid ].actionByRoot,
				action = actionByRoot[ rootUuid ];

			if ( action !== undefined ) {

				this._deactivateAction( action );
				this._removeInactiveAction( action );

			}

		}

		var bindingsByRoot = this._bindingsByRootAndName,
			bindingByName = bindingsByRoot[ rootUuid ];

		if ( bindingByName !== undefined ) {

			for ( var trackName in bindingByName ) {

				var binding = bindingByName[ trackName ];
				binding.restoreOriginalState();
				this._removeInactiveBinding( binding );

			}

		}

	},

	// remove a targeted clip from the cache
	uncacheAction: function ( clip, optionalRoot ) {

		var action = this.existingAction( clip, optionalRoot );

		if ( action !== null ) {

			this._deactivateAction( action );
			this._removeInactiveAction( action );

		}

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 */

function Uniform( value ) {

	if ( typeof value === 'string' ) {

		console.warn( 'THREE.Uniform: Type parameter is no longer needed.' );
		value = arguments[ 1 ];

	}

	this.value = value;

}

Uniform.prototype.clone = function () {

	return new Uniform( this.value.clone === undefined ? this.value : this.value.clone() );

};

/**
 * @author benaadams / https://twitter.com/ben_a_adams
 */

function InstancedBufferGeometry() {

	BufferGeometry.call( this );

	this.type = 'InstancedBufferGeometry';
	this.maxInstancedCount = undefined;

}

InstancedBufferGeometry.prototype = Object.assign( Object.create( BufferGeometry.prototype ), {

	constructor: InstancedBufferGeometry,

	isInstancedBufferGeometry: true,

	addGroup: function ( start, count, materialIndex ) {

		this.groups.push( {

			start: start,
			count: count,
			materialIndex: materialIndex

		} );

	},

	copy: function ( source ) {

		var index = source.index;

		if ( index !== null ) {

			this.setIndex( index.clone() );

		}

		var attributes = source.attributes;

		for ( var name in attributes ) {

			var attribute = attributes[ name ];
			this.addAttribute( name, attribute.clone() );

		}

		var groups = source.groups;

		for ( var i = 0, l = groups.length; i < l; i ++ ) {

			var group = groups[ i ];
			this.addGroup( group.start, group.count, group.materialIndex );

		}

		return this;

	}

} );

/**
 * @author benaadams / https://twitter.com/ben_a_adams
 */

function InterleavedBufferAttribute( interleavedBuffer, itemSize, offset, normalized ) {

	this.uuid = _Math.generateUUID();

	this.data = interleavedBuffer;
	this.itemSize = itemSize;
	this.offset = offset;

	this.normalized = normalized === true;

}

Object.defineProperties( InterleavedBufferAttribute.prototype, {

	count: {

		get: function () {

			return this.data.count;

		}

	},

	array: {

		get: function () {

			return this.data.array;

		}

	}

} );

Object.assign( InterleavedBufferAttribute.prototype, {

	isInterleavedBufferAttribute: true,

	setX: function ( index, x ) {

		this.data.array[ index * this.data.stride + this.offset ] = x;

		return this;

	},

	setY: function ( index, y ) {

		this.data.array[ index * this.data.stride + this.offset + 1 ] = y;

		return this;

	},

	setZ: function ( index, z ) {

		this.data.array[ index * this.data.stride + this.offset + 2 ] = z;

		return this;

	},

	setW: function ( index, w ) {

		this.data.array[ index * this.data.stride + this.offset + 3 ] = w;

		return this;

	},

	getX: function ( index ) {

		return this.data.array[ index * this.data.stride + this.offset ];

	},

	getY: function ( index ) {

		return this.data.array[ index * this.data.stride + this.offset + 1 ];

	},

	getZ: function ( index ) {

		return this.data.array[ index * this.data.stride + this.offset + 2 ];

	},

	getW: function ( index ) {

		return this.data.array[ index * this.data.stride + this.offset + 3 ];

	},

	setXY: function ( index, x, y ) {

		index = index * this.data.stride + this.offset;

		this.data.array[ index + 0 ] = x;
		this.data.array[ index + 1 ] = y;

		return this;

	},

	setXYZ: function ( index, x, y, z ) {

		index = index * this.data.stride + this.offset;

		this.data.array[ index + 0 ] = x;
		this.data.array[ index + 1 ] = y;
		this.data.array[ index + 2 ] = z;

		return this;

	},

	setXYZW: function ( index, x, y, z, w ) {

		index = index * this.data.stride + this.offset;

		this.data.array[ index + 0 ] = x;
		this.data.array[ index + 1 ] = y;
		this.data.array[ index + 2 ] = z;
		this.data.array[ index + 3 ] = w;

		return this;

	}

} );

/**
 * @author benaadams / https://twitter.com/ben_a_adams
 */

function InterleavedBuffer( array, stride ) {

	this.uuid = _Math.generateUUID();

	this.array = array;
	this.stride = stride;
	this.count = array !== undefined ? array.length / stride : 0;

	this.dynamic = false;
	this.updateRange = { offset: 0, count: - 1 };

	this.onUploadCallback = function () {};

	this.version = 0;

}

Object.defineProperty( InterleavedBuffer.prototype, 'needsUpdate', {

	set: function ( value ) {

		if ( value === true ) this.version ++;

	}

} );

Object.assign( InterleavedBuffer.prototype, {

	isInterleavedBuffer: true,

	setArray: function ( array ) {

		if ( Array.isArray( array ) ) {

			throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );

		}

		this.count = array !== undefined ? array.length / this.stride : 0;
		this.array = array;

	},

	setDynamic: function ( value ) {

		this.dynamic = value;

		return this;

	},

	copy: function ( source ) {

		this.array = new source.array.constructor( source.array );
		this.count = source.count;
		this.stride = source.stride;
		this.dynamic = source.dynamic;

		return this;

	},

	copyAt: function ( index1, attribute, index2 ) {

		index1 *= this.stride;
		index2 *= attribute.stride;

		for ( var i = 0, l = this.stride; i < l; i ++ ) {

			this.array[ index1 + i ] = attribute.array[ index2 + i ];

		}

		return this;

	},

	set: function ( value, offset ) {

		if ( offset === undefined ) offset = 0;

		this.array.set( value, offset );

		return this;

	},

	clone: function () {

		return new this.constructor().copy( this );

	},

	onUpload: function ( callback ) {

		this.onUploadCallback = callback;

		return this;

	}

} );

/**
 * @author benaadams / https://twitter.com/ben_a_adams
 */

function InstancedInterleavedBuffer( array, stride, meshPerAttribute ) {

	InterleavedBuffer.call( this, array, stride );

	this.meshPerAttribute = meshPerAttribute || 1;

}

InstancedInterleavedBuffer.prototype = Object.assign( Object.create( InterleavedBuffer.prototype ), {

	constructor: InstancedInterleavedBuffer,

	isInstancedInterleavedBuffer: true,

	copy: function ( source ) {

		InterleavedBuffer.prototype.copy.call( this, source );

		this.meshPerAttribute = source.meshPerAttribute;

		return this;

	}

} );

/**
 * @author benaadams / https://twitter.com/ben_a_adams
 */

function InstancedBufferAttribute( array, itemSize, meshPerAttribute ) {

	BufferAttribute.call( this, array, itemSize );

	this.meshPerAttribute = meshPerAttribute || 1;

}

InstancedBufferAttribute.prototype = Object.assign( Object.create( BufferAttribute.prototype ), {

	constructor: InstancedBufferAttribute,

	isInstancedBufferAttribute: true,

	copy: function ( source ) {

		BufferAttribute.prototype.copy.call( this, source );

		this.meshPerAttribute = source.meshPerAttribute;

		return this;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 * @author bhouston / http://clara.io/
 * @author stephomi / http://stephaneginier.com/
 */

function Raycaster( origin, direction, near, far ) {

	this.ray = new Ray( origin, direction );
	// direction is assumed to be normalized (for accurate distance calculations)

	this.near = near || 0;
	this.far = far || Infinity;

	this.params = {
		Mesh: {},
		Line: {},
		LOD: {},
		Points: { threshold: 1 },
		Sprite: {}
	};

	Object.defineProperties( this.params, {
		PointCloud: {
			get: function () {
				console.warn( 'THREE.Raycaster: params.PointCloud has been renamed to params.Points.' );
				return this.Points;
			}
		}
	} );

}

function ascSort( a, b ) {

	return a.distance - b.distance;

}

function intersectObject( object, raycaster, intersects, recursive ) {

	if ( object.visible === false ) return;

	object.raycast( raycaster, intersects );

	if ( recursive === true ) {

		var children = object.children;

		for ( var i = 0, l = children.length; i < l; i ++ ) {

			intersectObject( children[ i ], raycaster, intersects, true );

		}

	}

}

Object.assign( Raycaster.prototype, {

	linePrecision: 1,

	set: function ( origin, direction ) {

		// direction is assumed to be normalized (for accurate distance calculations)

		this.ray.set( origin, direction );

	},

	setFromCamera: function ( coords, camera ) {

		if ( ( camera && camera.isPerspectiveCamera ) ) {

			this.ray.origin.setFromMatrixPosition( camera.matrixWorld );
			this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize();

		} else if ( ( camera && camera.isOrthographicCamera ) ) {

			this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera
			this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld );

		} else {

			console.error( 'THREE.Raycaster: Unsupported camera type.' );

		}

	},

	intersectObject: function ( object, recursive ) {

		var intersects = [];

		intersectObject( object, this, intersects, recursive );

		intersects.sort( ascSort );

		return intersects;

	},

	intersectObjects: function ( objects, recursive ) {

		var intersects = [];

		if ( Array.isArray( objects ) === false ) {

			console.warn( 'THREE.Raycaster.intersectObjects: objects is not an Array.' );
			return intersects;

		}

		for ( var i = 0, l = objects.length; i < l; i ++ ) {

			intersectObject( objects[ i ], this, intersects, recursive );

		}

		intersects.sort( ascSort );

		return intersects;

	}

} );

/**
 * @author alteredq / http://alteredqualia.com/
 */

function Clock( autoStart ) {

	this.autoStart = ( autoStart !== undefined ) ? autoStart : true;

	this.startTime = 0;
	this.oldTime = 0;
	this.elapsedTime = 0;

	this.running = false;

}

Object.assign( Clock.prototype, {

	start: function () {

		this.startTime = ( typeof performance === 'undefined' ? Date : performance ).now(); // see #10732

		this.oldTime = this.startTime;
		this.elapsedTime = 0;
		this.running = true;

	},

	stop: function () {

		this.getElapsedTime();
		this.running = false;
		this.autoStart = false;

	},

	getElapsedTime: function () {

		this.getDelta();
		return this.elapsedTime;

	},

	getDelta: function () {

		var diff = 0;

		if ( this.autoStart && ! this.running ) {

			this.start();
			return 0;

		}

		if ( this.running ) {

			var newTime = ( typeof performance === 'undefined' ? Date : performance ).now();

			diff = ( newTime - this.oldTime ) / 1000;
			this.oldTime = newTime;

			this.elapsedTime += diff;

		}

		return diff;

	}

} );

/**
 * @author bhouston / http://clara.io
 * @author WestLangley / http://github.com/WestLangley
 *
 * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system
 *
 * The poles (phi) are at the positive and negative y axis.
 * The equator starts at positive z.
 */

function Spherical( radius, phi, theta ) {

	this.radius = ( radius !== undefined ) ? radius : 1.0;
	this.phi = ( phi !== undefined ) ? phi : 0; // up / down towards top and bottom pole
	this.theta = ( theta !== undefined ) ? theta : 0; // around the equator of the sphere

	return this;

}

Object.assign( Spherical.prototype, {

	set: function ( radius, phi, theta ) {

		this.radius = radius;
		this.phi = phi;
		this.theta = theta;

		return this;

	},

	clone: function () {

		return new this.constructor().copy( this );

	},

	copy: function ( other ) {

		this.radius = other.radius;
		this.phi = other.phi;
		this.theta = other.theta;

		return this;

	},

	// restrict phi to be betwee EPS and PI-EPS
	makeSafe: function() {

		var EPS = 0.000001;
		this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) );

		return this;

	},

	setFromVector3: function( vec3 ) {

		this.radius = vec3.length();

		if ( this.radius === 0 ) {

			this.theta = 0;
			this.phi = 0;

		} else {

			this.theta = Math.atan2( vec3.x, vec3.z ); // equator angle around y-up axis
			this.phi = Math.acos( _Math.clamp( vec3.y / this.radius, - 1, 1 ) ); // polar angle

		}

		return this;

	}

} );

/**
 * @author Mugen87 / https://github.com/Mugen87
 *
 * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system
 *
 */

function Cylindrical( radius, theta, y ) {

	this.radius = ( radius !== undefined ) ? radius : 1.0; // distance from the origin to a point in the x-z plane
	this.theta = ( theta !== undefined ) ? theta : 0; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis
	this.y = ( y !== undefined ) ? y : 0; // height above the x-z plane

	return this;

}

Object.assign( Cylindrical.prototype, {

	set: function ( radius, theta, y ) {

		this.radius = radius;
		this.theta = theta;
		this.y = y;

		return this;

	},

	clone: function () {

		return new this.constructor().copy( this );

	},

	copy: function ( other ) {

		this.radius = other.radius;
		this.theta = other.theta;
		this.y = other.y;

		return this;

	},

	setFromVector3: function( vec3 ) {

		this.radius = Math.sqrt( vec3.x * vec3.x + vec3.z * vec3.z );
		this.theta = Math.atan2( vec3.x, vec3.z );
		this.y = vec3.y;

		return this;

	}

} );

/**
 * @author mrdoob / http://mrdoob.com/
 * @author WestLangley / http://github.com/WestLangley
*/

function VertexNormalsHelper( object, size, hex, linewidth ) {

	this.object = object;

	this.size = ( size !== undefined ) ? size : 1;

	var color = ( hex !== undefined ) ? hex : 0xff0000;

	var width = ( linewidth !== undefined ) ? linewidth : 1;

	//

	var nNormals = 0;

	var objGeometry = this.object.geometry;

	if ( objGeometry && objGeometry.isGeometry ) {

		nNormals = objGeometry.faces.length * 3;

	} else if ( objGeometry && objGeometry.isBufferGeometry ) {

		nNormals = objGeometry.attributes.normal.count;

	}

	//

	var geometry = new BufferGeometry();

	var positions = new Float32BufferAttribute( nNormals * 2 * 3, 3 );

	geometry.addAttribute( 'position', positions );

	LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, linewidth: width } ) );

	//

	this.matrixAutoUpdate = false;

	this.update();

}

VertexNormalsHelper.prototype = Object.create( LineSegments.prototype );
VertexNormalsHelper.prototype.constructor = VertexNormalsHelper;

VertexNormalsHelper.prototype.update = ( function () {

	var v1 = new Vector3();
	var v2 = new Vector3();
	var normalMatrix = new Matrix3();

	return function update() {

		var keys = [ 'a', 'b', 'c' ];

		this.object.updateMatrixWorld( true );

		normalMatrix.getNormalMatrix( this.object.matrixWorld );

		var matrixWorld = this.object.matrixWorld;

		var position = this.geometry.attributes.position;

		//

		var objGeometry = this.object.geometry;

		if ( objGeometry && objGeometry.isGeometry ) {

			var vertices = objGeometry.vertices;

			var faces = objGeometry.faces;

			var idx = 0;

			for ( var i = 0, l = faces.length; i < l; i ++ ) {

				var face = faces[ i ];

				for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {

					var vertex = vertices[ face[ keys[ j ] ] ];

					var normal = face.vertexNormals[ j ];

					v1.copy( vertex ).applyMatrix4( matrixWorld );

					v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 );

					position.setXYZ( idx, v1.x, v1.y, v1.z );

					idx = idx + 1;

					position.setXYZ( idx, v2.x, v2.y, v2.z );

					idx = idx + 1;

				}

			}

		} else if ( objGeometry && objGeometry.isBufferGeometry ) {

			var objPos = objGeometry.attributes.position;

			var objNorm = objGeometry.attributes.normal;

			var idx = 0;

			// for simplicity, ignore index and drawcalls, and render every normal

			for ( var j = 0, jl = objPos.count; j < jl; j ++ ) {

				v1.set( objPos.getX( j ), objPos.getY( j ), objPos.getZ( j ) ).applyMatrix4( matrixWorld );

				v2.set( objNorm.getX( j ), objNorm.getY( j ), objNorm.getZ( j ) );

				v2.applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 );

				position.setXYZ( idx, v1.x, v1.y, v1.z );

				idx = idx + 1;

				position.setXYZ( idx, v2.x, v2.y, v2.z );

				idx = idx + 1;

			}

		}

		position.needsUpdate = true;

	};

}() );

/**
 * @author Sean Griffin / http://twitter.com/sgrif
 * @author Michael Guerrero / http://realitymeltdown.com
 * @author mrdoob / http://mrdoob.com/
 * @author ikerr / http://verold.com
 * @author Mugen87 / https://github.com/Mugen87
 */

function getBoneList( object ) {

	var boneList = [];

	if ( object && object.isBone ) {

		boneList.push( object );

	}

	for ( var i = 0; i < object.children.length; i ++ ) {

		boneList.push.apply( boneList, getBoneList( object.children[ i ] ) );

	}

	return boneList;

}

function SkeletonHelper( object ) {

	var bones = getBoneList( object );

	var geometry = new BufferGeometry();

	var vertices = [];
	var colors = [];

	var color1 = new Color( 0, 0, 1 );
	var color2 = new Color( 0, 1, 0 );

	for ( var i = 0; i < bones.length; i ++ ) {

		var bone = bones[ i ];

		if ( bone.parent && bone.parent.isBone ) {

			vertices.push( 0, 0, 0 );
			vertices.push( 0, 0, 0 );
			colors.push( color1.r, color1.g, color1.b );
			colors.push( color2.r, color2.g, color2.b );

		}

	}

	geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
	geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

	var material = new LineBasicMaterial( { vertexColors: VertexColors, depthTest: false, depthWrite: false, transparent: true } );

	LineSegments.call( this, geometry, material );

	this.root = object;
	this.bones = bones;

	this.matrix = object.matrixWorld;
	this.matrixAutoUpdate = false;

	this.onBeforeRender();

}

SkeletonHelper.prototype = Object.create( LineSegments.prototype );
SkeletonHelper.prototype.constructor = SkeletonHelper;

SkeletonHelper.prototype.onBeforeRender = function () {

	var vector = new Vector3();

	var boneMatrix = new Matrix4();
	var matrixWorldInv = new Matrix4();

	return function onBeforeRender() {

		var bones = this.bones;

		var geometry = this.geometry;
		var position = geometry.getAttribute( 'position' );

		matrixWorldInv.getInverse( this.root.matrixWorld );

		for ( var i = 0, j = 0; i < bones.length; i ++ ) {

			var bone = bones[ i ];

			if ( bone.parent && bone.parent.isBone ) {

				boneMatrix.multiplyMatrices( matrixWorldInv, bone.matrixWorld );
				vector.setFromMatrixPosition( boneMatrix );
				position.setXYZ( j, vector.x, vector.y, vector.z );

				boneMatrix.multiplyMatrices( matrixWorldInv, bone.parent.matrixWorld );
				vector.setFromMatrixPosition( boneMatrix );
				position.setXYZ( j + 1, vector.x, vector.y, vector.z );

				j += 2;

			}

		}

		geometry.getAttribute( 'position' ).needsUpdate = true;

	};

}();

/**
 * @author abelnation / http://github.com/abelnation
 * @author Mugen87 / http://github.com/Mugen87
 * @author WestLangley / http://github.com/WestLangley
 */

/**
 * @author alteredq / http://alteredqualia.com/
 * @author mrdoob / http://mrdoob.com/
 * @author Mugen87 / https://github.com/Mugen87
 */

function HemisphereLightHelper( light, size ) {

	Object3D.call( this );

	this.light = light;
	this.light.updateMatrixWorld();

	this.matrix = light.matrixWorld;
	this.matrixAutoUpdate = false;

	var geometry = new OctahedronBufferGeometry( size );
	geometry.rotateY( Math.PI * 0.5 );

	var material = new MeshBasicMaterial( { vertexColors: VertexColors, wireframe: true } );

	var position = geometry.getAttribute( 'position' );
	var colors = new Float32Array( position.count * 3 );

	geometry.addAttribute( 'color', new BufferAttribute( colors, 3 ) );

	this.add( new Mesh( geometry, material ) );

	this.update();

}

HemisphereLightHelper.prototype = Object.create( Object3D.prototype );
HemisphereLightHelper.prototype.constructor = HemisphereLightHelper;

HemisphereLightHelper.prototype.dispose = function () {

	this.children[ 0 ].geometry.dispose();
	this.children[ 0 ].material.dispose();

};

HemisphereLightHelper.prototype.update = function () {

	var vector = new Vector3();

	var color1 = new Color();
	var color2 = new Color();

	return function update() {

		var mesh = this.children[ 0 ];

		var colors = mesh.geometry.getAttribute( 'color' );

		color1.copy( this.light.color );
		color2.copy( this.light.groundColor );

		for ( var i = 0, l = colors.count; i < l; i ++ ) {

			var color = ( i < ( l / 2 ) ) ? color1 : color2;

			colors.setXYZ( i, color.r, color.g, color.b );

		}

		mesh.lookAt( vector.setFromMatrixPosition( this.light.matrixWorld ).negate() );

		colors.needsUpdate = true;

	};

}();

/**
 * @author mrdoob / http://mrdoob.com/
 * @author WestLangley / http://github.com/WestLangley
*/

function FaceNormalsHelper( object, size, hex, linewidth ) {

	// FaceNormalsHelper only supports THREE.Geometry

	this.object = object;

	this.size = ( size !== undefined ) ? size : 1;

	var color = ( hex !== undefined ) ? hex : 0xffff00;

	var width = ( linewidth !== undefined ) ? linewidth : 1;

	//

	var nNormals = 0;

	var objGeometry = this.object.geometry;

	if ( objGeometry && objGeometry.isGeometry ) {

		nNormals = objGeometry.faces.length;

	} else {

		console.warn( 'THREE.FaceNormalsHelper: only THREE.Geometry is supported. Use THREE.VertexNormalsHelper, instead.' );

	}

	//

	var geometry = new BufferGeometry();

	var positions = new Float32BufferAttribute( nNormals * 2 * 3, 3 );

	geometry.addAttribute( 'position', positions );

	LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, linewidth: width } ) );

	//

	this.matrixAutoUpdate = false;
	this.update();

}

FaceNormalsHelper.prototype = Object.create( LineSegments.prototype );
FaceNormalsHelper.prototype.constructor = FaceNormalsHelper;

FaceNormalsHelper.prototype.update = ( function () {

	var v1 = new Vector3();
	var v2 = new Vector3();
	var normalMatrix = new Matrix3();

	return function update() {

		this.object.updateMatrixWorld( true );

		normalMatrix.getNormalMatrix( this.object.matrixWorld );

		var matrixWorld = this.object.matrixWorld;

		var position = this.geometry.attributes.position;

		//

		var objGeometry = this.object.geometry;

		var vertices = objGeometry.vertices;

		var faces = objGeometry.faces;

		var idx = 0;

		for ( var i = 0, l = faces.length; i < l; i ++ ) {

			var face = faces[ i ];

			var normal = face.normal;

			v1.copy( vertices[ face.a ] )
				.add( vertices[ face.b ] )
				.add( vertices[ face.c ] )
				.divideScalar( 3 )
				.applyMatrix4( matrixWorld );

			v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 );

			position.setXYZ( idx, v1.x, v1.y, v1.z );

			idx = idx + 1;

			position.setXYZ( idx, v2.x, v2.y, v2.z );

			idx = idx + 1;

		}

		position.needsUpdate = true;

	};

}() );

/**
 * @author alteredq / http://alteredqualia.com/
 * @author Mugen87 / https://github.com/Mugen87
 *
 *	- shows frustum, line of sight and up of the camera
 *	- suitable for fast updates
 * 	- based on frustum visualization in lightgl.js shadowmap example
 *		http://evanw.github.com/lightgl.js/tests/shadowmap.html
 */

function CameraHelper( camera ) {

	var geometry = new BufferGeometry();
	var material = new LineBasicMaterial( { color: 0xffffff, vertexColors: FaceColors } );

	var vertices = [];
	var colors = [];

	var pointMap = {};

	// colors

	var colorFrustum = new Color( 0xffaa00 );
	var colorCone = new Color( 0xff0000 );
	var colorUp = new Color( 0x00aaff );
	var colorTarget = new Color( 0xffffff );
	var colorCross = new Color( 0x333333 );

	// near

	addLine( "n1", "n2", colorFrustum );
	addLine( "n2", "n4", colorFrustum );
	addLine( "n4", "n3", colorFrustum );
	addLine( "n3", "n1", colorFrustum );

	// far

	addLine( "f1", "f2", colorFrustum );
	addLine( "f2", "f4", colorFrustum );
	addLine( "f4", "f3", colorFrustum );
	addLine( "f3", "f1", colorFrustum );

	// sides

	addLine( "n1", "f1", colorFrustum );
	addLine( "n2", "f2", colorFrustum );
	addLine( "n3", "f3", colorFrustum );
	addLine( "n4", "f4", colorFrustum );

	// cone

	addLine( "p", "n1", colorCone );
	addLine( "p", "n2", colorCone );
	addLine( "p", "n3", colorCone );
	addLine( "p", "n4", colorCone );

	// up

	addLine( "u1", "u2", colorUp );
	addLine( "u2", "u3", colorUp );
	addLine( "u3", "u1", colorUp );

	// target

	addLine( "c", "t", colorTarget );
	addLine( "p", "c", colorCross );

	// cross

	addLine( "cn1", "cn2", colorCross );
	addLine( "cn3", "cn4", colorCross );

	addLine( "cf1", "cf2", colorCross );
	addLine( "cf3", "cf4", colorCross );

	function addLine( a, b, color ) {

		addPoint( a, color );
		addPoint( b, color );

	}

	function addPoint( id, color ) {

		vertices.push( 0, 0, 0 );
		colors.push( color.r, color.g, color.b );

		if ( pointMap[ id ] === undefined ) {

			pointMap[ id ] = [];

		}

		pointMap[ id ].push( ( vertices.length / 3 ) - 1 );

	}

	geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
	geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

	LineSegments.call( this, geometry, material );

	this.camera = camera;
	if ( this.camera.updateProjectionMatrix ) this.camera.updateProjectionMatrix();

	this.matrix = camera.matrixWorld;
	this.matrixAutoUpdate = false;

	this.pointMap = pointMap;

	this.update();

}

CameraHelper.prototype = Object.create( LineSegments.prototype );
CameraHelper.prototype.constructor = CameraHelper;

CameraHelper.prototype.update = function () {

	var geometry, pointMap;

	var vector = new Vector3();
	var camera = new Camera();

	function setPoint( point, x, y, z ) {

		vector.set( x, y, z ).unproject( camera );

		var points = pointMap[ point ];

		if ( points !== undefined ) {

			var position = geometry.getAttribute( 'position' );

			for ( var i = 0, l = points.length; i < l; i ++ ) {

				position.setXYZ( points[ i ], vector.x, vector.y, vector.z );

			}

		}

	}

	return function update() {

		geometry = this.geometry;
		pointMap = this.pointMap;

		var w = 1, h = 1;

		// we need just camera projection matrix
		// world matrix must be identity

		camera.projectionMatrix.copy( this.camera.projectionMatrix );

		// center / target

		setPoint( "c", 0, 0, - 1 );
		setPoint( "t", 0, 0,  1 );

		// near

		setPoint( "n1", - w, - h, - 1 );
		setPoint( "n2",   w, - h, - 1 );
		setPoint( "n3", - w,   h, - 1 );
		setPoint( "n4",   w,   h, - 1 );

		// far

		setPoint( "f1", - w, - h, 1 );
		setPoint( "f2",   w, - h, 1 );
		setPoint( "f3", - w,   h, 1 );
		setPoint( "f4",   w,   h, 1 );

		// up

		setPoint( "u1",   w * 0.7, h * 1.1, - 1 );
		setPoint( "u2", - w * 0.7, h * 1.1, - 1 );
		setPoint( "u3",         0, h * 2,   - 1 );

		// cross

		setPoint( "cf1", - w,   0, 1 );
		setPoint( "cf2",   w,   0, 1 );
		setPoint( "cf3",   0, - h, 1 );
		setPoint( "cf4",   0,   h, 1 );

		setPoint( "cn1", - w,   0, - 1 );
		setPoint( "cn2",   w,   0, - 1 );
		setPoint( "cn3",   0, - h, - 1 );
		setPoint( "cn4",   0,   h, - 1 );

		geometry.getAttribute( 'position' ).needsUpdate = true;

	};

}();

/**
 * @author WestLangley / http://github.com/WestLangley
 * @author zz85 / http://github.com/zz85
 * @author bhouston / http://clara.io
 *
 * Creates an arrow for visualizing directions
 *
 * Parameters:
 *  dir - Vector3
 *  origin - Vector3
 *  length - Number
 *  color - color in hex value
 *  headLength - Number
 *  headWidth - Number
 */

/**
 * @author zz85 https://github.com/zz85
 *
 * Centripetal CatmullRom Curve - which is useful for avoiding
 * cusps and self-intersections in non-uniform catmull rom curves.
 * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
 *
 * curve.type accepts centripetal(default), chordal and catmullrom
 * curve.tension is used for catmullrom which defaults to 0.5
 */


/*
Based on an optimized c++ solution in
 - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/
 - http://ideone.com/NoEbVM

This CubicPoly class could be used for reusing some variables and calculations,
but for three.js curve use, it could be possible inlined and flatten into a single function call
which can be placed in CurveUtils.
*/

function CubicPoly() {

	var c0 = 0, c1 = 0, c2 = 0, c3 = 0;

	/*
	 * Compute coefficients for a cubic polynomial
	 *   p(s) = c0 + c1*s + c2*s^2 + c3*s^3
	 * such that
	 *   p(0) = x0, p(1) = x1
	 *  and
	 *   p'(0) = t0, p'(1) = t1.
	 */
	function init( x0, x1, t0, t1 ) {

		c0 = x0;
		c1 = t0;
		c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1;
		c3 = 2 * x0 - 2 * x1 + t0 + t1;

	}

	return {

		initCatmullRom: function ( x0, x1, x2, x3, tension ) {

			init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) );

		},

		initNonuniformCatmullRom: function ( x0, x1, x2, x3, dt0, dt1, dt2 ) {

			// compute tangents when parameterized in [t1,t2]
			var t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1;
			var t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2;

			// rescale tangents for parametrization in [0,1]
			t1 *= dt1;
			t2 *= dt1;

			init( x1, x2, t1, t2 );

		},

		calc: function ( t ) {

			var t2 = t * t;
			var t3 = t2 * t;
			return c0 + c1 * t + c2 * t2 + c3 * t3;

		}

	};

}

//

var tmp = new Vector3();
var px = new CubicPoly();
var py = new CubicPoly();
var pz = new CubicPoly();

function CatmullRomCurve3( points ) {

	Curve.call( this );

	if ( points.length < 2 ) console.warn( 'THREE.CatmullRomCurve3: Points array needs at least two entries.' );

	this.points = points || [];
	this.closed = false;

}

CatmullRomCurve3.prototype = Object.create( Curve.prototype );
CatmullRomCurve3.prototype.constructor = CatmullRomCurve3;

CatmullRomCurve3.prototype.getPoint = function ( t ) {

	var points = this.points;
	var l = points.length;

	var point = ( l - ( this.closed ? 0 : 1 ) ) * t;
	var intPoint = Math.floor( point );
	var weight = point - intPoint;

	if ( this.closed ) {

		intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / points.length ) + 1 ) * points.length;

	} else if ( weight === 0 && intPoint === l - 1 ) {

		intPoint = l - 2;
		weight = 1;

	}

	var p0, p1, p2, p3; // 4 points

	if ( this.closed || intPoint > 0 ) {

		p0 = points[ ( intPoint - 1 ) % l ];

	} else {

		// extrapolate first point
		tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] );
		p0 = tmp;

	}

	p1 = points[ intPoint % l ];
	p2 = points[ ( intPoint + 1 ) % l ];

	if ( this.closed || intPoint + 2 < l ) {

		p3 = points[ ( intPoint + 2 ) % l ];

	} else {

		// extrapolate last point
		tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] );
		p3 = tmp;

	}

	if ( this.type === undefined || this.type === 'centripetal' || this.type === 'chordal' ) {

		// init Centripetal / Chordal Catmull-Rom
		var pow = this.type === 'chordal' ? 0.5 : 0.25;
		var dt0 = Math.pow( p0.distanceToSquared( p1 ), pow );
		var dt1 = Math.pow( p1.distanceToSquared( p2 ), pow );
		var dt2 = Math.pow( p2.distanceToSquared( p3 ), pow );

		// safety check for repeated points
		if ( dt1 < 1e-4 ) dt1 = 1.0;
		if ( dt0 < 1e-4 ) dt0 = dt1;
		if ( dt2 < 1e-4 ) dt2 = dt1;

		px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 );
		py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 );
		pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 );

	} else if ( this.type === 'catmullrom' ) {

		var tension = this.tension !== undefined ? this.tension : 0.5;
		px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, tension );
		py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, tension );
		pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, tension );

	}

	return new Vector3( px.calc( weight ), py.calc( weight ), pz.calc( weight ) );

};

function CubicBezierCurve3( v0, v1, v2, v3 ) {

	Curve.call( this );

	this.v0 = v0;
	this.v1 = v1;
	this.v2 = v2;
	this.v3 = v3;

}

CubicBezierCurve3.prototype = Object.create( Curve.prototype );
CubicBezierCurve3.prototype.constructor = CubicBezierCurve3;

CubicBezierCurve3.prototype.getPoint = function ( t ) {

	var v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3;

	return new Vector3(
		CubicBezier( t, v0.x, v1.x, v2.x, v3.x ),
		CubicBezier( t, v0.y, v1.y, v2.y, v3.y ),
		CubicBezier( t, v0.z, v1.z, v2.z, v3.z )
	);

};

/**
 * @author mrdoob / http://mrdoob.com/
 */

























//





















//

Curve.create = function ( construct, getPoint ) {

	console.log( 'THREE.Curve.create() has been deprecated' );

	construct.prototype = Object.create( Curve.prototype );
	construct.prototype.constructor = construct;
	construct.prototype.getPoint = getPoint;

	return construct;

};

//



//



//

function Spline( points ) {

	console.warn( 'THREE.Spline has been removed. Use THREE.CatmullRomCurve3 instead.' );

	CatmullRomCurve3.call( this, points );
	this.type = 'catmullrom';

}

Spline.prototype = Object.create( CatmullRomCurve3.prototype );

Object.assign( Spline.prototype, {

	initFromArray: function ( a ) {

		console.error( 'THREE.Spline: .initFromArray() has been removed.' );

	},
	getControlPointsArray: function ( optionalTarget ) {

		console.error( 'THREE.Spline: .getControlPointsArray() has been removed.' );

	},
	reparametrizeByArcLength: function ( samplingCoef ) {

		console.error( 'THREE.Spline: .reparametrizeByArcLength() has been removed.' );

	}

} );

//




SkeletonHelper.prototype.update = function () {

	console.error( 'THREE.SkeletonHelper: update() no longer needs to be called.' );
	
};



//





//

Object.assign( Box2.prototype, {

	center: function ( optionalTarget ) {

		console.warn( 'THREE.Box2: .center() has been renamed to .getCenter().' );
		return this.getCenter( optionalTarget );

	},
	empty: function () {

		console.warn( 'THREE.Box2: .empty() has been renamed to .isEmpty().' );
		return this.isEmpty();

	},
	isIntersectionBox: function ( box ) {

		console.warn( 'THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().' );
		return this.intersectsBox( box );

	},
	size: function ( optionalTarget ) {

		console.warn( 'THREE.Box2: .size() has been renamed to .getSize().' );
		return this.getSize( optionalTarget );

	}
} );

Object.assign( Box3.prototype, {

	center: function ( optionalTarget ) {

		console.warn( 'THREE.Box3: .center() has been renamed to .getCenter().' );
		return this.getCenter( optionalTarget );

	},
	empty: function () {

		console.warn( 'THREE.Box3: .empty() has been renamed to .isEmpty().' );
		return this.isEmpty();

	},
	isIntersectionBox: function ( box ) {

		console.warn( 'THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().' );
		return this.intersectsBox( box );

	},
	isIntersectionSphere: function ( sphere ) {

		console.warn( 'THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().' );
		return this.intersectsSphere( sphere );

	},
	size: function ( optionalTarget ) {

		console.warn( 'THREE.Box3: .size() has been renamed to .getSize().' );
		return this.getSize( optionalTarget );

	}
} );

Line3.prototype.center = function ( optionalTarget ) {

	console.warn( 'THREE.Line3: .center() has been renamed to .getCenter().' );
	return this.getCenter( optionalTarget );

};

_Math.random16 = function () {

	console.warn( 'THREE.Math.random16() has been deprecated. Use Math.random() instead.' );
	return Math.random();

};

Object.assign( Matrix3.prototype, {

	flattenToArrayOffset: function ( array, offset ) {

		console.warn( "THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." );
		return this.toArray( array, offset );

	},
	multiplyVector3: function ( vector ) {

		console.warn( 'THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.' );
		return vector.applyMatrix3( this );

	},
	multiplyVector3Array: function ( a ) {

		console.error( 'THREE.Matrix3: .multiplyVector3Array() has been removed.'  );

	},
	applyToBuffer: function( buffer, offset, length ) {

		console.warn( 'THREE.Matrix3: .applyToBuffer() has been removed. Use matrix.applyToBufferAttribute( attribute ) instead.' );
		return this.applyToBufferAttribute( buffer );

	},
	applyToVector3Array: function( array, offset, length ) {

		console.error( 'THREE.Matrix3: .applyToVector3Array() has been removed.' );

	}

} );

Object.assign( Matrix4.prototype, {

	extractPosition: function ( m ) {

		console.warn( 'THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().' );
		return this.copyPosition( m );

	},
	flattenToArrayOffset: function ( array, offset ) {

		console.warn( "THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." );
		return this.toArray( array, offset );

	},
	getPosition: function () {

		var v1;

		return function getPosition() {

			if ( v1 === undefined ) v1 = new Vector3();
			console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' );
			return v1.setFromMatrixColumn( this, 3 );

		};

	}(),
	setRotationFromQuaternion: function ( q ) {

		console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' );
		return this.makeRotationFromQuaternion( q );

	},
	multiplyToArray: function () {

		console.warn( 'THREE.Matrix4: .multiplyToArray() has been removed.' );

	},
	multiplyVector3: function ( vector ) {

		console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
		return vector.applyMatrix4( this );

	},
	multiplyVector4: function ( vector ) {

		console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
		return vector.applyMatrix4( this );

	},
	multiplyVector3Array: function ( a ) {

		console.error( 'THREE.Matrix4: .multiplyVector3Array() has been removed.'  );

	},
	rotateAxis: function ( v ) {

		console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' );
		v.transformDirection( this );

	},
	crossVector: function ( vector ) {

		console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
		return vector.applyMatrix4( this );

	},
	translate: function () {

		console.error( 'THREE.Matrix4: .translate() has been removed.' );

	},
	rotateX: function () {

		console.error( 'THREE.Matrix4: .rotateX() has been removed.' );

	},
	rotateY: function () {

		console.error( 'THREE.Matrix4: .rotateY() has been removed.' );

	},
	rotateZ: function () {

		console.error( 'THREE.Matrix4: .rotateZ() has been removed.' );

	},
	rotateByAxis: function () {

		console.error( 'THREE.Matrix4: .rotateByAxis() has been removed.' );

	},
	applyToBuffer: function( buffer, offset, length ) {

		console.warn( 'THREE.Matrix4: .applyToBuffer() has been removed. Use matrix.applyToBufferAttribute( attribute ) instead.' );
		return this.applyToBufferAttribute( buffer );

	},
	applyToVector3Array: function( array, offset, length ) {

		console.error( 'THREE.Matrix4: .applyToVector3Array() has been removed.' );

	},
	makeFrustum: function( left, right, bottom, top, near, far ) {

		console.warn( 'THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.' );
		return this.makePerspective( left, right, top, bottom, near, far );

	}

} );

Plane.prototype.isIntersectionLine = function ( line ) {

	console.warn( 'THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().' );
	return this.intersectsLine( line );

};

Quaternion.prototype.multiplyVector3 = function ( vector ) {

	console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' );
	return vector.applyQuaternion( this );

};

Object.assign( Ray.prototype, {

	isIntersectionBox: function ( box ) {

		console.warn( 'THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().' );
		return this.intersectsBox( box );

	},
	isIntersectionPlane: function ( plane ) {

		console.warn( 'THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().' );
		return this.intersectsPlane( plane );

	},
	isIntersectionSphere: function ( sphere ) {

		console.warn( 'THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().' );
		return this.intersectsSphere( sphere );

	}

} );

Object.assign( Shape.prototype, {

	extrude: function ( options ) {

		console.warn( 'THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.' );
		return new ExtrudeGeometry( this, options );

	},
	makeGeometry: function ( options ) {

		console.warn( 'THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.' );
		return new ShapeGeometry( this, options );

	}

} );

Object.assign( Vector2.prototype, {

	fromAttribute: function ( attribute, index, offset ) {

		console.error( 'THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().' );
		return this.fromBufferAttribute( attribute, index, offset );

	}

} );

Object.assign( Vector3.prototype, {

	setEulerFromRotationMatrix: function () {

		console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' );

	},
	setEulerFromQuaternion: function () {

		console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' );

	},
	getPositionFromMatrix: function ( m ) {

		console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' );
		return this.setFromMatrixPosition( m );

	},
	getScaleFromMatrix: function ( m ) {

		console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' );
		return this.setFromMatrixScale( m );

	},
	getColumnFromMatrix: function ( index, matrix ) {

		console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' );
		return this.setFromMatrixColumn( matrix, index );

	},
	applyProjection: function ( m ) {

		console.warn( 'THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.' );
		return this.applyMatrix4( m );

	},
	fromAttribute: function ( attribute, index, offset ) {

		console.error( 'THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().' );
		return this.fromBufferAttribute( attribute, index, offset );

	}

} );

Object.assign( Vector4.prototype, {

	fromAttribute: function ( attribute, index, offset ) {

		console.error( 'THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().' );
		return this.fromBufferAttribute( attribute, index, offset );

	}

} );

//

Geometry.prototype.computeTangents = function () {

	console.warn( 'THREE.Geometry: .computeTangents() has been removed.' );

};

Object.assign( Object3D.prototype, {

	getChildByName: function ( name ) {

		console.warn( 'THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().' );
		return this.getObjectByName( name );

	},
	renderDepth: function () {

		console.warn( 'THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.' );

	},
	translate: function ( distance, axis ) {

		console.warn( 'THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.' );
		return this.translateOnAxis( axis, distance );

	}

} );

Object.defineProperties( Object3D.prototype, {

	eulerOrder: {
		get: function () {

			console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' );
			return this.rotation.order;

		},
		set: function ( value ) {

			console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' );
			this.rotation.order = value;

		}
	},
	useQuaternion: {
		get: function () {

			console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' );

		},
		set: function () {

			console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' );

		}
	}

} );

Object.defineProperties( LOD.prototype, {

	objects: {
		get: function () {

			console.warn( 'THREE.LOD: .objects has been renamed to .levels.' );
			return this.levels;

		}
	}

} );

Object.defineProperty( Skeleton.prototype, 'useVertexTexture', {

	get: function () {

		console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' );

	},
	set: function () {

		console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' );

	}

} );

Object.defineProperty( Curve.prototype, '__arcLengthDivisions', {

	get: function () {

		console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' );
		return this.arcLengthDivisions;

	},
	set: function ( value ) {

		console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' );
		this.arcLengthDivisions = value;

	}

} );

//

PerspectiveCamera.prototype.setLens = function ( focalLength, filmGauge ) {

	console.warn( "THREE.PerspectiveCamera.setLens is deprecated. " +
			"Use .setFocalLength and .filmGauge for a photographic setup." );

	if ( filmGauge !== undefined ) this.filmGauge = filmGauge;
	this.setFocalLength( focalLength );

};

//

Object.defineProperties( Light.prototype, {
	onlyShadow: {
		set: function () {

			console.warn( 'THREE.Light: .onlyShadow has been removed.' );

		}
	},
	shadowCameraFov: {
		set: function ( value ) {

			console.warn( 'THREE.Light: .shadowCameraFov is now .shadow.camera.fov.' );
			this.shadow.camera.fov = value;

		}
	},
	shadowCameraLeft: {
		set: function ( value ) {

			console.warn( 'THREE.Light: .shadowCameraLeft is now .shadow.camera.left.' );
			this.shadow.camera.left = value;

		}
	},
	shadowCameraRight: {
		set: function ( value ) {

			console.warn( 'THREE.Light: .shadowCameraRight is now .shadow.camera.right.' );
			this.shadow.camera.right = value;

		}
	},
	shadowCameraTop: {
		set: function ( value ) {

			console.warn( 'THREE.Light: .shadowCameraTop is now .shadow.camera.top.' );
			this.shadow.camera.top = value;

		}
	},
	shadowCameraBottom: {
		set: function ( value ) {

			console.warn( 'THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.' );
			this.shadow.camera.bottom = value;

		}
	},
	shadowCameraNear: {
		set: function ( value ) {

			console.warn( 'THREE.Light: .shadowCameraNear is now .shadow.camera.near.' );
			this.shadow.camera.near = value;

		}
	},
	shadowCameraFar: {
		set: function ( value ) {

			console.warn( 'THREE.Light: .shadowCameraFar is now .shadow.camera.far.' );
			this.shadow.camera.far = value;

		}
	},
	shadowCameraVisible: {
		set: function () {

			console.warn( 'THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.' );

		}
	},
	shadowBias: {
		set: function ( value ) {

			console.warn( 'THREE.Light: .shadowBias is now .shadow.bias.' );
			this.shadow.bias = value;

		}
	},
	shadowDarkness: {
		set: function () {

			console.warn( 'THREE.Light: .shadowDarkness has been removed.' );

		}
	},
	shadowMapWidth: {
		set: function ( value ) {

			console.warn( 'THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.' );
			this.shadow.mapSize.width = value;

		}
	},
	shadowMapHeight: {
		set: function ( value ) {

			console.warn( 'THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.' );
			this.shadow.mapSize.height = value;

		}
	}
} );

//

Object.defineProperties( BufferAttribute.prototype, {

	length: {
		get: function () {

			console.warn( 'THREE.BufferAttribute: .length has been deprecated. Use .count instead.' );
			return this.array.length;

		}
	}

} );

Object.assign( BufferGeometry.prototype, {

	addIndex: function ( index ) {

		console.warn( 'THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().' );
		this.setIndex( index );

	},
	addDrawCall: function ( start, count, indexOffset ) {

		if ( indexOffset !== undefined ) {

			console.warn( 'THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.' );

		}
		console.warn( 'THREE.BufferGeometry: .addDrawCall() is now .addGroup().' );
		this.addGroup( start, count );

	},
	clearDrawCalls: function () {

		console.warn( 'THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().' );
		this.clearGroups();

	},
	computeTangents: function () {

		console.warn( 'THREE.BufferGeometry: .computeTangents() has been removed.' );

	},
	computeOffsets: function () {

		console.warn( 'THREE.BufferGeometry: .computeOffsets() has been removed.' );

	}

} );

Object.defineProperties( BufferGeometry.prototype, {

	drawcalls: {
		get: function () {

			console.error( 'THREE.BufferGeometry: .drawcalls has been renamed to .groups.' );
			return this.groups;

		}
	},
	offsets: {
		get: function () {

			console.warn( 'THREE.BufferGeometry: .offsets has been renamed to .groups.' );
			return this.groups;

		}
	}

} );

//

Object.defineProperties( Uniform.prototype, {

	dynamic: {
		set: function () {

			console.warn( 'THREE.Uniform: .dynamic has been removed. Use object.onBeforeRender() instead.' );

		}
	},
	onUpdate: {
		value: function () {

			console.warn( 'THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.' );
			return this;

		}
	}

} );

//

Object.defineProperties( Material.prototype, {

	wrapAround: {
		get: function () {

			console.warn( 'THREE.Material: .wrapAround has been removed.' );

		},
		set: function () {

			console.warn( 'THREE.Material: .wrapAround has been removed.' );

		}
	},
	wrapRGB: {
		get: function () {

			console.warn( 'THREE.Material: .wrapRGB has been removed.' );
			return new Color();

		}
	}

} );

Object.defineProperties( MeshPhongMaterial.prototype, {

	metal: {
		get: function () {

			console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead.' );
			return false;

		},
		set: function () {

			console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead' );

		}
	}

} );

Object.defineProperties( ShaderMaterial.prototype, {

	derivatives: {
		get: function () {

			console.warn( 'THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' );
			return this.extensions.derivatives;

		},
		set: function ( value ) {

			console.warn( 'THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' );
			this.extensions.derivatives = value;

		}
	}

} );

//

Object.assign( WebGLRenderer.prototype, {

	getCurrentRenderTarget: function () {

		console.warn( 'THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().' );
		return this.getRenderTarget();

	},

	supportsFloatTextures: function () {

		console.warn( 'THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).' );
		return this.extensions.get( 'OES_texture_float' );

	},
	supportsHalfFloatTextures: function () {

		console.warn( 'THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).' );
		return this.extensions.get( 'OES_texture_half_float' );

	},
	supportsStandardDerivatives: function () {

		console.warn( 'THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).' );
		return this.extensions.get( 'OES_standard_derivatives' );

	},
	supportsCompressedTextureS3TC: function () {

		console.warn( 'THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).' );
		return this.extensions.get( 'WEBGL_compressed_texture_s3tc' );

	},
	supportsCompressedTexturePVRTC: function () {

		console.warn( 'THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).' );
		return this.extensions.get( 'WEBGL_compressed_texture_pvrtc' );

	},
	supportsBlendMinMax: function () {

		console.warn( 'THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).' );
		return this.extensions.get( 'EXT_blend_minmax' );

	},
	supportsVertexTextures: function () {

		console.warn( 'THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.' );
		return this.capabilities.vertexTextures;

	},
	supportsInstancedArrays: function () {

		console.warn( 'THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).' );
		return this.extensions.get( 'ANGLE_instanced_arrays' );

	},
	enableScissorTest: function ( boolean ) {

		console.warn( 'THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().' );
		this.setScissorTest( boolean );

	},
	initMaterial: function () {

		console.warn( 'THREE.WebGLRenderer: .initMaterial() has been removed.' );

	},
	addPrePlugin: function () {

		console.warn( 'THREE.WebGLRenderer: .addPrePlugin() has been removed.' );

	},
	addPostPlugin: function () {

		console.warn( 'THREE.WebGLRenderer: .addPostPlugin() has been removed.' );

	},
	updateShadowMap: function () {

		console.warn( 'THREE.WebGLRenderer: .updateShadowMap() has been removed.' );

	}

} );

Object.defineProperties( WebGLRenderer.prototype, {

	shadowMapEnabled: {
		get: function () {

			return this.shadowMap.enabled;

		},
		set: function ( value ) {

			console.warn( 'THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.' );
			this.shadowMap.enabled = value;

		}
	},
	shadowMapType: {
		get: function () {

			return this.shadowMap.type;

		},
		set: function ( value ) {

			console.warn( 'THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.' );
			this.shadowMap.type = value;

		}
	},
	shadowMapCullFace: {
		get: function () {

			return this.shadowMap.cullFace;

		},
		set: function ( value ) {

			console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace is now .shadowMap.cullFace.' );
			this.shadowMap.cullFace = value;

		}
	}
} );

Object.defineProperties( WebGLShadowMap.prototype, {

	cullFace: {
		get: function () {

			return this.renderReverseSided ? CullFaceFront : CullFaceBack;

		},
		set: function ( cullFace ) {

			var value = ( cullFace !== CullFaceBack );
			console.warn( "WebGLRenderer: .shadowMap.cullFace is deprecated. Set .shadowMap.renderReverseSided to " + value + "." );
			this.renderReverseSided = value;

		}
	}

} );

//

Object.defineProperties( WebGLRenderTarget.prototype, {

	wrapS: {
		get: function () {

			console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' );
			return this.texture.wrapS;

		},
		set: function ( value ) {

			console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' );
			this.texture.wrapS = value;

		}
	},
	wrapT: {
		get: function () {

			console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' );
			return this.texture.wrapT;

		},
		set: function ( value ) {

			console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' );
			this.texture.wrapT = value;

		}
	},
	magFilter: {
		get: function () {

			console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' );
			return this.texture.magFilter;

		},
		set: function ( value ) {

			console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' );
			this.texture.magFilter = value;

		}
	},
	minFilter: {
		get: function () {

			console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' );
			return this.texture.minFilter;

		},
		set: function ( value ) {

			console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' );
			this.texture.minFilter = value;

		}
	},
	anisotropy: {
		get: function () {

			console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' );
			return this.texture.anisotropy;

		},
		set: function ( value ) {

			console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' );
			this.texture.anisotropy = value;

		}
	},
	offset: {
		get: function () {

			console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' );
			return this.texture.offset;

		},
		set: function ( value ) {

			console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' );
			this.texture.offset = value;

		}
	},
	repeat: {
		get: function () {

			console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' );
			return this.texture.repeat;

		},
		set: function ( value ) {

			console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' );
			this.texture.repeat = value;

		}
	},
	format: {
		get: function () {

			console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' );
			return this.texture.format;

		},
		set: function ( value ) {

			console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' );
			this.texture.format = value;

		}
	},
	type: {
		get: function () {

			console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' );
			return this.texture.type;

		},
		set: function ( value ) {

			console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' );
			this.texture.type = value;

		}
	},
	generateMipmaps: {
		get: function () {

			console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' );
			return this.texture.generateMipmaps;

		},
		set: function ( value ) {

			console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' );
			this.texture.generateMipmaps = value;

		}
	}

} );

//

Audio.prototype.load = function ( file ) {

	console.warn( 'THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.' );
	var scope = this;
	var audioLoader = new AudioLoader();
	audioLoader.load( file, function ( buffer ) {

		scope.setBuffer( buffer );

	} );
	return this;

};

AudioAnalyser.prototype.getData = function () {

	console.warn( 'THREE.AudioAnalyser: .getData() is now .getFrequencyData().' );
	return this.getFrequencyData();

};

//





//



//

function AHI ( container ) {

	var stdWidth  = HudObject.stdWidth;
	var stdMargin = HudObject.stdMargin;

	Group.call( this );

	this.name = 'CV.AHI';
	this.domObjects = [];

	this.lastPitch = 0;

	// artificial horizon instrument
	var globe = new Group();

	var ring = new CylinderBufferGeometry( stdWidth * 0.90, stdWidth, 3, 32, 1, true );
	ring.rotateX( Math.PI / 2 );

	var sphere = new SphereBufferGeometry( stdWidth - 10, 31, 31 );
	var bar    = new Geometry();
	var marks  = new Geometry();

	var sv = sphere.getAttribute( 'position' ).count;

	var sphereColors = new BufferAttribute( new Float32Array( sv * 3 ), 3 );

	var colours = [];

	var c1 = ColourCache.hudBlue;
	var c2 = ColourCache.hudRed;

	var i;

	for ( i = 0; i < sv; i++ ) {

		colours.push( ( i < sv / 2 ) ? c1 : c2 );

	}

	sphere.addAttribute( 'color', sphereColors.copyColorsArray( colours ) );

	// view orinetation line
	bar.vertices.push( new Vector3( 4 - stdWidth, 0, stdWidth ) );
	bar.vertices.push( new Vector3( stdWidth - 4, 0, stdWidth ) );

	// pitch interval marks
	var m1 = new Vector3(  4, 0, stdWidth - 10 );
	var m2 = new Vector3( -4, 0, stdWidth - 10 );

	var xAxis = new Vector3( 1, 0, 0 );

	for ( i = 0; i < 12; i++ ) {

		var mn1 = m1.clone();
		var mn2 = m2.clone();

		if ( i % 3 === 0 ) {

			mn1.x =  7;
			mn2.x = -7;

		}

		mn1.applyAxisAngle( xAxis, i * Math.PI / 6 );
		mn2.applyAxisAngle( xAxis, i * Math.PI / 6 );

		marks.vertices.push( mn1 );
		marks.vertices.push( mn2 );

	}

	var mRing   = new Mesh( ring, new MeshPhongMaterial( { color: 0x888888, specular: 0x888888 } ) );
	var mSphere = new Mesh( sphere, new MeshPhongMaterial( { vertexColors: VertexColors, specular: 0x666666, shininess: 20 } ) );
	var mBar    = new LineSegments( bar,   new LineBasicMaterial( { color: 0xcccc00 } ) );
	var mMarks  = new LineSegments( marks, new LineBasicMaterial( { color: 0xffffff } ) );

	mSphere.rotateOnAxis( new Vector3( 0, 1, 0 ), Math.PI / 2 );
	mMarks.rotateOnAxis( new Vector3( 1, 0, 0 ), Math.PI / 2 );
	mRing.rotateOnAxis( new Vector3( 0, 0, 1 ), Math.PI / 8 );

	globe.add( mSphere );
	globe.add( mMarks );

	this.add( mRing );
	this.add( globe );
	this.add( mBar );

	var offset = stdWidth + stdMargin;

	this.translateX( -3 * offset );
	this.translateY( offset );

	var panel = document.createElement( 'div' );

	panel.classList.add( 'cv-ahi' );
	panel.textContent = '';

	container.appendChild( panel );

	this.globe = globe;
	this.txt = panel;

	this.domObjects.push( panel );

	this.addEventListener( 'removed', this.removeDomObjects );
	this.txt.textContent = '-90\u00B0';

	return this;

}

AHI.prototype = Object.create( Group.prototype );

Object.assign( AHI.prototype, HudObject.prototype );

AHI.prototype.constructor = AHI;

AHI.prototype.set = function () {

	var direction = new Vector3();
	var xAxis     = new Vector3( 1, 0, 0 );

	return function set ( vCamera ) {

		vCamera.getWorldDirection( direction );

		var pitch = Math.PI / 2 - direction.angleTo( upAxis );

		if ( pitch === this.lastPitch ) return;

		this.globe.rotateOnAxis( xAxis, pitch - this.lastPitch );
		this.lastPitch = pitch;

		this.txt.textContent = Math.round( _Math.radToDeg( pitch ) ) + '\u00B0';

	};

} ();



// EOF

function AngleScale ( container ) {

	var width  = container.clientWidth;
	var height = container.clientHeight;

	var stdWidth  = HudObject.stdWidth;
	var stdMargin = HudObject.stdMargin;

	var i, l;

	var geometry = new RingGeometry( 1, 40, 36, 1, Math.PI, Math.PI );
	var c = [];

	var pNormal = new Vector3( 1, 0, 0 );
	var hues = ColourCache.getColors( 'inclination' );

	var vertices = geometry.vertices;
	var legNormal = new Vector3();

	for ( i = 0, l = vertices.length; i < l; i++ ) {

		legNormal.copy( vertices[ i ] ).normalize();

		var dotProduct = legNormal.dot( pNormal );
		var hueIndex = Math.floor( 127 * 2 * Math.asin( Math.abs( dotProduct ) ) / Math.PI );

		c[ i ] = hues[ hueIndex ];

	}

	var faces = geometry.faces, f;

	for ( i = 0, l = faces.length; i < l; i++ ) {

		f = faces[ i ];

		f.vertexColors = [ c[ f.a ], c[ f.b ], c[ f.c ] ];

	}

	geometry.colorsNeedUpdate = true;

	Mesh.call( this, geometry, new MeshBasicMaterial( { color: 0xffffff, vertexColors: VertexColors, side: FrontSide } ) );

	this.translateY( -height / 2 + 3 * ( stdWidth + stdMargin ) + stdMargin + 30 );
	this.translateX(  width / 2 - 40 - 5 );

	this.name = 'CV.AngleScale';
	this.domObjects = [];

	var legend = document.createElement( 'div' );

	legend.id = 'angle-legend';
	legend.textContent = 'Inclination';

	container.appendChild( legend );

	this.txt = legend;
	this.domObjects.push( legend );

	this.addEventListener( 'removed', this.removeDomObjects );

	return this;

}

AngleScale.prototype = Object.create( Mesh.prototype );

Object.assign( AngleScale.prototype, HudObject.prototype );

AngleScale.prototype.constructor = AngleScale;



// EOF

function Compass ( container ) {

	var stdWidth  = HudObject.stdWidth;
	var stdMargin = HudObject.stdMargin;

	Group.call( this );

	this.name = 'CV.Compass';
	this.domObjects = [];

	var cg1 = new CylinderBufferGeometry( stdWidth * 0.90, stdWidth, 3, 32, 1, true );
	cg1.rotateX( Math.PI / 2 );

	var c1 = new Mesh( cg1, new MeshPhongMaterial( { color: 0x888888, specular: 0x888888 } ) );

	var cg2 = new RingGeometry( stdWidth * 0.9, stdWidth, 4, 1, -Math.PI / 32 + Math.PI / 2, Math.PI / 16 );
	cg2.translate( 0, 0, 5 );

	var c2 = new Mesh( cg2, new MeshBasicMaterial( { color: 0xb03a14 } ) );

	var r1 = _makeRose( stdWidth * 0.8, 0.141, 0x581d0a, 0x0c536a );
	var r2 = _makeRose( stdWidth * 0.9, 0.141, 0xb03a14, 0x1ab4e5 );

	r1.rotateZ( Math.PI / 4 );
	r1.merge( r2 );

	var rMesh = new Mesh( r1, new MeshLambertMaterial( { vertexColors: VertexColors, side: FrontSide, shading: FlatShading } ) );

	this.add( c1 );
	this.add( c2 );
	this.add( rMesh );

	var offset = stdWidth + stdMargin;

	this.translateX( -offset );
	this.translateY(  offset );

	this.lastRotation = 0;

	var panel = document.createElement( 'div' );

	panel.classList.add( 'cv-compass' );
	panel.textContent = '';

	container.appendChild( panel );

	this.txt = panel;
	this.domObjects.push( panel );

	this.addEventListener( 'removed', this.removeDomObjects );
	this.txt.textContent = '000\u00B0';

	return this;

	// make 'petal' for compass rose
	function _makePetal ( radius, scale, color1, color2 ) {

		var innerR = radius * scale;
		var g = new Geometry();

		g.vertices.push( new Vector3( 0, radius, 0 ) );
		g.vertices.push( new Vector3( innerR ,innerR, 0 ) );
		g.vertices.push( new Vector3( 0, 0, 14 * scale ) );
		g.vertices.push( new Vector3( -innerR, innerR, 0 ) );

		var f1 = new Face3( 0, 2, 1, new Vector3( 0, 0, 1 ), color1, 0 );
		var f2 = new Face3( 0, 3, 2, new Vector3( 0, 0, 1 ), color2, 0 );

		g.faces.push( f1 );
		g.faces.push( f2 );

		return g;

	}

	function _makeRose ( radius, scale, color1, color2 ) {

		var p1 = _makePetal( radius, scale, new Color( color1 ), new Color( color2 ) );
		var p2 = p1.clone();
		var p3 = p1.clone();
		var p4 = p1.clone();

		p2.rotateZ( Math.PI / 2 );
		p3.rotateZ( Math.PI );
		p4.rotateZ( Math.PI / 2 * 3 );

		p1.merge( p2 );
		p1.merge( p3 );
		p1.merge( p4 );

		p1.computeFaceNormals();

		return p1;

	}

}

Compass.prototype = Object.create( Group.prototype );

Object.assign( Compass.prototype, HudObject.prototype );

Compass.prototype.constructor = Compass;

Compass.prototype.set = function () {

	var direction     = new Vector3();
	var yAxis         = new Vector3( 0, 1, 0 );
	var negativeZAxis = new Vector3( 0, 0, -1 );

	return function set ( vCamera ) {

		vCamera.getWorldDirection( direction );

		if ( direction.x === 0 && direction.y === 0 ) {

			// FIXME get camera rotation....
			return;

		}

		// we are only interested in angle to horizontal plane.
		direction.z = 0;

		var a = direction.angleTo( yAxis );

		if ( direction.x >= 0 ) a = 2 * Math.PI - a;

		if ( a === this.lastRotation ) return;

		var degrees = 360 - Math.round( _Math.radToDeg( a ) );

		this.txt.textContent = degrees.toString().padStart( 3, '0' ) + '\u00B0'; // unicode degree symbol

		this.rotateOnAxis( negativeZAxis, a - this.lastRotation );

		this.lastRotation = a;

	};

} ();



// EOF

var cursorVertexShader = "\r\n#ifdef SURFACE\r\n\r\nuniform vec3 uLight;\r\nvarying vec3 vNormal;\r\nvarying vec3 lNormal;\r\n\r\n#else\r\n\t\r\nvarying vec3 vColor;\r\n\r\n#endif\r\n\r\nvarying float height;\r\n\r\nvoid main() {\r\n\r\n#ifdef SURFACE\r\n\r\n\tvNormal = normalMatrix * normal;\r\n\tlNormal = uLight;\r\n\r\n#else\r\n\r\n\tvColor = color;\r\n\r\n#endif\r\n\r\n\theight = position.z;\r\n\r\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\r\n\r\n}\r\n";

var cursorFragmentShader = "\r\nuniform float cursor;\r\nuniform float cursorWidth;\r\n\r\nuniform vec3 baseColor;\r\nuniform vec3 cursorColor;\r\n\r\nvarying float height;\r\n\r\n#ifdef SURFACE\r\n\r\nvarying vec3 vNormal;\r\nvarying vec3 lNormal;\r\n\r\n#else\r\n\r\nvarying vec3 vColor;\r\n\r\n#endif\r\n\r\nvoid main() {\r\n\r\n#ifdef SURFACE\r\n\r\n\tfloat nDot = dot( normalize( vNormal ), normalize( lNormal ) );\r\n\tfloat light;\r\n\tlight = 0.5 * ( nDot + 1.0 );\r\n\r\n#else\r\n\r\n\tfloat light = 1.0;\r\n\r\n#endif\r\n\r\n\tfloat delta = abs( height - cursor );\r\n\tfloat ss = smoothstep( 0.0, cursorWidth, cursorWidth - delta );\r\n\r\n\r\n#ifdef SURFACE\r\n\r\n\tif ( delta < cursorWidth * 0.05 ) {\r\n\r\n\t\tgl_FragColor = vec4( 1.0, 1.0, 1.0, 1.0 ) * light;\r\n\r\n\t} else {\r\n\r\n\t\tgl_FragColor = vec4( mix( baseColor, cursorColor, ss ) * light, 1.0 );\r\n\r\n\t}\r\n\r\n#else\r\n\r\n\tif ( delta < cursorWidth * 0.05 ) {\r\n\r\n\t\tgl_FragColor = vec4( 1.0, 1.0, 1.0, 1.0 ) * light * vec4( vColor, 1.0 );\r\n\r\n\t} else {\r\n\r\n\t\tgl_FragColor = vec4( mix( baseColor, cursorColor, ss ) * light, 1.0 ) * vec4( vColor, 1.0 );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n}\r\n";

var depthMapVertexShader = "\r\nuniform float minZ;\r\nuniform float scaleZ;\r\n\r\nvarying float vHeight;\r\n\r\nvoid main() {\r\n\r\n\tvHeight = ( position.z - minZ ) * scaleZ;\r\n\r\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\r\n\r\n}\r\n";

var depthMapFragmentShader = "\r\nconst float PackUpscale = 256. / 255.; // fraction -> 0..1 (including 1)\r\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256.,  256. );\r\n\r\nconst float ShiftRight8 = 1. / 256.;\r\n\r\nvec4 packFloatToRGBA( const in float v ) {\r\n\r\n\tvec4 r = vec4( fract( v * PackFactors ), v );\r\n\r\n\tr.yzw -= r.xyz * ShiftRight8; // tidy overflow\r\n\r\n\treturn r * PackUpscale;\r\n\r\n}\r\n\r\nvarying float vHeight;\r\n\r\nvoid main() {\r\n\r\n\tgl_FragColor = packFloatToRGBA( vHeight );\r\n\r\n}\r\n";

var depthVertexShader = "const float UnpackDownscale = 255. / 256.; // 0..1 -> fraction (excluding 1)\r\n\r\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256.,  256. );\r\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\r\n\r\nfloat unpackRGBAToFloat( const in vec4 v ) {\r\n\treturn dot( v, UnpackFactors );\r\n}\r\n\r\nuniform float minX;\r\nuniform float minY;\r\nuniform float minZ;\r\n\r\nuniform float scaleX;\r\nuniform float scaleY;\r\nuniform float rangeZ;\r\n\r\nuniform float depthScale;\r\n\r\nuniform sampler2D depthMap;\r\nuniform float datumShift;\r\n\r\n#ifdef SURFACE\r\n\r\nuniform vec3 uLight;\r\n\r\nvarying vec3 vNormal;\r\nvarying vec3 lNormal;\r\n\r\n#else\r\n\r\nvarying vec3 vColor;\r\n\r\n#endif\r\n\r\nvarying float vDepth;\r\n\r\nvoid main() {\r\n\r\n#ifdef SURFACE\r\n\r\n\tvNormal = normalMatrix * normal;\r\n\tlNormal = uLight;\r\n\r\n#else\r\n\r\n\tvColor = color;\r\n\r\n#endif\r\n\r\n\t// get terrain height in model space\r\n\r\n\tvec2 terrainCoords = vec2( ( position.x - minX ) * scaleX, ( position.y - minY ) * scaleY );\r\n\tfloat terrainHeight = unpackRGBAToFloat( texture2D( depthMap, terrainCoords ) );\r\n\r\n\tterrainHeight = terrainHeight * rangeZ + minZ + datumShift;\r\n\r\n\t// depth below terrain for this vertex, scaled in 0.0 - 1.0 range\r\n\r\n\tvDepth = ( terrainHeight - position.z ) * depthScale;\r\n\r\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\r\n\r\n}\r\n";

var depthFragmentShader = "\r\nuniform sampler2D cmap;\r\nvarying float vDepth;\r\n\r\n#ifdef SURFACE\r\n\r\nvarying vec3 vNormal;\r\nvarying vec3 lNormal;\r\n\r\n#else\r\n\r\nvarying vec3 vColor;\r\n\r\n#endif\r\n\r\nvoid main() {\r\n\r\n#ifdef SURFACE\r\n\r\n\tfloat nDot = dot( normalize( vNormal ), normalize( lNormal ) );\r\n\tfloat light;\r\n\tlight = 0.5 * ( nDot + 1.0 );\r\n\r\n\tgl_FragColor = texture2D( cmap, vec2( vDepth, 1.0 ) ) * light;\r\n\r\n#else\r\n\r\n\tgl_FragColor = texture2D( cmap, vec2( vDepth, 1.0 ) ) * vec4( vColor, 1.0 );\r\n\r\n#endif\r\n\r\n}\r\n";

var depthCursorVertexShader = "\r\nconst float UnpackDownscale = 255. / 256.; // 0..1 -> fraction (excluding 1)\r\n\r\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256.,  256. );\r\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\r\n\r\nfloat unpackRGBAToFloat( const in vec4 v ) {\r\n\treturn dot( v, UnpackFactors );\r\n}\r\n\r\nuniform float minX;\r\nuniform float minY;\r\nuniform float minZ;\r\n\r\nuniform float scaleX;\r\nuniform float scaleY;\r\nuniform float rangeZ;\r\n\r\nuniform sampler2D depthMap;\r\nuniform float datumShift;\r\n\r\n#ifdef SURFACE\r\n\r\nuniform vec3 uLight;\r\n\r\nvarying vec3 vNormal;\r\nvarying vec3 lNormal;\r\n\r\n#else\r\n\t\r\nvarying vec3 vColor;\r\n\r\n#endif\r\n\r\nvarying float vDepth;\r\n\r\nvoid main() {\r\n\r\n#ifdef SURFACE\r\n\r\n\tvNormal = normalMatrix * normal;\r\n\tlNormal = uLight;\r\n\r\n#else\r\n\r\n\tvColor = color;\r\n\r\n#endif\r\n\r\n\tvec2 terrainCoords = vec2( ( position.x - minX ) * scaleX, ( position.y - minY ) * scaleY );\r\n\tfloat terrainHeight = unpackRGBAToFloat( texture2D( depthMap, terrainCoords ) );\r\n\r\n\tvDepth = terrainHeight * rangeZ + datumShift + minZ - position.z;\r\n\r\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\r\n\r\n}\r\n\r\n\r\n\r\n\r\n\r\n";

var depthCursorFragmentShader = "\r\nuniform float cursor;\r\nuniform float cursorWidth;\r\n\r\nuniform vec3 baseColor;\r\nuniform vec3 cursorColor;\r\n\r\nvarying float vDepth;\r\n\r\n#ifdef SURFACE\r\n\r\nvarying vec3 vNormal;\r\nvarying vec3 lNormal;\r\n\r\n#else\r\n\r\nvarying vec3 vColor;\r\n\r\n#endif\r\n\r\nvoid main() {\r\n\r\n\tfloat light;\r\n#ifdef SURFACE\r\n\r\n\tfloat nDot = dot( normalize( vNormal ), normalize( lNormal ) );\r\n\tlight = 0.5 * ( nDot + 1.0 );\r\n\r\n#else\r\n\r\n\tlight = 1.0;\r\n\r\n#endif\r\n\r\n\tfloat delta = abs( vDepth - cursor );\r\n\tfloat ss = smoothstep( 0.0, cursorWidth, cursorWidth - delta );\r\n\r\n#ifdef SURFACE\r\n\r\n\tif ( delta < cursorWidth * 0.05 ) {\r\n\r\n\t\tgl_FragColor = vec4( 1.0, 1.0, 1.0, 1.0 ) * light;\r\n\r\n\t} else {\r\n\r\n\t\tgl_FragColor = vec4( mix( baseColor, cursorColor, ss ) * light, 1.0 );\r\n\r\n\t}\r\n\r\n#else\r\n\r\n\tif ( delta < cursorWidth * 0.05 ) {\r\n\r\n\t\tgl_FragColor = vec4( 1.0, 1.0, 1.0, 1.0 ) * light * vec4( vColor, 1.0 );\r\n\r\n\t} else {\r\n\r\n\t\tgl_FragColor = vec4( mix( baseColor, cursorColor, ss ) * light, 1.0 ) * vec4( vColor, 1.0 );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n}";

var extendedPointsVertexShader = "uniform float size;\r\nuniform float scale;\r\nuniform float pScale;\r\n\r\nattribute float pSize;\r\n\r\n#include <common>\r\n#include <color_pars_vertex>\r\n#include <shadowmap_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <color_vertex>\r\n\t#include <begin_vertex>\r\n\t#include <project_vertex>\r\n\r\n\t#ifdef USE_SIZEATTENUATION\r\n\t\tgl_PointSize = pScale * pSize * ( scale / - mvPosition.z );\r\n\t#else\r\n\t\tgl_PointSize = pScale * pSize;\r\n\t#endif\r\n\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\t#include <worldpos_vertex>\r\n\t#include <shadowmap_vertex>\r\n\r\n}\r\n";

var extendedPointsFragmentShader = "uniform vec3 diffuse;\r\nuniform float opacity;\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <color_pars_fragment>\r\n#include <map_particle_pars_fragment>\r\n#include <fog_pars_fragment>\r\n#include <shadowmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec3 outgoingLight = vec3( 0.0 );\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <map_particle_fragment>\r\n\t#include <color_fragment>\r\n\t#include <alphatest_fragment>\r\n\r\n\toutgoingLight = diffuseColor.rgb;\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\r\n}\r\n";

var glyphVertexShader = "\r\n\r\n// glyph shader, each instance represents one glyph.\r\n\r\nuniform float cellScale;\r\nuniform mat2 rotate;\r\nuniform float scale;\r\n\r\nattribute vec2 instanceUvs;\r\nattribute float instanceOffsets;\r\nattribute float instanceWidths;\r\n\r\nvarying vec2 vUv;\r\nvarying vec3 vColor;\r\n\r\nvoid main() {\r\n\r\n\tvColor = color;\r\n\r\n\t// select glyph from atlas ( with proportional spacing ).\r\n\r\n\tvUv = instanceUvs + vec2( position.x * cellScale * instanceWidths, position.y * cellScale );\r\n\r\n\t// scale by glyph width ( vertices form unit square with (0,0) origin )\r\n\r\n\tvec2 newPosition = vec2( position.x * instanceWidths, position.y );\r\n\r\n\t// move to correct offset in string\r\n\r\n\tnewPosition.x += instanceOffsets;\r\n\r\n\t// rotate as required\r\n\r\n\tnewPosition = rotate * newPosition;\r\n\r\n\t// position of GlyphString object on screeno\r\n\r\n\tvec4 offset = projectionMatrix * modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\r\n\r\n\t// scale glyphs\r\n\r\n\tnewPosition.xy *= 0.0625;\r\n\r\n\t// correct for aspect ratio\r\n\r\n\tnewPosition.x *= scale;\r\n\r\n\t// move to clip space\r\n\r\n\tnewPosition.xy *= offset.w;\r\n\r\n\tgl_Position = vec4( newPosition, 0.0, 0.0 ) + offset;\r\n\r\n}\r\n";

var glyphFragmentShader = "\r\nuniform sampler2D atlas;\r\n\r\nvarying vec2 vUv;\r\nvarying vec3 vColor;\r\n\r\nvoid main() {\r\n\r\n\tgl_FragColor = texture2D( atlas, vUv ) * vec4( vColor, 1.0 );\r\n\r\n}";

var heightVertexShader = "\r\nuniform sampler2D cmap;\r\n\r\nuniform float minZ;\r\nuniform float scaleZ;\r\n\r\n#ifdef SURFACE\r\n\r\nuniform vec3 uLight;\r\n\r\nvarying vec3 vNormal;\r\nvarying vec3 lNormal;\r\n\r\n#else\r\n\r\nvarying vec3 vColor;\r\n\r\n#endif\r\n\r\nvarying float zMap;\r\n\r\nvoid main() {\r\n\r\n#ifdef SURFACE\r\n\r\n\tvNormal = normalMatrix * normal;\r\n\tlNormal = uLight;\r\n\r\n#else\r\n\r\n\tvColor = color;\r\n\r\n#endif\r\n\r\n\tzMap = ( position.z - minZ ) * scaleZ;\r\n\r\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\r\n\r\n}\r\n";

var heightFragmentShader = "\r\nuniform sampler2D cmap;\r\n\r\nvarying float zMap;\r\n\r\n#ifdef SURFACE\r\n\r\nvarying vec3 vNormal;\r\nvarying vec3 lNormal;\r\n\r\n#else\r\n\r\nvarying vec3 vColor;\r\n\r\n#endif\r\n\r\nvoid main() {\r\n\r\n#ifdef SURFACE\r\n\r\n\tfloat nDot = dot( normalize( vNormal ), normalize( lNormal ) );\r\n\tfloat light;\r\n\tlight = 0.5 * ( nDot + 1.0 );\r\n\r\n\tgl_FragColor = texture2D( cmap, vec2( 1.0 - zMap, 1.0 ) ) * vec4( light, light, light, 1.0 );\r\n\r\n#else\r\n\r\n\tgl_FragColor = texture2D( cmap, vec2( 1.0 - zMap, 1.0 ) ) * vec4( vColor, 1.0 );\r\n\r\n#endif\r\n\r\n}\r\n";

var waterVertexShader = "\r\nattribute vec3 sinks;\r\n\r\nvarying vec3 vPosition;\r\nvarying vec3 vSink;\r\n\r\nvoid main() {\r\n\r\n\tvPosition = position;\r\n\tvSink = sinks;\r\n\r\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\r\n\r\n}\r\n";

var waterFragmentShader = "\r\nuniform float offset;\r\n\r\nvarying vec3 vPosition;\r\nvarying vec3 vSink;\r\n\r\nvoid main() {\r\n\r\n\tgl_FragColor = vec4( 0.1, 0.1, sin( offset + distance( vPosition, vSink ) ) * 0.4 + 0.6, 0.0 );\r\n\r\n}\r\n";

var Shaders =  {
	cursorVertexShader:		cursorVertexShader,
	cursorFragmentShader:	cursorFragmentShader,
	depthMapVertexShader:	depthMapVertexShader,
	depthMapFragmentShader:	depthMapFragmentShader,
	depthVertexShader:		depthVertexShader,
	depthFragmentShader:	depthFragmentShader,
	depthCursorVertexShader:		depthCursorVertexShader,
	depthCursorFragmentShader:		depthCursorFragmentShader,
	extendedPointsVertexShader:		extendedPointsVertexShader,
	extendedPointsFragmentShader:	extendedPointsFragmentShader,
	glyphVertexShader:		glyphVertexShader,
	glyphFragmentShader:	glyphFragmentShader,
	heightVertexShader:		heightVertexShader,
	heightFragmentShader:	heightFragmentShader,
	waterVertexShader:		waterVertexShader,
	waterFragmentShader:	waterFragmentShader
};


// EOF

function CursorMaterial ( type, limits ) {

	ShaderMaterial.call( this );

	this.halfRange = ( limits.max.z - limits.min.z ) / 2;

	this.defines = ( type === MATERIAL_LINE ) ? { USE_COLOR: true } : { SURFACE: true };

	this.uniforms = {
		uLight:      { value: new Vector3( -1, -1, 2 ) },
		cursor:      { value: 0 },
		cursorWidth: { value: 5.0 },
		baseColor:   { value: ColourCache.lightGrey },
		cursorColor: { value: ColourCache.green }
	};

	this.vertexShader   = Shaders.cursorVertexShader;
	this.fragmentShader = Shaders.cursorFragmentShader;

	this.type = 'CV.CursorMaterial';

	this.addEventListener( 'update', _update );

	return this;

	function _update() {

		this.uniforms.surfaceOpacity.value = this.opacity;

	}

}

CursorMaterial.prototype = Object.create( ShaderMaterial.prototype );

CursorMaterial.prototype.constructor = CursorMaterial;

CursorMaterial.prototype.setCursor = function ( value ) {

	var newValue = Math.max( Math.min( value, this.halfRange ), -this.halfRange );

	this.uniforms.cursor.value = newValue;

	return newValue; // return value clamped to material range

};

CursorMaterial.prototype.getCursor = function () {

	return this.uniforms.cursor.value;

};



// EOF

function DepthMaterial ( type, surveyLimits, terrain ) {

	var limits = terrain.boundingBox;
	var range = limits.getSize();

	var defines = ( type === MATERIAL_LINE ) ? { USE_COLOR: true } : { SURFACE: true };

	ShaderMaterial.call( this, {

		uniforms: {
			// pseudo light source somewhere over viewer's left shoulder.
			uLight:     { value: new Vector3( -1, -1, 2 ) },
			minX:       { value: limits.min.x },
			minY:       { value: limits.min.y },
			minZ:       { value: limits.min.z },
			scaleX:     { value: 1 / range.x },
			scaleY:     { value: 1 / range.y },
			rangeZ:     { value: range.z },
			depthScale: { value: 1 / ( surveyLimits.max.z - surveyLimits.min.z ) },
			cmap:       { value: ColourCache.getTexture( 'gradient' ) },
			depthMap:   { value: terrain.depthTexture },
			datumShift: { value: 0.0 }
		},

		defines: defines,
		vertexShader: Shaders.depthVertexShader,
		fragmentShader: Shaders.depthFragmentShader
	} );

	this.type = 'CV.DepthMaterial';

	return this;

}

DepthMaterial.prototype = Object.create( ShaderMaterial.prototype );

DepthMaterial.prototype.constructor = DepthMaterial;

DepthMaterial.prototype.setDatumShift = function ( shift ) {

	this.uniforms.datumShift.value = shift;

};



// EOF

function DepthCursorMaterial ( type, surveyLimits, terrain ) {

	var limits = terrain.boundingBox;
	var range = limits.getSize();

	// max range of depth values
	this.max = surveyLimits.max.z - surveyLimits.min.z;

	ShaderMaterial.call( this, {

		uniforms: {
			uLight:      { value: new Vector3( -1, -1, 2 ) },
			minX:        { value: limits.min.x },
			minY:        { value: limits.min.y },
			minZ:        { value: limits.min.z },
			scaleX:      { value: 1 / range.x },
			scaleY:      { value: 1 / range.y },
			rangeZ:      { value: range.z },
			depthMap:    { value: terrain.depthTexture },
			datumShift:  { value: 0.0 },
			cursor:      { value: this.max / 2 },
			cursorWidth: { value: 5.0 },
			baseColor:   { value: ColourCache.lightGrey },
			cursorColor: { value: ColourCache.green }
		},
		vertexShader: Shaders.depthCursorVertexShader,
		fragmentShader: Shaders.depthCursorFragmentShader
	} );

	this.defines = {};

	if ( type === MATERIAL_LINE ) {

		this.defines.USE_COLOR = true;

	} else {

		this.defines.SURFACE = true;

	}

	this.type = 'CV.DepthCursorMaterial';

	return this;

}

DepthCursorMaterial.prototype = Object.create( ShaderMaterial.prototype );

DepthCursorMaterial.prototype.constructor = DepthCursorMaterial;

DepthCursorMaterial.prototype.setCursor = function ( value ) {

	var newValue = Math.max( Math.min( value, this.max ), 0 );

	this.uniforms.cursor.value = newValue;

	return newValue; // return value clamped to material range

};

DepthCursorMaterial.prototype.getCursor = function () {

	return this.uniforms.cursor.value;

};

DepthCursorMaterial.prototype.setDatumShift = function ( shift ) {

	this.uniforms.datumShift.value = shift;

};



// EOF

function DepthMapMaterial ( terrain ) {

	if ( terrain.boundingBox === undefined ) terrain.computeBoundingBox();

	var boundingBox = terrain.boundingBox;

	var minHeight = boundingBox.min.z;
	var maxHeight = boundingBox.max.z;

	ShaderMaterial.call( this, {

		uniforms: {

			minZ:   { value: minHeight },
			scaleZ: { value: 1 / ( maxHeight - minHeight ) }

		},

		vertexShader:    Shaders.depthMapVertexShader,
		fragmentShader:  Shaders.depthMapFragmentShader,
		depthWrite:      false,
		type:            'CV.DepthMapMaterial'

	} );

	return this;

}

DepthMapMaterial.prototype = Object.create( ShaderMaterial.prototype );

DepthMapMaterial.prototype.constructor = DepthMapMaterial;



// EOF

function HeightMaterial ( type, limits ) {

	ShaderMaterial.call( this );

	this.defines = ( type === MATERIAL_LINE ) ? { USE_COLOR: true } : { SURFACE: true };

	this.uniforms = {
		uLight: { value: new Vector3( -1, -1, 2 ) }, // pseudo light source somewhere over viewer's left shoulder.
		minZ:   { value: limits.min.z },
		scaleZ: { value: 1 / ( limits.max.z - limits.min.z ) },
		cmap:   { value: ColourCache.getTexture( 'gradient' ) },
	};

	this.vertexShader = Shaders.heightVertexShader;
	this.fragmentShader = Shaders.heightFragmentShader;

	this.type = 'CV.HeightMaterial';

	return this;

}

HeightMaterial.prototype = Object.create( ShaderMaterial.prototype );

HeightMaterial.prototype.constructor = HeightMaterial;



// EOF

function GlyphAtlas ( glyphAtlasSpec ) {

	var atlasSize = 512;
	var cellSize = 32;

	var canvas = document.createElement( 'canvas' );
	var map = {};

	if ( ! canvas ) console.error( 'creating canvas for glyph atlas failed' );

	canvas.width  = atlasSize;
	canvas.height = atlasSize;

	var ctx = canvas.getContext( '2d' );

	if ( ! ctx ) console.error( 'cannot obtain 2D canvas' );

	// set background

	ctx.fillStyle = 'rgba( 0, 0, 0, 1 )';
	ctx.fillRect( 0, 0, atlasSize, atlasSize );

	// populate with glyphs

	var glyphs = '\u2610 ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.-_';

	var divisions = atlasSize / cellSize;

	var glyphCount = glyphs.length;

	if ( glyphCount > divisions * divisions ) {

		console.error( 'too many glyphs for atlas' );
		return;

	}

	var glyph;
	var fontSize = 20;

	ctx.textAlign = 'left';
	ctx.font = fontSize + 'px ' + glyphAtlasSpec;
	ctx.fillStyle = '#ffffff';

	var row, column;

	for ( var i = 0; i < glyphCount; i++ ) {

		glyph = glyphs.charAt( i );

		var glyphWidth = ctx.measureText( glyph ).width / cellSize;

		row = Math.floor( i / divisions ) + 1;
		column = i % divisions;

		map[ glyph ] = { row: ( divisions - row ) / divisions, column: column / divisions, width: glyphWidth };

		ctx.fillText( glyph, cellSize * column, cellSize * row - 6 );

	}

	this.texture = new CanvasTexture( canvas );
	this.map = map;
	this.cellScale = cellSize / atlasSize;

}

GlyphAtlas.prototype.constructor = GlyphAtlas;

GlyphAtlas.prototype.getTexture = function () {

	return this.texture;

};

GlyphAtlas.prototype.getCellScale = function () {

	return this.cellScale;

};

GlyphAtlas.prototype.getGlyph = function ( glyph ) {

	var glyphData = this.map[ glyph ];

	if ( glyphData === undefined ) {

		console.warn( 'unavailable glyph [' + glyph + ']', glyph.codePointAt() );
		glyphData = this.map[ '\u2610' ];  // substitute empty box

	}

	return glyphData;

};


var atlasCache = {};
var AtlasFactory = {};

AtlasFactory.getAtlas = function ( glyphAtlasSpec ) {

	var atlas = atlasCache[ glyphAtlasSpec ];

	if ( atlas === undefined ) {

		atlas = new GlyphAtlas( glyphAtlasSpec );
		atlasCache[ glyphAtlasSpec ] = atlas;

	}

	return atlas;

};



// EOF

function GlyphMaterial ( glyphAtlasSpec, container, rotation, colour ) {

	var glyphAtlas = AtlasFactory.getAtlas( glyphAtlasSpec );

	var cellScale = glyphAtlas.getCellScale();

	var cos = Math.cos( rotation );
	var sin = Math.sin( rotation );

	var rotationMatrix = new Float32Array( [ cos, sin, -sin, cos ] );

	colour = colour || [ 1, 1, 1 ];

	ShaderMaterial.call( this, {
		uniforms: {
			cellScale: { value: cellScale },
			atlas: { value: glyphAtlas.getTexture() },
			rotate: { value: rotationMatrix },
			scale: { value: container.clientHeight / container.clientWidth }
		},
		vertexShader: Shaders.glyphVertexShader,
		fragmentShader: Shaders.glyphFragmentShader,
	} );

	this.opacity = 1.0;
	this.alphaTest = 0.8;
	this.depthTest = false;
	this.transparent = true;
	this.defines = { USE_COLOR: true };

	this.defaultAttributeValues.color = colour;
	this.type = 'CV.GlyphMaterial';
	this.atlas = glyphAtlas;


	// event handler
	window.addEventListener( 'resize', _resize );

	var self = this;

	return this;

	function _resize() {

		self.uniforms.scale.value = container.clientHeight / container.clientWidth;

	}

}

GlyphMaterial.prototype = Object.create( ShaderMaterial.prototype );

GlyphMaterial.prototype.constructor = GlyphMaterial;

GlyphMaterial.prototype.getAtlas = function () {

	return this.atlas;

};



// EOF

var cache = new Map();
var viewer;

var cursorMaterials = [];
var depthMaterials = [];
var perSurveyMaterials = {};

function updateMaterialCursor ( material ) {

	viewer.initCursorHeight = material.setCursor( viewer.cursorHeight );

}

function updateCursors( /* event */ ) {

	cursorMaterials.forEach( updateMaterialCursor );

}

function updateDatumShifts( event ) {

	var datumShift = event.value;

	depthMaterials.forEach( _updateMaterialDepth );

	function _updateMaterialDepth ( material ) {

		material.setDatumShift( datumShift );

	}

}


function getHeightMaterial ( type, limits ) {

	var name = 'height' + type;

	if ( cache.has( name ) ) return cache.get( name );

	var material = new HeightMaterial( type, limits );

	cache.set( name, material );

	perSurveyMaterials[ name ] = material;

	return material;

}

function getDepthMapMaterial ( terrain ) {

	return new DepthMapMaterial( terrain );

}

function getDepthMaterial ( type, limits, terrain ) {

	var name = 'depth' + type;
	var material = cache.get( name );

	if ( material === undefined ) {

		material = new DepthMaterial( type, limits, terrain );

		cache.set( name, material );

		perSurveyMaterials[ name ] = material;
		depthMaterials.push( material );

	}

	return material;

}

function getCursorMaterial ( type, limits ) {

	var name = 'cursor' + type;

	var material = cache.get( name );

	if ( material === undefined ) {

		material = new CursorMaterial( type, limits );

		perSurveyMaterials[ name ] = material;

		cache.set( name, material );

	}

	// restore current cursor

	viewer.initCursorHeight = material.getCursor();

	// set active cursor material for updating

	cursorMaterials[ type ] = material;

	return material;

}

function getDepthCursorMaterial( type, limits, terrain ) {

	var name = 'depthCursor' + type;

	var material = cache.get( name );

	if ( material === undefined ) {

		material = new DepthCursorMaterial( type, limits, terrain );

		perSurveyMaterials[ name ] = material;
		depthMaterials.push( material );

		cache.set( name, material );

	}

	// restore current cursor

	viewer.initCursorHeight = material.getCursor();

	// set active cursor material for updating

	cursorMaterials[ type ] = material;

	return material;

}

function getSurfaceMaterial () {

	if ( cache.has( 'surface' ) ) return cache.get( 'surface' );

	var material = new MeshLambertMaterial( { color: 0xFFFFFF, vertexColors: NoColors } );

	cache.set( 'surface', material );

	return material;

}

function getLineMaterial () {

	if ( cache.has( 'line' ) ) return cache.get( 'line' );

	var material = new LineBasicMaterial( { color: 0xFFFFFF, vertexColors: VertexColors } );

	cache.set( 'line', material );

	return material;

}

function getGlyphMaterial ( glyphAtlasSpec, rotation, colour ) {

	var name = glyphAtlasSpec + ':' + rotation.toString() + ':' + ( colour ? colour.toString() : 'default' );

	if ( cache.has( name ) ) return cache.get( name );

	var material = new GlyphMaterial( glyphAtlasSpec, viewer.container, rotation, colour );

	cache.set( name, material );

	return material;

}

function setTerrain( terrain ) {


	terrain.addEventListener( 'datumShiftChange', updateDatumShifts );

}

function initCache ( Viewer ) {

	cache.clear();

	viewer = Viewer;

	viewer.addEventListener( 'cursorChange', updateCursors );

}

function flushCache() {

	var name;

	for ( name in perSurveyMaterials ) {

		var material = perSurveyMaterials[ name ];

		material.dispose();
		cache.delete( name );

	}

	depthMaterials = [];
	perSurveyMaterials = {};

}

var Materials$1 = {
	getHeightMaterial:      getHeightMaterial,
	getDepthMapMaterial:    getDepthMapMaterial,
	getDepthMaterial:       getDepthMaterial,
	getDepthCursorMaterial: getDepthCursorMaterial,
	getCursorMaterial:      getCursorMaterial,
	getSurfaceMaterial:     getSurfaceMaterial,
	getLineMaterial:        getLineMaterial,
	getGlyphMaterial:       getGlyphMaterial,
	setTerrain:             setTerrain,
	initCache:              initCache,
	flushCache:             flushCache
};

// EOF

function LinearScale ( container, Viewer ) {

	var width  = container.clientWidth;
	var height = container.clientHeight;

	var stdWidth  = HudObject.stdWidth;
	var stdMargin = HudObject.stdMargin;

	this.name = 'CV.LinearScale';
	this.domObjects = [];

	var barOffset = 3 * ( stdWidth + stdMargin );
	var barHeight = ( height - barOffset ) / 2;
	var barWidth  = stdWidth / 2;

	var range = Viewer.maxHeight - Viewer.minHeight;

	var geometry = new PlaneBufferGeometry( barWidth, range );

	// rotate the model to put the plane in the xz plane, covering the range of view height values - the gradient shader works on z values.

	geometry.rotateX( Math.PI / 2 );
	geometry.translate( -barWidth / 2, 0, 0 );

	Mesh.call( this, geometry, Materials$1.getHeightMaterial( MATERIAL_LINE ) );

	var ms = new Matrix4().makeScale( 1,  1, barHeight / range );

	ms.multiply( new Matrix4().makeTranslation( width / 2 - stdMargin, -height / 2 + barOffset + barHeight / 2, 0 ) );

	this.applyMatrix( ms );

	// rotate the model in the world view.
	this.rotateOnAxis( new Vector3( 1, 0, 0 ), -Math.PI / 2 );

	// add labels
	var maxdiv = document.createElement( 'div' );
	var mindiv = document.createElement( 'div' );

	var caption = document.createElement( 'div' );

	maxdiv.classList.add( 'linear-scale' );
	mindiv.classList.add( 'linear-scale' );

	caption.classList.add( 'linear-scale-caption' );

	maxdiv.id = 'max-div';
	mindiv.id = 'min-div';

	caption.id = 'linear-caption';

	maxdiv.style.top    = barHeight + 'px';
	mindiv.style.bottom = barOffset + 'px';

	caption.style.bottom = height - barHeight + 'px';

	container.appendChild( maxdiv );
	container.appendChild( mindiv );

	container.appendChild( caption );

	maxdiv.textContent = '---';
	mindiv.textContent = '---';

	caption.textContent = 'xxxx';

	this.maxDiv = maxdiv;
	this.minDiv = mindiv;

	this.caption = caption;

	this.domObjects.push( mindiv );
	this.domObjects.push( maxdiv );

	this.domObjects.push( caption );

	this.addEventListener( 'removed', this.removeDomObjects );

	return this;

}

LinearScale.prototype = Object.create( Mesh.prototype );

Object.assign( LinearScale.prototype, HudObject.prototype );

LinearScale.prototype.constructor = LinearScale;

LinearScale.prototype.setRange = function ( min, max, caption ) {

	this.maxDiv.textContent = Math.round( max ) + 'm';
	this.minDiv.textContent = Math.round( min ) + 'm';

	this.setCaption( caption );

	return this;

};


LinearScale.prototype.setCaption = function ( caption ) {

	this.caption.textContent = caption;

	return this;

};

LinearScale.prototype.setMaterial = function ( material ) {

	this.material = material;

	return this;

};



// EOF

function CursorScale ( container ) {

	var width  = container.clientWidth;
	var height = container.clientHeight;

	var stdWidth  = HudObject.stdWidth;
	var stdMargin = HudObject.stdMargin;

	this.name = 'CV.CursorScale';
	this.domObjects = [];

	var barOffset = 3 * ( stdWidth + stdMargin );
	var barHeight = ( height - barOffset ) / 2;
	var barWidth  = stdWidth / 2;

	var geometry = new PlaneBufferGeometry( barWidth, barHeight );

	Mesh.call( this, geometry, new MeshBasicMaterial( { color: 0x777777 } ) );

	this.translateX(  width / 2  - barWidth / 2  - stdMargin );
	this.translateY( -height / 2 + barHeight / 2 + barOffset );

	this.barHeight = barHeight;

	// make cursor line

	var cursorGeometry = new Geometry();

	cursorGeometry.vertices.push( new Vector3(  barWidth / 2, -barHeight / 2, 0 ) );
	cursorGeometry.vertices.push( new Vector3( -barWidth / 2, -barHeight / 2, 0 ) );

	var cursor = new Line( cursorGeometry, new LineBasicMaterial( { color: 0xffffff } ) );

	this.add( cursor );

	this.cursor = cursor;

	// add labels
	var maxdiv = document.createElement( 'div' );
	var mindiv = document.createElement( 'div' );

	var caption = document.createElement( 'div' );

	maxdiv.classList.add( 'linear-scale' );
	mindiv.classList.add( 'linear-scale' );

	caption.classList.add( 'linear-scale-caption' );

	maxdiv.id = 'max-div';
	mindiv.id = 'min-div';

	caption.id = 'linear-caption';

	maxdiv.style.top    = barHeight + 'px';
	mindiv.style.bottom = barOffset + 'px';

	caption.style.bottom = height - barHeight + 'px';

	container.appendChild( maxdiv );
	container.appendChild( mindiv );

	container.appendChild( caption );

	maxdiv.textContent = '---';
	mindiv.textContent = '---';

	caption.textContent = 'xxxx';

	this.maxDiv = maxdiv;
	this.minDiv = mindiv;

	this.caption = caption;

	this.domObjects.push( mindiv );
	this.domObjects.push( maxdiv );

	this.domObjects.push( caption );

	this.addEventListener( 'removed', this.removeDomObjects );

	return this;

}

CursorScale.prototype = Object.create( Mesh.prototype );

Object.assign( CursorScale.prototype, HudObject.prototype );

CursorScale.prototype.constructor = CursorScale;

CursorScale.prototype.setRange = function ( min, max, caption ) {

	this.maxDiv.textContent = Math.round( max ) + 'm';
	this.minDiv.textContent = Math.round( min ) + 'm';

	this.caption.textContent = caption;

	return this;

};


CursorScale.prototype.setCursor = function ( scaledValue /*, displayValue */ ) {

	this.cursor.position.setY( this.barHeight * scaledValue );

	return this;

};



// EOF

function ProgressDial () {

	var stdWidth  = HudObject.stdWidth;
	var stdMargin = HudObject.stdMargin;

	var geometry = new RingGeometry( stdWidth * 0.9, stdWidth, 50 );

	Mesh.call( this, geometry, new MeshBasicMaterial( { color: 0xffffff, vertexColors: FaceColors } ) );

	this.name = 'CV.ProgressDial';
	this.domObjects = [];

	var offset = stdWidth + stdMargin;

	this.translateX( -offset * 5 );
	this.translateY(  offset );

	this.rotateOnAxis( upAxis, Math.PI / 2 );

	this.visible = false;
	this.isVisible = true;

	this.addEventListener( 'removed', this.removeDomObjects );

	return this;

}

ProgressDial.prototype = Object.create( Mesh.prototype );

Object.assign( ProgressDial.prototype, HudObject.prototype );

ProgressDial.prototype.constructor = ProgressDial;

ProgressDial.prototype.set = function ( progress ) {

	this.progress = progress;

	var l = Math.floor( Math.min( 100, Math.round( progress ) ) / 2 ) * 2;
	var faces = this.geometry.faces;

	for ( var i = 0; i < l; i++ ) {

		faces[ 99 - i ].color.set( 0x00ff00 );

	}

	this.geometry.colorsNeedUpdate = true;

};

ProgressDial.prototype.add = function ( progress ) {

	this.set( this.progress + progress );

};

ProgressDial.prototype.start = function () {

	var faces = this.geometry.faces;

	for ( var i = 0; i < 100; i++ ) {

		faces[ i ].color.set( 0x333333 );

	}

	this.geometry.colorsNeedUpdate = true;
	this.progress = 0;
	this.visible = this.isVisible;

};

ProgressDial.prototype.end = function () {

	var self = this;

	setTimeout( function () { self.visible = false; Viewer.renderView(); }, 500 );

};

ProgressDial.prototype.setVisibility = function ( visibility ) {

	this.isVisible = visibility;
	this.visible = ( this.visible && visibility );

};



// EOF

function ScaleBar ( container, hScale, rightMargin ) {

	var leftMargin = 10;

	Group.call( this );

	this.name = 'CV.ScaleBar';
	this.domObjects = [];

	this.hScale        = hScale;
	this.scaleBars     = [];
	this.currentLength = 0;

	this.position.set( -container.clientWidth / 2 + 5, -container.clientHeight / 2 + leftMargin, 0 );
	this.scaleMax = container.clientWidth - ( leftMargin + rightMargin );

	var legend = document.createElement( 'div' );

	legend.classList.add( 'scale-legend' );
	legend.textContent = '';

	container.appendChild( legend );

	this.legend = legend;
	this.domObjects.push( legend );

	this.addEventListener( 'removed', this.removeDomObjects );

	return this;

}

ScaleBar.prototype = Object.create( Group.prototype );

Object.assign( ScaleBar.prototype, HudObject.prototype );

ScaleBar.prototype.constructor = ScaleBar;

ScaleBar.prototype.setVisibility = function ( visible ) {

	HudObject.prototype.setVisibility.call( this, visible );

	if ( this.currentLength !== 0 ) this.scaleBars[ this.currentLength ].mesh.visible = visible;

};

ScaleBar.prototype.setScale = function ( scale ) {

	var scaleBars = this.scaleBars;
	var length = 0;
	var self = this;

	var maxVisible = this.scaleMax / ( scale * this.hScale );
	var exponent = Math.ceil( Math.log( maxVisible ) / Math.LN10 ) - 1;
	var rMax     = Math.pow( 10, exponent );
	var maxInc   = maxVisible / rMax;
	var legendText;

	if ( maxInc < 2 ) {

		length = 10;
		exponent = exponent - 1;

	} else if ( maxInc < 5 ) {

		length = 2;

	} else {

		length = 5;

	}

	if ( exponent >= 3 ) {

		legendText = length * Math.pow( 10, exponent - 3) + 'km';

	} else {

		legendText = length * Math.pow( 10, exponent ) + 'm';

	}

	scale = scale * Math.pow( 10, exponent );

	if ( this.currentLength !== length ) {

		if ( ! scaleBars[ length ] ) {

			var bar = _makeScaleBar( length );

			scaleBars[ length ] = bar;
			this.add( bar.mesh );

		}

		if ( this.currentLength > 0 ) {

			scaleBars[ this.currentLength ].mesh.visible = false;

		}

		scaleBars[ length ].mesh.visible = this.visible;
		this.currentLength = length;

	}

	scaleBars[ length ].mesh.scale.x = scale;

	var legend = this.legend;

	legend.style.display = this.visible ? 'block' : 'none';
	legend.style.left = ( scale * scaleBars[ length ].topRight - legend.clientWidth ) + 'px';

	legend.textContent = legendText;

	return this;

	function _makeScaleBar ( length ) {

		var height = 4;
		var rLength = length * self.hScale;
		var i, l;

		var bar  = new PlaneGeometry( rLength, height, length );
		var bar2 = new PlaneGeometry( rLength, height, length * 10 );
		var line = new Geometry();

		line.vertices.push( new Vector3( -rLength / 2, 0, 1 ) );
		line.vertices.push( new Vector3(  rLength / 2, 0, 1 ) );

		var mBar  = new Mesh( bar,  new MeshBasicMaterial( { color: 0xffffff, vertexColors: FaceColors, side: FrontSide } ) );
		var mBar2 = new Mesh( bar2, new MeshBasicMaterial( { color: 0xffffff, vertexColors: FaceColors, side: FrontSide } ) );
		var mLine = new LineSegments( line, new LineBasicMaterial( { color: 0xff0000 } ) );

		for ( i = 0, l = bar.faces.length; i < l; i = i + 4 ) {

			bar.faces[ i ].color = ColourCache.red;
			bar.faces[ i + 1 ].color = ColourCache.red;

		}

		for ( i = 0, l = bar2.faces.length; i < l; i = i + 4 ) {

			bar2.faces[ i ].color = ColourCache.red;
			bar2.faces[ i + 1 ].color = ColourCache.red;

		}

		bar.translate( rLength / 2, height + height / 2 + 1, 0 );
		bar2.translate( rLength / 2, height / 2, 0 );
		line.translate( rLength / 2, height, 0 );

		bar.computeBoundingBox();

		var group = new Group();

		group.add( mBar );
		group.add( mBar2 );
		group.add( mLine );

		return { mesh: group, topRight: bar.boundingBox.max.x };

	}

};



// EOF

// THREE objects

var renderer$1;
var camera$1;
var scene$1;

var hScale = 0;

var attitudeGroup;

var linearScale = null;
var angleScale  = null;
var cursorScale = null;
var scaleBar    = null;

var compass;
var ahi;
var progressDial;

// DOM objects

var container$1;

// viewer state

var controls$1;
var isVisible = true;

function init$1 ( domId, viewRenderer ) {

	container$1 = document.getElementById( domId );
	renderer$1 = viewRenderer;

	var hHeight = container$1.clientHeight / 2;
	var hWidth  = container$1.clientWidth / 2;

	// create GL scene and camera for overlay
	camera$1 = new OrthographicCamera( -hWidth, hWidth, hHeight, -hHeight, 1, 1000 );
	camera$1.position.z = 600;

	scene$1 = new Scene();

	// group to simplyfy resize handling
	attitudeGroup = new Group();
	attitudeGroup.position.set( hWidth, -hHeight, 0 );

	scene$1.add( attitudeGroup );

	var aLight = new AmbientLight( 0x888888 );
	var dLight = new DirectionalLight( 0xFFFFFF );

	dLight.position.set( -1, 1, 1 );

	scene$1.add( aLight );
	scene$1.add( dLight );

	compass      = new Compass( container$1 );
	ahi          = new AHI( container$1 );
	progressDial = new ProgressDial();

	attitudeGroup.add( compass );
	attitudeGroup.add( ahi );
	attitudeGroup.add( progressDial );

	window.addEventListener( 'resize', resize$1 );

	Viewer.addEventListener( 'newCave', caveChanged );
	Viewer.addEventListener( 'change', viewChanged );

	controls$1 = Viewer.getControls();

	controls$1.addEventListener( 'change', update );

}

function setVisibility ( visible ) {

	compass.setVisibility( visible );
	ahi.setVisibility( visible );
	progressDial.setVisibility( visible );

	if ( scaleBar ) scaleBar.setVisibility( visible );

	isVisible = visible;

	// reset correct disposition of colour keys etc.
	if ( linearScale ) {

		if ( visible ) {

			viewChanged ( { type: 'change', name: 'shadingMode' } );

		} else {

			linearScale.setVisibility( false );
			cursorScale.setVisibility( false );
			angleScale.setVisibility( false );

		}

	}

	Viewer.renderView();

}

function getVisibility() {

	return isVisible;

}

function getProgressDial() {

	return progressDial;

}

function setScale$1( scale ) {

	hScale = scale;

}

function resize$1 () {

	var hWidth  = container$1.clientWidth / 2;
	var hHeight = container$1.clientHeight / 2;

	// adjust cameras to new aspect ratio etc.
	camera$1.left   = -hWidth;
	camera$1.right  =  hWidth;
	camera$1.top    =  hHeight;
	camera$1.bottom = -hHeight;

	camera$1.updateProjectionMatrix();

	attitudeGroup.position.set( hWidth, -hHeight, 0 );

	newScales();

	setVisibility ( isVisible ); // set correct visibility of elements

}

function update () {

	// update HUD components

	var currentCamera = controls$1.object;

	compass.set( currentCamera );
	ahi.set( currentCamera );
	updateScaleBar( currentCamera );

}

function renderHUD () {

	// render on screen
	renderer$1.clearDepth();
	renderer$1.render( scene$1, camera$1 );

}

function caveChanged ( /* event */ ) {

	newScales();

	viewChanged ( { type: 'change', name: 'shadingMode' } );

}


function newScales () {

	if ( linearScale ) scene$1.remove( linearScale );

	linearScale = new LinearScale( container$1, Viewer );

	scene$1.add( linearScale );


	if ( cursorScale ) scene$1.remove( cursorScale );

	cursorScale = new CursorScale( container$1 );

	scene$1.add( cursorScale );


	if ( angleScale ) scene$1.remove( angleScale );

	angleScale = new AngleScale( container$1 );

	scene$1.add( angleScale );

	if ( scaleBar ) {

		scene$1.remove( scaleBar );
		scaleBar = null;

	}

	updateScaleBar( controls$1.object );

}

function viewChanged ( event ) {

	if ( event.name !== 'shadingMode' || ! isVisible ) return;

	// hide all - and only make required elements visible

	var useAngleScale = false;
	var useLinearScale = false;
	var useCursorScale = false;

	switch ( Viewer.shadingMode ) {

	case SHADING_HEIGHT:

		useLinearScale = true;

		linearScale.setRange( Viewer.minHeight, Viewer.maxHeight, 'Height above Datum' ).setMaterial( Materials$1.getHeightMaterial( MATERIAL_LINE ) );

		break;

	case SHADING_DEPTH:

		useLinearScale = true;

		linearScale.setRange( Viewer.maxHeight - Viewer.minHeight, 0, 'Depth below surface' ).setMaterial( Materials$1.getHeightMaterial( MATERIAL_LINE ) );

		break;

	case SHADING_CURSOR:

		useCursorScale = true;

		cursorScale.setRange( Viewer.minHeight, Viewer.maxHeight, 'Height' );

		cursorChanged();

		break;

	case SHADING_DEPTH_CURSOR:

		useCursorScale = true;

		cursorScale.setRange( Viewer.maxHeight - Viewer.minHeight, 0, 'Depth' );

		cursorChanged();

		break;

	case SHADING_LENGTH:

		useLinearScale = true;

		linearScale.setRange( Viewer.minLegLength, Viewer.maxLegLength, 'Leg length' ).setMaterial( Materials$1.getHeightMaterial( MATERIAL_LINE, true ) ).setVisibility( true );

		break;

	case SHADING_INCLINATION:

		useAngleScale = true;

		break;

	}

	angleScale.setVisibility( useAngleScale );
	linearScale.setVisibility( useLinearScale );
	cursorScale.setVisibility( useCursorScale );

	if ( useCursorScale ) {

		Viewer.addEventListener( 'cursorChange', cursorChanged );

	} else {

		Viewer.removeEventListener( 'cursorChange', cursorChanged );

	}

	Viewer.renderView();

}

function cursorChanged ( /* event */ ) {

	var cursorHeight = Viewer.cursorHeight;
	var range = Viewer.maxHeight - Viewer.minHeight;
	var scaledHeight = 0;

	if ( Viewer.shadingMode === SHADING_CURSOR ) {

		scaledHeight = ( Viewer.cursorHeight + range / 2 ) / range;

	} else {

		scaledHeight = 1 - cursorHeight / range;

	}

	scaledHeight = Math.max( Math.min( scaledHeight, 1 ), 0 );

	cursorScale.setCursor( scaledHeight, Math.round( cursorHeight ) );

}

function updateScaleBar ( camera ) {

	if ( camera instanceof OrthographicCamera ) {

		if ( scaleBar === null ) {

			scaleBar = new ScaleBar( container$1, hScale, ( HudObject.stdWidth + HudObject.stdMargin ) * 4 );
			scene$1.add( scaleBar );

		}

		if ( isVisible !== scaleBar.visible ) scaleBar.setVisibility( isVisible );

		scaleBar.setScale( camera.zoom );

	} else {

		if ( scaleBar !== null && scaleBar.visible ) scaleBar.setVisibility( false );

	}

}

var HUD = {
	init:               init$1,
	renderHUD:          renderHUD,
	update:             update,
	setVisibility:		setVisibility,
	getVisibility:		getVisibility,
	getProgressDial:    getProgressDial,
	setScale:           setScale$1
};

// EOF

function CameraMove ( controls, renderFunction, endCallback ) {

	this.cameraTarget = null;
	this.targetPOI = null;

	this.controls = controls;
	this.renderFunction = renderFunction;
	this.endCallback = endCallback;
	this.frameCount = 0;
	this.frames = 0;
	this.targetZoom = 1;
	this.curve = null;
	this.skipNext = false;

	this.moveRequired = false;

}

CameraMove.prototype.constructor = CameraMove;

CameraMove.prototype.prepare = function ( cameraTarget, targetPOI ) {

	if ( this.frameCount !== 0 ) return;

	this.skipNext = false;

	if ( targetPOI && targetPOI.isBox3 ) {

		// target can be a Box3 in world space

		var size = targetPOI.getSize();
		var camera = this.controls.object;
		var elevation;

		targetPOI = targetPOI.getCenter();

		if ( camera.isPerspectiveCamera ) {

			var tan = Math.tan( _Math.DEG2RAD * 0.5 * camera.getEffectiveFOV() );

			var e1 = 1.5 * tan * size.y / 2 + size.z;
			var e2 = tan * camera.aspect * size.x / 2 + size.z;

			elevation = Math.max( e1, e2 );

			this.targetZoom = 1;

			if ( elevation === 0 ) elevation = 100;

		} else {

			var hRatio = ( camera.right - camera.left ) / size.x;
			var vRatio = ( camera.top - camera.bottom ) / size.y;

			this.targetZoom = Math.min( hRatio, vRatio );
			elevation = 600;

		}

		cameraTarget   = targetPOI.clone();
		cameraTarget.z = cameraTarget.z + elevation;

	}

	this.cameraTarget = cameraTarget;
	this.targetPOI = targetPOI;

	this.moveRequired = ( this.cameraTarget !== null || this.targetPOI !== null );

	var startPOI = this.controls.target;
	var cameraStart = this.controls.object.position;

	if ( cameraTarget !== null ) {

		if ( cameraTarget.equals( cameraStart ) ) {

			// start and end camera positions are identical.

			this.moveRequired = false;

			if ( targetPOI === null ) this.skipNext = true;

		} else {

			if ( targetPOI === null ) targetPOI = startPOI;

			var distance = cameraStart.distanceTo( cameraTarget );

			var cp1 = this.getControlPoint( startPOI, cameraStart, cameraTarget, distance );
			var cp2 = this.getControlPoint( targetPOI, cameraTarget, cameraStart, distance );

			this.curve = new CubicBezierCurve3( cameraStart, cp1, cp2, cameraTarget );

		}

	}

};

CameraMove.prototype.getControlPoint = function ( common, p1, p2, distance ) {

	var v1 = new Vector3();
	var v2 = new Vector3();

	var normal = new Vector3();
	var l = 0;

	while ( l === 0 ) {

		v1.copy( p1 ).sub( common );
		v2.copy( p2 ).sub( common );

		normal.crossVectors( v1, v2 );

		l = normal.length();

		if ( l === 0 ) {

			// adjust the targetPOI to avoid degenerate triangles.

			common.addScalar( -1 );

		}

	}

	var adjust = new Vector3().crossVectors( normal, v1 ).setLength( Math.min( distance, v1.length() ) / 3 );

	var candidate1 = new Vector3().copy( adjust ).add( v1 );
	var candidate2 = new Vector3().copy( adjust ).negate().add( v1 );

	return ( v2.distanceTo( candidate1 ) < v2.distanceTo( candidate2 ) ) ? candidate1 : candidate2;

};

CameraMove.prototype.start = function ( time ) {

	if ( this.frameCount === 0 && ! this.skipNext ) {

		this.frameCount = time + 1;
		this.frames = this.frameCount;
		this.controls.enabled = ! this.moveRequired;

		this.animate();

	}

};

CameraMove.prototype.animate = function () {

	var tRemaining = --this.frameCount;
	var controls = this.controls;
	var curve = this.curve;

	if ( tRemaining < 0 ) {

		this.frameCount = 0;
		this.endAnimation();

		return;

	}

	if ( this.moveRequired ) {

		// update camera position and controls.target

		var camera = controls.object;

		var t = 1 - tRemaining / this.frames;

		controls.target.lerp( this.targetPOI, t );

		if ( curve !== null ) {

			camera.position.copy( this.curve.getPoint( t ) );

		}

		camera.zoom = camera.zoom + ( this.targetZoom - camera.zoom ) * t;

		//	if ( targetPOI.quaternion ) camera.quaternion.slerp( targetPOI.quaternion, t );

		camera.updateProjectionMatrix();

	}

	controls.update();

	if ( tRemaining === 0 ) {

		// end of animation

		this.endAnimation();

		return;

	}

	var self = this;

	requestAnimationFrame( function () { self.animate(); } );

	this.renderFunction();

};

CameraMove.prototype.endAnimation = function () {

	this.controls.enabled = true;
	this.moveRequired = false;

	this.cameraTarget = null;
	this.targetPOI = null;

	this.renderFunction();
	this.endCallback();

};

CameraMove.prototype.stop = function () {

	this.frameCount = 1;

};

CameraMove.prototype.cancel = function () {

	this.frameCount = 0;
	this.skipNext = false;

};

CameraMove.prototype.isActive = function () {

	return ( this.frameCount > 0 );

};

function Tree( name, id, root, parent ) { // root parameter only used internally

	if ( root === undefined ) {

		this.id = 0;
		this.maxId = 0;
		this.root = this;
		this.parent = null;

	} else {

		this.root = root;
		this.parent = parent;
		this.id = ( id === null ) ? ++root.maxId : id;

	}

	this.name = name || '';
	this.children = [];

}

Tree.prototype.constructor = Tree;

Tree.prototype.traverse = function ( func ) {

	var children = this.children;

	func ( this );

	for ( var i = 0; i < children.length; i++ ) {

		children[ i ].traverse( func );

	}

};

Tree.prototype.traverseDepthFirst = function ( func ) {

	var children = this.children;


	for ( var i = 0; i < children.length; i++ ) {

		children[ i ].traverseDepthFirst( func );

	}

	func ( this );

};

Tree.prototype.forEachChild = function ( func, recurse ) {

	var children = this.children;
	var child;

	for ( var i = 0; i < children.length; i++ ) {

		child = children[ i ];

		func( child );

		if ( recurse === true ) child.forEachChild( func, true );

	}

};

Tree.prototype.addById = function ( name, id, parentId, properties ) {

	var parentNode = this.findById( parentId );

	if ( parentNode ) {

		var node = new Tree( name, id, this.root, parentNode );

		if ( properties !== undefined ) Object.assign( node, properties );

		parentNode.children.push( node );

		var root = this.root;
		root.maxId = Math.max( root.maxId, id );

		return node.id;

	}

	return null;

};

Tree.prototype.findById = function ( id ) {

	if ( this.id == id ) return this;

	for ( var i = 0, l = this.children.length; i < l; i++ ) {

		var child = this.children[ i ];

		var found = child.findById( id );

		if ( found ) return found;

	}

	return undefined;

};

Tree.prototype.getByPath = function ( path ) {

	var pathArray = path.split( '.' );
	var node = this.getByPathArray( pathArray );

	return pathArray.length === 0 ? node : undefined;

};

Tree.prototype.getByPathArray = function ( path ) {

	var node  = this;
	var search = true;

	while ( search && path.length > 0 ) {

		search = false;

		for ( var i = 0, l = node.children.length; i < l; i++ ) {

			var child = node.children[ i ];

			if ( child.name === path[ 0 ] ) {

				node = child;
				path.shift();
				search = true;

				break;

			}

		}

	}

	return node;

};

Tree.prototype.addPath = function ( path, properties ) {

	var node;
	var newNode;

	// find part of path that exists already

	node = this.getByPathArray( path );

	if ( path.length === 0 ) return node;

	// add remainder of path to node

	while ( path.length > 0 ) {

		newNode = new Tree( path.shift(), null, this.root, node );

		node.children.push( newNode );
		node = newNode;

	}

	if ( properties !== undefined ) Object.assign( node, properties );

	return node;

};

Tree.prototype.getPath = function ( endNode ) {

	var node = this;
	var path = [];

	if ( endNode === undefined ) endNode = this.root;

	do {

		path.push( node.name );
		node = node.parent;

	} while ( node !== endNode );

	return path.reverse().join( '.' );

};

Tree.prototype.getSubtreeIds = function ( id, idSet ) {

	var node = this.findById( id );

	node.traverse( _getId );

	function _getId( node ) {

		idSet.add( node.id );

	}

};

Tree.prototype.getIdByPath = function ( path ) {

	var node = this.getByPathArray( path );

	if ( path.length === 0 ) {

		return node.id;

	} else {

		return undefined;

	}

};



// EOF

/**
 * based on BoxHelper
 * @author mrdoob / http://mrdoob.com/
 * @author Mugen87 / http://github.com/Mugen87
 */

function Box3Helper( box3, color ) {

	this.box3 = box3;

	if ( color === undefined ) color = 0xffff00;

	var indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] );
	var positions = new Float32Array( 8 * 3 );

	var geometry = new BufferGeometry();
	geometry.setIndex( new BufferAttribute( indices, 1 ) );
	geometry.addAttribute( 'position', new BufferAttribute( positions, 3 ) );

	LineSegments.call( this, geometry, new LineBasicMaterial( { color: color } ) );

	this.matrixAutoUpdate = false;

	this.update( box3 );

}

Box3Helper.prototype.type = 'Box3Helper';

Box3Helper.prototype = Object.create( LineSegments.prototype );
Box3Helper.prototype.constructor = Box3Helper;

Box3Helper.prototype.update = function ( box3 ) {

	this.box3 = box3;

	if ( box3.isEmpty() ) return;

	var min = box3.min;
	var max = box3.max;

	/*
		   5____4
		 1/___0/|
		 | 6__|_7
		 2/___3/

		0: max.x, max.y, max.z
		1: min.x, max.y, max.z
		2: min.x, min.y, max.z
		3: max.x, min.y, max.z
		4: max.x, max.y, min.z
		5: min.x, max.y, min.z
		6: min.x, min.y, min.z
		7: max.x, min.y, min.z

	*/

	var position = this.geometry.attributes.position;
	var array = position.array;

	array[  0 ] = max.x; array[  1 ] = max.y; array[  2 ] = max.z;
	array[  3 ] = min.x; array[  4 ] = max.y; array[  5 ] = max.z;
	array[  6 ] = min.x; array[  7 ] = min.y; array[  8 ] = max.z;
	array[  9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z;
	array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z;
	array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z;
	array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z;
	array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z;

	position.needsUpdate = true;

	this.geometry.computeBoundingSphere();

};

Box3Helper.prototype.removed = function () {

	if ( this.geometry ) this.geometry.dispose();

};

function GlyphStringGeometry ( text, glyphAtlas ) {

	InstancedBufferGeometry.call( this );

	this.type = 'GlyphStringGeometry';
	this.name = text;
	this.width = 0;

	var indexAttribute = new Uint16BufferAttribute( [ 0, 2, 1, 0, 3, 2 ], 1 );

	// unit square
	var positions = [
		0, 0, 0,
		0, 1, 0,
		1, 1, 0,
		1, 0, 0
	];

	var positionAttribute = new Float32BufferAttribute( positions, 3 );

	this.setIndex( indexAttribute );
	this.addAttribute( 'position', positionAttribute );

	var i, l, glyphData;
	var offset = 0;

	l = text.length;

	var uvs = new Float32Array( l * 2 );
	var widths = new Float32Array( l );
	var offsets = new Float32Array( l );

	for ( i = 0; i < l; i++ ) {

		if ( text.charCodeAt() === 0 ) continue; // skip null characters

		glyphData = glyphAtlas.getGlyph( text[ i ] );

		uvs[ i * 2 ] = glyphData.column;
		uvs[ i * 2 + 1 ] = glyphData.row;

		widths[ i ] = glyphData.width;

		offsets[ i ] = offset;

		offset += glyphData.width;

	}

	this.width = offset;

	this.addAttribute( 'instanceUvs', new InstancedBufferAttribute( uvs, 2, 1 ) );
	this.addAttribute( 'instanceOffsets', new InstancedBufferAttribute( offsets, 1, 1 ) );
	this.addAttribute( 'instanceWidths', new InstancedBufferAttribute( widths, 1, 1 ) );

}

GlyphStringGeometry.indexAttribute = null;
GlyphStringGeometry.positionAttribute = null;

GlyphStringGeometry.prototype = Object.assign( Object.create( InstancedBufferGeometry.prototype ), {

	constructor: GlyphStringGeometry

} );


function GlyphString ( text, glyphMaterial ) {

	var geometry = new GlyphStringGeometry( text, glyphMaterial.getAtlas() );

	Mesh.call( this, geometry, glyphMaterial );

	this.type = 'GlyphString';
	this.name = text;
	this.frustumCulled = false;

}

GlyphString.prototype = Object.assign( Object.create( Mesh.prototype ), {

	constructor: GlyphString,

	isGlyphString: true,

	getWidth: function () {

		return this.geometry.width;

	}

} );



// EOF

function Point ( material ) {

	var geometry = new BufferGeometry();

	material = material || new PointsMaterial( { color: 0xffffff } );

	geometry.addAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0 ], 3 ) );

	Points.call( this, geometry, material );

	this.type = 'Point';

	return this;

}

Point.prototype = Object.create( Points.prototype );

Point.prototype.constructor = Point;

// preallocated objects for projected area calculation

var A = new Vector3();
var B = new Vector3();
var C = new Vector3();
var D = new Vector3();

var T1 = new Triangle( A, B, C );
var T2 = new Triangle( A, C, D );

var clusterMaterialCache = [];

function getClusterMaterial ( count ) {

	var material = clusterMaterialCache[ count ];

	if ( material !== undefined ) return material;

	var markerSize = 64;
	var halfSize = markerSize / 2;

	var canvas = document.createElement( 'canvas' );

	if ( ! canvas ) console.error( 'creating canvas for glyph atlas failed' );

	canvas.width  = markerSize;
	canvas.height = markerSize;

	var ctx = canvas.getContext( '2d' );

	if ( ! ctx ) console.error( 'cannot obtain 2D canvas' );

	// set transparent background

	ctx.fillStyle = 'rgba( 0, 0, 0, 0 )';
	ctx.fillRect( 0, 0, markerSize, markerSize );

	var fontSize = 40;

	ctx.textAlign = 'center';
	ctx.font = 'bold ' + fontSize + 'px helvetica,sans-serif';
	ctx.fillStyle = '#ffffff';

	var gradient = ctx.createRadialGradient( halfSize, halfSize, 30, halfSize, halfSize, 0 );

	gradient.addColorStop( 0.0, 'rgba( 255, 128, 0, 64 )' );
	gradient.addColorStop( 0.3, 'rgba( 255, 200, 0, 255 )' );
	gradient.addColorStop( 1.0, 'rgba( 255, 255, 0, 255 )' );

	ctx.fillStyle = gradient;

	ctx.beginPath();
	ctx.arc( halfSize, halfSize, 30, 0, Math.PI * 2 );
	ctx.fill();

	ctx.fillStyle = 'rgba( 0, 0, 0, 255 )';

	ctx.fillText( count, halfSize, halfSize + 15 );

	material = new PointsMaterial( { map: new CanvasTexture( canvas ), size: 32, depthTest: false, transparent: true, alphaTest: 0.8, sizeAttenuation: false } );

	clusterMaterialCache[ count ] = material;

	return material;

}

function makeClusterMarker ( count ) {

	return new Point( getClusterMaterial( count ) );

}


function QuadTree ( xMin, xMax, yMin, yMax ) {

	this.nodes = new Array( 4 );
	this.count = 0;
	this.markers = [];
	this.quadMarker = null;
	this.centroid = new Vector3();

	this.xMin = xMin;
	this.xMax = xMax;

	this.yMin = yMin;
	this.yMax = yMax;

}

QuadTree.prototype.addNode = function ( marker, depth ) {

	// add marker into this quad and recurse to inner quads

	var index = 0;
	var position = marker.position;

	this.markers.push( marker );
	this.centroid.add( marker.position );

	this.count++;

	if ( depth-- === 0 ) return;

	var xMid = ( this.xMin + this.xMax ) / 2;
	var yMid = ( this.yMin + this.yMax ) / 2;

	if ( position.x > xMid ) index += 1;
	if ( position.y > yMid ) index += 2;

	var subQuad = this.nodes[ index ];

	if ( subQuad === undefined ) {

		switch ( index ) {

		case 0:

			subQuad = new QuadTree( this.xMin, xMid, this.yMin, yMid );
			break;

		case 1:

			subQuad = new QuadTree( xMid, this.xMax, this.yMin, yMid );
			break;

		case 2:

			subQuad = new QuadTree( this.xMin, xMid, yMid, this.yMax );
			break;

		case 3:

			subQuad = new QuadTree( xMid, this.xMax, yMid, this.yMax );
			break;

		}

		this.nodes[ index ] = subQuad;

	}

	subQuad.addNode( marker, depth );

};

QuadTree.prototype.check = function ( cluster ) {

	var subQuad;

	for ( var i = 0; i < 4; i++ ) {

		subQuad = this.nodes[ i ];

		if ( subQuad !== undefined ) {

			// prune quads that will never be clustered. will not be checked after first pass

			if ( subQuad.count < 2 ) {

				this.nodes[ i ] = undefined;

				continue;

			}

			// test for projected area for quad containing multiple markers

			var area = subQuad.projectedArea( cluster );

			if ( area < 0.80 ) { // FIXME calibrate by screen size ???

				subQuad.clusterMarkers( cluster );

			} else {

				subQuad.showMarkers();
				subQuad.check( cluster );

			}

		}

	}

};

QuadTree.prototype.showMarkers = function () {

	var markers = this.markers;

	// hide the indiviual markers in this quad

	for ( var i = 0, l = markers.length; i < l; i++ ) {

		markers[ i ].visible = true;

	}

	if ( this.quadMarker !== null ) this.quadMarker.visible = false;

};

QuadTree.prototype.clusterMarkers = function ( cluster ) {

	var i, l, subQuad;
	var markers = this.markers;

	// hide the indiviual markers in this quad

	for ( i = 0, l = markers.length; i < l; i++ ) {

		markers[ i ].visible = false;

	}

	// hide quadMarkers for contained quads

	for ( i = 0; i < 4; i++ ) {

		subQuad = this.nodes[ i ];

		if ( subQuad !== undefined ) subQuad.hideQuadMarkers();

	}

	if ( this.quadMarker === null ) {

		var quadMarker = makeClusterMarker( this.count );

		// set to center of distribution of markers in this quad.

		quadMarker.position.copy( this.centroid ).divideScalar( this.count );
		quadMarker.layers.set( FEATURE_ENTRANCES );

		cluster.add( quadMarker );

		this.quadMarker = quadMarker;

	}

	this.quadMarker.visible = true;

};

QuadTree.prototype.hideQuadMarkers = function () {

	var subQuad;

	if ( this.quadMarker ) this.quadMarker.visible = false;

	for ( var i = 0; i < 4; i++ ) {

		subQuad = this.nodes[ i ];

		if ( subQuad !== undefined ) subQuad.hideQuadMarkers();

	}

};

QuadTree.prototype.projectedArea = function ( cluster ) {

	var camera = cluster.camera;
	var matrixWorld = cluster.matrixWorld;
	var zAverage = this.centroid.z / this.count;

	A.set( this.xMin, this.yMin, zAverage ).applyMatrix4( matrixWorld ).project( camera );
	B.set( this.xMin, this.yMax, zAverage ).applyMatrix4( matrixWorld ).project( camera );
	C.set( this.xMax, this.yMax, zAverage ).applyMatrix4( matrixWorld ).project( camera );
	D.set( this.xMax, this.yMin, zAverage ).applyMatrix4( matrixWorld ).project( camera );

	return T1.area() + T2.area();

};

function ClusterMarkers ( limits, maxDepth ) {

	Object3D.call( this );

	var min = limits.min;
	var max = limits.max;

	this.maxDepth = maxDepth;

	this.type = 'CV.ClusterMarker';

	this.quadTree = new QuadTree( min.x, max.x, min.y, max.y );

	this.addEventListener( 'removed', this.onRemoved );

	return this;

}

ClusterMarkers.prototype = Object.create( Object3D.prototype );

ClusterMarkers.prototype.constructor = ClusterMarkers;

ClusterMarkers.prototype.onRemoved = function () {

	this.traverse(

		function _traverse ( obj ) {

			if ( obj.type === 'GlyphString' ) { obj.geometry.dispose(); }

		}

	);

};

ClusterMarkers.prototype.addMarker = function ( position, label ) {

	// create marker
	var material = Materials$1.getGlyphMaterial( 'normal helvetica,sans-serif', Math.PI / 4 );
	var marker = new GlyphString( label, material );

	marker.layers.set( FEATURE_ENTRANCES );
	marker.position.copy( position );

	this.quadTree.addNode( marker, this.maxDepth );

	this.add( marker );

	return marker;

};

ClusterMarkers.prototype.cluster = function ( camera ) {

	// determine which labels are too close together to be usefully displayed as separate objects.

	// immediate exit if only a single label or none.

	if ( this.children.length < 2 ) return;

	this.camera = camera;

	this.quadTree.check( this ) ;

	return;

};



// EOF

function ExtendedPointsMaterial () {

	ShaderMaterial.call( this, {
		uniforms: {
			diffuse: { value: ColourCache.white },
			opacity: { value: 1.0 },
			size: { value: 1.0 },
			scale: { value: 1.0 },
			pScale: { value: 1.0 },
			offsetRepeat: { value: new Vector4() },
			map: { value: null }
		},
		vertexShader: Shaders.extendedPointsVertexShader,
		fragmentShader: Shaders.extendedPointsFragmentShader,
		vertexColors: VertexColors
	} );

	this.map = new TextureLoader().load( getEnvironmentValue( 'home', '' ) + 'images/disc.png' );

	this.color = ColourCache.white;
	this.opacity = 1.0;
	this.alphaTest = 0.8;

	this.size = 1;
	this.scale = 1;
	this.sizeAttenuation = true;
	this.transparent = true;

	this.type = 'CV.ExtendedPointsMaterial';

	this.isPointsMaterial = true;

	return this;

}

ExtendedPointsMaterial.prototype = Object.create( ShaderMaterial.prototype );

ExtendedPointsMaterial.prototype.constructor = ExtendedPointsMaterial;



// EOF

function Stations () {

	Points.call( this, new BufferGeometry, new ExtendedPointsMaterial() );

	this.type = 'CV.Stations';
	this.map = new Map();
	this.stationCount = 0;

	this.baseColor     = ColourCache.red;
	this.junctionColor = ColourCache.yellow;

	this.layers.set( FEATURE_STATIONS );

	this.pointSizes = [];
	this.vertices   = [];
	this.colors     = [];

	this.stations = [];

	this.selected = null;
	this.selectedSize = 0;

	var self = this;

	Viewer.addEventListener( 'change', _viewChanged );

	this.addEventListener( 'removed', _removed );

	Object.defineProperty( this, 'count', {

		get: function () { return this.stations.length; }

	} );

	function _viewChanged( event ) {

		if ( event.name === 'splays' ) {

			var splaySize = Viewer.splays ? 1.0 : 0.0;

			var stations = self.stations;
			var pSize = self.geometry.getAttribute( 'pSize' );
			var i;
			var l = stations.length;

			for ( i = 0; i < l; i++ ) {

				if ( stations[ i ].hitCount === 0 ) {

					pSize.setX( i, splaySize );

				}

			}

			pSize.needsUpdate = true;
			Viewer.renderView();

		}

	}

	function _removed ( ) {

		Viewer.removeEventListener( 'change', _viewChanged );

	}

}

Stations.prototype = Object.create ( Points.prototype );

Stations.prototype.constructor = Stations;

Stations.prototype.addStation = function ( node ) {

	var point = node.p;

	this.vertices.push( point );
	this.colors.push( this.baseColor );
	this.pointSizes.push( point.type === STATION_ENTRANCE ? 8.0 : 0.0 );

	this.map.set( point.x.toString() + ':' + point.y.toString() + ':' + point.z.toString(), node );
	this.stations.push( node );

	node.hitCount = 0;
	node.stationVertexIndex = this.stationCount++;
	node.linkedSegments = [];

};

Stations.prototype.getStation = function ( vertex ) {

	return this.map.get( vertex.x.toString() + ':' + vertex.y.toString() + ':' + vertex.z.toString() );

};


Stations.prototype.getStationByIndex = function ( index ) {

	return this.stations[ index ];

};

Stations.prototype.clearSelected = function () {

	if ( this.selected !== null ) {

		var pSize = this.geometry.getAttribute( 'pSize' );

		pSize.setX( this.selected, this.selectedSize );
		pSize.needsUpdate = true;

		this.selected = null;

	}

};

Stations.prototype.selectStation = function ( node ) {

	this.selectStationByIndex( node.stationVertexIndex );

};

Stations.prototype.selectStationByIndex = function ( index ) {

	var pSize = this.geometry.getAttribute( 'pSize' );

	if ( this.selected !== null ) {

		pSize.setX( this.selected, this.selectedSize );

	}

	this.selectedSize = pSize.getX( index );

	pSize.setX( index, this.selectedSize * 2 );

//	pSize.updateRange.offset = index;
//	pSize.updateRange.count  = 1;

	pSize.needsUpdate = true;

	this.selected = index;

};

Stations.prototype.updateStation = function ( vertex ) {

	var	station = this.getStation( vertex );

	if ( station !== undefined ) {

		station.hitCount++;

		if ( station.hitCount > 2 ) {

			this.colors[ station.stationVertexIndex ] = this.junctionColor;
			this.pointSizes[ station.stationVertexIndex ] = 4.0;

		} else if ( station.hitCount > 0 ) {

			this.pointSizes[ station.stationVertexIndex ] = 2.0;

		}

	}

};

Stations.prototype.finalise = function () {

	var bufferGeometry = this.geometry;

	var positions = new Float32BufferAttribute(this.vertices.length * 3, 3 );
	var colors = new Float32BufferAttribute( this.colors.length * 3, 3 );

	bufferGeometry.addAttribute( 'pSize', new Float32BufferAttribute( this.pointSizes, 1 ) );
	bufferGeometry.addAttribute( 'position', positions.copyVector3sArray( this.vertices ) );
	bufferGeometry.addAttribute( 'color', colors.copyColorsArray( this.colors ) );

	this.pointSizes = null;
	this.vertices   = null;
	this.colors     = null;

};

Stations.prototype.setScale = function ( scale ) {

	this.material.uniforms.pScale.value = scale;
	this.material.needsUpdate = true;

};

var _tmpVector3 = new Vector3();

function StationLabels () {

	Group.call( this );

	this.type = 'CV.StationLabels';
	this.layers.set( LABEL_STATION );

	this.junctionLabelMaterial = Materials$1.getGlyphMaterial( 'normal helvetica,sans-serif', 0, [ 1, 1, 0 ] );
	this.defaultLabelMaterial = Materials$1.getGlyphMaterial( 'normal helvetica,sans-serif', 0 );
	this.splayLabelMaterial = Materials$1.getGlyphMaterial( 'normal helvetica,sans-serif', 0, [ 0.6, 0.6, 0.6 ] );

}

StationLabels.prototype = Object.create ( Group.prototype );

StationLabels.prototype.constructor = StationLabels;

StationLabels.prototype.addStation = function ( station ) {

	var material;

	if ( station.hitCount === 0 ) {

		material = this.splayLabelMaterial;

	} else if ( station.hitCount < 3 ) {

		material = this.defaultLabelMaterial;

	} else {

		material = this.junctionLabelMaterial;

	}

	var label = new GlyphString( station.name, material );

	label.layers.set( LABEL_STATION );

	label.position.copy( station.p );

	label.hitCount = station.hitCount;
	label.visible = false;

	this.add( label );

};

StationLabels.prototype.update = function ( camera, target, inverseWorld ) {

	var cameraPosition = _tmpVector3.copy( camera.position );

	if ( camera.isOrthographicCamera ) {

		// if orthographic, calculate 'virtual' camera position

		cameraPosition.sub( target ); // now vector from target

		cameraPosition.setLength( CAMERA_OFFSET / camera.zoom ); // scale for zoom factor
		cameraPosition.add( target ); // relocate in world space

	}

	// transform camera position into model coordinate system

	cameraPosition.applyMatrix4( inverseWorld );

	var label, limit;
	var splaysVisible = camera.layers.mask & 1 << LEG_SPLAY;
	var children = this.children;

	for ( var i = 0, l = children.length; i < l; i++ ) {

		label = children[ i ];

		// only show labels for splay end stations if splays visible
		if ( label.hitCount === 0 && ! splaysVisible ) {

			label.visible = false;

		} else {

			// show labels for network vertices at greater distance than intermediate stations
			limit = ( label.hitCount < 3 ) ? 5000 : 40000;
			label.visible =  ( label.position.distanceToSquared( cameraPosition) < limit );

		}

	}

};

function Routes ( metadataSource ) {

	// determine segments between junctions and entrances/passage ends and create mapping array.

	this.metadataSource = metadataSource;
	this.surveyTree = null;
	this.vertexPairToSegment = []; // maps vertex index to segment membership
	this.segmentMap = new Map(); // maps segments of survey between ends of passages and junctions.
	this.segmentToInfo = {};

	this.routes = new Map();
	this.routeNames = [];

	this.currentRoute = new Set();
	this.currentRouteName = null;
	this.adjacentSegments = new Set();

	Object.defineProperty( this, 'setRoute', {
		set: function ( x ) { this.loadRoute( x ); },
		get: function () { return this.currentRouteName; }
	} );

	var routes = metadataSource.getRoutes();
	var routeName;
	var routeNames = this.routeNames;

	for ( routeName in routes ) {

		var route = routes[ routeName ];

		routeNames.push( routeName );
		this.routes.set( routeName, route.segments );

	}

	routeNames.sort();

	this.dispatchEvent( { type: 'changed', name: 'download' } );

}

Routes.prototype.constructor = Routes;

Object.assign( Routes.prototype, EventDispatcher.prototype );

Routes.prototype.mapSurvey = function ( stations, legs, surveyTree ) {

	// determine segments between junctions and entrances/passage ends and create mapping array.
	this.surveyTree = surveyTree;

	var segmentMap = this.segmentMap;
	var newSegment = true;

	var station;

	var segment = 0;
	var vertexPairToSegment = this.vertexPairToSegment;
	var segmentToInfo = this.segmentToInfo;

	var v1, v2;

	var i, l = legs.length;

	var segmentInfo;

	for ( i = 0; i < l; i = i + 2 ) {

		v1 = legs[ i ];
		v2 = legs[ i + 1 ];

		vertexPairToSegment.push( segment );

		if ( newSegment ) {

			station = stations.getStation( v1 );
			if ( station === undefined ) continue; // possible use of separator in station name.

			segmentInfo = {
				segment: segment,
				startStation: station,
				endStation: null
			};

			station.linkedSegments.push( segment );

			newSegment = false;

		}

		station = stations.getStation( v2 );
		if ( station === undefined ) continue; // possible use of separator in station name.
		if ( ( station && station.hitCount > 2 ) || ( i + 2 < l && ! v2.equals( legs[ i + 2 ] ) ) ) {

			// we have found a junction or a passage end
			segmentInfo.endStation = station;

			segmentMap.set( segmentInfo.startStation.id + ':' + station.id, segmentInfo );
			segmentToInfo[ segment ] = segmentInfo;

			station.linkedSegments.push( segment );

			segment++;

			newSegment = true;

		}

	}

	if ( ! newSegment ) {

		segmentInfo.endStation = station;

		segmentMap.set( segmentInfo.startStation.id + ':' + station.id, segmentInfo );

		station.linkedSegments.push( segment );

	}

	return this;

};

Routes.prototype.createWireframe = function () {

	var geometry = new Geometry();
	var vertices = geometry.vertices;

	this.segmentMap.forEach( _addSegment );

	return new LineSegments( geometry, new LineBasicMaterial( { color: 0x00ff00 } ) );

	function _addSegment( value /*, key */ ) {

		vertices.push( value.startStation.p );
		vertices.push( value.endStation.p );

	}

};

Routes.prototype.addRoute = function ( routeName ) {

	if ( routeName === this.currentRouteName || routeName === undefined ) return;

	if ( this.routeNames.indexOf( routeName ) < 0 ) {

		// create entry for empty route if a new name

		this.routeNames.push( routeName );
		this.routes.set( routeName, [] );

	}

	this.loadRoute( routeName );

};

Routes.prototype.loadRoute = function ( routeName ) {

	var self = this;

	var surveyTree = this.surveyTree;
	var currentRoute = this.currentRoute;
	var segmentMap = this.segmentMap;

	var map;
	var segment;

	var routeSegments = this.routes.get( routeName );

	if ( ! routeSegments ) {

		alert( 'route ' + routeName + ' does not exist' );
		return false;

	}

	currentRoute.clear();

	for ( var i = 0; i < routeSegments.length; i++ ) {

		segment = routeSegments[ i ];

		map = segmentMap.get( surveyTree.getIdByPath( segment.start.split( '.' ) ) + ':' + surveyTree.getIdByPath( segment.end.split( '.' ) ) );

		if ( map !== undefined ) currentRoute.add( map.segment );

	}

	this.currentRouteName = routeName;

	self.dispatchEvent( { type: 'changed', name: '' } );

	return true;

};

Routes.prototype.getCurrentRoute = function () {

	return this.currentRoute;

};

Routes.prototype.saveCurrent = function () {

	var routeName = this.currentRouteName;

	if ( ! routeName ) return;

	var segmentMap = this.segmentMap;
	var route = this.currentRoute;

	var routeSegments = [];

	segmentMap.forEach( _addRoute );

	// update in memory route

	this.routes.set( routeName, routeSegments );

	// update persistant browser storage

	this.metadataSource.saveRoute( routeName, { segments: routeSegments } );

	function _addRoute ( value /*, key */ ) {

		if ( route.has( value.segment ) ) {

			routeSegments.push( {
				start: value.startStation.getPath(),
				end: value.endStation.getPath()
			} );

		}

	}

};

Routes.prototype.getRouteNames = function () {

	return this.routeNames;

};

Routes.prototype.toggleSegment = function ( index ) {

	var self = this;
	var route = this.currentRoute;
	var segment = this.vertexPairToSegment[ index / 2 ];

	this.adjacentSegments.clear();

	if ( route.has( segment ) ) {

		route.delete( segment );

	} else {

		route.add( segment );

		// handle adjacent segments to the latest segment toggled 'on'

		var segmentInfo = this.segmentToInfo[ segment ];

		if ( segmentInfo !== undefined ) {

			segmentInfo.startStation.linkedSegments.forEach( _setAdjacentSegments );
			segmentInfo.endStation.linkedSegments.forEach( _setAdjacentSegments );

		}

	}

	return;

	function _setAdjacentSegments ( segment ) {

		if ( ! route.has( segment ) ) self.adjacentSegments.add( segment );

	}

};

Routes.prototype.inCurrentRoute = function ( index ) {

	return this.currentRoute.has( this.vertexPairToSegment[ index / 2 ] );

};

Routes.prototype.adjacentToRoute = function ( index ) {

	return this.adjacentSegments.has( this.vertexPairToSegment[ index / 2 ] );

};

var unselectedMaterial = new LineBasicMaterial( { color: 0x444444, vertexColors: VertexColors } );

function onBeforeRender( renderer ) {

	var stencil = renderer.state.buffers.stencil;
	var gl = renderer.context;

	stencil.setTest( true );

	stencil.setOp( gl.KEEP, gl.KEEP, gl.INCR );

}

function onAfterRender( renderer ) {

	var stencil = renderer.state.buffers.stencil;

	stencil.setTest( false );


}

function Legs ( layer ) {

	var geometry = new Geometry();

	LineSegments.call( this, geometry, unselectedMaterial );

	this.layers.set( layer );
	this.type = 'Legs';

	this.onBeforeRender = onBeforeRender;
	this.onAfterRender = onAfterRender;

	return this;

}

Legs.prototype = Object.create( LineSegments.prototype );

Legs.prototype.constructor = Legs;

Legs.prototype.addLegs = function ( vertices, colors, legRuns ) {

	var geometry = this.geometry;

	if ( geometry.vertices.length === 0 ) {

		geometry.vertices = vertices;
		geometry.colors = colors;

	} else {

		// FIXME: alllocate new buffer of old + new length, adjust indexs and append old data after new data.

		console.error( 'Walls: appending not yet implemented' );

	}

	geometry.computeBoundingBox();

	this.legRuns = legRuns;

	this.computeStats();

	return this;

};

Legs.prototype.cutRuns = function ( selectedRuns ) {

	var legRuns = this.legRuns;

	if ( ! legRuns ) return;

	var geometry = this.geometry;

	var vertices = geometry.vertices;
	var colors   = geometry.colors;

	var newGeometry = new Geometry();

	var newVertices = newGeometry.vertices;
	var newColors   = newGeometry.colors;
	var newLegRuns  = [];

	var vp = 0;

	for ( var run = 0, l = legRuns.length; run < l; run++ ) {

		var legRun = legRuns[ run ];

		var survey = legRun.survey;
		var start  = legRun.start;
		var end    = legRun.end;

		if ( selectedRuns.has( survey ) ) {

			for ( var v = start; v < end; v++ ) {

				newVertices.push( vertices[ v ] );
				newColors.push( colors[ v ] );

			}

			// adjust vertex run for new vertices and color arrays

			legRun.start = vp;

			vp += end - start;

			legRun.end = vp;

			newLegRuns.push( legRun );

		}

	}

	if ( newGeometry.vertices.length === 0 ) return false;

	newGeometry.computeBoundingBox();
	newGeometry.name = geometry.name;

	this.geometry = newGeometry;
	this.legRuns = newLegRuns;

	geometry.dispose();

	this.computeStats();

	return true;

};

Legs.prototype.computeStats = function () {

	var stats = { maxLegLength: -Infinity, minLegLength: Infinity, legCount: 0, legLength: 0 };
	var vertices = this.geometry.vertices;

	var vertex1, vertex2, legLength;

	var l = vertices.length;

	for ( var i = 0; i < l; i += 2 ) {

		vertex1 = vertices[ i ];
		vertex2 = vertices[ i + 1 ];

		legLength = Math.abs( vertex1.distanceTo( vertex2 ) );

		stats.legLength = stats.legLength + legLength;

		stats.maxLegLength = Math.max( stats.maxLegLength, legLength );
		stats.minLegLength = Math.min( stats.minLegLength, legLength );

	}

	stats.legLengthRange = stats.maxLegLength - stats.minLegLength;
	stats.legCount = l / 2;

	this.stats = stats;

};

Legs.prototype.setShading = function ( selectedRuns, colourSegment, material ) {

	this.material = material;

	var geometry = this.geometry;
	var legRuns = this.legRuns;

	var colors = geometry.colors;

	var l, run, v;

	if ( selectedRuns.size && legRuns ) {

		for ( run = 0, l = legRuns.length; run < l; run++ ) {

			var legRun = legRuns[ run ];

			var survey = legRun.survey;
			var start  = legRun.start;
			var end    = legRun.end;

			if ( selectedRuns.has( survey ) ) {

				for ( v = start; v < end; v += 2 ) {

					colourSegment( geometry, v, v + 1, survey );

				}

			} else {

				for ( v = start; v < end; v += 2 ) {

					colors[ v ]     = ColourCache.grey;
					colors[ v + 1 ] = ColourCache.grey;

				}

			}

		}

	} else {

		for ( v = 0, l = geometry.vertices.length; v < l; v += 2 ) {

			colourSegment( geometry, v, v + 1 );

		}

	}

	geometry.colorsNeedUpdate = true;

};

var unselectedMaterial$1 = new MeshLambertMaterial( { color: 0x444444, vertexColors: FaceColors } );

function Walls ( layer ) {

	var geometry = new BufferGeometry();

	Mesh.call( this, geometry, unselectedMaterial$1 );

	this.layers.set( layer );
	this.type = 'Walls';

	return this;

}

Walls.prototype = Object.create( Mesh.prototype );

Walls.prototype.constructor = Walls;

Walls.prototype.addWalls = function ( vertices, indices, indexRuns ) {

	var geometry = this.geometry;

	var position = geometry.getAttribute( 'position' );

	if ( position === undefined ) {

		var positions = new Float32BufferAttribute( vertices.length * 3, 3 );

		geometry.addAttribute( 'position', positions.copyVector3sArray( vertices ) );

		geometry.setIndex( indices );

	} else {

		// FIXME: alllocate new buffer of old + new length, adjust indexs and append old data after new data.

		console.error( 'Walls: appending not yet implemented' );

	}

	geometry.computeVertexNormals();
	geometry.computeBoundingBox();

	this.indexRuns = indexRuns;

	return this;

};

Walls.prototype.setShading = function ( selectedRuns, selectedMaterial ) {

	var geometry = this.geometry;

	geometry.clearGroups();

	var indexRuns = this.indexRuns;

	if ( selectedRuns.size && indexRuns ) {

		this.material = [ selectedMaterial, unselectedMaterial$1 ];

		var indexRun = indexRuns[ 0 ];

		var start = indexRun.start;
		var count = indexRun.count;

		var currentMaterial;
		var lastMaterial = selectedRuns.has( indexRun.survey ) ? 0 : 1;


		// merge adjacent runs with shared material.

		for ( var run = 1, l = indexRuns.length; run < l; run++ ) {

			indexRun = indexRuns[ run ];

			currentMaterial = selectedRuns.has( indexRun.survey ) ? 0 : 1;

			if ( currentMaterial === lastMaterial && indexRun.start === start + count ) {

				count += indexRun.count;

			} else {

				geometry.addGroup( start, count, lastMaterial );

				start = indexRun.start;
				count = indexRun.count;

				lastMaterial = currentMaterial;

			}

		}

		geometry.addGroup( start, count, lastMaterial );

	} else {

		this.material = selectedMaterial;

	}

};

Walls.prototype.cutRuns = function ( selectedRuns ) {

	var indexRuns = this.indexRuns;

	var geometry = this.geometry;

	var vertices = geometry.getAttribute( 'position' );
	var indices = geometry.index;

	var newIndices = [];
	var newVertices = [];

	var newIndexRuns = [];

	var fp = 0;

	var vMap = new Map();
	var index, newIndex;
	var newVertexIndex = 0;
	var offset;

	for ( var run = 0, l = indexRuns.length; run < l; run++ ) {

		var indexRun = indexRuns[ run ];

		if ( selectedRuns.has( indexRun.survey ) ) {

			var start = indexRun.start;
			var count = indexRun.count;

			var end = start + count;

			var itemSize = vertices.itemSize;
			var oldVertices = vertices.array;

			for ( var i = start; i < end; i++ ) {

				index = indices.getX( i );

				newIndex = vMap.get( index );

				if ( newIndex === undefined ) {

					newIndex = newVertexIndex++;

					vMap.set( index, newIndex );

					offset = index * itemSize;

					newVertices.push( oldVertices[ offset ], oldVertices[ offset + 1 ], oldVertices[ offset + 2 ] );

				}

				newIndices.push( newIndex );

			}

			indexRun.start = fp;

			fp += count;

			newIndexRuns.push( indexRun );

		}

	}

	if ( newIndices.length === 0 ) return false;

	// replace position and index attributes - dispose of old attributes
	geometry.index.setArray( new indices.array.constructor( newIndices ) );
	geometry.index.needsUpdate = true;

	vertices.setArray( new Float32Array( newVertices ) );
	vertices.needsUpdate = true;

	geometry.computeVertexNormals();
	geometry.computeBoundingBox();

	this.indexRuns = newIndexRuns;

	return true;

};

function WaterMaterial () {

	ShaderMaterial.call( this, {
		uniforms: {
			offset: { value: 0 }
		},
		vertexShader: Shaders.waterVertexShader,
		fragmentShader: Shaders.waterFragmentShader,
		depthWrite: false,
		type: 'CV.WaterMaterial',
		side: DoubleSide
	} );

	return this;

}

WaterMaterial.prototype = Object.create( ShaderMaterial.prototype );

WaterMaterial.prototype.constructor = WaterMaterial;



// EOF

function beforeRender ( renderer, scene, camera, geometry, material ) {

	material.uniforms.offset.value += 0.1;

}

function DyeTraces () {

	var geometry = new BufferGeometry();

	Mesh.call( this, geometry, new WaterMaterial() );

	this.vertices = [];
	this.ends = [];

	this.onBeforeRender = beforeRender;
	this.layers.set( FEATURE_TRACES );

	return this;

}

DyeTraces.prototype = Object.create( Mesh.prototype );

DyeTraces.prototype.constructor = DyeTraces;

DyeTraces.prototype.finish = function () {

	var geometry = this.geometry;

	var vertices = this.vertices;
	var ends = this.ends;

	var positions = new Float32BufferAttribute( vertices.length * 3, 3 );
	var sinks = new Float32BufferAttribute( ends.length * 3, 3 );

	geometry.addAttribute( 'position', positions.copyVector3sArray( vertices ) );
	geometry.addAttribute( 'sinks', sinks.copyVector3sArray( ends ) );

	return this;

};

DyeTraces.prototype.addTrace = function ( startStation, endStation ) {

	var vertices = this.vertices;
	var ends = this.ends;

	var end = new Vector3().copy( endStation );

	var v = new Vector3().subVectors( endStation, startStation ).cross( upAxis ).setLength( 2 );

	var v1 = new Vector3().add( startStation ).add( v );
	var v2 = new Vector3().add( startStation ).sub( v );

	vertices.push( v1 );
	vertices.push( v2 );
	vertices.push( end );

	ends.push ( end );
	ends.push ( end );
	ends.push ( end );

};

function SurveyMetadata( name, metadata ) {

	this.name = name;

	var routes = {};
	var traces = [];

	if ( metadata !== null ) {

		if ( metadata.routes ) routes = metadata.routes;
		if ( metadata.traces ) traces = metadata.traces;

	}

	var localMetadata = localStorage.getItem( name );

	if ( localMetadata !== null ) {

		localMetadata = JSON.parse( localMetadata );

		var localRoutes = localMetadata.routes;
		var routeName, route;

		// add local routes to any routes in metadata (if any)

		for ( routeName in localRoutes ) {

			route = localRoutes[ routeName ];
			route.local = true;

			routes[ routeName ] = route;

		}

	}

	this.routes = routes;
	this.traces = traces;

}

SurveyMetadata.prototype.constructor = SurveyMetadata;

SurveyMetadata.prototype.getTraces = function () {

	return this.traces;

};

SurveyMetadata.prototype.getRoutes = function () {

	return this.routes;

};

SurveyMetadata.prototype.saveRoute = function ( routeName, route ) {

	this.routes[ routeName ] = route;

	this.saveLocal();

};

SurveyMetadata.prototype.saveLocal = function () {

	var localMetadata = { routes: this.routes, traces: this.traces };

	localStorage.setItem( this.name, JSON.stringify( localMetadata ) );

};

SurveyMetadata.prototype.getURL = function () {

	// dump of json top window for cut and paste capture

	var routesJSON = {
		name: 'test',
		version: 1.0,
		routes: this.routes,
		traces: this.traces
	};

	return 'data:text/json;charset=utf8,' + encodeURIComponent( JSON.stringify( routesJSON ) );

};

var map = [];
var selectedSection$1 = 0;

var SurveyColours = {};

SurveyColours.clearMap = function () {

	map = [];
	selectedSection$1 = 0;

};

SurveyColours.getSurveyColour = function ( surveyId ) {

	var surveyColours = ColourCache.getColors( 'survey' );

	return surveyColours[ surveyId % surveyColours.length ];

};

SurveyColours.getSurveyColourMap = function ( surveyTree, newSelectedSection ) {

	if ( selectedSection$1 === newSelectedSection && map.length > 0 ) {

		// use cached mapping
		return map;

	}

	map = [];
	selectedSection$1 = newSelectedSection;

	var survey = ( selectedSection$1 === 0 ) ? surveyTree.id : selectedSection$1;

	// create mapping of survey id to colour
	// map each child id _and_ all its lower level survey ids to the same colour

	var subTree = surveyTree.findById( survey );

	var colour = this.getSurveyColour( survey );

	_addMapping( subTree );

	var children = subTree.children;

	while ( children.length === 1 ) {

		subTree = children[ 0 ];
		_addMapping( subTree );
		children = subTree.children;

	}

	for ( var i = 0, l = children.length; i < l; i++ ) {

		var childId = children[ i ].id;

		subTree = surveyTree.findById( childId );

		colour = this.getSurveyColour( childId );

		subTree.traverse( _addMapping );

	}

	return map;

	function _addMapping ( node ) {

		// only add values for sections - not stations
		if ( node.p === undefined ) map[ node.id ] = colour;

	}

};

// unpack GLSL created RGBA packed float values

var unpackDownscale = 255 / ( 256 * 256 );

var unpackFactor0 = unpackDownscale / ( 256 * 256 * 256 );
var unpackFactor1 = unpackDownscale / ( 256 * 256 );
var unpackFactor2 = unpackDownscale / 256;
var unpackFactor3 = unpackDownscale / 1;

function unpackRGBA( buffer ) {

	return unpackFactor0 * buffer[ 0 ] +
		unpackFactor1 * buffer[ 1 ] +
		unpackFactor2 * buffer[ 2 ] +
		unpackFactor3 * buffer[ 3 ];

}

function CommonTerrain () {

	Group.call( this );

	this.hasOverlay = false;
	this.defaultOverlay = null;
	this.activeOverlay = null;
	this.depthTexture = null;
	this.renderer = null;
	this.renderTarget = null;
	this.datumShift = 0;
	this.activeDatumShift = 0;
	this.terrainBase = null;
	this.terrainRange = null;

	this.addEventListener( 'removed', function removeTerrain() { this.removed(); } );

}

CommonTerrain.prototype = Object.create( Group.prototype );

CommonTerrain.prototype.constructor = CommonTerrain;

CommonTerrain.prototype.shadingMode = SHADING_SHADED;
CommonTerrain.prototype.opacity = 0.5;

CommonTerrain.prototype.removed = function () {};

CommonTerrain.prototype.getOpacity = function () {

	return this.opacity;

};

CommonTerrain.prototype.commonRemoved = function () {

	var activeOverlay = this.activeOverlay;

	if ( activeOverlay !== null ) {

		activeOverlay.flushCache();
		activeOverlay.hideAttribution();

	}

	if ( this.renderTarget !== null ) this.renderTarget.dispose();

};

CommonTerrain.prototype.setShadingMode = function ( mode, renderCallback ) {

	var material;
	var hideAttribution = true;
	var activeOverlay = this.activeOverlay;

	switch ( mode ) {

	case SHADING_HEIGHT:

		material = Materials$1.getHeightMaterial( MATERIAL_SURFACE );

		break;

	case SHADING_OVERLAY:

		this.setOverlay( ( activeOverlay === null ? this.defaultOverlay : activeOverlay ), renderCallback );
		hideAttribution = false;

		break;

	case SHADING_SHADED:

		material = new MeshLambertMaterial( {
			color:        0xffffff,
			vertexColors: VertexColors,
			side:         FrontSide,
			transparent:  true,
			opacity:      this.opacity }
		);

		break;

	default:

		console.warn( 'unknown mode', mode );
		return false;

	}

	if ( hideAttribution && activeOverlay !== null ) {

		activeOverlay.flushCache();
		activeOverlay.hideAttribution();

		this.activeOverlay = null;

	}

	if ( material !== undefined ) this.setMaterial( material );

	this.shadingMode = mode;

	return true;

};

CommonTerrain.prototype.setVisibility = function ( mode ) {

	if ( this.activeOverlay === null ) return;

	if ( mode ) {

		this.activeOverlay.showAttribution();

	} else {

		this.activeOverlay.hideAttribution();

	}

};

CommonTerrain.prototype.applyDatumShift = function ( mode ) {

	if ( mode && this.activeDatumShift === 0 ) {

		this.translateZ( this.datumShift );
		this.activeDatumShift = this.datumShift;

	} else if ( ! mode && this.activeDatumShift !== 0 ) {

		this.translateZ( - this.datumShift );
		this.activeDatumShift = 0;

	}

	this.dispatchEvent( { type: 'datumShiftChange', value: this.activeDatumShift } );

};

CommonTerrain.prototype.computeBoundingBox = function () {

	var bb = new Box3();

	this.traverse( _getBoundingBox );

	this.boundingBox = bb;

	function _getBoundingBox( obj ) {

		if ( obj.isTile ) bb.union( obj.geometry.boundingBox );

	}

	return bb;

};

CommonTerrain.prototype.addHeightMap = function ( renderer, renderTarget ) {

	this.depthTexture = renderTarget.texture;
	this.renderer = renderer;
	this.renderTarget = renderTarget;

};

CommonTerrain.prototype.getHeight = function () {

	var pixelCoords = new Vector3();
	var adjust = new Vector3();

	var result = new Uint8Array( 4 );

	return function getHeight( point ) {

		var renderTarget = this.renderTarget;

		if ( this.terrainBase === null ) {

			if ( this.boundingBox === undefined ) this.computeBoundingBox();

			this.terrainBase = this.boundingBox.min;
			this.terrainRange = this.boundingBox.getSize();

			// setup value cached in closure

			adjust.set( renderTarget.width, renderTarget.height, 1 ).divide( this.terrainRange );

		}

		var terrainBase = this.terrainBase;

		pixelCoords.copy( point ).sub( terrainBase ).multiply( adjust ).round();

		this.renderer.readRenderTargetPixels( renderTarget, pixelCoords.x, pixelCoords.y, 1, 1, result );

		// convert to survey units and return

		return unpackRGBA( result ) * this.terrainRange.z + terrainBase.z;

	};

} ();



// EOF

/**
 * @author Angus Sawyer
 * @author mrdoob / http://mrdoob.com/
 * @author Mugen87 / https://github.com/Mugen87
 *
 * based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Plane.as
 */

function LoxTerrainGeometry( dtm, offsets ) {

	BufferGeometry.call( this );

	this.type = 'LoxTerrainGeometry';

	var heightData = dtm.data;

	var ix, iy, i, l, x, y, z;

	// buffers

	var indices = [];
	var vertices = [];

	var minZ = Infinity;
	var maxZ = -Infinity;

	// generate vertices

	var zIndex = 0;

	var lines = dtm.lines;
	var samples = dtm.samples;

	var vertexCount = lines * samples;

	// 2 x 2 scale & rotate callibration matrix

	var xx  = dtm.xx;
	var xy  = dtm.xy;
	var yx  = dtm.yx;
	var yy  = dtm.yy;

	// offsets from dtm -> survey -> model

	var xOffset = dtm.xOrigin - offsets.x;
	var yOffset = dtm.yOrigin - offsets.y;
	var zOffset =             - offsets.z;

//	var x, y, z;

	var lx = samples - 1;
	var ly = lines - 1;

	for ( iy = 0; iy < lines; iy++ ) {

		for ( ix = 0; ix < samples; ix++ ) {

			z = heightData[ zIndex++ ];

			x = ix * xx + ( ly - iy ) * xy + xOffset;
			y = ix * yx + ( ly - iy ) * yy + yOffset;
			z += zOffset;

			vertices.push( x, y, z );

			if ( z < minZ ) minZ = z;
			if ( z > maxZ ) maxZ = z;

		}

	}

	var maxX = lx * xx + ly * xy + xOffset;
	var maxY = lx * yx + ly * yy + yOffset;

	this.boundingBox = new Box3( new Vector3( xOffset, yOffset, minZ ), new Vector3( maxX, maxY, maxZ ) );

	// indices

	for ( iy = 0; iy < ly; iy ++ ) {

		for ( ix = 0; ix < lx; ix ++ ) {

			var a = ix + samples * iy;
			var b = ix + samples * ( iy + 1 );
			var c = ( ix + 1 ) + samples * ( iy + 1 );
			var d = ( ix + 1 ) + samples * iy;

			// faces - render each quad such that the shared diagonal edge has the minimum length - gives a smother terrain surface
			// diagonals b - d, a - c

			var d1 = Math.abs( vertices[ a * 3 + 2 ] - vertices[ d * 3 + 2 ] );  // diff in Z values between diagonal vertices
			var d2 = Math.abs( vertices[ b * 3 + 2 ] - vertices[ c * 3 + 2 ] );  // diff in Z values between diagonal vertices

			if ( d1 < d2 ) {

				indices.push( a, b, d );
				indices.push( b, c, d );

			} else {

				indices.push( a, b, c );
				indices.push( c, d, a );

			}

		}

	}

	// build geometry

	this.setIndex( indices );
	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );

	// calibration data from terrain and local survey -> model - offsets

	this.computeVertexNormals();

	var colourScale = Colours.terrain;
	var colourRange = colourScale.length - 1;

	var colourIndex;
	var dotProduct;

	var normal = this.getAttribute( 'normal' );
	var vNormal = new Vector3();

	var buffer = new Float32Array( vertexCount * 3 );
	var colours = [];
	var colour;

	// convert scale to float values

	for ( i = 0, l = colourScale.length; i < l; i++ ) {

		colour = colourScale[ i ];
		colours.push( [ colour[ 0 ] / 255, colour[ 1 ] / 255, colour[ 2 ] / 255 ] );

	}

	for ( i = 0; i < vertexCount; i++ ) {

		vNormal.fromArray( normal.array, i * 3 );

		dotProduct = vNormal.dot( upAxis );
		colourIndex = Math.floor( colourRange * 2 * Math.acos( Math.abs( dotProduct ) ) / Math.PI );

		colour = colours[ colourIndex ];

		var offset = i * 3;

		buffer[ offset     ] = colour[ 0 ];
		buffer[ offset + 1 ] = colour[ 1 ];
		buffer[ offset + 2 ] = colour[ 2 ];

	}

	this.addAttribute( 'color', new Float32BufferAttribute( buffer, 3 ) );

}

LoxTerrainGeometry.prototype = Object.create( BufferGeometry.prototype );
LoxTerrainGeometry.prototype.constructor = LoxTerrainGeometry;

LoxTerrainGeometry.prototype.setupUVs = function ( bitmap, image, offsets ) {

	var det = bitmap.xx * bitmap.yy - bitmap.xy * bitmap.yx;

	if ( det === 0 ) return false;

	var xx =   bitmap.yy / det;
	var xy = - bitmap.xy / det;
	var yx = - bitmap.yx / det;
	var yy =   bitmap.xx / det;

	var vertices = this.getAttribute( 'position' ).array;

	var width  = image.naturalWidth;
	var height = image.naturalHeight;

	var x, y, u, v;

	var xOffset = - ( xx * bitmap.xOrigin + xy * bitmap.yOrigin );
	var yOffset = - ( yx * bitmap.xOrigin + yy * bitmap.yOrigin );

	var uvs = [];

	for ( var i = 0; i < vertices.length; i += 3 ) {

		x = vertices[ i ]     + offsets.x;
		y = vertices[ i + 1 ] + offsets.y;

		u = ( x * xx + y * xy + xOffset ) / width;
		v = ( x * yx + y * yy + yOffset ) / height;

		uvs.push( u, v );

	}

	var uvAttribute = this.getAttribute( 'uv' );

	if ( uvAttribute !== undefined ) {

		console.alert( 'replacing attribute uv' );

	}

	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

};

var terrainLib = {

	onBeforeRender: function ( renderer ) {

		var stencil = renderer.state.buffers.stencil;
		var gl = renderer.context;

		stencil.setTest( true );

		stencil.setOp( gl.KEEP, gl.KEEP, gl.KEEP );
		stencil.setFunc( gl.EQUAL, 0, 0xFFFF );

	},

	onAfterRender: function ( renderer ) {

		var stencil = renderer.state.buffers.stencil;

		stencil.setTest( false );

	}

};

function LoxTerrain ( terrainData, offsets ) {

	CommonTerrain.call( this );

	this.type = 'CV.Terrain';
	this.offsets = offsets;
	this.bitmap = terrainData.bitmap;
	this.overlayMaterial = null;

	var tile = new Mesh( new LoxTerrainGeometry( terrainData.dtm, offsets ), Materials$1.getSurfaceMaterial() );

	tile.layers.set( FEATURE_TERRAIN );
	tile.isTile = true;
	tile.onBeforeRender = terrainLib.onBeforeRender;
	tile.onAfterRender = terrainLib.onAfterRender;

	this.tile = tile;

	this.add( tile );

	this.hasOverlay = ( terrainData.bitmap  ) ? true : false;

}

LoxTerrain.prototype = Object.create( CommonTerrain.prototype );

LoxTerrain.prototype.constructor = LoxTerrain;

LoxTerrain.prototype.isTiled = false;

LoxTerrain.prototype.isLoaded = function () {

	return true;

};

LoxTerrain.prototype.setOverlay = function ( overlay, overlayLoadedCallback ) {

	if ( this.overlayMaterial !== null ) {

		this.setMaterial( this.overlayMaterial );

		overlayLoadedCallback();

		return;

	}

	var	texture = new TextureLoader().load( this.bitmap.image, _overlayLoaded );

	var self = this;

	function _overlayLoaded( ) {

		var bitmap = self.bitmap;

		self.tile.geometry.setupUVs( bitmap, texture.image, self.offsets );

		self.overlayMaterial = new MeshLambertMaterial(
			{
				map: texture,
				transparent: true,
				opacity: self.opacity
			}
		);

		bitmap.data = null;

		self.setMaterial( self.overlayMaterial );

		overlayLoadedCallback();

	}

};

LoxTerrain.prototype.removed = function () {

	var overlayMaterial = this.overlayMaterial;

	if ( overlayMaterial !== null ) {

		// dispose of overlay texture and material

		overlayMaterial.map.dispose();
		overlayMaterial.dispose();

	}

	this.commonRemoved();

};

LoxTerrain.prototype.setMaterial = function ( material ) {

	this.tile.material = material;

};

LoxTerrain.prototype.setOpacity = function ( opacity ) {

	var material = this.tile.material;

	material.opacity = opacity;
	material.needsUpdate = true;

	this.opacity = opacity;

};



// EOF

function WorkerPool ( script ) {

	this.script = getEnvironmentValue( 'home', '' ) + 'js/workers/' + script;

	if ( WorkerPool.workers[ script ] === undefined ) {

		// no existing workers running
		WorkerPool.workers[ script ] = [];

	}

	this.workers = WorkerPool.workers[ script ];

}


WorkerPool.workers = {};

WorkerPool.prototype.constructor = WorkerPool;

WorkerPool.prototype.getWorker = function () {

	if ( this.workers.length === 0 ) {

		return new Worker( this.script );

	} else {

		return this.workers.pop();

	}

};

WorkerPool.prototype.putWorker = function ( worker ) {

	if ( this.workers.length <  4 ) {

		this.workers.push( worker );

	} else {

		worker.terminate();

	}

};

WorkerPool.prototype.dispose = function () {

	for ( var i = 0; i < this.workers.length; i++ ) {

		this.workers[ i ].terminate();

	}

};

var zeroVector = new Vector3();

function Survey ( cave ) {

	if ( ! cave ) {

		alert( 'failed loading cave information' );
		return;

	}

	Object3D.call( this );

	this.selectedSectionIds = new Set();
	this.selectedSection = 0;
	this.selectedBox = null;
	this.highlightBox = null;
	this.featureBox = null;
	this.surveyTree = null;
	this.projection = null;

	// objects targetted by raycasters and objects with variable LOD

	this.pointTargets = [];
	this.legTargets = [];

	this.type = 'CV.Survey';
	this.cutInProgress = false;
	this.terrain = null;
	this.isRegion = cave.isRegion;
	this.features = [];
	this.routes = null;
	this.stations = null;
	this.workerPool = new WorkerPool( 'caveWorker.js' );
	this.inverseWorld = null;

	// highlit point marker

	var pointerTexture = new TextureLoader().load( getEnvironmentValue( 'home', '' ) + 'images/ic_location.png' );
	var pointerMaterial = new PointsMaterial( { size: 32, map: pointerTexture, transparent : true, sizeAttenuation: false, alphaTest: 0.8 } );

	var point = new Point( pointerMaterial );

	point.visible = false;

	this.add( point );

	this.stationHighlight = point;

	var self = this;

	SurveyColours.clearMap(); // clear cache of survey section to colour

	var survey = cave.getSurvey();

	this.name = survey.title;
	this.CRS = ( survey.sourceCRS === null ) ? getEnvironmentValue( 'CRS', 'fred' ) : survey.sourceCRS;

	if ( this.isRegion === true ) {

		this.surveyTree = survey.surveyTree;
		this.limits = cave.getLimits();

	} else {

		var surveyLimits = survey.limits;

		this.limits = new Box3( new Vector3().copy( surveyLimits.min ), new Vector3().copy( surveyLimits.max ) );
		this.offsets = survey.offsets;

		var modelLimits = new Box3().copy( this.limits );

		modelLimits.min.sub( this.offsets );
		modelLimits.max.sub( this.offsets );

		this.modelLimits = modelLimits;

		this.loadCave( survey );

		this.legTargets = [ this.features[ LEG_CAVE ] ];

	}

	this.loadEntrances();

	this.setFeatureBox();

	_setProjectionScale();

	this.addEventListener( 'removed', this.onRemoved );

	return;

	function _setProjectionScale () {

		// calculate scaling distortion if we have required CRS definitions

		if ( survey.sourceCRS === null || survey.targetCRS === null ) {

			self.scaleFactor = 1;

			return;

		}

		var limits = self.limits;

		var p1 = limits.min.clone();
		var p2 = limits.max.clone();

		p1.z = 0;
		p2.z = 0;

		var l1 = p1.distanceTo( p2 );

		var transform = proj4( survey.targetCRS, survey.sourceCRS ); // eslint-disable-line no-undef

		p1.copy( transform.forward( p1 ) );
		p2.copy( transform.forward( p2 ) );

		self.projection = transform;

		var l2 = p1.distanceTo( p2 );

		self.scaleFactor = l1 / l2;

	}

}

Survey.prototype = Object.create( Object3D.prototype );

Survey.prototype.constructor = Survey;

Survey.prototype.onRemoved = function ( /* event */ ) {

	if ( this.cutInProgress ) {

		// avoid disposal phase when a cut operation is taking place.
		// this survey is being redisplayed.

		this.cutInProgress = false;

		return;

	}

	// needs explicit removal to call removed handlers atm
	this.remove( this.stations );

	this.traverse( _dispose );

	return;

	function _dispose ( object ) {

		if ( object.geometry ) object.geometry.dispose();

	}

};

Survey.prototype.loadEntrances = function () {

	var surveyTree = this.surveyTree;
	var self = this;

	var clusterMarkers = new ClusterMarkers( this.modelLimits, 4 );

	// remove common elements from station names

	var endNode = surveyTree;

	while ( endNode.children.length === 1 ) endNode = endNode.children [ 0 ];


	// find entrances and add Markers

	surveyTree.traverse( _addEntrance );

	this.addFeature( clusterMarkers, FEATURE_ENTRANCES, 'CV.Survey:entrances' );

	return;

	function _addEntrance( node ) {

		var marker;

		if ( node.type !== STATION_ENTRANCE ) return;

		marker = clusterMarkers.addMarker( node.p, node.getPath( endNode ) );

		self.pointTargets.push( marker );

	}

};

Survey.prototype.calibrateTerrain = function ( terrain ) {

	var s1 = 0, s2 = 0;
	var n = 0;

	// find height difference between all entrance locations and terrain
	// find average differences and use to alter height of terrain

	this.surveyTree.traverse( _testHeight );

	if ( n > 0 ) {

		// standard deviation

		var sd = Math.sqrt( s2 / n - Math.pow( s1 / n, 2 ) );

		// simple average

		terrain.datumShift = s1 / n;

		console.log( 'Adjustmenting terrain height by ', terrain.datumShift, sd );

	}

	if ( this.terrain === null ) this.terrain = terrain;

	return;

	function _testHeight( node ) {

		// FIXME to extend to surface points
		if ( node.type !== STATION_ENTRANCE) return;

		var v = node.p.z - terrain.getHeight( node.p );

		s1 += v;
		s2 += v * v;
		n++;

	}

};

Survey.prototype.loadCave = function ( cave ) {

	var self = this;

	_restoreSurveyTree( cave.surveyTree );

	_loadSegments( cave.lineSegments );

	this.loadStations( cave.surveyTree );

	_loadScraps( cave.scraps );
	_loadCrossSections( cave.crossSections );
	_loadTerrain( cave );

	this.computeBoundingBoxes( cave.surveyTree );

	this.pointTargets.push( this.stations );

	var metadata = new SurveyMetadata( this.name, cave.metadata );

	this.metadata = metadata;

	this.loadDyeTraces();

	this.routes = new Routes( metadata ).mapSurvey( this.stations, this.getLegs(), this.surveyTree );

	return;

	function _restoreSurveyTree ( surveyTree ) {

		if ( surveyTree.forEachChild === undefined ) {

			// surveyTree from worker loading - add Tree methods to all objects in tree.

			_restore( surveyTree );

			surveyTree.forEachChild( _restore, true );

		}

		if ( self.surveyTree === null ) {

			self.surveyTree = surveyTree;

		} else {

			self.surveyTree.children.push( surveyTree );

		}

		return;

		function _restore ( child ) {

			Object.assign( child, Tree.prototype );

		}

	}

	function _loadScraps ( scrapList ) {

		var l = scrapList.length;

		if ( l === 0 ) return null;

		var mesh = self.getFeature( FACE_SCRAPS, Walls );

		var indices = [];
		var vertices = [];

		var indexRuns = [];

		var vertexOffset = 0;
		var lastEnd = 0;

		for ( var i = 0; i < l; i++ ) {

			_loadScrap( scrapList[ i ] );

		}

		mesh.addWalls( vertices, indices, indexRuns );

		self.addFeature( mesh, FACE_SCRAPS, 'CV.Survey:faces:scraps' );

		return;

		function _loadScrap ( scrap ) {

			var i, l;

			for ( i = 0, l = scrap.vertices.length; i < l; i++ ) {

				var vertex = scrap.vertices[ i ];

				vertices.push( new Vector3( vertex.x, vertex.y, vertex.z ) );

			}

			for ( i = 0, l = scrap.faces.length; i < l; i++ ) {

				var face = scrap.faces[ i ];

				indices.push( face[ 0 ] + vertexOffset, face[ 2 ] + vertexOffset, face[ 1 ] + vertexOffset );

			}

			var end = indices.length;

			indexRuns.push( { start: lastEnd, count: end - lastEnd, survey: scrap.survey } );
			lastEnd = end;

			vertexOffset += scrap.vertices.length;

		}

	}

	function _loadCrossSections ( crossSectionGroups ) {

		var mesh = self.getFeature( FACE_WALLS, Walls );

		var indices = [];
		var vertices = [];

		var v = 0;
		var l = crossSectionGroups.length;

		// survey to face index mapping
		var currentSurvey;
		var indexRuns = [];

		var lastEnd = 0;
		var l1, r1, u1, d1, l2, r2, u2, d2, lrud;
		var i, j;

		var cross = new Vector3();
		var lastCross = new Vector3();

		var run = null;

		if ( l === 0 ) return;

		for ( i = 0; i < l; i++ ) {

			var crossSectionGroup = crossSectionGroups[ i ];
			var m = crossSectionGroup.length;

			if ( m < 2 ) continue;

			// enter first station vertices - FIXME use fudged approach vector for this (points wrong way).
			lrud = _getLRUD( crossSectionGroup[ 0 ] );

			vertices.push( lrud.l );
			vertices.push( lrud.r );
			vertices.push( lrud.u );
			vertices.push( lrud.d );

			for ( j = 0; j < m; j++ ) {

				var survey = crossSectionGroup[ j ].survey;

				lrud = _getLRUD( crossSectionGroup[ j ] );

				if ( survey !== currentSurvey ) {

					currentSurvey = survey;

					if ( run !== null ) {

						// close section with two triangles to form cap.
						indices.push( u2, r2, d2 );
						indices.push( u2, d2, l2 );

						lastEnd = indices.length;

						run.count = lastEnd - run.start;

						indexRuns.push( run );

						run = null;

					}

				}

				// next station vertices
				vertices.push( lrud.l );
				vertices.push( lrud.r );
				vertices.push( lrud.u );
				vertices.push( lrud.d );

				// triangles to form passage box
				l1 = v++;
				r1 = v++;
				u1 = v++;
				d1 = v++;

				l2 = v++;
				r2 = v++;
				u2 = v++;
				d2 = v++;

				// all face vertices specified in CCW winding order to define front side.

				// top faces
				indices.push( u1, r1, r2 );
				indices.push( u1, r2, u2 );
				indices.push( u1, u2, l2 );
				indices.push( u1, l2, l1 );

				// bottom faces
				indices.push( d1, r2, r1 );
				indices.push( d1, d2, r2 );
				indices.push( d1, l2, d2 );
				indices.push( d1, l1, l2 );

				v = v - 4; // rewind to allow current vertices to be start of next box section.

				if ( run === null ) {

					// handle first section of run

					run = { start: lastEnd, survey: survey };

					// start tube with two triangles to form cap
					indices.push( u1, r1, d1 );
					indices.push( u1, d1, l1 );

				}

			}

			currentSurvey = null;
			v = v + 4; // advance because we are starting a new set of independant x-sections.

		}

		if ( run !== null ) {

			// close tube with two triangles
			indices.push( u2, r2, d2 );
			indices.push( u2, d2, l2 );

			run.count = indices.length - run.start;

			indexRuns.push( run );

		}

		l = indices.length;

		if ( l === 0 ) return;

		mesh.addWalls( vertices, indices, indexRuns );

		self.addFeature( mesh, FACE_WALLS, 'CV.Survey:faces:walls' );

		return;

		function _getLRUD ( crossSection ) {

			var station  = crossSection.end;
			var lrud     = crossSection.lrud;
			var stationV = new Vector3( station.x, station.y, station.z );

			// cross product of leg and up AXIS to give direction of LR vector
			cross.subVectors( crossSection.start, crossSection.end ).cross( upAxis );

			var L, R, U, D;

			if ( cross.equals( zeroVector ) ) {

				// leg is vertical

				if ( lastCross.equals( zeroVector ) ) {

					// previous leg was vertical

					L = stationV;
					R = stationV;

				} else {

					// use previous leg to determine passage orientation for L and R for vertical legs

					L = lastCross.clone().setLength(  lrud.l ).add( stationV );
					R = lastCross.clone().setLength( -lrud.r ).add( stationV );

				}

			} else {

				L = cross.clone().setLength(  lrud.l ).add( stationV );
				R = cross.clone().setLength( -lrud.r ).add( stationV );

			}

			U = new Vector3( station.x, station.y, station.z + lrud.u );
			D = new Vector3( station.x, station.y, station.z - lrud.d );

			lastCross.copy( cross );

			return { l: L, r: R, u: U, d: D };

		}

	}

	function _loadSegments ( srcSegments ) {

		var typeLegs = [];

		typeLegs[ LEG_CAVE    ] = { vertices: [], colors: [], runs: [] };
		typeLegs[ LEG_SURFACE ] = { vertices: [], colors: [], runs: [] };
		typeLegs[ LEG_SPLAY   ] = { vertices: [], colors: [], runs: [] };

		var legs;

		var currentType;
		var currentSurvey;

		var run;
		var l = srcSegments.length;

		if ( l === 0 ) return null;

		var vertex1, vertex2;

		var lastVertex = new Vector3();

		for ( var i = 0; i < l; i++ ) {

			var leg = srcSegments[ i ];

			var type   = leg.type;
			var survey = leg.survey;

			// most line segments will share vertices - avoid allocating new Vector3() in this case.

			vertex1 = lastVertex.equals( leg.from ) ? lastVertex : new Vector3( leg.from.x, leg.from.y, leg.from.z );
			vertex2 = new Vector3( leg.to.x,   leg.to.y,   leg.to.z );

			lastVertex = vertex2;

			legs = typeLegs[ type ];

			if ( leg === undefined ) {

				console.warn( 'unknown segment type: ', type );
				break;

			}

			if ( survey !== currentSurvey || type !== currentType ) {

				// complete last run data

				if ( run !== undefined ) {

					var lastLegs = typeLegs[ currentType ];

					run.end = lastLegs.vertices.length;
					lastLegs.runs.push( run );

				}

				// start new run

				run = {};

				run.survey = survey;
				run.start  = legs.vertices.length;

				currentSurvey = survey;
				currentType   = type;

			}


			legs.vertices.push( vertex1 );
			legs.vertices.push( vertex2 );

			legs.colors.push( ColourCache.white );
			legs.colors.push( ColourCache.white );

		}

		// add vertices run for last survey section encountered

		if ( run.end === undefined ) {

			run.end = legs.vertices.length;
			legs.runs.push( run );

		}

		_addModelSegments( LEG_CAVE, 'CV.Survey:cave:cave' );
		_addModelSegments( LEG_SURFACE, 'CV.Survey:surface:surface' );
		_addModelSegments( LEG_SPLAY, 'CV.Survey:cave:splay' );

		return;

		function _addModelSegments ( tag, name ) {

			var legs = typeLegs[ tag ];

			if ( legs.vertices.length === 0 ) return;

			var legObject = self.getFeature( tag, Legs );

			legObject.addLegs( legs.vertices, legs.colors, legs.runs );

			self.addFeature( legObject, tag, name + ':g' );

		}

	}

	function _loadTerrain ( cave ) {

		if ( cave.hasTerrain === false ) return;

		var terrain = new LoxTerrain( cave.terrain, self.offsets );

		// get limits of terrain - ignoring maximum which distorts height shading etc
		var terrainLimits = new Box3().copy( terrain.tile.geometry.boundingBox );

		var modelLimits = self.modelLimits;

		terrainLimits.min.z = modelLimits.min.z;
		terrainLimits.max.z = modelLimits.max.z;

		modelLimits.union( terrainLimits );

		self.terrain = terrain;

		return;

	}

};

Survey.prototype.getFeature = function ( tag, obj ) {

	var o = this.features[ tag ];

	if ( o === undefined && obj ) {

		o = new obj ( tag );

	}

	return o;

};

Survey.prototype.update = function ( camera, target ) {

	var cameraLayers = camera.layers;

	if ( this.features[ FEATURE_ENTRANCES ] && cameraLayers.mask & 1 << FEATURE_ENTRANCES ) {

		this.getFeature( FEATURE_ENTRANCES ).cluster( camera );

	}

	if ( this.features[ LABEL_STATION ] && cameraLayers.mask & 1 << LABEL_STATION ) {

		if ( this.inverseWorld === null ) {

			this.inverseWorld = new Matrix4().getInverse( this.matrixWorld );

		}

		this.getFeature( LABEL_STATION ).update( camera, target, this.inverseWorld );

	}

};

Survey.prototype.addFeature = function ( obj, tag, name ) {

	obj.name = name;

	this.features[ tag ] = obj;

	this.add( obj );

};

Survey.prototype.removeFeature = function ( obj ) {

	this.layers.mask &= ~ obj.layers.mask;

	var features = this.features;

	for ( var i = 0, l = features.length; i < l; i++ ) {

		if ( features[ i ] === obj ) delete features[ i ];

	}

};

Survey.prototype.hasFeature = function ( tag ) {

	return ! ( this.features[ tag ] === undefined );

};

Survey.prototype.loadStations = function ( surveyTree ) {

	var i, l;

	var stations = new Stations();
	var stationLabels = new StationLabels();

	surveyTree.traverse( _addStation );

	var legs = this.getLegs();

	// count number of legs linked to each station

	for ( i = 0; i < legs.length; i++ ) {

		stations.updateStation( legs[ i ] );

	}

	// we have finished adding stations.
	stations.finalise();


	// add labels for stations

	for ( i = 0, l = stations.count; i < l; i++ ) {

		stationLabels.addStation( stations.getStationByIndex( i ) );

	}

	this.addFeature( stations, FEATURE_STATIONS, 'CV.Stations' );
	this.addFeature( stationLabels, LABEL_STATION, 'CV.StationLabels' );

	this.stations = stations;

	return;

	function _addStation ( node ) {

		if ( node.p === undefined ) return;

		stations.addStation( node );

	}

};

Survey.prototype.computeBoundingBoxes = function ( surveyTree ) {

	surveyTree.traverseDepthFirst( _computeBoundingBox );

	return;

	function _computeBoundingBox ( node ) {

		var parent = node.parent;

		if ( parent && parent.boundingBox === undefined ) parent.boundingBox = new Box3();

		if ( node.p !== undefined ) {

			parent.boundingBox.expandByPoint( node.p );

		} else if ( parent ) {

			if ( node.children.length === 0 || ( node.boundingBox !== undefined && node.boundingBox.isEmpty() ) ) return;

			parent.boundingBox.expandByPoint( node.boundingBox.min );
			parent.boundingBox.expandByPoint( node.boundingBox.max );

		}

	}

};

Survey.prototype.loadDyeTraces = function () {

	var traces = this.metadata.getTraces();

	if ( traces.length === 0 ) return;

	var surveyTree = this.surveyTree;
	var dyeTraces = new DyeTraces();

	for ( var i = 0, l = traces.length; i < l; i++ ) {

		var trace = traces[ i ];

		var startStation = surveyTree.getByPath( trace.start );
		var endStation   = surveyTree.getByPath( trace.end );

		if ( endStation === undefined || startStation === undefined ) continue;

		dyeTraces.addTrace( startStation.p, endStation.p );

	}

	dyeTraces.finish();

	this.addFeature( dyeTraces, FEATURE_TRACES, 'CV.DyeTraces' );

};

Survey.prototype.loadFromEntrance = function ( entrance, loadedCallback ) {

	var self = this;
	var name = replaceExtension( entrance.name, '3d' );
	var prefix = getEnvironmentValue( 'surveyDirectory', '' );

	if ( entrance.loaded ) return;

	entrance.loaded = true;

	console.log( 'load: ', name );

	var worker = this.workerPool.getWorker();

	worker.onmessage = _surveyLoaded;

	worker.postMessage( prefix + name );

	return;

	function _surveyLoaded ( event ) {

		var surveyData = event.data; // FIXME check for ok;

		self.workerPool.putWorker( worker );

		self.loadCave( surveyData.survey );

		loadedCallback();

	}

};

Survey.prototype.getMetadataURL = function () {

	return this.metadata.getURL();

};

Survey.prototype.getLegs = function () {

	return this.getFeature( LEG_CAVE ).geometry.vertices;

};

Survey.prototype.getRoutes = function () {

	return this.routes;

};

Survey.prototype.setScale = function ( scale ) {

	this.stations.setScale( scale );

};

Survey.prototype.getWorldPosition = function ( position ) {

	return new Vector3().copy( position ).applyMatrix4( this.matrixWorld );

};

Survey.prototype.getGeographicalPosition = function ( position ) {

	var offsets = this.offsets;
	var projection = this.projection;

	var originalPosition = { x: position.x + offsets.x, y: position.y + offsets.y, z: 0 };

	// convert to original survey CRS

	if  ( projection !== null ) originalPosition = projection.forward( originalPosition );

	originalPosition.z = position.z + offsets.z;

	return originalPosition;

};

Survey.prototype.selectStation = function ( index ) {

	var stations = this.stations;
	var station = stations.getStationByIndex( index );

	stations.selectStation( station );

	return station;

};

Survey.prototype.clearSelection = function () {

	this.selectedSection = 0;
	this.selectedSectionIds.clear();

	this.stations.clearSelected();

	var box = this.selectedBox;

	if ( box !== null ) box.visible = false;

};

Survey.prototype.boxSection = function ( node, box, colour ) {

	if ( box === null ) {

		box = new Box3Helper( node.boundingBox, colour );

		box.layers.set( FEATURE_SELECTED_BOX );

		this.add( box );

	} else {

		box.visible = true;
		box.update( node.boundingBox );

	}

	return box;

};

Survey.prototype.highlightSelection = function ( id ) {

	var surveyTree = this.surveyTree;
	var node;
	var box = this.highlightBox;

	if ( id ) {

		node = surveyTree.findById( id );

		if ( node.p === undefined && node.boundingBox !== undefined ) {

			this.highlightBox = this.boxSection( node, box, 0xffff00 );

		} else if ( node.p ) {

			var highlight = this.stationHighlight;

			highlight.position.copy( node.p );
			highlight.visible = true;

		}

	} else {

		if ( box !== null ) box.visible = false;

	}

};

Survey.prototype.selectSection = function ( id ) {

	var selectedSectionIds = this.selectedSectionIds;
	var surveyTree = this.surveyTree;
	var node;

	this.clearSelection();

	if ( id ) {

		node = surveyTree.findById( id );

		if ( node.p === undefined && node.boundingBox !== undefined ) {

			this.selectedBox = this.boxSection( node, this.selectedBox, 0x00ff00 );
			surveyTree.getSubtreeIds( id, selectedSectionIds );

		} else {

			if ( node.p !== undefined ) this.stations.selectStation( node );

		}

	}

	this.selectedSection = id;

	return node;

};

Survey.prototype.setFeatureBox = function () {

	if ( this.featureBox === null ) {

		var box = new Box3Helper( this.modelLimits, 0xffffff );

		box.layers.set( FEATURE_BOX );
		box.name = 'survey-boundingbox';

		this.featureBox = box;
		this.add( box );

	} else {

		this.featureBox.update( this.modelLimits );

	}

};

Survey.prototype.cutSection = function ( id ) {

	var selectedSectionIds = this.selectedSectionIds;
	var self = this;

	if ( selectedSectionIds.size === 0 ) return;

	// clear target lists

	this.PointTargets = [];
	this.legTargets   = [];

	this.terrain = null;

	// iterate through objects replace geometries and remove bounding boxes;

	var cutList = []; // list of Object3D's to remove from survey - workaround for lack of traverseReverse

	this.traverse( _cutObject );

	for ( var i = 0, l = cutList.length; i < l; i++ ) {

		var obj = cutList[ i ];
		var parent = obj.parent;

		if ( parent ) parent.remove( obj );

		// dispose of all geometry of this object and descendants

		if ( obj.geometry ) obj.geometry.dispose();

		this.removeFeature( obj );

	}

	this.surveyTree = this.surveyTree.findById( id );
	this.surveyTree.parent = null;

	this.loadStations( this.surveyTree );

	// ordering is important here

	this.clearSelection();
	this.highlightSelection( 0 );

	this.modelLimits = this.getBounds();
	this.limits.copy( this.modelLimits );

	this.limits.min.add( this.offsets );
	this.limits.max.add( this.offsets );

	this.setFeatureBox();

	this.loadEntrances();

	this.cutInProgress = true;

	return;

	function _cutObject ( obj ) {

		switch ( obj.type ) {

		case 'Legs':
		case 'Walls':

			if ( ! obj.cutRuns( self.selectedSectionIds ) ) cutList.push( obj );

			break;

		case 'Box3Helper':
		case 'CV.Stations':
		case 'CV.StationLabels':
		case 'CV.ClusterMarker':

			cutList.push( obj );

			break;

		case 'Group':

			break;

		}

	}

};

Survey.prototype.getBounds = function () {

	var box = new Box3();

	var min = box.min;
	var max = box.max;

	this.traverse( _addObjectBounds );

	return box;

	function _addObjectBounds ( obj ) {

		if ( obj.type === 'CV.Survey' ) return; // skip survey which is positioned/scaled into world space

		var geometry = obj.geometry;

		if ( geometry && geometry.boundingBox ) {

			min.min( geometry.boundingBox.min );
			max.max( geometry.boundingBox.max );

		}

	}

};

Survey.prototype.setShadingMode = function ( mode ) {

	var material;

	switch ( mode ) {

	case SHADING_HEIGHT:

		material = Materials$1.getHeightMaterial( MATERIAL_SURFACE, this.modelLimits );

		break;

	case SHADING_CURSOR:

		material = Materials$1.getCursorMaterial( MATERIAL_SURFACE, this.modelLimits );

		break;

	case SHADING_SINGLE:

		material = Materials$1.getSurfaceMaterial();

		break;

	case SHADING_SURVEY:

		// FIXME make multiple material for survey - > color and pass to Walls().

		break;

	case SHADING_DEPTH:

		material = Materials$1.getDepthMaterial( MATERIAL_SURFACE, this.modelLimits, this.terrain );

		if ( ! material ) return false;

		break;

	case SHADING_DEPTH_CURSOR:

		material = Materials$1.getDepthCursorMaterial( MATERIAL_SURFACE, this.modelLimits, this.terrain );

		if ( ! material ) return false;

		break;

	}

	if ( this.setLegShading( LEG_CAVE, mode ) ) {

		this.setWallShading( this.features[ FACE_WALLS  ], mode, material );
		this.setWallShading( this.features[ FACE_SCRAPS ], mode, material );

		return true;

	}

	return false;

};

Survey.prototype.setWallShading = function ( mesh, node, selectedMaterial ) {

	if ( ! mesh ) return;

	if ( selectedMaterial ) {

		mesh.setShading( this.selectedSectionIds, selectedMaterial );
		mesh.visible = true;

	} else {

		mesh.visible = false;

	}

	// FIXME - ressurect SHADING_SURVEY ???

};

Survey.prototype.setLegShading = function ( legType, legShadingMode ) {

	var mesh = this.features[ legType ];

	if ( mesh === undefined ) return;

	switch ( legShadingMode ) {

	case SHADING_HEIGHT:

		this.setLegColourByHeight( mesh );

		break;

	case SHADING_LENGTH:

		this.setLegColourByLength( mesh );

		break;

	case SHADING_INCLINATION:

		this.setLegColourByInclination( mesh, upAxis );

		break;

	case SHADING_CURSOR:

		this.setLegColourByCursor( mesh );

		break;

	case SHADING_DEPTH_CURSOR:

		this.setLegColourByDepthCursor( mesh );

		break;

	case SHADING_SINGLE:

		this.setLegColourByColour( mesh, ColourCache.white );

		break;

	case SHADING_SURVEY:

		this.setLegColourBySurvey( mesh );

		break;

	case SHADING_PATH:

		this.setLegColourByPath( mesh );

		break;

	case SHADING_OVERLAY:

		break;

	case SHADING_SHADED:

		break;

	case SHADING_DEPTH:

		this.setLegColourByDepth( mesh );

		break;

	default:

		console.warn( 'invalid leg shading mode' );

		return false;

	}

	return true;

};

Survey.prototype.setLegColourByMaterial = function ( mesh, material ) {

	material.needsUpdate = true;

	mesh.setShading( this.selectedSectionIds, _colourSegment, material );

	function _colourSegment ( geometry, v1, v2 ) {

		geometry.colors[ v1 ] = ColourCache.white;
		geometry.colors[ v2 ] = ColourCache.white;

	}

};

Survey.prototype.setLegColourByDepth = function ( mesh ) {

	this.setLegColourByMaterial( mesh, Materials$1.getDepthMaterial( MATERIAL_LINE, this.modelLimits, this.terrain ) );

};

Survey.prototype.setLegColourByDepthCursor = function ( mesh ) {

	this.setLegColourByMaterial( mesh, Materials$1.getDepthCursorMaterial( MATERIAL_LINE, this.modelLimits, this.terrain ) );

};

Survey.prototype.setLegColourByHeight = function ( mesh ) {

	this.setLegColourByMaterial( mesh, Materials$1.getHeightMaterial( MATERIAL_LINE, this.modelLimits ) );

};

Survey.prototype.setLegColourByCursor = function ( mesh ) {

	this.setLegColourByMaterial( mesh, Materials$1.getCursorMaterial( MATERIAL_LINE, this.modelLimits ) );

};

Survey.prototype.setLegColourByColour = function ( mesh, colour ) {

	mesh.setShading( this.selectedSectionIds, _colourSegment, Materials$1.getLineMaterial() );

	function _colourSegment ( geometry, v1, v2 ) {

		geometry.colors[ v1 ] = colour;
		geometry.colors[ v2 ] = colour;

	}

};

Survey.prototype.setLegColourByLength = function ( mesh ) {

	var colours = ColourCache.getColors( 'gradient' );
	var colourRange = colours.length - 1;
	var stats = mesh.stats;

	mesh.setShading( this.selectedSectionIds, _colourSegment, Materials$1.getLineMaterial() );

	function _colourSegment ( geometry, v1, v2 ) {

		var vertex1 = geometry.vertices[ v1 ];
		var vertex2 = geometry.vertices[ v2 ];

		var relLength = ( Math.abs( vertex1.distanceTo( vertex2 ) ) - stats.minLegLength ) / stats.legLengthRange;
		var colour = colours[ Math.floor( ( 1 - relLength ) * colourRange ) ];

		geometry.colors[ v1 ] = colour;
		geometry.colors[ v2 ] = colour;

	}

};

Survey.prototype.setLegColourBySurvey = function ( mesh ) {

	var surveyTree = this.surveyTree;
	var selectedSection = this.selectedSection;

	if ( selectedSection === 0) selectedSection = surveyTree.id;

	var surveyToColourMap = SurveyColours.getSurveyColourMap( surveyTree, selectedSection );

	if ( this.selectedSectionIds.size === 0 ) this.surveyTree.getSubtreeIds( selectedSection, this.selectedSectionIds );

	mesh.setShading( this.selectedSectionIds, _colourSegment, Materials$1.getLineMaterial() );

	function _colourSegment ( geometry, v1, v2, survey ) {

		var colour = surveyToColourMap[ survey ];

		geometry.colors[ v1 ] = colour;
		geometry.colors[ v2 ] = colour;

	}

};

Survey.prototype.setLegColourByPath = function ( mesh ) {

	var routes = this.getRoutes();

	var c1 = ColourCache.yellow;
	var c2 = ColourCache.red;
	var c3 = ColourCache.white;

	var colour;

	mesh.setShading( this.selectedSectionIds, _colourSegment, Materials$1.getLineMaterial() );

	function _colourSegment ( geometry, v1, v2 /*, survey */ ) {

		if ( routes.inCurrentRoute( v1 ) ) {

			colour = c1;

		} else if ( routes.adjacentToRoute( v1 ) ) {

			colour = c2;

		} else {

			colour = c3;
		}

		geometry.colors[ v1 ] = colour;
		geometry.colors[ v2 ] = colour;

	}

};

Survey.prototype.setLegColourByInclination = function ( mesh, pNormal ) {

	var colours = ColourCache.getColors( 'inclination' );

	var colourRange = colours.length - 1;
	var hueFactor = colourRange * 2 / Math.PI;
	var legNormal = new Vector3();

	// pNormal = normal of reference plane in model space

	mesh.setShading( this.selectedSectionIds, _colourSegment, Materials$1.getLineMaterial() );

	function _colourSegment ( geometry, v1, v2 ) {

		var vertex1 = geometry.vertices[ v1 ];
		var vertex2 = geometry.vertices[ v2 ];

		legNormal.subVectors( vertex1, vertex2 ).normalize();
		var dotProduct = legNormal.dot( pNormal );

		var hueIndex = Math.floor( hueFactor * Math.acos( Math.abs( dotProduct ) ) );
		var colour = colours[ hueIndex ];

		geometry.colors[ v1 ] = colour;
		geometry.colors[ v2 ] = colour;

	}

};



// EOF

function Popup( cssClass ) {

	this.div = document.createElement( 'div' );
	this.div.classList.add( cssClass );

}

Popup.prototype.constructor = Popup;

Popup.prototype.display = function ( container, x, y, camera, p ) {

	var div = this.div;
	var screenPosition = new Vector3();

	div.style.left = x + 'px';
	div.style.top = y + 'px';

	container.appendChild ( div );

	container.addEventListener( 'mouseup', _mouseUp );
	container.addEventListener( 'mousemove', _mouseMove );

	function _mouseMove ( /* event */ ) {

		camera.updateMatrixWorld();

		screenPosition.copy( p );
		screenPosition.project( camera );

		var X = container.clientWidth * ( screenPosition.x + 1 ) / 2;
		var Y = container.clientHeight * ( -screenPosition.y + 1 ) / 2;


		if ( X + div.clientWidth > container.clientWidth || Y + div.clientHeight > container.clientHeight ) {

			// moving off screen, delete now.
			_mouseUp();

		} else {

			div.style.left = X + 'px';
			div.style.top =  Y + 'px';

		}

	}

	function _mouseUp ( /* event */ ) {

		container.removeChild( div );

		container.removeEventListener( 'mousemove', _mouseMove );
		container.removeEventListener( 'mouseup', _mouseUp );

	}

};

Popup.prototype.addLine = function ( line ) {

	var newLine = document.createElement( 'div' );

	newLine.textContent = line;

	this.div.appendChild ( newLine );

	return this;

};

function StationPopup ( station, position, depth ) {

	Popup.call( this, 'station-info' );

	var name = station.getPath();
	var long = false;
	var tmp;

	// reduce name length if too long

	while ( name.length > 20 ) {

		tmp = name.split( '.' );
		tmp.shift();

		name = tmp.join( '.' );
		long = true;

	}

	if ( long ) name = '...' + name;

	this.addLine( name );
	this.addLine( 'x: ' + position.x + ' m' ).addLine( 'y: ' + position.y + ' m' ).addLine( 'z: ' + position.z + ' m' );

	if ( depth !== null ) this.addLine( 'depth from surface: ' + Math.round( depth ) + ' m' );

}

StationPopup.prototype = Object.create( Popup.prototype );

StationPopup.prototype.constructor = StationPopup;

// preallocated for projected area calculations

var A$1 = new Vector3();
var B$1 = new Vector3();
var C$1 = new Vector3();
var D$1 = new Vector3();

var T1$1 = new Triangle( A$1, B$1, C$1 );
var T2$1 = new Triangle( A$1, C$1, D$1 );

function onUploadDropBuffer() {

	// call back from BufferAttribute to drop JS buffers after data has been transfered to GPU
	this.array = null;

}

function Tile ( x, y, zoom, tileSet, clip ) {

	this.x = x;
	this.y = y;

	this.zoom    = zoom;
	this.tileSet = tileSet;
	this.clip    = clip;

	this.canZoom       = true;
	this.evicted       = false;
	this.replaced      = false;
	this.evictionCount = 1;
	this.resurrectionPending = false;
	this.childrenLoading = 0;
	this.childErrors     = 0;

	this.boundingBox = null;
	this.worldBoundingBox = null;

	Mesh.call( this, new BufferGeometry(), Materials$1.getSurfaceMaterial() );

	this.onBeforeRender = terrainLib.onBeforeRender;
	this.onAfterRender = terrainLib.onAfterRender;

	return this;

}

Tile.liveTiles = 0;

Tile.prototype = Object.create( Mesh.prototype );

Tile.prototype.constructor = Tile;

Tile.prototype.type = 'Tile';
Tile.prototype.isTile = true;

Tile.prototype.createFromBufferAttributes = function ( index, attributes, boundingBox, material ) {

	var attributeName;
	var attribute;
	var bufferGeometry = this.geometry;

	// assemble BufferGeometry from binary buffer objects transfered from worker

	for ( attributeName in attributes ) {

		attribute = attributes[ attributeName ];
		bufferGeometry.addAttribute( attributeName, new Float32BufferAttribute( attribute.array, attribute.itemSize ) );

	}

	bufferGeometry.setIndex( new Uint16BufferAttribute( index, 1 ) );

	// use precalculated bounding box rather than recalculating it here.

	bufferGeometry.boundingBox = new Box3(
		new Vector3( boundingBox.min.x, boundingBox.min.y, boundingBox.min.z ),
		new Vector3( boundingBox.max.x, boundingBox.max.y, boundingBox.max.z )
	);

	attributes = bufferGeometry.attributes;

	// discard javascript attribute buffers after upload to GPU

	for ( var name in attributes ) attributes[ name ].onUpload( onUploadDropBuffer );

	this.geometry.index.onUpload( onUploadDropBuffer );

	this.layers.set( FEATURE_TERRAIN );

	this.material = material;

	return this;

};

Tile.prototype.getWorldBoundingBox = function () {

	var boundingBox;

	if ( this.worldBoundingBox === null ) {

		this.updateMatrixWorld();

		boundingBox = this.getBoundingBox().clone();
		boundingBox.applyMatrix4( this.matrixWorld );

		this.worldBoundingBox = boundingBox;

	}

	return this.worldBoundingBox;

};

Tile.prototype.getBoundingBox = function () {

	var boundingBox;

	if ( this.boundingBox === null ) {

		boundingBox = this.geometry.boundingBox.clone();

		var adj = 5; // adjust to cope with overlaps // FIXME - was resolution

		boundingBox.min.x += adj;
		boundingBox.min.y += adj;
		boundingBox.max.x -= adj;
		boundingBox.max.y -= adj;

		this.boundingBox = boundingBox;

	}

	return this.boundingBox;

};

Tile.prototype.empty = function () {

	this.isMesh = false;

	if ( ! this.boundingBox ) {

		console.warn( 'FIXUP :', this.x, this.y );
		this.getWorldBoundingBox();

	}

	if ( this.geometry ) {

		this.geometry.dispose();
		this.geometry = new BufferGeometry();

	}

	--Tile.liveTiles;

};

Tile.prototype.evict = function () {

	this.evictionCount++;
	this.evicted = true;
	this.replaced = false;

	this.empty();

};

Tile.prototype.setReplaced = function () {

	this.evicted = false;
	this.replaced = true;

	this.empty();

};


Tile.prototype.setPending = function ( parentTile ) {

	if ( parentTile && this.parent === null ) {

		parentTile.add( this );

	}

	this.parent.childrenLoading++;

	this.isMesh = false;
	this.evicted = false;

};

Tile.prototype.setFailed = function () {

	var parent = this.parent;

	parent.childErrors++;
	parent.childrenLoading--;
	parent.canZoom = false;

	parent.remove( this );

};

Tile.prototype.setLoaded = function ( overlay, opacity, renderCallback ) {

	var parent = this.parent;
	var tilesWaiting = 0;

	if ( --parent.childrenLoading === 0 ) { // this tile and all siblings loaded

		if ( parent.childErrors === 0 ) { // all loaded without error

			if ( parent.isTile ) parent.setReplaced();

			var siblings = parent.children;

			for ( var i = 0, l = siblings.length; i < l; i++ ) {

				var sibling = siblings[ i ];

				if ( sibling.replaced || sibling.evicted ) continue;

				if ( overlay === null ) {

					sibling.isMesh = true;
					Tile.liveTiles++;

				} else {

					// delay finalising until overlays loaded - avoids flash of raw surface
					sibling.setOverlay( overlay, opacity, _completed );
					tilesWaiting++;

				}

			}

			if ( tilesWaiting === 0 ) renderCallback();

			return true;

		} else {

			parent.remove( this );

		}

	}

	return false;

	function _completed( tile ) {

		tile.isMesh = true;
		Tile.liveTiles++;

		if ( --tilesWaiting === 0 ) renderCallback();

	}

};

Tile.prototype.removed = function () {

	if ( this.geometry ) this.geometry.dispose();

};

Tile.prototype.setMaterial = function ( material ) {

	this.material = material;

};

Tile.prototype.setOpacity = function ( opacity ) {

	var material = this.material;

	material.opacity = opacity;
	material.needsUpdate = true;

};

Tile.prototype.setOverlay = function ( overlay, opacity, imageLoadedCallback ) {

	var self = this;

	overlay.getTile( this.x, this.y, this.zoom, opacity, _overlayLoaded );

	return;

	function _overlayLoaded ( material ) {

		self.material = material;
		imageLoadedCallback( self );

	}

};

Tile.prototype.projectedArea = function ( camera ) {

	var boundingBox = this.getWorldBoundingBox();

	var z = boundingBox.max.z;

	A$1.copy( boundingBox.min ).setZ( z );
	C$1.copy( boundingBox.max );

	B$1.set( A$1.x, C$1.y, z );
	D$1.set( C$1.x, A$1.y, z );

// clamping reduces accuracy of area but stops offscreen area contributing to zoom pressure
// .clampScalar( -1, 1 );

	A$1.project( camera );
	B$1.project( camera );
	C$1.project( camera );
	D$1.project( camera );


	return T1$1.area() + T2$1.area();

};



// EOF

//import { Box3Helper } from '../core/Box3';
var halfMapExtent = 6378137 * Math.PI; // from EPSG:3875 definition

function WebTerrain ( survey, onReady, onLoaded ) {

	CommonTerrain.call( this );

	this.name = 'WebTerrain';
	this.type = 'CV.WebTerrain';

	var limits = survey.limits;

	this.limits = new Box2(
		new Vector2( limits.min.x, limits.min.y ),
		new Vector2( limits.max.x, limits.max.y )
	);

	this.offsets = survey.offsets;

	this.onLoaded        = onLoaded;
	this.childrenLoading = 0;
	this.childErrors     = 0;
	this.terrainLoaded   = false;
	this.material        = null;
	this.initialZoom     = null;
	this.currentZoom     = null;
	this.currentLimits   = null;
	this.dying = false;
	this.overlaysLoading = 0;
	this.debug = true;

	this.workerPool = new WorkerPool( 'webTileWorker.js' );

	if ( HUD !== undefined ) {

		this.progressDial = HUD.getProgressDial();

	}

	var self = this;

	new FileLoader().setResponseType( 'text' ).load( getEnvironmentValue( 'terrainDirectory', '' ) + '/' + 'tileSets.json', _tileSetLoaded, function () {}, _tileSetMissing );

	function _tileSetLoaded( text ) {

		self.tileSets = JSON.parse( text );

		onReady(); // call handler

	}

	function _tileSetMissing( ) {

		onReady(); // call handler

	}

}

WebTerrain.prototype = Object.create( CommonTerrain.prototype );

WebTerrain.prototype.constructor = WebTerrain;

WebTerrain.prototype.isTiled = true;

WebTerrain.prototype.isLoaded = function () {

	return this.terrainLoaded;

};

WebTerrain.prototype.hasCoverage = function () {

	var limits = this.limits;
	var tileSets = this.tileSets;
	var tileSet;
	var coverage;

	if ( tileSets === undefined ) return false;

	// iterate through available tileSets and pick the first match
	var baseDirectory = getEnvironmentValue( 'terrainDirectory', '' );

	for ( var i = 0, l = tileSets.length; i < l; i++ ) {

		tileSet = tileSets[ i ];

		coverage = this.getCoverage( limits, tileSet.minZoom );

		if ( ( coverage.min_x >= tileSet.minX && coverage.max_x <= tileSet.maxX )
				&& (
			( coverage.min_y >= tileSet.minY && coverage.max_y <= tileSet.maxY ) ) ) {

			tileSet.directory = baseDirectory + tileSet.subdirectory;
			this.tileSet = tileSet;
			return true;

		}

	}

	return false;

};

WebTerrain.prototype.getCoverage = function ( limits, zoom ) {

	var coverage = { zoom: zoom };

	var N =  halfMapExtent;
	var W = -halfMapExtent;

	var tileCount = Math.pow( 2, zoom - 1 ) / halfMapExtent; // tile count per metre

	coverage.min_x = Math.floor( ( limits.min.x - W ) * tileCount );
	coverage.max_x = Math.floor( ( limits.max.x - W ) * tileCount );

	coverage.max_y = Math.floor( ( N - limits.min.y ) * tileCount );
	coverage.min_y = Math.floor( ( N - limits.max.y ) * tileCount );

	coverage.count = ( coverage.max_x - coverage.min_x + 1 ) * ( coverage.max_y - coverage.min_y + 1 );

	return coverage;

};

WebTerrain.prototype.pickCoverage = function ( limits ) {

	var tileSet = this.tileSet;
	var zoom = tileSet.maxZoom + 1;
	var coverage;

	do {

		--zoom;
		coverage = this.getCoverage( limits, zoom );

	} while ( coverage.count > 4 && zoom > tileSet.minZoom );

	return coverage;

};

WebTerrain.prototype.loadTile = function ( x, y, z, existingTile, parentTile ) {

	// account for limits of DTM resolution

	var tileSet = this.tileSet;
	var scale = ( z > tileSet.dtmMaxZoom ) ? Math.pow( 2, tileSet.dtmMaxZoom - z ) : 1;

	// don't zoom in with no overlay - no improvement of terrain rendering in this case

	if ( scale !== 1 && this.activeOverlay === null && this.currentZoom !== null ) return;

	console.log( 'load: [ ', z +'/' +  x + '/' +  y, ']' );

	var self = this;

	var limits    = this.limits;
	var tileWidth = halfMapExtent / Math.pow( 2, z - 1 );
	var clip      = { top: 0, bottom: 0, left: 0, right: 0 };

	var tileMinX = tileWidth * x - halfMapExtent;
	var tileMaxX = tileMinX + tileWidth;

	var tileMaxY = halfMapExtent - tileWidth * y;
	var tileMinY = tileMaxY - tileWidth;

	var divisions = ( tileSet.divisions ) * scale;
	var resolution = tileWidth / divisions;

	++this.tilesLoading;

	// trim excess off sides of tile where overlapping with region

	if ( tileMaxY > limits.max.y ) clip.top = Math.floor( ( tileMaxY - limits.max.y ) / resolution );

	if ( tileMinY < limits.min.y ) clip.bottom = Math.floor( ( limits.min.y - tileMinY ) / resolution );

	if ( tileMinX < limits.min.x ) clip.left = Math.floor( ( limits.min.x - tileMinX ) / resolution );

	if ( tileMaxX > limits.max.x ) clip.right = Math.floor( ( tileMaxX - limits.max.x ) / resolution );

	// get Tile instance.

	var tile = existingTile ? existingTile : new Tile( x, y, z, self.tileSet, clip );
	var parent = parentTile ? parentTile : this;

	tile.setPending( parent ); // tile load/reload pending

	// get a web worker from the pool and create new geometry in it

	var tileLoader = this.workerPool.getWorker();

	tileLoader.onmessage = _mapLoaded;

	tileLoader.postMessage( {
		tileSet: tileSet,
		divisions: divisions,
		resolution: resolution,
		x: x,
		y: y,
		z: z,
		clip: clip,
		offsets: this.offsets
	} );

	return;

	function _mapLoaded ( event ) {

		var tileData = event.data;

		// return worker to pool

		self.workerPool.putWorker( tileLoader );

		--self.tilesLoading;

		// the survey/region in the viewer may have changed while the height maps are being loaded.
		// bail out in this case to avoid errors

		if ( self.dying ) {

			self.progressDial.end();
			return;

		}

		// error out early if we or other tiles have failed to load.

		if ( tileData.status !== 'ok' || tile.parent.childErrors !== 0 ) {

			tile.setFailed();

			if ( self.progressDial ) self.progressDial.end();

			return;

		}

		if ( self.progressDial ) self.progressDial.add( self.progressInc );

		tile.createFromBufferAttributes( tileData.index, tileData.attributes, tileData.boundingBox, self.material );

		if ( self.progressDial ) self.progressDial.add( self.progressInc );

		if ( tile.setLoaded( self.activeOverlay, self.opacity, self.onLoaded ) ) {

			if ( self.progressDial ) self.progressDial.end();

		}

		self.terrainLoaded = true;

	}

};

WebTerrain.prototype.resurrectTile = function ( tile ) {

	if ( tile.isMesh ) {

		console.warn( 'resurrecting the undead!' );
		return;

	}

	// reload tile (use exiting tile object to preserve canZoom).
	this.loadTile( tile.x, tile.y, tile.zoom, tile );

};

WebTerrain.prototype.tileArea = function ( limits, tile ) {

	var coverage = this.pickCoverage( limits );
	var zoom = coverage.zoom;

	if ( tile && tile.zoom == zoom ) {

		console.error( 'ERROR - looping on tile replacement' );
		return;

	}

	this.currentLimits = limits;

	if ( this.initialZoom === null ) {

		this.initialZoom = zoom;

	}

	for ( var x = coverage.min_x; x < coverage.max_x + 1; x++ ) {

		for ( var y = coverage.min_y; y < coverage.max_y + 1; y++ ) {

			this.loadTile( x, y, zoom, null, tile );

		}

	}

	if ( this.tilesLoading > 0 && this.progressDial !== undefined ) {

		this.progressDial.start( 'Loading ' + this.tilesLoading + ' terrain tiles' );
		this.progressInc = 100 / ( this.tilesLoading * 2 );

	}

	this.currentZoom = zoom;

	return;

};

WebTerrain.prototype.setDefaultOverlay = function ( overlay ) {

	this.defaultOverlay = overlay;

};

WebTerrain.prototype.setOverlay = function ( overlay, overlayLoadedCallback ) {

	if ( this.tilesLoading > 0 ) return;

	var self = this;

	var currentOverlay = this.activeOverlay;

	if ( currentOverlay !== null ) {

		if ( currentOverlay === overlay ) {

			return;

		} else {

			currentOverlay.flushCache();
			currentOverlay.hideAttribution();

		}

	}

	this.activeOverlay = overlay;
	this.defaultOverlay = overlay;

	overlay.showAttribution();

	this.traverse( _setTileOverlays );

	return;

	function _setTileOverlays ( obj ) {

		if ( ! obj.isTile ) return;

		obj.setOverlay( overlay, self.opacity, _overlayLoaded );
		self.overlaysLoading++;

	}

	function _overlayLoaded () {

		if ( --self.overlaysLoading === 0 ) overlayLoadedCallback();

	}

};

WebTerrain.prototype.removed = function () {

	this.dying = true;

	if ( this.tilesLoading > 0 ) return;

	var self = this;

	this.traverse( _disposeTileMesh );

	this.commonRemoved();

	return;

	function _disposeTileMesh ( obj ) {

		if ( obj !== self ) obj.removed( obj );

	}

};

WebTerrain.prototype.setMaterial = function ( material ) {

	if ( this.tilesLoading > 0 ) return;

	this.traverse( _setTileMeshMaterial );

	this.activeOverlay = null;

	// use for commmon material access for opacity

	material.opacity = this.opacity;
	material.needsUpdate = true;

	this.material = material;

	return;

	function _setTileMeshMaterial ( obj ) {

		if ( ! obj.isTile ) return;

		obj.setMaterial( material );

	}

};

WebTerrain.prototype.setOpacity = function ( opacity ) {

	if ( this.shadingMode === SHADING_OVERLAY ) {

		// each tile has its own material, therefore need setting separately
		this.traverse( _setTileOpacity );

	} else {

		if ( this.material ) {

			this.material.opacity = opacity;
			this.material.needsUpdate = true;

		}

	}

	this.opacity = opacity;

	return;

	function _setTileOpacity ( obj ) {

		if ( obj.isTile ) obj.setOpacity( opacity );

	}

};

WebTerrain.prototype.zoomCheck = function ( camera ) {

	var maxZoom     = this.tileSet.maxZoom;
	var initialZoom = this.initialZoom;
	var self = this;

	var frustum  = new Frustum();

	var candidateTiles      = [];
	var candidateEvictTiles = [];
	var resurrectTiles      = [];
	var retry = false;

	var total, tile, i;

	if ( this.tilesLoading > 0 ) return true;

	camera.updateMatrix(); // make sure camera's local matrix is updated
	camera.updateMatrixWorld(); // make sure camera's world matrix is updated
	camera.matrixWorldInverse.getInverse( camera.matrixWorld );

	frustum.setFromMatrix( new Matrix4().multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ) );

	// scan scene graph of terrain

	this.traverse( _scanTiles );

	var resurrectCount = resurrectTiles.length;
	var candidateCount = candidateTiles.length;

	_evictTiles();

	if ( resurrectCount !== 0 ) {

		if ( this.progressDial ) this.progressDial.start( 'Resurrecting tiles' );

		for ( i = 0; i < resurrectCount; i++ ) {

			this.resurrectTile( resurrectTiles[ i ] );
			retry = true;

		}

		this.progressInc = 100 / ( 2 * resurrectCount );

	} else if ( candidateCount !== 0 ) {

		total = candidateTiles.reduce( function ( a, b ) { return { area: a.area + b.area }; } );

		for ( i = 0; i < candidateCount; i++ ) {

			if ( candidateTiles[ i ].area / total.area > 0.3 ) { // FIXME - weight by tile resolution to balance view across all visible areas first.

				tile = candidateTiles[ i ].tile;

				if ( tile.zoom < maxZoom ) {

					var bb = tile.getBoundingBox().clone();

					bb.min.add( this.offsets );
					bb.max.add( this.offsets );

					this.tileArea( bb, tile );
					retry = true;

				}

			}

		}

	}

	return retry;

	function _scanTiles( tile ) {

		if ( tile === self || ! tile.isTile ) return;

		if ( frustum.intersectsBox( tile.getWorldBoundingBox() ) ) {

			// this tile intersects the screen

			if ( tile.children.length === 0 ) {

				if ( ! tile.isMesh ) {

					// this tile is not loaded, but has been previously
					resurrectTiles.push( tile );

				} else {

					// this tile is loaded, maybe increase resolution?
					if ( tile.canZoom ) candidateTiles.push( { tile: tile, area: tile.projectedArea( camera ) } );

				}

			} else {

				if ( ! tile.isMesh && tile.evicted && ! this.parent.resurrectionPending ) {

					tile.resurrectionPending = true;
					resurrectTiles.push( tile );

				}

				if ( tile.parent.ResurrectionPending && this.isMesh ) {

					// remove tile - will be replaced with parent
					console.warn( ' should not get here' );

				}

			}

		} else {

			// off screen tile
			if ( tile.isMesh ) candidateEvictTiles.push( tile );

		}

	}

	function _evictTiles() {

		var EVICT_PRESSURE = 5;
		var evictCount = candidateEvictTiles.length;
		var i;

		if ( evictCount !== 0 ) {

			candidateEvictTiles.sort( _sortByPressure );

			for ( i = 0; i < evictCount; i++ ) {

				var tile = candidateEvictTiles[ i ];

				// heuristics for evicting tiles - needs refinement

				var pressure = Tile.liveTiles / EVICT_PRESSURE;
				var tilePressure = tile.evictionCount * Math.pow( 2, initialZoom - tile.zoom );

				//console.log( 'ir', initialZoom, 'p: ', pressure, ' tp: ', tilePressure, ( pressure > tilePressure ? '*** EVICTING ***' : 'KEEP' ) );

				if ( pressure > tilePressure ) tile.evict();

			}

		}

		function _sortByPressure( tileA, tileB ) {

			return tileA.evictionCount / tileA.zoom - tileB.evictionCount / tileB.zoom;

		}

	}

};



// EOF

// FIXME fix lifecycle of materials and textures - ensure disposal/caching as required
// GPU resource leak etc.

function Overlay ( overlayProvider, container ) {

	this.provider = overlayProvider;
	this.container = container;

	var attribution = overlayProvider.getAttribution();

	if ( attribution ) {

		attribution.classList.add( 'overlay-branding' );
		this.attribution = attribution;

	}

	this.materialCache = {};

}

Overlay.prototype.showAttribution = function () {

	var attribution = this.attribution;

	if ( attribution !== undefined ) this.container.appendChild( attribution );

};

Overlay.prototype.hideAttribution = function () {

	var attribution = this.attribution;
	var parent = attribution.parentNode;

	if ( parent !== null ) parent.removeChild( attribution );

};

Overlay.prototype.getTile = function ( x, y, z, opacity, overlayLoaded ) {

	var self = this;
	var key = x + ':' + y + ':' + z;

	var material = this.materialCache[ key ];

	if ( material !== undefined ) {

		overlayLoaded( material );

		return;

	}

	var url = this.provider.getUrl( x, y, z );

	if ( url === null ) return;

	new TextureLoader().setCrossOrigin( 'anonymous' ).load( url, _textureLoaded );

	return;

	function _textureLoaded( texture ) {

		var material = new MeshLambertMaterial( { transparent: true, opacity: opacity, color: 0xffffff } );

		material.map = texture;
		material.needsUpdate = true;

		self.materialCache[ key ] = material;

		overlayLoaded( material );

	}

};

Overlay.prototype.flushCache = function () {

	var materialCache = this.materialCache;
	var material;

	for ( var name in materialCache ) {

		material = materialCache[ name ];

		material.map.dispose();
		material.dispose();

	}

	this.materialCache = {};

};

Overlay.prototype.constructor = Overlay;

/**
 * @author qiao / https://github.com/qiao
 * @author mrdoob / http://mrdoob.com
 * @author alteredq / http://alteredqualia.com/
 * @author WestLangley / http://github.com/WestLangley
 * @author erich666 / http://erichaines.com
 */

// This set of controls performs orbiting, dollying (zooming), and panning.
// Unlike TrackballControls, it maintains the "up" direction object.up (+Y by default).
//
//    Orbit - left mouse / touch: one finger move
//    Zoom - middle mouse, or mousewheel / touch: two finger spread or squish
//    Pan - right mouse, or arrow keys / touch: three finter swipe

/* eslint-disable */

function OrbitControls ( object, domElement ) {

	this.object = object;

	this.domElement = ( domElement !== undefined ) ? domElement : document;

	// Set to false to disable this control
	this.enabled = true;

	// "target" sets the location of focus, where the object orbits around
	this.target = new Vector3();

	// How far you can dolly in and out ( PerspectiveCamera only )
	this.minDistance = 0;
	this.maxDistance = Infinity;

	// How far you can zoom in and out ( OrthographicCamera only )
	this.minZoom = 0;
	this.maxZoom = Infinity;

	// How far you can orbit vertically, upper and lower limits.
	// Range is 0 to Math.PI radians.
	this.minPolarAngle = 0; // radians
	this.maxPolarAngle = Math.PI; // radians

	// How far you can orbit horizontally, upper and lower limits.
	// If set, must be a sub-interval of the interval [ - Math.PI, Math.PI ].
	this.minAzimuthAngle = - Infinity; // radians
	this.maxAzimuthAngle = Infinity; // radians

	// Set to true to enable damping (inertia)
	// If damping is enabled, you must call controls.update() in your animation loop
	this.enableDamping = false;
	this.dampingFactor = 0.25;

	// This option actually enables dollying in and out; left as "zoom" for backwards compatibility.
	// Set to false to disable zooming
	this.enableZoom = true;
	this.zoomSpeed = 1.0;

	// Set to false to disable rotating
	this.enableRotate = true;
	this.rotateSpeed = 1.0;

	// Set to false to disable panning
	this.enablePan = true;
	this.keyPanSpeed = 7.0;	// pixels moved per arrow key push

	// Set to true to automatically rotate around the target
	// If auto-rotate is enabled, you must call controls.update() in your animation loop
	this.autoRotate = false;
	this.autoRotateSpeed = 2.0; // 30 seconds per round when fps is 60

	// Set to false to disable use of the keys
	this.enableKeys = true;

	// The four arrow keys
	this.keys = { LEFT: 37, UP: 38, RIGHT: 39, BOTTOM: 40 };

	// Mouse buttons
	this.mouseButtons = { ORBIT: MOUSE.LEFT, ZOOM: MOUSE.MIDDLE, PAN: MOUSE.RIGHT };

	// for reset
	this.target0 = this.target.clone();
	this.position0 = this.object.position.clone();
	this.zoom0 = this.object.zoom;

	//
	// public methods
	//

	this.getPolarAngle = function () {

		return spherical.phi;

	};

	this.getAzimuthalAngle = function () {

		return spherical.theta;

	};

	this.reset = function () {

		scope.target.copy( scope.target0 );
		scope.object.position.copy( scope.position0 );
		scope.object.zoom = scope.zoom0;

		scope.object.updateProjectionMatrix();
		scope.dispatchEvent( changeEvent );

		scope.update();

		state = STATE.NONE;

	};

	// this method is exposed, but perhaps it would be better if we can make it private...
	this.update = function() {

		var offset = new Vector3();

		// so camera.up is the orbit axis
		var quat = new Quaternion().setFromUnitVectors( object.up, new Vector3( 0, 1, 0 ) );
		var quatInverse = quat.clone().inverse();

		var lastPosition = new Vector3();
		var lastQuaternion = new Quaternion();

		return function update () {

			var position = scope.object.position;

			offset.copy( position ).sub( scope.target );

			// rotate offset to "y-axis-is-up" space
			offset.applyQuaternion( quat );

			// angle from z-axis around y-axis
			spherical.setFromVector3( offset );

			if ( scope.autoRotate && state === STATE.NONE ) {

				rotateLeft( getAutoRotationAngle() );

			}

			spherical.theta += sphericalDelta.theta;
			spherical.phi += sphericalDelta.phi;

			// restrict theta to be between desired limits
			spherical.theta = Math.max( scope.minAzimuthAngle, Math.min( scope.maxAzimuthAngle, spherical.theta ) );

			// restrict phi to be between desired limits
			spherical.phi = Math.max( scope.minPolarAngle, Math.min( scope.maxPolarAngle, spherical.phi ) );

			spherical.makeSafe();


			spherical.radius *= scale;

			// restrict radius to be between desired limits
			spherical.radius = Math.max( scope.minDistance, Math.min( scope.maxDistance, spherical.radius ) );

			// move target to panned location
			scope.target.add( panOffset );

			offset.setFromSpherical( spherical );

			// rotate offset back to "camera-up-vector-is-up" space
			offset.applyQuaternion( quatInverse );

			position.copy( scope.target ).add( offset );

			scope.object.lookAt( scope.target );

			if ( scope.enableDamping === true ) {

				sphericalDelta.theta *= ( 1 - scope.dampingFactor );
				sphericalDelta.phi *= ( 1 - scope.dampingFactor );

			} else {

				sphericalDelta.set( 0, 0, 0 );

			}

			scale = 1;
			panOffset.set( 0, 0, 0 );

			// update condition is:
			// min(camera displacement, camera rotation in radians)^2 > EPS
			// using small-angle approximation cos(x/2) = 1 - x^2 / 8

			if ( zoomChanged ||
				lastPosition.distanceToSquared( scope.object.position ) > EPS ||
				8 * ( 1 - lastQuaternion.dot( scope.object.quaternion ) ) > EPS ) {

				scope.dispatchEvent( changeEvent );

				lastPosition.copy( scope.object.position );
				lastQuaternion.copy( scope.object.quaternion );
				zoomChanged = false;

				return true;

			}

			return false;

		};

	}();

	this.dispose = function() {

		scope.domElement.removeEventListener( 'contextmenu', onContextMenu, false );
		scope.domElement.removeEventListener( 'mousedown', onMouseDown, false );
		scope.domElement.removeEventListener( 'wheel', onMouseWheel, false );

		scope.domElement.removeEventListener( 'touchstart', onTouchStart, false );
		scope.domElement.removeEventListener( 'touchend', onTouchEnd, false );
		scope.domElement.removeEventListener( 'touchmove', onTouchMove, false );

		document.removeEventListener( 'mousemove', onMouseMove, false );
		document.removeEventListener( 'mouseup', onMouseUp, false );

		window.removeEventListener( 'keydown', onKeyDown, false );

		//scope.dispatchEvent( { type: 'dispose' } ); // should this be added here?

	};

	//
	// internals
	//

	var scope = this;

	var changeEvent = { type: 'change' };
	var startEvent = { type: 'start' };
	var endEvent = { type: 'end' };

	var STATE = { NONE : - 1, ROTATE : 0, DOLLY : 1, PAN : 2, TOUCH_ROTATE : 3, TOUCH_DOLLY : 4, TOUCH_PAN : 5 };

	var state = STATE.NONE;

	var EPS = 0.000001;

	// current position in spherical coordinates
	var spherical = new Spherical();
	var sphericalDelta = new Spherical();

	var scale = 1;
	var panOffset = new Vector3();
	var zoomChanged = false;

	var rotateStart = new Vector2();
	var rotateEnd = new Vector2();
	var rotateDelta = new Vector2();

	var panStart = new Vector2();
	var panEnd = new Vector2();
	var panDelta = new Vector2();

	var dollyStart = new Vector2();
	var dollyEnd = new Vector2();
	var dollyDelta = new Vector2();

	function getAutoRotationAngle() {

		return 2 * Math.PI / 60 / 60 * scope.autoRotateSpeed;

	}

	function getZoomScale() {

		return Math.pow( 0.95, scope.zoomSpeed );

	}

	function rotateLeft( angle ) {

		sphericalDelta.theta -= angle;

	}

	function rotateUp( angle ) {

		sphericalDelta.phi -= angle;

	}

	var panLeft = function() {

		var v = new Vector3();

		return function panLeft( distance, objectMatrix ) {

			v.setFromMatrixColumn( objectMatrix, 0 ); // get X column of objectMatrix
			v.multiplyScalar( - distance );

			panOffset.add( v );

		};

	}();

	var panUp = function() {

		var v = new Vector3();

		return function panUp( distance, objectMatrix ) {

			v.setFromMatrixColumn( objectMatrix, 1 ); // get Y column of objectMatrix
			v.multiplyScalar( distance );

			panOffset.add( v );

		};

	}();

	// deltaX and deltaY are in pixels; right and down are positive
	var pan = function() {

		var offset = new Vector3();

		return function pan ( deltaX, deltaY ) {

			var element = scope.domElement === document ? scope.domElement.body : scope.domElement;

			if ( scope.object instanceof PerspectiveCamera ) {

				// perspective
				var position = scope.object.position;
				offset.copy( position ).sub( scope.target );
				var targetDistance = offset.length();

				// half of the fov is center to top of screen
				targetDistance *= Math.tan( ( scope.object.fov / 2 ) * Math.PI / 180.0 );

				// we actually don't use screenWidth, since perspective camera is fixed to screen height
				panLeft( 2 * deltaX * targetDistance / element.clientHeight, scope.object.matrix );
				panUp( 2 * deltaY * targetDistance / element.clientHeight, scope.object.matrix );

			} else if ( scope.object instanceof OrthographicCamera ) {

				// orthographic
				panLeft( deltaX * ( scope.object.right - scope.object.left ) / scope.object.zoom / element.clientWidth, scope.object.matrix );
				panUp( deltaY * ( scope.object.top - scope.object.bottom ) / scope.object.zoom / element.clientHeight, scope.object.matrix );

			} else {

				// camera neither orthographic nor perspective
				console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - pan disabled.' );
				scope.enablePan = false;

			}

		};

	}();

	function dollyIn( dollyScale ) {

		if ( scope.object instanceof PerspectiveCamera ) {

			scale /= dollyScale;

		} else if ( scope.object instanceof OrthographicCamera ) {

			scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom * dollyScale ) );
			scope.object.updateProjectionMatrix();
			zoomChanged = true;

		} else {

			console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' );
			scope.enableZoom = false;

		}

	}

	function dollyOut( dollyScale ) {

		if ( scope.object instanceof PerspectiveCamera ) {

			scale *= dollyScale;

		} else if ( scope.object instanceof OrthographicCamera ) {

			scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom / dollyScale ) );
			scope.object.updateProjectionMatrix();
			zoomChanged = true;

		} else {

			console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' );
			scope.enableZoom = false;

		}

	}

	//
	// event callbacks - update the object state
	//

	function handleMouseDownRotate( event ) {

		//console.log( 'handleMouseDownRotate' );

		rotateStart.set( event.clientX, event.clientY );

	}

	function handleMouseDownDolly( event ) {

		//console.log( 'handleMouseDownDolly' );

		dollyStart.set( event.clientX, event.clientY );

	}

	function handleMouseDownPan( event ) {

		//console.log( 'handleMouseDownPan' );

		panStart.set( event.clientX, event.clientY );

	}

	function handleMouseMoveRotate( event ) {

		//console.log( 'handleMouseMoveRotate' );

		rotateEnd.set( event.clientX, event.clientY );
		rotateDelta.subVectors( rotateEnd, rotateStart );

		var element = scope.domElement === document ? scope.domElement.body : scope.domElement;

		// rotating across whole screen goes 360 degrees around
		rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientWidth * scope.rotateSpeed );

		// rotating up and down along whole screen attempts to go 360, but limited to 180
		rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight * scope.rotateSpeed );

		rotateStart.copy( rotateEnd );

		scope.update();

	}

	function handleMouseMoveDolly( event ) {

		//console.log( 'handleMouseMoveDolly' );

		dollyEnd.set( event.clientX, event.clientY );

		dollyDelta.subVectors( dollyEnd, dollyStart );

		if ( dollyDelta.y > 0 ) {

			dollyIn( getZoomScale() );

		} else if ( dollyDelta.y < 0 ) {

			dollyOut( getZoomScale() );

		}

		dollyStart.copy( dollyEnd );

		scope.update();

	}

	function handleMouseMovePan( event ) {

		//console.log( 'handleMouseMovePan' );

		panEnd.set( event.clientX, event.clientY );

		panDelta.subVectors( panEnd, panStart );

		pan( panDelta.x, panDelta.y );

		panStart.copy( panEnd );

		scope.update();

	}

	function handleMouseUp( event ) {

		//console.log( 'handleMouseUp' );

	}

	function handleMouseWheel( event ) {

		//console.log( 'handleMouseWheel' );

		if ( event.deltaY < 0 ) {

			dollyOut( getZoomScale() );

		} else if ( event.deltaY > 0 ) {

			dollyIn( getZoomScale() );

		}

		scope.update();

	}

	function handleKeyDown( event ) {

		//console.log( 'handleKeyDown' );

		switch ( event.keyCode ) {

			case scope.keys.UP:
				pan( 0, scope.keyPanSpeed );
				scope.update();
				break;

			case scope.keys.BOTTOM:
				pan( 0, - scope.keyPanSpeed );
				scope.update();
				break;

			case scope.keys.LEFT:
				pan( scope.keyPanSpeed, 0 );
				scope.update();
				break;

			case scope.keys.RIGHT:
				pan( - scope.keyPanSpeed, 0 );
				scope.update();
				break;

		}

	}

	function handleTouchStartRotate( event ) {

		//console.log( 'handleTouchStartRotate' );

		rotateStart.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY );

	}

	function handleTouchStartDolly( event ) {

		//console.log( 'handleTouchStartDolly' );

		var dx = event.touches[ 0 ].pageX - event.touches[ 1 ].pageX;
		var dy = event.touches[ 0 ].pageY - event.touches[ 1 ].pageY;

		var distance = Math.sqrt( dx * dx + dy * dy );

		dollyStart.set( 0, distance );

	}

	function handleTouchStartPan( event ) {

		//console.log( 'handleTouchStartPan' );

		panStart.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY );

	}

	function handleTouchMoveRotate( event ) {

		//console.log( 'handleTouchMoveRotate' );

		rotateEnd.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY );
		rotateDelta.subVectors( rotateEnd, rotateStart );

		var element = scope.domElement === document ? scope.domElement.body : scope.domElement;

		// rotating across whole screen goes 360 degrees around
		rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientWidth * scope.rotateSpeed );

		// rotating up and down along whole screen attempts to go 360, but limited to 180
		rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight * scope.rotateSpeed );

		rotateStart.copy( rotateEnd );

		scope.update();

	}

	function handleTouchMoveDolly( event ) {

		//console.log( 'handleTouchMoveDolly' );

		var dx = event.touches[ 0 ].pageX - event.touches[ 1 ].pageX;
		var dy = event.touches[ 0 ].pageY - event.touches[ 1 ].pageY;

		var distance = Math.sqrt( dx * dx + dy * dy );

		dollyEnd.set( 0, distance );

		dollyDelta.subVectors( dollyEnd, dollyStart );

		if ( dollyDelta.y > 0 ) {

			dollyOut( getZoomScale() );

		} else if ( dollyDelta.y < 0 ) {

			dollyIn( getZoomScale() );

		}

		dollyStart.copy( dollyEnd );

		scope.update();

	}

	function handleTouchMovePan( event ) {

		//console.log( 'handleTouchMovePan' );

		panEnd.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY );

		panDelta.subVectors( panEnd, panStart );

		pan( panDelta.x, panDelta.y );

		panStart.copy( panEnd );

		scope.update();

	}

	function handleTouchEnd( event ) {

		//console.log( 'handleTouchEnd' );

	}

	//
	// event handlers - FSM: listen for events and reset state
	//

	function onMouseDown( event ) {

		if ( scope.enabled === false ) return;

		event.preventDefault();

		if ( event.button === scope.mouseButtons.ORBIT ) {

			if ( scope.enableRotate === false ) return;

			handleMouseDownRotate( event );

			state = STATE.ROTATE;

		} else if ( event.button === scope.mouseButtons.ZOOM ) {

			if ( scope.enableZoom === false ) return;

			handleMouseDownDolly( event );

			state = STATE.DOLLY;

		} else if ( event.button === scope.mouseButtons.PAN ) {

			if ( scope.enablePan === false ) return;

			handleMouseDownPan( event );

			state = STATE.PAN;

		}

		if ( state !== STATE.NONE ) {

			document.addEventListener( 'mousemove', onMouseMove, false );
			document.addEventListener( 'mouseup', onMouseUp, false );

			scope.dispatchEvent( startEvent );

		}

	}

	function onMouseMove( event ) {

		if ( scope.enabled === false ) return;

		event.preventDefault();

		if ( state === STATE.ROTATE ) {

			if ( scope.enableRotate === false ) return;

			handleMouseMoveRotate( event );

		} else if ( state === STATE.DOLLY ) {

			if ( scope.enableZoom === false ) return;

			handleMouseMoveDolly( event );

		} else if ( state === STATE.PAN ) {

			if ( scope.enablePan === false ) return;

			handleMouseMovePan( event );

		}

	}

	function onMouseUp( event ) {

		if ( scope.enabled === false ) return;

		handleMouseUp( event );

		document.removeEventListener( 'mousemove', onMouseMove, false );
		document.removeEventListener( 'mouseup', onMouseUp, false );

		scope.dispatchEvent( endEvent );

		state = STATE.NONE;

	}

	function onMouseWheel( event ) {

		if ( scope.enabled === false || scope.enableZoom === false || ( state !== STATE.NONE && state !== STATE.ROTATE ) ) return;

		event.preventDefault();
		event.stopPropagation();

		handleMouseWheel( event );

		scope.dispatchEvent( startEvent ); // not sure why these are here...
		scope.dispatchEvent( endEvent );

	}

	function onKeyDown( event ) {

		if ( scope.enabled === false || scope.enableKeys === false || scope.enablePan === false ) return;

		handleKeyDown( event );

	}

	function onTouchStart( event ) {

		if ( scope.enabled === false ) return;

		switch ( event.touches.length ) {

			case 1:	// one-fingered touch: rotate

				if ( scope.enableRotate === false ) return;

				handleTouchStartRotate( event );

				state = STATE.TOUCH_ROTATE;

				break;

			case 2:	// two-fingered touch: dolly

				if ( scope.enableZoom === false ) return;

				handleTouchStartDolly( event );

				state = STATE.TOUCH_DOLLY;

				break;

			case 3: // three-fingered touch: pan

				if ( scope.enablePan === false ) return;

				handleTouchStartPan( event );

				state = STATE.TOUCH_PAN;

				break;

			default:

				state = STATE.NONE;

		}

		if ( state !== STATE.NONE ) {

			scope.dispatchEvent( startEvent );

		}

	}

	function onTouchMove( event ) {

		if ( scope.enabled === false ) return;

		event.preventDefault();
		event.stopPropagation();

		switch ( event.touches.length ) {

			case 1: // one-fingered touch: rotate

				if ( scope.enableRotate === false ) return;
				if ( state !== STATE.TOUCH_ROTATE ) return; // is this needed?...

				handleTouchMoveRotate( event );

				break;

			case 2: // two-fingered touch: dolly

				if ( scope.enableZoom === false ) return;
				if ( state !== STATE.TOUCH_DOLLY ) return; // is this needed?...

				handleTouchMoveDolly( event );

				break;

			case 3: // three-fingered touch: pan

				if ( scope.enablePan === false ) return;
				if ( state !== STATE.TOUCH_PAN ) return; // is this needed?...

				handleTouchMovePan( event );

				break;

			default:

				state = STATE.NONE;

		}

	}

	function onTouchEnd( event ) {

		if ( scope.enabled === false ) return;

		handleTouchEnd( event );

		scope.dispatchEvent( endEvent );

		state = STATE.NONE;

	}

	function onContextMenu( event ) {

		event.preventDefault();

	}

	//

	scope.domElement.addEventListener( 'contextmenu', onContextMenu, false );

	scope.domElement.addEventListener( 'mousedown', onMouseDown, false );
	scope.domElement.addEventListener( 'wheel', onMouseWheel, false );

	scope.domElement.addEventListener( 'touchstart', onTouchStart, false );
	scope.domElement.addEventListener( 'touchend', onTouchEnd, false );
	scope.domElement.addEventListener( 'touchmove', onTouchMove, false );

	window.addEventListener( 'keydown', onKeyDown, false );

	// force an update at start

	this.update();

}

OrbitControls.prototype = Object.create( EventDispatcher.prototype );
OrbitControls.prototype.constructor = OrbitControls;

//import { DirectionGlobe } from '../analysis/DirectionGlobe';

//import { LeakWatch } from '../../../../LeakWatch/src/LeakWatch';

var lightPosition = new Vector3( -1, -1, 0.5 );
var RETILE_TIMEOUT = 150; // ms pause after last movement before attempting retiling

var caveIsLoaded = false;

var container;

// THREE.js objects

var renderer;
var scene = new Scene();
var oCamera;
var pCamera;

var camera;

var mouse = new Vector2();
var mouseMode = MOUSE_MODE_NORMAL;
var mouseTargets = [];

var raycaster;
var terrain = null;
var directionalLight;
var survey;
var limits;
var stats = {};
var zScale;

var cursorHeight;

var shadingMode;
var surfaceShadingMode = SHADING_SINGLE;
var terrainShadingMode;

var overlays = {};
var activeOverlay = null;

var cameraMode;
var selectedSection = 0;

var controls;
var defaultTarget = new Vector3();

var cameraMove;

var lastActivityTime = 0;
//var leakWatcher;

var Viewer = Object.create( EventDispatcher.prototype );

function init ( domID, configuration ) { // public method

	console.log( 'CaveView v' + VERSION );

	container = document.getElementById( domID );

	if ( ! container ) alert( 'No container DOM object [' + domID + '] available' );

	setEnvironment( configuration );

	var width  = container.clientWidth;
	var height = container.clientHeight;

	renderer = new WebGLRenderer( { antialias: true } ) ;

	renderer.setSize( width, height );
	renderer.setPixelRatio( window.devicePixelRatio );
	renderer.setClearColor( 0x000000 );
	renderer.autoClear = false;

	oCamera = new OrthographicCamera( -width / 2, width / 2, height / 2, -height / 2, 1, 4000 );

	oCamera.rotateOnAxis( upAxis, Math.PI / 2 );

	initCamera( oCamera );

	pCamera = new PerspectiveCamera( 75, width / height, 1, 16000 );

	initCamera( pCamera );

	camera = pCamera;

	scene.add( pCamera );
	scene.add( oCamera );

	directionalLight = new DirectionalLight( 0xffffff );
	directionalLight.position.copy( lightPosition );

	scene.add( directionalLight );

	scene.add( new HemisphereLight( 0xffffff, 0x00ffff, 0.3 ) );

	raycaster = new Raycaster();

	renderer.clear();

	container.appendChild( renderer.domElement );

	controls = new OrbitControls( camera, renderer.domElement );

	cameraMove = new CameraMove( controls, renderView, onCameraMoveEnd );

	controls.addEventListener( 'change', function () { cameraMove.prepare( null, null ); cameraMove.start( 80 ); } );

	controls.enableDamping = true;

	// event handler
	window.addEventListener( 'resize', resize );

	Object.defineProperties( Viewer, {

		'container': {
			value: container
		},

		'terrain': {
			writeable: true,
			get: function () { return testCameraLayer( FEATURE_TERRAIN ); },
			set: function ( x ) { loadTerrain( x ); }
		},

		'terrainShading': {
			writeable: true,
			get: function () { return terrainShadingMode; },
			set: function ( x ) { _stateSetter( setTerrainShadingMode, 'terrainShading', x ); }
		},

		'hasTerrain': {
			get: function () { return !! terrain; }
		},

		'terrainDatumShift': {
			writeable: true,
			get: function () { return !! terrain.activeDatumShift; },
			set: function ( x ) { applyTerrainDatumShift( x ); }
		},

		'terrainOverlays': {
			get: function () { if ( terrain.isTiled ) return Object.keys( overlays ); else return terrain.hasOverlay ? [ true ] : []; }
		},

		'terrainOverlay': {
			writeable: true,
			get: function () { return activeOverlay; },
			set: function ( x ) { _stateSetter( setTerrainOverlay, 'terrainOverlay', x ); }
		},

		'terrainOpacity': {
			writeable: true,
			get: function () { return terrain.getOpacity(); },
			set: function ( x ) { setTerrainOpacity( x ); }
		},

		'shadingMode': {
			writeable: true,
			get: function () { return shadingMode; },
			set: function ( x ) { _stateSetter( setShadingMode, 'shadingMode', x ); }
		},

		'surfaceShading': {
			writeable: true,
			get: function () { return surfaceShadingMode; },
			set: function ( x ) { _stateSetter( setSurfaceShadingMode, 'surfaceShading', x ); }
		},

		'cameraType': {
			writeable: true,
			get: function () { return cameraMode; },
			set: function ( x ) { _stateSetter( setCameraMode, 'cameraType', x ); }
		},

		'view': {
			writeable: true,
			get: function () { return VIEW_NONE; },
			set: function ( x ) { _stateSetter( setViewMode, 'view', x ); }
		},

		'cursorHeight': {
			writeable: true,
			get: function () { return cursorHeight; },
			set: function ( x ) { setCursorHeight( x ); }
		},

		'initCursorHeight': {
			writeable: true,
			get: function () { return cursorHeight; },
			set: function ( x ) { cursorHeight = x; }
		},

		'maxHeight': {
			get: function () { return limits.max.z; }
		},

		'minHeight': {
			get: function () { return limits.min.z; }
		},

		'maxLegLength': {
			get: function () { return stats.maxLegLength; }
		},

		'minLegLength': {
			get: function () { return stats.minLegLength; }
		},

		'section': {
			writeable: true,
			get: function () { return selectedSection; },
			set: function ( x ) { _stateSetter( selectSection, 'section', x ); }
		},

		'highlight': {
			writeable: true,
			set: function ( x ) { _stateSetter( highlightSelection, 'highlight', x ); }
		},

		'routeEdit': {
			writeable: true,
			get: function () { return ( mouseMode === MOUSE_MODE_ROUTE_EDIT ); },
			set: function ( x ) { _setRouteEdit( x ); this.dispatchEvent( { type: 'change', name: 'routeEdit' } ); }
		},

		'setPOI': {
			writeable: true,
			get: function () { return true; },
			set: function ( x ) { _stateSetter( setCameraPOI, 'setPOI', x ); }
		},

		'developerInfo': {
			writeable: true,
			get: function () { return true; },
			set: function ( x ) { showDeveloperInfo( x ); }
		},

		'HUD': {
			writeable: true,
			get: function () { return HUD.getVisibility(); },
			set: function ( x ) { HUD.setVisibility( x ); }
		},

		'cut': {
			writeable: true,
			get: function () { return true; },
			set: function () { cutSection(); }
		},

		'zScale': {
			writeable: true,
			get: function () { return zScale; },
			set: function ( x ) { setZScale( x ); }
		},

		'autoRotate': {
			writeable: true,
			get: function () { return controls.autoRotate; },
			set: function ( x ) { setAutoRotate( !! x ); }
		},

		'autoRotateSpeed': {
			writeable: true,
			get: function () { return controls.autoRotateSpeed / 11; },
			set: function ( x ) { controls.autoRotateSpeed = x * 11; }
		}

	} );

	_enableLayer( FEATURE_BOX, 'box' );

	_conditionalLayer( FEATURE_ENTRANCES, 'entrances' );
	_conditionalLayer( FEATURE_STATIONS,  'stations' );
	_conditionalLayer( FEATURE_TRACES,    'traces' );
	_conditionalLayer( FACE_SCRAPS,       'scraps' );
	_conditionalLayer( FACE_WALLS,        'walls' );
	_conditionalLayer( LEG_SPLAY,         'splays' );
	_conditionalLayer( LEG_SURFACE,       'surfaceLegs' );
	_conditionalLayer( LABEL_STATION,     'stationLabels' );

	Materials$1.initCache( Viewer );

	HUD.init( domID, renderer );

	return;

	function _enableLayer ( layerTag, name ) {

		Object.defineProperty( Viewer, name, {
			writeable: true,
			get: function () { return testCameraLayer( layerTag ); },
			set: function ( x ) { setCameraLayer( layerTag, x ); this.dispatchEvent( { type: 'change', name: name } ); }
		} );

	}

	function _conditionalLayer ( layerTag, name ) {

		_enableLayer ( layerTag, name );

		name = 'has' + name.substr( 0, 1 ).toUpperCase() + name.substr( 1 );

		Object.defineProperty( Viewer, name, {
			get: function () { return survey.hasFeature( layerTag ); }
		} );

	}

	function _stateSetter ( modeFunction, name, newMode ) {

		modeFunction( isNaN( newMode ) ? newMode : Number( newMode ) );

		Viewer.dispatchEvent( { type: 'change', name: name } );

	}

	function _setRouteEdit ( x ) {

		mouseMode = x ? MOUSE_MODE_ROUTE_EDIT : MOUSE_MODE_NORMAL;

		switch ( mouseMode ) {

		case MOUSE_MODE_NORMAL:

			mouseTargets = survey.pointTargets;

			break;

		case MOUSE_MODE_ROUTE_EDIT:

			mouseTargets = survey.legTargets;

			break;

		default:

			console.warn( 'invalid mouse mode' );

		}

	}

}

function setZScale ( scale ) {

	// scale - in range 0 - 1

	var lastScale = Math.pow( 2, ( zScale - 0.5 ) * 4 );
	var newScale  = Math.pow( 2, ( scale - 0.5 )  * 4 );

	survey.applyMatrix( new Matrix4().makeScale( 1, 1, newScale / lastScale ) );

	zScale = scale;

	renderView();

}

function setAutoRotate ( state ) {

	controls.autoRotate = state;

	if ( state ) {

		cameraMove.prepare( null, null );
		cameraMove.start( 2952000 );

	} else {

		cameraMove.stop();

	}

}

function setCursorHeight ( x ) {

	cursorHeight = x;
	Viewer.dispatchEvent( { type: 'cursorChange', name: 'cursorHeight' } );

	renderView();

}

function setTerrainOpacity ( x ) {

	terrain.setOpacity( x );
	Viewer.dispatchEvent( { type: 'change', name: 'terrainOpacity' } );

	renderView();

}

function applyTerrainDatumShift( x ) {

	terrain.applyDatumShift( x );
	Viewer.dispatchEvent( { type: 'change', name: 'terrainDatumShift' } );

	renderView();

}

function showDeveloperInfo( /* x */ ) {

//	console.log( renderer.info );
/*
	var info = renderer.getResourceInfo();

	if ( leakWatcher === undefined ) {

		leakWatcher = new LeakWatch();
		leakWatcher.setBaseline( scene, info );

	} else {

		leakWatcher.compare( scene, info );

	}
*/

}

function renderDepthTexture () {

	if ( terrain === null || ! terrain.isLoaded() ) return;

	var dim = 512;

	// set camera frustrum to cover region/survey area

	var width  = container.clientWidth;
	var height = container.clientHeight;

	var range = limits.getSize();

	var scaleX = width / range.x;
	var scaleY = height / range.y;

	if ( scaleX < scaleY ) {

		height = height * scaleX / scaleY;

	} else {

		width = width * scaleY / scaleX;

	}

	// render the terrain to a new canvas square canvas and extract image data

	var	rtCamera = new OrthographicCamera( -width / 2, width / 2,  height / 2, -height / 2, -10000, 10000 );

	rtCamera.layers.set( FEATURE_TERRAIN ); // just render the terrain

	scene.overrideMaterial = Materials$1.getDepthMapMaterial( terrain );

	var renderTarget = new WebGLRenderTarget( dim, dim, { minFilter: LinearFilter, magFilter: NearestFilter, format: RGBAFormat } );

	renderTarget.texture.generateMipmaps = false;
	renderTarget.texture.name = 'CV.DepthMapTexture';

	Materials$1.setTerrain( terrain );

	renderer.setSize( dim, dim );
	renderer.setPixelRatio( 1 );

	renderer.clear();
	renderer.render( scene, rtCamera, renderTarget, true );

	// correct height between entrances and terrain ( compensates for mismatch beween CRS and datums )

	terrain.addHeightMap( renderer, renderTarget );

	survey.calibrateTerrain( terrain );

	// restore renderer to normal render size and target

	renderer.setRenderTarget();	// revert to screen canvas

	renderer.setSize( container.clientWidth, container.clientHeight );
	renderer.setPixelRatio( window.devicePixelRatio );

	scene.overrideMaterial = null;

	renderView();

	// clear renderList to release objects on heap associated with rtCamera
	renderer.renderLists.dispose();

}

function setCameraMode ( mode ) {

	if ( mode === cameraMode ) return;

	// get offset vector of current camera from target

	var offset = camera.position.clone().sub( controls.target );

	switch ( mode ) {

	case CAMERA_PERSPECTIVE:

		offset.setLength( CAMERA_OFFSET / oCamera.zoom );

		camera = pCamera;

		break;

	case CAMERA_ORTHOGRAPHIC:

		// calculate zoom from ratio of pCamera distance from target to base distance.
		oCamera.zoom = CAMERA_OFFSET / offset.length();

		offset.setLength( CAMERA_OFFSET * 2 );

		camera = oCamera;

		break;

	default:

		console.warn( 'unknown camera mode', mode );
		return;

	}

	// update new camera with position to give same apparent zoom and view

	camera.position.copy( offset.add( controls.target ) );

	camera.updateProjectionMatrix();
	camera.lookAt( controls.target );

	controls.object = camera;

	cameraMode = mode;

	HUD.update();

	renderView();

}

function initCamera ( camera ) {

	camera.up = upAxis;
	camera.zoom = 1;

	camera.layers.set( 0 );

	camera.layers.enable( LEG_CAVE );
	camera.layers.enable( FEATURE_ENTRANCES );
	camera.layers.enable( FEATURE_BOX );
	camera.layers.enable( FEATURE_SELECTED_BOX );

	camera.position.set( 0, 0, CAMERA_OFFSET );
	camera.lookAt( 0, 0, 0 );
	camera.updateProjectionMatrix();

}

function setCameraLayer ( layerTag, enable ) {

	if ( enable ) {

		oCamera.layers.enable( layerTag );
		pCamera.layers.enable( layerTag );

	} else {

		oCamera.layers.disable( layerTag );
		pCamera.layers.disable( layerTag );

	}

	renderView();

}

function testCameraLayer ( layerTag ) {

	return ( ( camera.layers.mask & 1 << layerTag ) > 0 );

}

function setViewMode ( mode, t ) {

	var cameraPosition = new Vector3();
	var tAnimate = t || 240;

	switch ( mode ) {

	case VIEW_PLAN:

		// reset camera to start position
		cameraPosition.set( 0, 0, CAMERA_OFFSET );

		break;

	case VIEW_ELEVATION_N:

		cameraPosition.set( 0, CAMERA_OFFSET, 0 );

		break;

	case VIEW_ELEVATION_S:

		cameraPosition.set( 0, -CAMERA_OFFSET, 0 );

		break;

	case VIEW_ELEVATION_E:

		cameraPosition.set( CAMERA_OFFSET, 0, 0 );

		break;

	case VIEW_ELEVATION_W:

		cameraPosition.set( -CAMERA_OFFSET, 0, 0 );

		break;

	default:

		console.warn( 'invalid view mode specified: ', mode );
		return;

	}

	cameraPosition.add( defaultTarget );

	cameraMove.cancel();
	cameraMove.prepare( cameraPosition, defaultTarget );
	cameraMove.start( tAnimate );

}

function setTerrainShadingMode ( mode ) {

	if ( terrain.setShadingMode( mode, renderView ) ) terrainShadingMode = mode;

	renderView();

}

function setShadingMode ( mode ) {

	if ( terrain === null && ( mode === SHADING_DEPTH || mode === SHADING_DEPTH_CURSOR ) ) return;
	if ( survey.setShadingMode( mode ) ) shadingMode = mode;

	renderView();

}

function setSurfaceShadingMode ( mode ) {

	if ( survey.setLegShading( LEG_SURFACE, mode ) ) surfaceShadingMode = mode;

	renderView();

}

function setTerrainOverlay ( overlayName ) {

	if ( terrainShadingMode === SHADING_OVERLAY ) {

		activeOverlay = overlayName;

		terrain.setOverlay( overlays[ overlayName ], renderView );

	}

}

function addOverlay ( name, overlayProvider ) {

	overlays[ name ] = new Overlay( overlayProvider, container );

	if ( Object.keys( overlays ).length === 1 ) {

		activeOverlay = name;

	}

}

function cutSection () {

	if ( selectedSection === 0 ) return;

	survey.remove( terrain );
	survey.cutSection( selectedSection );

	// grab a reference to prevent survey being destroyed in clearView()
	var cutSurvey = survey;

	// reset view
	clearView();

	loadSurvey( cutSurvey );

}

function highlightSelection ( id ) {

	survey.highlightSelection( id );

	renderView();

}

function selectSection ( id ) {

	var node = survey.selectSection( id );

	setShadingMode( shadingMode );

	selectedSection = id;

	if ( id === 0 ) return;

	if ( node.p === undefined ) {

		if ( node.boundingBox === undefined ) return;
		// a section of the survey rather than a station

		var boundingBox = node.boundingBox.clone();

		cameraMove.prepare( null, boundingBox.applyMatrix4( survey.matrixWorld ) );

	} else {

		// a single station

		cameraMove.prepare( null, survey.getWorldPosition( node.p ) );

	}

	renderView();

}

function resize () {

	var width  = container.clientWidth;
	var height = container.clientHeight;

	// adjust the renderer to the new canvas size
	renderer.setSize( width, height );

	if ( oCamera === undefined ) return;

	// adjust cameras to new aspect ratio etc.
	oCamera.left   = -width / 2;
	oCamera.right  =  width / 2;
	oCamera.top    =  height / 2;
	oCamera.bottom = -height / 2;

	oCamera.updateProjectionMatrix();

	pCamera.aspect = width / height;

	pCamera.updateProjectionMatrix();

	renderView();

}

function clearView () {

	// clear the current cave model, and clear the screen
	caveIsLoaded = false;

	renderer.clear();

	HUD.setVisibility( false );

	if ( survey ) {

		survey.remove( terrain );
		scene.remove( survey );

	}

	controls.enabled = false;

	survey          = null;
	terrain         = null;
	selectedSection = 0;
	mouseMode       = MOUSE_MODE_NORMAL;
	mouseTargets    = [];

	shadingMode = SHADING_HEIGHT;
	surfaceShadingMode = SHADING_SINGLE;
	terrainShadingMode = SHADING_SHADED;

	// remove event listeners

	unloadTerrainListeners();

	Materials$1.flushCache();

	container.removeEventListener( 'mousedown', mouseDown );

	initCamera( pCamera );
	initCamera( oCamera );

	Viewer.cameraType = CAMERA_PERSPECTIVE;
	setViewMode( VIEW_PLAN, 1 );

	renderView();

}

function loadCave ( cave ) {

	if ( ! cave ) {

		alert( 'failed loading cave information' );
		return;

	}

	loadSurvey( new Survey( cave ) );

}

function loadSurvey ( newSurvey ) {

	var asyncTerrainLoading = false;

	survey = newSurvey;

	stats = survey.getFeature( LEG_CAVE ).stats;

	setScale( survey );

	terrain = survey.terrain;

	scene.up = upAxis;

	scene.add( survey );
//	scene.add( new DirectionGlobe( survey ) );

	caveIsLoaded = true;

	selectSection( 0 );

	mouseTargets = survey.pointTargets;

	setSurfaceShadingMode( surfaceShadingMode );
	// set if we have independant terrain maps

	if ( terrain === null ) {

		terrain = new WebTerrain( survey, _terrainReady, _tilesLoaded, renderView );
		asyncTerrainLoading = true;

	} else {

		survey.add( terrain );
		setTerrainShadingMode( terrainShadingMode );

		renderDepthTexture();

	}

	scene.matrixAutoUpdate = false;

	container.addEventListener( 'mousedown', mouseDown, false );

	HUD.setVisibility( true );

	// signal any listeners that we have a new cave
	if ( ! asyncTerrainLoading ) Viewer.dispatchEvent( { type: 'newCave', name: 'newCave' } );

	controls.object = camera;
	controls.enabled = true;

	survey.getRoutes().addEventListener( 'changed', _routesChanged );

	setViewMode( VIEW_PLAN, 1 );

	renderView();

	function _terrainReady () {

		if ( terrain.hasCoverage() ) {

			setTerrainShadingMode( terrainShadingMode );

			terrain.tileArea( survey.limits );
			terrain.setDefaultOverlay( overlays[ activeOverlay ] );

			survey.add( terrain );

		} else {

			terrain = null;

		}

		// delayed notification to ensure and event listeners get accurate terrain information
		Viewer.dispatchEvent( { type: 'newCave', name: 'newCave' } );

	}

	function _tilesLoaded () {

		renderView();
		loadTerrainListeners();

		if ( terrain.depthTexture === null ) renderDepthTexture();

	}

	function _routesChanged ( /* event */ ) {

		setShadingMode( shadingMode );
		renderView();

	}

}

function loadTerrain ( mode ) {

	if ( terrain.isLoaded() ) {

		if ( mode ) {

			loadTerrainListeners();

		} else {

			unloadTerrainListeners();

		}

		terrain.setVisibility( mode );

		setCameraLayer( FEATURE_TERRAIN, mode );

		Viewer.dispatchEvent( { type: 'change', name: 'terrain' } );

	}

}

function loadTerrainListeners () {

	clockStart();

	controls.addEventListener( 'end', clockStart );

}

function unloadTerrainListeners () {

	if ( ! controls ) return;

	controls.removeEventListener( 'end', clockStart );

	clockStop();

}

function clockStart ( /* event */ ) {

	lastActivityTime = performance.now();

}

function clockStop ( /* event */ ) {

	lastActivityTime = 0;

}

function mouseDown ( event ) {

	var picked, result;

	mouse.x =   ( event.clientX / container.clientWidth  ) * 2 - 1;
	mouse.y = - ( event.clientY / container.clientHeight ) * 2 + 1;

	raycaster.setFromCamera( mouse, camera );

	var intersects = raycaster.intersectObjects( mouseTargets, false );

	for ( var i = 0, l = intersects.length; i < l; i++ ) {

		picked = intersects[ i ];

		switch ( mouseMode ) {

		case MOUSE_MODE_NORMAL:

			if ( picked.object.isPoints ) {

				result = _selectStation( picked );

			} else {

				result = _selectEntrance( picked );

			}

			break;

		case MOUSE_MODE_ROUTE_EDIT:

			result = _selectSegment( picked );

			break;

		}

		if ( result ) break;

	}

	function _selectStation ( picked ) {

		var station = survey.selectStation( picked.index );

		renderView();

		var depth = ( terrain ) ? station.p.z - terrain.getHeight( station.p ) : null;

		var popup = new StationPopup( station, survey.getGeographicalPosition( station.p ), depth );

		var p = survey.getWorldPosition( station.p );

		popup.display( container, event.clientX, event.clientY, camera, p );

		cameraMove.prepare( null, p.clone() );

		return true;

	}

	function _selectSegment ( picked ) {

		var routes = getRoutes();

		routes.toggleSegment( picked.index );

		setShadingMode( SHADING_PATH );

		renderView();

		return true;

	}

	function _selectEntrance ( picked ) {

		if ( ! Viewer.entrances ) return false;

		var entrance = picked.object;
		var position = entrance.getWorldPosition();

		cameraMove.prepare( position.clone().add( new Vector3( 0, 0, 5 ) ), position );

		console.log( entrance.type, entrance.name );

		if ( survey.isRegion === true ) {

			survey.loadFromEntrance( entrance, _loaded );

		} else {

			cameraMove.start( 80 );

		}

		return true;

	}

	function _loaded () {

		setShadingMode( shadingMode );

		renderView();

	}

}

var renderView = function () {

	var lPosition = new Vector3();
	var rotation = new Euler();

	return function renderView () {

		if ( ! caveIsLoaded ) return;

		camera.getWorldRotation( rotation );

		lPosition.copy( lightPosition );

		directionalLight.position.copy( lPosition.applyAxisAngle( upAxis, rotation.z ) );

		survey.update( camera, controls.target );

		renderer.clear();
		renderer.render( scene, camera );

		HUD.renderHUD();

		clockStart();

	};

} ();


function onCameraMoveEnd () {

	if ( terrain && terrain.isTiled && Viewer.terrain ) setTimeout( updateTerrain, RETILE_TIMEOUT );

}

function updateTerrain () {

	if ( lastActivityTime && performance.now() - lastActivityTime > RETILE_TIMEOUT ) {

		clockStop();

		if ( terrain.zoomCheck( camera ) ) {

			setTimeout( updateTerrain, RETILE_TIMEOUT * 5 );

		}

	}

}

function setCameraPOI ( /* fixme */ ) {

	cameraMove.start( 200 );

}

function setScale ( obj ) {

	var width  = container.clientWidth;
	var height = container.clientHeight;

	// scaling to compensate distortion introduced by projection ( x and y coords only ) - approx only
	var scaleFactor = survey.scaleFactor;

	limits = survey.limits;
	zScale = 0.5;

	var range = limits.getSize();

	// initialize cursor height to be mid range of heights
	cursorHeight = 0;

	var hScale = Math.min( width / range.x, height / range.y );
	var vScale = hScale * scaleFactor;

	var scale = new Vector3( hScale, hScale, vScale );

	obj.scale.copy( scale );

	obj.position.copy( survey.modelLimits.getCenter().multiply( scale ).negate() );

	HUD.setScale( vScale );

	// pass to survey to adjust size of symbology

	obj.setScale( vScale );

}

function getStats () {

	return stats;

}

function getControls () {

	return controls;

}

function getMetadata () {

	return survey.getMetadataURL();

}

function getRoutes () {

	return survey.getRoutes();

}

function getSurveyTree () {

	return survey.surveyTree;

}

// export public interface

Object.assign( Viewer, {
	init:          init,
	clearView:     clearView,
	loadCave:      loadCave,
	getMetadata:   getMetadata,
	getRoutes:     getRoutes,
	getStats:      getStats,
	getSurveyTree: getSurveyTree,
	getControls:   getControls,
	getState:      Viewer,
	renderView:    renderView,
	addOverlay:    addOverlay
} );




// EOF

function Page( id, onTop ) {

	var tab  = document.createElement( 'div' );
	var page = document.createElement( 'div' );

	var frame = Page.frame;

	page.classList.add( 'page' );

	tab.id = id;
	tab.classList.add( 'tab' );
	tab.style.top = ( Page.position++ * 40 ) + 'px';

	tab.addEventListener( 'click', this.tabHandleClick );

	if ( onTop !== undefined ) {

		// callback when this page is made visible
		tab.addEventListener( 'click', onTop );

	}

	if ( frame === null ) {

		// create UI side panel and reveal tabs
		frame = document.createElement( 'div' );

		frame.id = 'frame';
		frame.style.display = 'block';

		Page.frame = frame;

		var close = document.createElement( 'div' );

		close.id = 'close';

		close.addEventListener( 'click', _closeFrame );

		frame.appendChild( close );

	}

	frame.appendChild( tab );
	frame.appendChild( page );

	Page.pages.push( { tab: tab, page: page } );

	this.page = page;
	this.slide = undefined;

	function _closeFrame ( event ) {

		event.target.parentElement.classList.remove( 'onscreen' );

	}

}

Page.pages     = [];
Page.listeners = [];
Page.position  = 0;
Page.inHandler = false;
Page.controls  = [];
Page.frame = null;

Page.reset = function () {

	Page.listeners = [];
	Page.pages     = [];
	Page.position  = 0;
	Page.inHandler = false;
	Page.controls  = [];
	Page.frame     = null;

};

Page.clear = function () {

	Page.frame.addEventListener( 'transitionend', _afterReset );
	Page.frame.classList.remove( 'onscreen' );

	var i, l, listener;

	for ( i = 0, l = Page.listeners.length; i < l; i++ ) {

		listener = Page.listeners[ i ];

		listener.obj.removeEventListener( listener.name, listener.handler );

	}

	Page.listeners = [];

	function _afterReset ( event ) {

		var frame = event.target;

		frame.removeEventListener( 'transitionend', _afterReset );

		if ( frame !== null ) frame.parentElement.removeChild( frame );

	}

};


Page.addListener = function ( obj, name, handler ) {

	obj.addEventListener( name, handler );

	Page.listeners.push( {
		obj: obj,
		name: name,
		handler: handler
	} );

};

Page.handleChange = function ( event ) {

	var obj = event.target;
	var property = event.name;

	if ( ! Page.inHandle ) {

		if ( Page.controls[ property ] ) {

			var ctrl = Page.controls[ property ];

			switch ( ctrl.type ) {

			case 'checkbox':

				ctrl.checked = obj[ property ];

				break;

			case 'select-one':
			case 'range':

				ctrl.value = obj[ property ];

				break;

			case 'download':

				ctrl.href = obj[ property ];

				break;

			}

		}

	}

};

Page.prototype.constructor = Page;

Page.prototype.addListener = function ( obj, name, handler ) {

	Page.addListener( obj, name, handler ); // redirect to :: method - allows later rework to page specific destruction

};

Page.prototype.tabHandleClick = function ( event ) {

	var tab = event.target;
	var pages = Page.pages;

	tab.classList.add( 'toptab' );
	tab.parentElement.classList.add( 'onscreen' );

	for ( var i = 0, l = pages.length; i < l; i++ ) {

		var otherTab  = pages[ i ].tab;
		var otherPage = pages[ i ].page;

		if ( otherTab === tab ) {

			otherPage.style.display = 'block';

		} else {

			otherTab.classList.remove( 'toptab' );
			otherPage.style.display = 'none';

		}

	}

};

Page.prototype.appendChild = function ( domElement ) {

	this.page.appendChild( domElement );

};

Page.prototype.addHeader = function ( text ) {

	var div = document.createElement( 'div' );

	div.classList.add( 'header' );
	div.textContent = text;

	this.page.appendChild( div );

	return div;

};

Page.prototype.addText = function ( text ) {

	var p = document.createElement( 'p' );

	p.textContent = text;
	this.page.appendChild( p );

	return p;

};

Page.prototype.addSelect = function ( title, obj, trgObj, property, replace ) {

	var div    = document.createElement( 'div' );
	var label  = document.createElement( 'label' );
	var select = document.createElement( 'select' );
	var opt;

	div.classList.add( 'control' );

	if ( obj instanceof Array ) {

		for ( var i = 0, l = obj.length; i < l; i++ ) {

			opt = document.createElement( 'option' );

			opt.value = obj[ i ];
			opt.text  = obj[ i ];

			if ( opt.text === trgObj[ property ] ) opt.selected = true;

			select.add( opt, null );

		}

	} else {

		for ( var p in obj ) {

			opt = document.createElement( 'option' );

			opt.text  = p;
			opt.value = obj[ p ];

			if ( opt.value == trgObj[ property ] ) opt.selected = true;

			select.add( opt, null );

		}

	}

	this.addListener( select, 'change', function ( event ) { Page.inHandler = true; trgObj[ property ] = event.target.value; Page.inHandler = false; } );

	label.textContent = title;

	Page.controls[ property ] = select;

	div.appendChild( label );
	div.appendChild( select );

	if ( replace === undefined ) {

		this.page.appendChild( div );

	} else {

		this.page.replaceChild( div, replace );

	}

	return div;

};

Page.prototype.addCheckbox = function ( title, obj, property ) {

	var label = document.createElement( 'label' );
	var cb    = document.createElement( 'input' );

	label.textContent = title;

	cb.type    = 'checkbox';
	cb.checked = obj[ property ];

	this.addListener( cb, 'change', _checkboxChanged );

	Page.controls[ property ] = cb;

	label.appendChild( cb );

	this.page.appendChild( label );

	return label;

	function _checkboxChanged ( event ) {

		Page.inHandler = true;

		obj[ property ] = event.target.checked;

		Page.inHandler = false;

	}

};

Page.prototype.addRange = function ( title, obj, property ) {

	var div = document.createElement( 'div' );
	var label = document.createElement( 'label' );
	var range = document.createElement( 'input' );

	div.classList.add( 'control' );

	range.type = 'range';

	range.min = 0;
	range.max = 1;

	range.step = 0.05;
	range.value = obj[ property ];

	this.addListener( range, 'input', _rangeChanged );
	this.addListener( range, 'change', _rangeChanged ); // for IE11 support

	label.textContent = title;

	Page.controls[ property ] = range;

	div.appendChild( label );
	div.appendChild( range );

	this.page.appendChild( div );

	return div;

	function _rangeChanged ( event ) {

		Page.inHandler = true;

		obj[ property ] = event.target.value;

		Page.inHandler = false;

	}

};

Page.prototype.addSlide = function ( domElement, depth, handleClick ) {

	var slide = document.createElement( 'div' );

	slide.classList.add( 'slide' );
	slide.style.zIndex = 200 - depth;

	slide.addEventListener( 'click', handleClick );
	slide.appendChild( domElement );

	this.page.appendChild( slide );

	this.slide = slide;
	this.slideDepth = depth;

	return slide;

};

Page.prototype.replaceSlide = function ( domElement, depth, handleClick ) {

	var newSlide = document.createElement( 'div' );
	var oldSlide = this.slide;
	var page = this.page;
	var redraw; // eslint-disable-line no-unused-vars

	newSlide.classList.add( 'slide' );
	newSlide.style.zIndex = 200 - depth;
	newSlide.addEventListener( 'click', handleClick );

	if ( depth < this.slideDepth ) {

		newSlide.classList.add( 'slide-out' );

	}

	newSlide.appendChild( domElement );

	page.appendChild( newSlide );

	if ( depth > this.slideDepth ) {

		oldSlide.addEventListener( 'transitionend', afterSlideOut );
		oldSlide.classList.add( 'slide-out' );

		redraw = oldSlide.clientHeight;

	} else if ( depth < this.slideDepth ) {

		newSlide.addEventListener( 'transitionend', afterSlideIn );

		redraw = newSlide.clientHeight;

		newSlide.classList.remove( 'slide-out' );

	} else {

		page.removeChild( oldSlide );

	}

	this.slide = newSlide;
	this.slideDepth = depth;

	return;

	function afterSlideOut () {

		oldSlide.removeEventListener( 'transitionend', afterSlideOut );
		page.removeChild( oldSlide );

	}

	function afterSlideIn () {

		page.removeChild( oldSlide );
		newSlide.removeEventListener( 'transitionend', afterSlideIn );

	}

};

Page.prototype.addButton = function ( title, func ) {

	var button = document.createElement( 'button' );

	button.type = 'button';
	button.textContent = title;

	this.addListener( button, 'click', func );

	this.page.appendChild( button );

	return button;

};


Page.prototype.addTextBox = function ( labelText, placeholder, getResultGetter ) {

	var div = document.createElement( 'div' );
	var label = document.createElement( 'label' );

	label.textContent = labelText;

	var input = document.createElement( 'input' );
	var value;

	input.type = 'text';

	input.placeholder = placeholder;

	div.appendChild( label );
	div.appendChild( input );

	this.page.appendChild( div );

	this.addListener( input, 'change', function ( e ) { value = e.target.value; return true; } ) ;

	getResultGetter( _result );

	return div;

	function _result() {

		input.value = '';
		return value;

	}

};

Page.prototype.addDownloadButton = function ( title, urlProvider, fileName ) {

	var a = document.createElement( 'a' );

	if ( typeof a.download === 'undefined' ) return null;

	this.addListener( a, 'click', _setHref );

	a.textContent = title;
	a.type = 'download';
	a.download = fileName;
	a.href = 'javascript:void();';

	a.classList.add( 'download' );

	this.page.appendChild( a );

	return a;

	function _setHref() {

		a.href = urlProvider();

	}

};



// EOF

function ProgressBar ( container ) {

	var offset = ( container.clientWidth - 300 ) / 2;

	var statusText  = document.createElement( 'div' );

	statusText.id  = 'status-text';
	statusText.style.width = '300px';
	statusText.style.left  = offset + 'px';

	var progressBar = document.createElement( 'progress' );

	progressBar.id = 'progress-bar';

	progressBar.style.width = '300px';
	progressBar.style.left  = offset + 'px';

	progressBar.setAttribute( 'max', '100' );

	this.container   = container;
	this.progressBar = progressBar;
	this.statusText  = statusText;

}

ProgressBar.prototype.constructor = ProgressBar;

ProgressBar.prototype.Start = function ( text ) {

	var statusText  = this.statusText;
	var progressBar = this.progressBar;

	statusText.textContent = text;
	progressBar.value = 0;

	this.container.appendChild( statusText );
	this.container.appendChild( progressBar );

};

ProgressBar.prototype.Update = function ( pcent ) {

	this.progressBar.value = pcent;

};

ProgressBar.prototype.Add = function ( pcent ) {

	this.progressBar.value += pcent;

};

ProgressBar.prototype.End = function () {

	var container = this.container;

	container.removeChild( this.statusText );
	container.removeChild( this.progressBar );

};



// EOF

// Survex 3d file handler

function Svx3dHandler ( fileName ) {

	this.fileName   = fileName;
	this.groups     = [];
	this.surface    = [];
	this.xGroups    = [];
	this.surveyTree = new Tree();
	this.sourceCRS  = null;
	this.targetCRS  = 'EPSG:3857'; // "web mercator"
	this.projection = null;

}

Svx3dHandler.prototype.constructor = Svx3dHandler;

Svx3dHandler.prototype.type = 'arraybuffer';
Svx3dHandler.prototype.isRegion = 'false';

Svx3dHandler.prototype.parse = function ( dataStream, metadata ) {

	this.metadata = metadata;

	var source    = dataStream; // file data as arrrayBuffer
	var pos       = 0;	        // file position

	// read file header

	readLF(); // Survex 3D Image File
	var version = readLF(); // 3d version
	var auxInfo = readNSLF();
	readLF(); // Date

	var sourceCRS = ( auxInfo[ 1 ] === undefined ) ? null : auxInfo[ 1 ]; // coordinate reference system ( proj4 format )

	if ( sourceCRS !== null ) {

		// work around lack of +init string support in proj4js

		var matches = sourceCRS.match( /\+init=(.*)\s/);

		if ( matches && matches.length === 2 ) {

			switch( matches[ 1 ] ) {

			case 'epsg:27700' :

				sourceCRS = '+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000 +ellps=airy +datum=OSGB36 +units=m +no_defs';

				break;

			default:

				sourceCRS = null;
				console.warn( 'unsupported projection' );

			}

		}

	}

	// FIXME use NAD grid corrections OSTM15 etc ( UK Centric )

	if ( sourceCRS !== null ) {

		console.log( 'Reprojecting from', sourceCRS, 'to', this.targetCRS );

		this.sourceCRS = sourceCRS;
		this.projection = proj4( this.sourceCRS, this.targetCRS ); // eslint-disable-line no-undef

	}

	console.log( 'Survex .3d version ', version );

	switch ( version ) {

	case 'Bv0.01':

		this.handleOld( source, pos, 1 );

		break;

	case 'v3':
	case 'v4':
	case 'v5':
	case 'v6':
	case 'v7':
	case 'v8':

		this.handleVx( source, pos, Number( version.charAt( 1 ) ) );

		break;

	default:

		alert( 'unknown .3d version ' + version );

	}

	return this;

	function readLF () { // read until Line feed

		return readNSLF()[ 0 ];

	}

	function readNSLF () { // read until Line feed and split by null bytes

		var bytes = new Uint8Array( source, 0 );

		var lfString = [];
		var b;
		var strings = [];

		do {

			b = bytes[ pos++ ];

			if ( b === 0x0a || b === 0 ) {

				strings.push( String.fromCharCode.apply( null, lfString ).trim() );
				lfString = [];

			} else {

				lfString.push( b );

			}

		} while ( b != 0x0a );

		return strings;

	}

};

Svx3dHandler.prototype.handleOld = function ( source, pos, version ) {

	var groups     = this.groups;
	var surveyTree = this.surveyTree;

	var self = this;

	var cmd         = [];
	var legs        = [];
	var label       = '';
	var stations    = new Map();
	var sectionId   = 0;

	var data       = new Uint8Array( source, 0 );
	var dataLength = data.length;
	var lastPosition = { x: 0, y:0, z: 0 }; // value to allow approach vector for xsect coord frame
	var i, j, li, lj;

	var dataView = new DataView( source, 0 );

	// selected correct read coordinates function

	var readCoordinates = ( this.projection === null ) ? __readCoordinates : __readCoordinatesProjected;

	// range

	var min = { x: Infinity, y: Infinity, z: Infinity };
	var max = { x: -Infinity, y: -Infinity, z: -Infinity };

	// init cmd handler table withh  error handler for unsupported records or invalid records

	function _errorHandler ( e ) { console.warn( 'unhandled command: ', e.toString( 16 ) ); return false; }

	for ( i = 0; i < 256; i++ ) {

		cmd[ i ] = _errorHandler;

	}

	cmd[ 0x00 ] = cmd_STOP;
	cmd[   -1 ] = cmd_STOP;

	cmd[ 0x01 ] = cmd_SKIP;

	cmd[ 0x02 ] = cmd_LABEL_V1; // version numbers not related to Survex versions
	cmd[ 0x03 ] = cmd_LABEL_V1;

	cmd[ 0x04 ] = cmd_MOVE;
	cmd[ 0x05 ] = cmd_LINE_V1;

	cmd[ 0x06 ] = cmd_LABEL_V2;
	cmd[ 0x07 ] = cmd_LABEL_V3;

	for ( i = 0x40; i < 0x80; i++ ) {

		cmd[ i ] = cmd_LABEL_V4;

	}

	for ( i = 0x80; i < 0x100; i++ ) {

		cmd[ i ] = cmd_LINE_V2;

	}

	// dispatch table end

	// common record iterator
	// loop though data, handling record types as required.

	if ( version === 1 ) {

		while ( pos < dataLength ) {

			var cmdCode = dataView.getInt32( pos, true );
			pos += 4;

			if ( ! cmd[ cmdCode ]() ) break;

		}

	} else {

		alert( 'Unsupported version' + version );

		while ( pos < dataLength ) {

			if ( ! cmd[ data[ pos ] ]( data[ pos++ ] ) ) break;

		}

	}

	groups.push( legs );

	// assign survey ids to all leg vertices by looking up tree node for coords
	var group, leg, coords, node;

	for ( i = 0, li = groups.length; i < li; i++ ) {

		group = groups[ i ];

		for ( j = 0, lj = group.length; j < lj; j++ ) {

			leg = group[ j ];
			coords = leg.coords;

			node = stations.get( coords.x + ':' + coords.y + ':' + coords.z );

			if ( node === undefined ) continue;

			leg.survey = node.parent.id;

		}

	}

	var offsets = {
		x: ( min.x + max.x ) / 2,
		y: ( min.y + max.y ) / 2,
		z: ( min.z + max.z ) / 2
	};

	surveyTree.traverse( adjustCoords );

	this.offsets = offsets;

	this.limits = {
		min: min,
		max: max
	};

	return;

	function adjustCoords( node ) {

		var coords = node.p;

		if ( coords === undefined ) return;

		coords.x -= offsets.x;
		coords.y -= offsets.y;
		coords.z -= offsets.z;

	}


	function cmd_STOP ( /* c */ ) {

		return true;

	}

	function cmd_SKIP ( /* c */ ) {

		console.log( 'SKIP' );
		return false;

	}

	function cmd_LABEL_V1 ( /* c */ ) {

		var db = [];

		var nextByte = data[ pos++ ];

		while ( nextByte !== 10 ) {

			db.push( nextByte );
			nextByte = data[ pos++ ];

		}

		if ( db[ 0 ] === 92 ) db.shift(); // remove initial '/' characters

		label = String.fromCharCode.apply( null, db );
//		console.log( 'NODE', label, lastPosition );

		var node = surveyTree.addPath( label.split( '.' ), { p: lastPosition, type: STATION_NORMAL } );

		// track coords to sectionId to allow survey ID's to be added to leg vertices
		stations.set( lastPosition.x + ':' + lastPosition.y + ':' + lastPosition.z, node );

		return true;

	}

	function cmd_LABEL_V2 ( /* c */ ) {

		console.log( 'LABEL_V2' );
		return false;

	}

	function cmd_LABEL_V3 ( /* c */ ) {

		console.log( 'LABEL_V3' );
		return false;

	}
	function cmd_LABEL_V4 ( /* c */ ) {

		console.log( 'LABEL_V4' );
		return false;

	}

	function cmd_MOVE ( /* c */ ) {

		var coords = readCoordinates();


		lastPosition = coords;

		if ( version === 1 && dataView.getInt32( pos, true ) === 2 ) {

			// version 1 uses MOVE+LABEL pairs to label stations
			return true;

		}

//		console.log( 'MOVE', coords );

		if ( legs.length > 1 ) groups.push( legs );

		legs = [];

		legs.push( { coords: coords } );

		return true;

	}

	function cmd_LINE_V1 ( /* c */ ) {

		var coords = readCoordinates();

		legs.push( { coords: coords, type: LEG_CAVE, survey: sectionId } );

		lastPosition = coords;

//		console.log( 'LINE_V1', coords );

		return true;

	}

	function cmd_LINE_V2 ( /* c */ ) {

		console.log( 'LINE_V2' );
		return false;

	}

	// functions aliased at runtime as required

	function __readCoordinatesProjected () {

		var l = new DataView( source, pos );

		var projectedCoords = self.projection.forward( {
			x: l.getInt32( 0, true ) / 100,
			y: l.getInt32( 4, true ) / 100
		} );

		var coords = {
			x: projectedCoords.x,
			y: projectedCoords.y,
			z: l.getInt32( 8, true ) / 100
		};

		min.x = Math.min( coords.x, min.x );
		min.y = Math.min( coords.y, min.y );
		min.z = Math.min( coords.z, min.z );

		max.x = Math.max( coords.x, max.x );
		max.y = Math.max( coords.y, max.y );
		max.z = Math.max( coords.z, max.z );

		pos += 12;

		return coords;

	}

	function __readCoordinates () {

		var l = new DataView( source, pos );

		var coords = {
			x: l.getInt32( 0, true ) / 100,
			y: l.getInt32( 4, true ) / 100,
			z: l.getInt32( 8, true ) / 100
		};

		min.x = Math.min( coords.x, min.x );
		min.y = Math.min( coords.y, min.y );
		min.z = Math.min( coords.z, min.z );

		max.x = Math.max( coords.x, max.x );
		max.y = Math.max( coords.y, max.y );
		max.z = Math.max( coords.z, max.z );

		pos += 12;

		return coords;

	}

};

Svx3dHandler.prototype.handleVx = function ( source, pos, version ) {

	var groups     = this.groups;
	var xGroups    = this.xGroups;
	var surveyTree = this.surveyTree;

	var self = this;

	var cmd         = [];
	var legs        = [];
	var label       = '';
	var stations    = new Map();
	var lineEnds    = new Set(); // implied line ends to fixnup xsects
	var xSects      = [];
	var sectionId   = 0;
	var sectionLabels = new Set();

	var data       = new Uint8Array( source, 0 );
	var dataLength = data.length;
	var lastPosition = { x: 0, y:0, z: 0 }; // value to allow approach vector for xsect coord frame
	var i;
	var labelChanged = false;

	// functions

	var readLabel;

	// selected correct read coordinates function

	var readCoordinates = ( this.projection === null ) ? __readCoordinates : __readCoordinatesProjected;

	// range

	var min = { x: Infinity, y: Infinity, z: Infinity };
	var max = { x: -Infinity, y: -Infinity, z: -Infinity };

	// init cmd handler table withh  error handler for unsupported records or invalid records

	function _errorHandler ( e ) { console.warn( 'unhandled command: ', e.toString( 16 ) ); return false; }

	for ( i = 0; i < 256; i++ ) {

		cmd[ i ] = _errorHandler;

	}

	if ( version === 8 ) {
		// v8 dispatch table start

		cmd[ 0x00 ] = cmd_STYLE;
		cmd[ 0x01 ] = cmd_STYLE;
		cmd[ 0x02 ] = cmd_STYLE;
		cmd[ 0x03 ] = cmd_STYLE;
		cmd[ 0x04 ] = cmd_STYLE;

		cmd[ 0x0f ] = cmd_MOVE;
		cmd[ 0x10 ] = cmd_DATE_NODATE;
		cmd[ 0x11 ] = cmd_DATEV8_1;
		cmd[ 0x12 ] = cmd_DATEV8_2;
		cmd[ 0x13 ] = cmd_DATEV8_3;

		cmd[ 0x1F ] = cmd_ERROR;

		cmd[ 0x30 ] = cmd_XSECT16;
		cmd[ 0x31 ] = cmd_XSECT16;

		cmd[ 0x32 ] = cmd_XSECT32;
		cmd[ 0x33 ] = cmd_XSECT32;

		for ( i = 0x40; i < 0x80; i++ ) {

			cmd[ i ] = cmd_LINE;

		}

		for ( i = 0x80; i < 0x100; i++ ) {

			cmd[ i ] = cmd_LABEL;

		}

		// dispatch table end

		readLabel = readLabelV8;

		// skip v8 file wide flags after header
		pos++;

	} else {

		// dispatch table for v7 format

		for ( i = 0x01; i < 0x0f; i++ ) {

			cmd[ i ] = cmd_TRIM_PLUS;

		}

		cmd[ 0x0f ] = cmd_MOVE;

		for ( i = 0x10; i < 0x20; i++ ) {

			cmd[ i ] = cmd_TRIM;

		}

		cmd[ 0x00 ] = cmd_STOP;
		cmd[ 0x20 ] = cmd_DATE_V7;
		cmd[ 0x21 ] = cmd_DATE2_V7;
		cmd[ 0x23 ] = cmd_DATE3_V7;
		cmd[ 0x24 ] = cmd_DATE_NODATE;
		cmd[ 0x22 ] = cmd_ERROR;

		cmd[ 0x30 ] = cmd_XSECT16;
		cmd[ 0x31 ] = cmd_XSECT16;

		cmd[ 0x32 ] = cmd_XSECT32;
		cmd[ 0x33 ] = cmd_XSECT32;

		for ( i = 0x40; i < 0x80; i++ ) {

			cmd[ i ] = cmd_LABEL;

		}

		for ( i = 0x80; i < 0xc0; i++ ) {

			cmd[ i ] = cmd_LINE;

		}
		// dispatch table end

		readLabel = readLabelV7;

	}

	if ( version === 6 ) {

		cmd[ 0x20 ] = cmd_DATE_V4;
		cmd[ 0x21 ] = cmd_DATE2_V4;

	}

	// common record iterator
	// loop though data, handling record types as required.

	while ( pos < dataLength ) {

		if ( ! cmd[ data[ pos ] ]( data[ pos++ ] ) ) break;

	}

	if ( xSects.length > 1 ) {

		xGroups.push( xSects );

	}

	groups.push( legs );

	var offsets = {
		x: ( min.x + max.x ) / 2,
		y: ( min.y + max.y ) / 2,
		z: ( min.z + max.z ) / 2
	};

	surveyTree.traverse( adjustCoords );

	this.offsets = offsets;

	this.limits = {
		min: min,
		max: max
	};

	return;

	function adjustCoords( node ) {

		var coords = node.p;

		if ( coords === undefined ) return;

		coords.x -= offsets.x;
		coords.y -= offsets.y;
		coords.z -= offsets.z;

	}

	function readLabelV7 () {
		// find length of label and read label = v3 - v7 .3d format

		var len = 0;
		var l;

		switch ( data[ pos ] ) {

		case 0xfe:

			l = new DataView( source, pos );

			len = l.getUint16( 0, true ) + data[ pos ];
			pos += 2;

			break;

		case 0xff:

			l = new DataView( source, pos );

			len = l.getUint32( 0, true );
			pos += 4;

			break;

		default:

			len = data[ pos++ ];

		}

		if ( len === 0 ) return;

		var db = [];

		for ( var i = 0; i < len; i++ ) {

			db.push( data[ pos++ ] );

		}

		label += String.fromCharCode.apply( null, db );
		labelChanged = true;

		return;

	}

	function readLabelV8 ( flags ) {

		if ( flags & 0x20 )  return false; // no label change

		var b = data[ pos++ ];
		var add = 0;
		var del = 0;
		var l;

		if ( b !== 0 ) {

			// handle 4b= bit del/add codes
			del = b >> 4;   // left most 4 bits
			add = b & 0x0f; // right most 4 bits

		} else {

			// handle 8 bit and 32 bit del/add codes
			b = data[ pos++ ];

			if ( b !== 0xff ) {

				del = b;

			} else {

				l = new DataView( source, pos );

				del = l.getUint32( 0, true );
				pos += 4;

			}

			b = data[ pos++ ];

			if ( b !== 0xff ) {

				add = b;

			} else {

				l = new DataView( source, pos );

				add = l.getUint32( 0, true );
				pos += 4;

			}
		}

		if ( add === 0 && del === 0 ) return;

		if ( del ) label = label.slice( 0, -del );

		if ( add ) {

			var db = [];

			for ( var i = 0; i < add; i++ ) {

				db.push( data[ pos++ ] );

			}

			label += String.fromCharCode.apply( null, db );

		}

		labelChanged = true;

		return;

	}

	function cmd_STOP ( /* c */ ) {

		if ( label ) label = '';

		return true;

	}

	function cmd_TRIM_PLUS ( c ) { // v7 and previous

		label = label.slice( 0, -16 );

		if ( label.charAt( label.length - 1 ) === '.') label = label.slice( 0, -1 ); // strip trailing '.'

		var parts = label.split( '.' );

		parts.splice( -( c ) );
		label = parts.join( '.' );

		if ( label ) label += '.';
		labelChanged = true;

		return true;

	}

	function cmd_TRIM ( c ) {  // v7 and previous

		var trim = c - 15;

		label = label.slice( 0, -trim );
		labelChanged = true;

		return true;

	}

	function cmd_DATE_V4 ( /* c */ ) {

		pos += 4;

		return true;

	}

	function cmd_DATE_V7 ( /* c */ ) {

		pos += 2;

		return true;

	}

	function cmd_DATE3_V7 ( /* c */ ) {

		pos += 4;

		return true;

	}

	function cmd_DATE2_V4 ( /* c */ ) {

		pos += 8;

		return true;

	}

	function cmd_DATE2_V7 ( /* c */ ) {

		pos += 3;

		return true;

	}

	function cmd_STYLE ( /* c */ ) {

		return true;

	}

	function cmd_DATEV8_1 ( /* c */ ) {

		pos += 2;

		return true;

	}

	function cmd_DATEV8_2 ( /* c */ ) {

		pos += 3;

		return true;

	}

	function cmd_DATEV8_3 ( /* c */ ) {

		pos += 4;

		return true;
	}

	function cmd_DATE_NODATE ( /* c */ ) {

		return true;

	}

	function cmd_LINE ( c ) {

		var flags = c & 0x3f;

		readLabel( flags );

		if ( labelChanged && label !== '' ) {

			// we have a new section name

			var path = label.split( '.' );

			var partLabel = path[ 0 ];

			// save valid survey station prefixes

			sectionLabels.add( partLabel );

			for ( var i = 1, l = path.length; i < l; i++ ) {

				partLabel = partLabel + '.' + path[ i ];
				sectionLabels.add( partLabel );

			}

			// add it to the survey tree
			sectionId = surveyTree.addPath( path ).id; // consumes path

			labelChanged = false;

		}

		var coords = readCoordinates();

		if ( flags & 0x01 ) {

			legs.push( { coords: coords, type: LEG_SURFACE, survey: sectionId } );

		} else if ( flags & 0x04 ) {

			legs.push( { coords: coords, type: LEG_SPLAY, survey: sectionId } );

		} else {

			legs.push( { coords: coords, type: LEG_CAVE, survey: sectionId } );

		}

		lastPosition = coords;

		return true;

	}

	function cmd_MOVE ( /* c */ ) {

		// new set of line segments
		if ( legs.length > 1 ) groups.push( legs );

		legs = [];

		// heuristic to detect line ends. lastPosition was presumably set in a line sequence therefore is at the end
		// of a line, Add the current label, presumably specified in the last LINE, to a Set of lineEnds.

		lineEnds.add( lastPosition.x + ':' + lastPosition.y + ':' + lastPosition.z );

		var coords = readCoordinates();

		legs.push( { coords: coords } );

		lastPosition = coords;

		return true;

	}

	function cmd_ERROR ( /* c */ ) {

		/*

		var l = new DataView( source, pos );

		var legs = l.getInt32( 0, true );
		var length = l.getInt32( 4, true );

		var E = l.getInt32( 8, true );
		var H = l.getInt32( 12, true );
		var V = l.getInt32( 16, true );

		*/

		pos += 20;

		return true;

	}

	function cmd_LABEL ( c ) {

		var flags = c & 0x7f;

		readLabel( 0 );

		if ( ! ( flags & 0x0E ) || flags & 0x20 ) { // skip surface only stations

			pos += 12; //skip coordinates
			return true;

		}

		var coords = readCoordinates();

		var path = label.split( '.' );

		var prefix = path.slice( 0, -1 ).join( '.' );

		if ( path.length > 1 && ! sectionLabels.has( prefix ) ) {

			// handle station names containing separator character

			var i = 0;
			var test = path[ i ];

			while ( sectionLabels.has( test ) ) {

				test = test + '.' + path[ ++ i ];

			}

			var last = path.slice( i ).join( '.' );

			path = path.slice( 0, i );
			path.push( last );

		}

		stations.set( label, coords );

		surveyTree.addPath( path, { p: coords, type: ( flags & 0x04 ) ? STATION_ENTRANCE : STATION_NORMAL } );

		return true;

	}

	function cmd_XSECT16 ( c ) {

		var flags = c & 0x01;

		readLabel( flags );

		var l = new DataView( source, pos );

		pos += 8;

		return commonXSECT(
			flags,
			{
				l: l.getInt16( 0, true ) / 100,
				r: l.getInt16( 2, true ) / 100,
				u: l.getInt16( 4, true ) / 100,
				d: l.getInt16( 6, true ) / 100
			}
		);

	}

	function cmd_XSECT32 ( c ) {

		var flags = c & 0x01;

		readLabel( flags );

		var l = new DataView( source, pos );

		pos += 16;

		return commonXSECT(
			flags,
			{
				l: l.getInt32( 0, true ) / 100,
				r: l.getInt32( 0, true ) / 100,
				u: l.getInt32( 0, true ) / 100,
				d: l.getInt32( 0, true ) / 100
			}
		);

	}

	function commonXSECT ( flags, lrud ) {

		var position = stations.get( label );

		if ( ! position ) return;

		var station = label.split( '.' );

		// get survey path by removing last component of station name
		station.pop();

		var surveyId = surveyTree.getIdByPath( station );

		// FIXME to get a approach vector for the first XSECT in a run so we can add it to the display
		xSects.push( { start: lastPosition, end: position, lrud: lrud, survey: surveyId } );

		lastPosition = position;

		// some XSECTS are not flagged as last in passage
		// heuristic - the last line position before a move is an implied line end.
		// cmd_MOVE saves these in the set lineEnds.
		// this fixes up surveys that display incorrectly withg 'fly-back' artefacts in Aven and Loch.

		var endRun = false;

		if ( flags ) {

			endRun = true;

		} else if ( lineEnds.has( [ position.x, position.y, position.z ].toString() ) ) {

			endRun = true;
//			console.warn( 'unterminated LRUD passage at ', label );

		}

		if ( endRun ) {

			if ( xSects.length > 0 ) xGroups.push( xSects );

			lastPosition = { x: 0, y: 0, z: 0 };
			xSects = [];

		}

		return true;

	}

	// functions aliased at runtime as required

	function __readCoordinatesProjected () {

		var l = new DataView( source, pos );

		var projectedCoords = self.projection.forward( {
			x: l.getInt32( 0, true ) / 100,
			y: l.getInt32( 4, true ) / 100
		} );

		var coords = {
			x: projectedCoords.x,
			y: projectedCoords.y,
			z: l.getInt32( 8, true ) / 100
		};

		min.x = Math.min( coords.x, min.x );
		min.y = Math.min( coords.y, min.y );
		min.z = Math.min( coords.z, min.z );

		max.x = Math.max( coords.x, max.x );
		max.y = Math.max( coords.y, max.y );
		max.z = Math.max( coords.z, max.z );

		pos += 12;

		return coords;

	}

	function __readCoordinates () {

		var l = new DataView( source, pos );

		var coords = {
			x: l.getInt32( 0, true ) / 100,
			y: l.getInt32( 4, true ) / 100,
			z: l.getInt32( 8, true ) / 100
		};

		min.x = Math.min( coords.x, min.x );
		min.y = Math.min( coords.y, min.y );
		min.z = Math.min( coords.z, min.z );

		max.x = Math.max( coords.x, max.x );
		max.y = Math.max( coords.y, max.y );
		max.z = Math.max( coords.z, max.z );

		pos += 12;

		return coords;

	}

};

Svx3dHandler.prototype.getLineSegments = function () {

	var lineSegments = [];
	var groups = this.groups;
	var offsets = this.offsets;

	for ( var i = 0, l = groups.length; i < l; i++ ) {

		var g = groups[ i ];

		for ( var v = 0, vMax = g.length - 1; v < vMax; v++ ) {

			// create vertex pairs for each line segment.
			// all vertices except first and last are duplicated.
			var from = g[ v ];
			var to   = g[ v + 1 ];


			// move coordinates around origin

			from.coords.x -= offsets.x;
			from.coords.y -= offsets.y;
			from.coords.z -= offsets.z;

			var fromCoords = from.coords;
			var toCoords = to.coords;

			// skip repeated points ( co-located stations )
			if ( fromCoords.x === toCoords.x && fromCoords.y === toCoords.y && fromCoords.z === toCoords.z ) continue;

			lineSegments.push( { from: fromCoords, to: toCoords, type: to.type, survey: to.survey } );

		}

		// move coordinates around origin

		to.coords.x -= offsets.x;
		to.coords.y -= offsets.y;
		to.coords.z -= offsets.z;

	}

	return lineSegments;

};

Svx3dHandler.prototype.getTerrainDimensions = function () {

	return { lines: 0, samples: 0 };

};

Svx3dHandler.prototype.getTerrainBitmap = function () {

	return false;

};

Svx3dHandler.prototype.getSurvey = function () {

	return {
		title: this.fileName,
		surveyTree: this.surveyTree,
		sourceCRS: this.sourceCRS,
		targetCRS: this.targetCRS,
		limits: this.limits,
		offsets: this.offsets,
		lineSegments: this.getLineSegments(),
		crossSections: this.xGroups,
		scraps: [],
		hasTerrain: false,
		metadata: this.metadata
	};

};



// EOF

function loxHandler  ( fileName ) {

	this.fileName     = fileName;
	this.scraps       = [];
	this.faults       = [];
	this.lineSegments = [];
	this.xGroups      = [];
	this.surveyTree   = new Tree( '', 0 );
	this.terrain      = {};
	this.hasTerrain   = false;

}

loxHandler.prototype.constructor = loxHandler;

loxHandler.prototype.type = 'arraybuffer';
loxHandler.prototype.isRegion = 'false';

loxHandler.prototype.parse = function( dataStream, metadata ) {

	this.metadata     = metadata;

	var lineSegments = [];
	var stations     = [];
	var self         = this;
	var surveyTree   = this.surveyTree;

	// assumes little endian data ATM - FIXME

	var source = dataStream;
	var pos = 0; // file position
	var dataStart;
	var f = new DataView( source, 0 );
	var l = source.byteLength;

	var xGroup = [];
	var lastTo;

	// range

	var min = { x: Infinity, y: Infinity, z: Infinity };
	var max = { x: -Infinity, y: -Infinity, z: -Infinity };

	while ( pos < l ) readChunkHdr();

	this.lineSegments = lineSegments;

	// Drop data to give GC a chance ASAP
	source = null;

	this.limits = {
		min: min,
		max: max
	};

	var offsets = {
		x: ( min.x + max.x ) / 2,
		y: ( min.y + max.y ) / 2,
		z: ( min.z + max.z ) / 2
	};

	this.offsets = offsets;

	// convert to origin centered coordinates

	var i, j, coords, vertices;

	for ( i = 0; i < stations.length; i++ ) {

		coords = stations[ i ];

		coords.x -= offsets.x;
		coords.y -= offsets.y;
		coords.z -= offsets.z;

	}

	var scraps = this.scraps;

	// covert scraps coordinates

	for ( i = 0; i < scraps.length; i++ ) {

		vertices = scraps[ i ].vertices;

		for ( j = 0; j < vertices.length; j++ ) {

			coords = vertices[ j ];

			coords.x -= offsets.x;
			coords.y -= offsets.y;
			coords.z -= offsets.z;

		}

	}

	return this;

	// .lox parsing functions

	function readChunkHdr () {

		var m_type     = readUint();
		var m_recSize  = readUint();
		var m_recCount = readUint();
		var m_dataSize = readUint();
		var doFunction;

		// offset of data region for out of line strings/images/scrap data.
		dataStart  = pos + m_recSize;

		switch ( m_type ) {

		case 1:

			doFunction = readSurvey;

			break;

		case 2:

			doFunction = readStation;

			break;

		case 3:

			doFunction = readShot;

			break;

		case 4:

			doFunction = readScrap;

			break;

		case 5:

			doFunction = readSurface;

			break;

		case 6:

			doFunction = readSurfaceBMP;

			break;

		default:

			console.warn( 'unknown chunk header. type : ', m_type );

		}

		if ( doFunction !== undefined ) {

			for ( var i = 0; i < m_recCount; i++ ) {

				doFunction();

			}

		}

		skipData( m_dataSize );

	}

	function readUint () {

		var i = f.getUint32( pos, true );

		pos += 4;

		return i;

	}

	function skipData ( i ) {

		pos += i;

	}

	function readSurvey () {

		var m_id     = readUint();
		var namePtr  = readDataPtr();
		var m_parent = readUint();
		var titlePtr = readDataPtr();

		if ( m_parent != m_id ) {

			if ( ! surveyTree.addById( readString( namePtr ), m_id, m_parent ) ) console.warn( 'error constructing survey tree for', readString( titlePtr ) );

		}

	}

	function readDataPtr () {

		var m_position = readUint();
		var m_size     = readUint();

		return { position: m_position, size: m_size };

	}

	function readString ( ptr ) {

		// strings are null terminated. Igore last byte in string
		var bytes = new Uint8Array( source, dataStart + ptr.position, ptr.size - 1 );

		return String.fromCharCode.apply( null, bytes );

	}

	function readStation () {

		var m_id       = readUint();
		var m_surveyId = readUint();
		var namePtr    = readDataPtr();

		readDataPtr(); // commentPtr

		var m_flags    = readUint();
		var coords     = readCoords();

		stations[ m_id ] = coords;

		// add stations to surveyTree make station id negative to avoid clashes with survey id space.

		// m_flags & 0x01 = surface

		surveyTree.addById( readString( namePtr ), - m_id, m_surveyId, { p: coords, type: ( m_flags & 0x02 ) ? STATION_ENTRANCE : STATION_NORMAL } );

	}

	function readCoords () {

		var f = new DataView( source, pos );

		pos += 24;

		coords = {
			x: f.getFloat64( 0,  true ),
			y: f.getFloat64( 8,  true ),
			z: f.getFloat64( 16, true )
		};

		min.x = Math.min( coords.x, min.x );
		min.y = Math.min( coords.y, min.y );
		min.z = Math.min( coords.z, min.z );

		max.x = Math.max( coords.x, max.x );
		max.y = Math.max( coords.y, max.y );
		max.z = Math.max( coords.z, max.z );

		return coords;

	}

	function readShot () {

		var m_from = readUint();
		var m_to   = readUint();

		var fromLRUD = readLRUD();
		var toLRUD   = readLRUD();

		var m_flags = readUint();

		var m_sectionType = readUint();

		var m_surveyId = readUint();

		f.getFloat64( pos, true ); // m_threshold

		var type = LEG_CAVE;

		pos += 8;

		if ( m_flags & 0x01 ) type = LEG_SURFACE;
		if ( m_flags & 0x08 ) type = LEG_SPLAY;

		var from = stations[ m_from ];
		var to   = stations[ m_to ];

		if ( m_sectionType !== 0x00 ) {

			if ( m_from !== lastTo ) {

				// new set of shots

				xGroup = [];
				self.xGroups.push( xGroup );

				xGroup.push( { start: to, end: from, lrud: fromLRUD, survey: m_surveyId } );

			}

			xGroup.push( { start: from, end: to, lrud: toLRUD, survey: m_surveyId } );

		}

		if ( from.x === to.x && from.y === to.y && from.z === to.z ) return;

		lineSegments.push( { from: from, to: to, type: type, survey: m_surveyId } );

		lastTo = m_to;

	}

	function readLRUD () {

		var f = new DataView( source, pos );

		pos += 32;

		return {
			l: f.getFloat64( 0,  true ),
			r: f.getFloat64( 8,  true ),
			u: f.getFloat64( 16, true ),
			d: f.getFloat64( 24, true )
		};

	}

	function readScrap () {

		readUint(); // m_id

		var m_surveyId   = readUint();

		var m_numPoints  = readUint();
		var pointsPtr    = readDataPtr();

		var m_num3Angles = readUint();
		var facesPtr     = readDataPtr();

		var scrap = { vertices: [], faces: [], survey: m_surveyId };
		var lastFace;
		var i, offset, f;

		for ( i = 0; i < m_numPoints; i++ ) {

			offset = dataStart + pointsPtr.position + i * 24; // 24 = 3 * sizeof( double )
			f = new DataView( source, offset );

			scrap.vertices.push( {
				x: f.getFloat64( 0,  true ),
				y: f.getFloat64( 8,  true ),
				z: f.getFloat64( 16, true )
			} );

		}

		// read faces from out of line data area

		for ( i = 0; i < m_num3Angles; i++ ) {

			offset = dataStart + facesPtr.position + i * 12; // 12 = 3 * sizeof( uint32 )
			f = new DataView( source, offset );

			var face = [
				f.getUint32( 0, true ),
				f.getUint32( 4, true ),
				f.getUint32( 8, true )
			];

			// check for face winding order == orientation

			fix_direction: { if ( lastFace !== undefined ) {

				var j;

				for ( j = 0; j < 3; j++ ) { // this case triggers more often than those below.

					if ( face[ j ] == lastFace[ ( j + 2 ) % 3 ] && face[ ( j + 1 ) % 3 ] == lastFace[ ( j + 3 ) % 3 ] ) {

						face.reverse();
						break fix_direction;

					}

				}

				for ( j = 0; j < 3; j++ ) {

					if ( face[ j ] == lastFace[ j ] && face[ ( j + 1 ) % 3 ] == lastFace[ ( j + 1 ) % 3 ] ) {

						face.reverse();
						break fix_direction;

					}

				}

				for ( j = 0; j < 3; j++ ) {

					if ( face[ j ] == lastFace[ ( j + 1 ) % 3 ] && face[ ( j + 1 ) % 3 ] == lastFace[ ( j + 2 ) % 3 ] ) {

						face.reverse();
						break fix_direction;

					}

				}

			} }

			scrap.faces.push( face );
			lastFace = face;

		}

		self.scraps.push( scrap );

	}

	function readSurface () {

		readUint(); // m_id

		var m_width    = readUint();
		var m_height   = readUint();

		var surfacePtr = readDataPtr();
		var m_calib    = readCalibration();

		var ab = source.slice( pos, pos + surfacePtr.size ); // required for 64b alignment

		var dtm = new Float64Array( ab, 0 );

		// flip y direction

		var data = [];

		for ( var i = 0; i < m_height; i++ ) {

			var offset = ( m_height - 1 - i ) * m_width;

			for ( var j = 0; j < m_width; j++ ) {

				data.push( dtm[ offset + j ] );

			}

		}

		var terrain = self.terrain;

		terrain.dtm = {
			data: data,
			samples: m_width,
			lines:   m_height,
			xOrigin: m_calib[ 0 ],
			yOrigin: m_calib[ 1 ],
			xx:      m_calib[ 2 ],
			xy:      m_calib[ 3 ],
			yx:      m_calib[ 4 ],
			yy:      m_calib[ 5 ]
		};

		self.hasTerrain = true;

	}

	function readCalibration () {

		var f = new DataView( source, pos );
		var m_calib = [];

		m_calib[ 0 ] = f.getFloat64( 0,  true ); // x origin
		m_calib[ 1 ] = f.getFloat64( 8,  true ); // y origin
		m_calib[ 2 ] = f.getFloat64( 16, true ); // xx ( 2 x 2 ) rotate and scale matrix
		m_calib[ 3 ] = f.getFloat64( 24, true ); // xy "
		m_calib[ 4 ] = f.getFloat64( 32, true ); // yx "
		m_calib[ 5 ] = f.getFloat64( 40, true ); // yy "

		pos += 48;

		return m_calib;

	}

	function readSurfaceBMP () {

		readUint(); // m_type
		readUint(); // m_surfaceId

		var imagePtr = readDataPtr();

		var m_calib = readCalibration();

		self.terrain.bitmap = {
			image:   extractImage( imagePtr ),
			xOrigin: m_calib[ 0 ],
			yOrigin: m_calib[ 1 ],
			xx:      m_calib[ 2 ],
			xy:      m_calib[ 3 ],
			yx:      m_calib[ 4 ],
			yy:      m_calib[ 5 ]
		};

	}

	function extractImage ( imagePtr ) {

		var imgData = new Uint8Array( source, dataStart + imagePtr.position, imagePtr.size );
		var type;

		var b1 = imgData[ 0 ];
		var b2 = imgData[ 1 ];

		if ( b1 === 0xff && b2 === 0xd8 ) {

			type = 'image/jpeg';

		} else if ( b1 === 0x89 && b2 === 0x50 ) {

			type = 'image/png';

		}

		if ( ! type ) return '';

		var blob = new Blob( [ imgData ], { type: type } );
		var blobURL = URL.createObjectURL( blob );

		return blobURL;

	}

};

loxHandler.prototype.getSurvey = function () {

	return {
		title: this.fileName,
		surveyTree: this.surveyTree,
		sourceCRS: null,
		targetCRS: null,
		lineSegments: this.lineSegments,
		crossSections: this.xGroups,
		scraps: this.scraps,
		hasTerrain: this.hasTerrain,
		metadata: this.metadata,
		terrain: this.terrain,
		limits: this.limits,
		offsets: this.offsets
	};

};



// EOF

// Survex kml file handler

//import { LEG_CAVE, LEG_SPLAY, LEG_SURFACE, STATION_NORMAL, STATION_ENTRANCE } from '../core/constants';
function kmlHandler ( fileName ) {

	this.fileName   = fileName;
	this.groups     = [];
	this.surface    = [];
	this.xGroups    = [];
	this.surveyTree = new Tree();
	this.sourceCRS  = null;
	this.targetCRS  = 'EPSG:3857'; // "web mercator"
	this.projection = null;

}

kmlHandler.prototype.constructor = kmlHandler;

kmlHandler.prototype.type = 'document';
kmlHandler.prototype.isRegion = 'false';
kmlHandler.prototype.mimeType = 'text/xml';

kmlHandler.prototype.parse = function ( dataStream, metadata ) {

	this.metadata = metadata;

	console.log( 'x', dataStream );
	for ( var n in dataStream ) {

		console.log( ':', n );

	}

	return this;

};


kmlHandler.prototype.getLineSegments = function () {

	var lineSegments = [];
	var groups = this.groups;
	var offsets = this.offsets;

	for ( var i = 0, l = groups.length; i < l; i++ ) {

		var g = groups[ i ];

		for ( var v = 0, vMax = g.length - 1; v < vMax; v++ ) {

			// create vertex pairs for each line segment.
			// all vertices except first and last are duplicated.
			var from = g[ v ];
			var to   = g[ v + 1 ];


			// move coordinates around origin

			from.coords.x -= offsets.x;
			from.coords.y -= offsets.y;
			from.coords.z -= offsets.z;

			var fromCoords = from.coords;
			var toCoords = to.coords;

			// skip repeated points ( co-located stations )
			if ( fromCoords.x === toCoords.x && fromCoords.y === toCoords.y && fromCoords.z === toCoords.z ) continue;

			lineSegments.push( { from: fromCoords, to: toCoords, type: to.type, survey: to.survey } );

		}

		// move coordinates around origin

		to.coords.x -= offsets.x;
		to.coords.y -= offsets.y;
		to.coords.z -= offsets.z;

	}

	return lineSegments;

};

kmlHandler.prototype.getTerrainDimensions = function () {

	return { lines: 0, samples: 0 };

};

kmlHandler.prototype.getTerrainBitmap = function () {

	return false;

};

kmlHandler.prototype.getSurvey = function () {

	return {
		title: this.fileName,
		surveyTree: this.surveyTree,
		sourceCRS: this.sourceCRS,
		targetCRS: this.targetCRS,
		limits: this.limits,
		offsets: this.offsets,
		lineSegments: this.getLineSegments(),
		crossSections: this.xGroups,
		scraps: [],
		hasTerrain: false,
		metadata: this.metadata
	};

};



// EOF

function RegionHandler ( filename ) {

	this.filename = filename;
	this.box = new Box3();

}

RegionHandler.prototype.constructor = RegionHandler;

RegionHandler.prototype.type = 'json';
RegionHandler.prototype.isRegion = 'true';

RegionHandler.prototype.parse = function ( dataStream ) {

	this.data = dataStream;

	var entrances = [];
	var caves = this.data.caves;
	var caveName;

	var min = this.box.min;
	var max = this.box.max;

	for ( caveName in caves ) {

		var i;
		var e = caves[ caveName ].entrances;

		for ( i = 0; i < e.length; i++ ) {

			var entrance = e[ i ];

			min.min( entrance.position );
			max.max( entrance.position );

			entrances.push( entrance );

		}

	}

	this.data.entrances = entrances;
	this.data.surveyTree = new Tree( this.data.title );

};

RegionHandler.prototype.getSurvey = function () {

	return this.data;

};

RegionHandler.prototype.getLimits = function () {

	return this.box;

};



// EOF

function CaveLoader ( callback, progress ) {

	if ( ! callback ) {

		alert( 'No callback specified' );

	}

	this.callback = callback;
	this.progress = progress;
	this.dataResponse = null;
	this.metadataResponse = null;
	this.taskCount = 0;

}

CaveLoader.prototype.constructor = CaveLoader;

CaveLoader.prototype.setHandler = function ( fileName ) {

	var rev = fileName.split( '.' ).reverse();

	this.extention = rev.shift().toLowerCase();

	var handler;

	switch ( this.extention ) {

	case '3d':

		handler = new Svx3dHandler( fileName );

		break;

	case 'lox':

		handler = new loxHandler( fileName );

		break;


	case 'kml':

		handler = new kmlHandler( fileName );

		break;

	case 'reg':
	case 'json':

		handler = new RegionHandler( fileName );

		break;

	default:

		console.warn( 'Cave: unknown response extension [', self.extention, ']' );
		return false;

	}

	this.handler = handler;

	return true;

};

CaveLoader.prototype.loadURL = function ( fileName ) {

	var self = this;
	var prefix = getEnvironmentValue( 'surveyDirectory', '' );

	// setup file handler
	if ( ! this.setHandler( fileName ) ) {

		alert( 'Cave: unknown file extension [' + self.extention + ']' );
		return false;

	}

	var handler = this.handler;

	this.doneCount = 0;
	this.taskCount = handler.isRegion ? 1 : 2;

	var loader = new FileLoader().setPath( prefix );

	// request metadata file if not a region

	if ( ! handler.isRegion ) {

		loader.setResponseType( 'json' ).load( replaceExtension( fileName, 'json' ), _metadataLoaded, undefined, _metadataError );

	}

	if ( handler.mimeType !== undefined ) loader.setMimeType( 'text/xml' );

	loader.setResponseType( handler.type );

	loader.load( fileName, _dataLoaded, _progress, _dataError );

	return true;

	function _dataLoaded ( result ) {

		self.doneCount++;
		self.dataResponse = result;

		if ( self.doneCount === self.taskCount ) self.callHandler();

	}

	function _metadataLoaded ( result ) {

		self.doneCount++;
		self.metadataResponse = result;

		if ( self.doneCount === self.taskCount ) self.callHandler();

	}

	function _progress ( e ) {

		if ( self.progress) self.progress( Math.round( 100 * e.loaded / e.total ) );

	}

	function _dataError ( event ) {

		self.doneCount++;

		console.warn( ' error event', event );

		if ( self.doneCount === self.taskCount ) self.callHandler( fileName );

	}

	function _metadataError ( /* event */ ) {

		self.doneCount++;

		if ( self.doneCount === self.taskCount ) self.callHandler( fileName );

	}

};

CaveLoader.prototype.loadFile = function ( file ) {

	var self = this;
	var fileName = file.name;

	if ( ! this.setHandler( fileName ) ) {

		alert( 'Cave: unknown file extension [' + this.extention +  ']' );
		return false;

	}

	var type = this.handler.type;
	var fLoader = new FileReader();

	fLoader.addEventListener( 'load', _loaded );
	fLoader.addEventListener( 'progress', _progress );

	switch ( type ) {

	case 'arraybuffer':

		fLoader.readAsArrayBuffer( file );

		break;

	default:

		alert( 'unknown file data type' );
		return false;

	}

	return true;

	function _loaded () {

		self.dataResponse = fLoader.result;
		self.callHandler();

	}

	function _progress ( e ) {

		if ( self.progress ) self.progress( Math.round( 100 * e.loaded / e.total ) );

	}

};

CaveLoader.prototype.callHandler = function () {

	if ( this.dataResponse === null ) {

		this.callback( false );
		return;

	}

	var data = this.dataResponse;
	var metadata = this.metadataResponse;

	this.dataResponse = null;
	this.metadataResponse = null;

	this.callback( this.handler.parse( data, metadata ) );

};



// EOF

var cave;
var caveLoader;
var routes = null;

var caveIndex = Infinity;
var caveList = [];
var guiState = {};
var surveyTree;
var currentTop;

var isCaveLoaded = false;

var container$2;

var file;
var progressBar;

var terrainControls = [];
var routeControls = [];

var terrainOverlay = null;

var legShadingModes = {
	'by height':          SHADING_HEIGHT,
	'by leg length':      SHADING_LENGTH,
	'by leg inclination': SHADING_INCLINATION,
	'height cursor':      SHADING_CURSOR,
	'fixed':              SHADING_SINGLE,
	'survey':             SHADING_SURVEY,
	'route':              SHADING_PATH
};

var surfaceShadingModes = {
	'by height':          SHADING_HEIGHT,
	'by leg inclination': SHADING_INCLINATION,
	'height cursor':      SHADING_CURSOR,
	'fixed':              SHADING_SINGLE
};

var terrainShadingModes = {
	'Relief shading':     SHADING_SHADED,
	'by height':          SHADING_HEIGHT
};

var cameraViews = {
	'<select viewpoint>': VIEW_NONE,
	'Plan':               VIEW_PLAN,
	'N Elevation':        VIEW_ELEVATION_N,
	'S Elevation':        VIEW_ELEVATION_S,
	'E Elevation':        VIEW_ELEVATION_E,
	'W Elevation':        VIEW_ELEVATION_W
};

var cameraModes = {
	'Orthographic': CAMERA_ORTHOGRAPHIC,
	'Perspective':  CAMERA_PERSPECTIVE
};

function init$2 ( domID, configuration ) { // public method

	container$2 = document.getElementById( domID );

	if ( ! container$2 ) {

		alert( 'No container DOM object [' + domID + '] available' );
		return;

	}

	progressBar = new ProgressBar( container$2 );

	Viewer.init( domID, configuration );

	caveLoader = new CaveLoader( caveLoaded, progress );

	// event handlers
	document.addEventListener( 'keydown', keyDown );

	container$2.addEventListener( 'drop', handleDrop );
	container$2.addEventListener( 'dragover', handleDragover );

	Object.defineProperty( guiState, 'file', {
		get: function () { return file; },
		set: function ( value ) { loadCave$1( value ); file = value; },
	} );


	Viewer.addEventListener( 'change', Page.handleChange );
	Viewer.addEventListener( 'change', handleChange );

	Viewer.addEventListener( 'newCave', viewComplete );

}

function setControlsVisibility( list, visible ) {

	var display = visible ? 'block' : 'none';
	var element;

	for ( var i = 0, l = list.length; i < l; i++ ) {

		element = list[ i ];

		if ( element === null ) continue;

		element.style.display = display;

	}

}

function handleChange ( event ) {

	// change UI dynamicly to only display useful controls
	switch ( event.name ) {

	case 'routeEdit':

		setControlsVisibility( routeControls, Viewer.routeEdit );

		break;

	case 'terrain':

		setControlsVisibility( terrainControls, Viewer.terrain );

	case 'terrainShading': // eslint-disable-line no-fallthrough

		// only show overlay selection when terrain shading is set to overlay
		if ( Viewer.terrain && terrainOverlay && Viewer.terrainShading === SHADING_OVERLAY ) {

			terrainOverlay.style.display = 'block';

		} else if ( terrainOverlay ) {

			terrainOverlay.style.display = 'none';

		}

		break;

	}

}

function initSelectionPage () {

	var titleBar = document.createElement( 'div' );
	var page;
	var depth = 0;
	var currentHover = 0;

	var stringCompare = new Intl.Collator( 'en-GB', { numeric: true } ).compare;

	currentTop = surveyTree;

	if ( ! isCaveLoaded ) return;

	page = new Page( 'icon_explore' );

	page.addHeader( 'Selection' );

	titleBar.id = 'ui-path';

	page.addListener( titleBar, 'click', _handleSelectTopSurvey );

	page.appendChild( titleBar );

	page.addSlide( _displayPanel( currentTop ), depth, _handleSelectSurvey );

	var redraw = container$2.clientHeight; // eslint-disable-line no-unused-vars

	page.addListener( Viewer, 'change', _handleChange );

	return;

	function _handleChange( event ) {

		if ( ! isCaveLoaded ) return;

		if ( event.name === 'section' || event.name === 'shadingMode' || event.name === 'splays' ) {

			page.replaceSlide( _displayPanel( currentTop ), depth, _handleSelectSurvey );

		}

	}

	function _displayPanel ( top ) {

		var ul;
		var tmp;
		var span;

		var surveyColourMap = SurveyColours.getSurveyColourMap( surveyTree, Viewer.section );

		while ( tmp = titleBar.firstChild ) titleBar.removeChild( tmp ); // eslint-disable-line no-cond-assign

		if ( top.parent === null ) {

			titleBar.textContent = ( top.name === '' ) ? '[model]' : top.name;

		} else {

			span = document.createElement( 'span' );
			span.textContent = ' \u25C4';

			page.addListener( span, 'click', _handleSelectSurveyBack );

			titleBar.appendChild( span );
			titleBar.appendChild( document.createTextNode( ' ' + top.name ) );

		}

		ul = document.createElement( 'ul' );

		var children = top.children;

		if ( ! children.sorted ) {

			children.sort( _sortSurveys );
			children.sorted = true;

		}

		// FIXME need to add listener to allow survey list to be updated on dynamic load of survey

		top.forEachChild( _addLine );

		currentTop = top;

		page.addListener( ul, 'mouseover', _handleMouseover );
		page.addListener( ul, 'mouseleave', _handleMouseleave );

		return ul;

		function _addLine ( child ) {

			if ( child.hitCount === 0 && ! Viewer.splays ) return; // skip spays if not displayed

			var li  = document.createElement( 'li' );
			var txt = document.createTextNode( child.name );
			var key = document.createElement( 'span' );

			li.id = 'sv' + child.id;

			if ( Viewer.section === child.id ) li.classList.add( 'selected' );

			if ( child.hitCount === undefined ) {

				var colour;

				if ( Viewer.shadingMode === SHADING_SURVEY && surveyColourMap[ child.id ] !== undefined ) {

					colour = surveyColourMap[ child.id ].getHexString();

				} else {

					colour = '444444';

				}

				key.style.color = '#' + colour;
				key.textContent = '\u2588 ';

			} else if ( child.type !== undefined && child.type === STATION_ENTRANCE ) {

				key.style.color = 'yellow';
				key.textContent = '\u2229 ';

			} else if ( child.hitCount > 2 ) { // station at junction

				key.style.color = 'yellow';
				key.textContent = '\u25fc ';

			} else if ( child.hitCount === 0 ) { // end of splay

				key.style.color = 'red';
				key.textContent = '\u25fb ';

			} else { // normal station in middle or end of leg

				key.style.color = 'red';
				key.textContent = '\u25fc ';

			}

			li.appendChild( key );
			li.appendChild( txt );

			if ( child.children.length > 0 ) {

				var descend = document.createElement( 'div' );

				descend.classList.add( 'descend-tree' );
				descend.id = 'ssv' + child.id;
				descend.textContent = '\u25bA';

				li.appendChild( descend );

			}

			ul.appendChild( li );

		}

		function _sortSurveys ( s1, s2 ) {

			return stringCompare( s1.name, s2.name );

		}

	}

	function _handleMouseleave ( event ) {

		event.stopPropagation();
		Viewer.highlight = 0;

	}

	function _handleMouseover ( event ) {

		event.stopPropagation();

		var target = event.target;

		if ( target.nodeName !== 'LI' ) return;

		var id = Number( target.id.split( 'v' )[ 1 ] );

		if ( id !== currentHover ) {

			Viewer.highlight = ( Viewer.section !== id ) ? id : 0;
			currentHover = id;

		}

		return false;

	}

	function _handleSelectSurveyBack ( event ) {

		event.stopPropagation();

		if ( currentTop.parent === null ) return;

		page.replaceSlide( _displayPanel( currentTop.parent ), --depth, _handleSelectSurvey );

	}

	function _handleSelectTopSurvey ( /* event */ ) {

		Viewer.section = currentTop.id;

	}

	function _handleSelectSurvey ( event ) {

		var target = event.target;
		var id = Number( target.id.split( 'v' )[ 1 ] );

		event.stopPropagation();

		switch ( target.nodeName ) {

		case 'LI':

			Viewer.section = ( Viewer.section !== id ) ? id : 0;
			Viewer.setPOI = true;

			break;

		case 'DIV':

			if ( id ) page.replaceSlide( _displayPanel( currentTop.findById( id ) ), ++depth, _handleSelectSurvey );

			break;

		}

	}

}

function initRoutePage () {

	var page = new Page( 'icon_route', _onTop );
	var routeSelector;
	var getNewRouteName;
	var routeNames = routes.getRouteNames();

	page.addHeader( 'Routes' );

	page.addCheckbox( 'Edit Routes', Viewer, 'routeEdit' );

	routeSelector = page.addSelect( 'Current Route', routeNames, routes, 'setRoute' );

	routeControls.push( page.addButton( 'Save', _saveRoute ) );

	routeControls.push( page.addTextBox( 'New Route', '---', function ( getter ) { getNewRouteName = getter; } ) );

	routeControls.push( page.addButton( 'Add', _newRoute ) );

	routeControls.push( page.addDownloadButton( 'Download', Viewer.getMetadata, replaceExtension( file, 'json' ) ) );

	setControlsVisibility( routeControls, false );

	page.addListener( routes, 'changed', Page.handleChange );

	return;

	function _newRoute () {

		routes.addRoute( getNewRouteName() );

		// update selector

		routeSelector = page.addSelect( 'Current Route', routes.getRouteNames(), routes, 'setRoute', routeSelector );

	}

	function _saveRoute () {

		routes.saveCurrent();

	}

	function _onTop () {

		// when selecting route editing mode - select correct leg shading mode
		Viewer.shadingMode = SHADING_PATH;

		// display first route if present

		if ( ! routes.setRoute && routeNames.length > 0 ) routes.setRoute = routeNames[ 0 ];

	}

}

function initHelpPage () {

	var help = new Page( 'icon_help' );
	var dl;

	help.addHeader( 'Help - key commands' );

	help.addHeader( 'Shading' );

	dl = document.createElement( 'dl' );

	_addKey( '1', 'height' );
	_addKey( '2', 'leg angle' );
	_addKey( '3', 'leg length' );
	_addKey( '4', 'height cursor ' );
	_addKey( '5', 'single colour' );
	_addKey( '6', 'survey section' );
	_addKey( '7', 'route' );
	_addKey( '8', 'depth from surface' );
	_addKey( '9', 'depth cursor' );

	_addKey( '[', 'move depth cursor up' );
	_addKey( ']', 'move depth cursor down' );

	if ( caveList.length > 0 ) _addKey( 'n', 'next cave' );

	help.appendChild( dl );

	help.addHeader( 'View' );

	dl = document.createElement( 'dl' );

	_addKey( 'O', 'orthogonal view' );
	_addKey( 'P', 'perspective view' );
	_addKey( 'R', 'reset to plan view' );
	_addKey( '.', 'center view on last feature selected' );

	help.appendChild( dl );

	help.addHeader( 'Visibility' );

	dl = document.createElement( 'dl' );

	_addKey( 'C', 'scraps on/off [lox only]' );
	_addKey( 'J', 'station labels on/off' );
	_addKey( 'L', 'labels on/off' );
	_addKey( 'Q', 'splay legs on/off' );
	_addKey( 'S', 'surface legs on/off' );
	_addKey( 'T', 'terrain on/off' );
	_addKey( 'W', 'LRUD walls on/off' );
	_addKey( 'Z', 'stations on/off' );

	_addKey( '', '-' );

	_addKey( '<', 'Decrease terrain opacity' );
	_addKey( '>', 'Increase terrain opacity' );

	help.appendChild( dl );

	help.addHeader( 'Selection' );

	dl = document.createElement( 'dl' );

	_addKey( 'V', 'Remove all except selected section' );

	help.appendChild( dl );

	function _addKey( key, description ) {

		var dt = document.createElement( 'dt' );
		var dd = document.createElement( 'dd' );

		dt.textContent = key;
		dd.textContent = description;

		dl.appendChild( dt );
		dl.appendChild( dd );

	}

}

function initInfoPage () {

	var page = new Page( 'icon_info' );

	page.addHeader( 'Information' );

	page.addText( 'CaveView v' + VERSION + ' - a work in progress 3d cave viewer for Survex (.3d) and Therion (.lox) models.' );

	page.addText( 'Requires a browser supporting WebGL (IE 11+ and most other recent browsers), no plugins required. Created using the THREE.js 3D library and chroma,js colour handling library.' );

}

function initSettingsPage () {

	// reset

	var legShadingModesActive = Object.assign( {}, legShadingModes );

	if ( Viewer.hasTerrain ) {

		legShadingModesActive[ 'depth' ] = SHADING_DEPTH;
		legShadingModesActive[ 'depth cursor' ] = SHADING_DEPTH_CURSOR;

	}

	var page = new Page( 'icon_settings' );

	page.addHeader( 'Survey' );

	if ( caveList.length > 0 ) page.addSelect( 'File', caveList, guiState, 'file' );

	page.addHeader( 'View' );

	page.addSelect( 'Camera Type', cameraModes, Viewer, 'cameraType' );
	page.addSelect( 'View', cameraViews, Viewer, 'view' );

	page.addRange( 'Vertical scaling', Viewer, 'zScale' );

	page.addCheckbox( 'Auto Rotate', Viewer, 'autoRotate' );

	page.addRange( 'Rotation Speed', Viewer, 'autoRotateSpeed' );

	page.addHeader( 'Shading' );

	page.addSelect( 'Underground Legs', legShadingModesActive, Viewer, 'shadingMode' );

	page.addHeader( 'Visibility' );

	if ( Viewer.hasEntrances     ) page.addCheckbox( 'Entrances', Viewer, 'entrances' );
	if ( Viewer.hasStations      ) page.addCheckbox( 'Stations', Viewer, 'stations' );
	if ( Viewer.hasStationLabels ) page.addCheckbox( 'Station Labels', Viewer, 'stationLabels' );
	if ( Viewer.hasSplays        ) page.addCheckbox( 'Splay Legs', Viewer, 'splays' );
	if ( Viewer.hasWalls         ) page.addCheckbox( 'Walls (LRUD)', Viewer, 'walls' );
	if ( Viewer.hasScraps        ) page.addCheckbox( 'Scraps', Viewer, 'scraps' );
	if ( Viewer.hasTraces        ) page.addCheckbox( 'Dye Traces', Viewer, 'traces' );

	page.addCheckbox( 'Indicators', Viewer, 'HUD' );
	page.addCheckbox( 'Bounding Box', Viewer, 'box' );

}

function initSurfacePage () {

	// reset
	terrainOverlay = null;
	terrainControls = [];

	var page = new Page( 'icon_terrain' );

	page.addHeader( 'Surface Features' );

	if ( Viewer.hasSurfaceLegs ) {

		page.addCheckbox( 'Surface Legs', Viewer, 'surfaceLegs' );
		page.addSelect( 'Leg Shading', surfaceShadingModes, Viewer, 'surfaceShading' );

	}

	if ( Viewer.hasTerrain ) {

		page.addHeader( 'Terrain' );

		page.addCheckbox( 'Terrain', Viewer, 'terrain' );

		var overlays = Viewer.terrainOverlays;
		var terrainShadingModesActive = Object.assign( {}, terrainShadingModes );

		if ( overlays.length > 0 ) terrainShadingModesActive[ 'map overlay' ] = SHADING_OVERLAY;

		terrainControls.push( page.addSelect( 'Shading', terrainShadingModesActive, Viewer, 'terrainShading' ) );

		if ( overlays.length > 1 ) {

			terrainOverlay = page.addSelect( 'Overlay', overlays, Viewer, 'terrainOverlay' );
			terrainControls.push( terrainOverlay );

		}

		terrainControls.push( page.addRange( 'Terrain opacity', Viewer, 'terrainOpacity' ) );

		terrainControls.push( page.addCheckbox( 'Vertical datum shift', Viewer, 'terrainDatumShift' ) );

		setControlsVisibility( terrainControls, false );

	}

}

function initUI () {

	Page.reset();

	// create UI side panel and reveal tabs

	initSettingsPage();
	initSurfacePage();
	initSelectionPage();
	initRoutePage();
	initInfoPage();
	initHelpPage();

	container$2.appendChild( Page.frame );

}

function handleDragover ( event ) {

	event.preventDefault();
	event.dataTransfer.dropEffect = 'copy';

}

function handleDrop ( event ) {

	var dt = event.dataTransfer;

	event.preventDefault();

	if ( dt.files.length === 1 ) loadCaveLocalFile( dt.files[ 0 ] );

}

function resetUI () {

	if ( isCaveLoaded ) {

		isCaveLoaded = false;

		Page.clear();

		surveyTree = null;

	}

}

function loadCaveList ( list ) {

	caveList = list;
	nextCave();

}

function nextCave () {

	//cycle through caves in list provided
	if ( caveList.length === 0 ) return false;

	if ( ++caveIndex >= caveList.length ) caveIndex = 0;

	guiState.file = caveList[ caveIndex ];

}

function loadCave$1 ( inFile ) {

	file = inFile;

	resetUI();
	Viewer.clearView();

	progressBar.Start( 'Loading file ' + file + ' ...' );

	caveLoader.loadURL( file );


}

function loadCaveLocalFile ( file ) {

	resetUI();
	Viewer.clearView();

	progressBar.Start( 'Loading file ' + file.name + ' ...' );

	caveLoader.loadFile( file );

}

function progress ( pcent ) {

	progressBar.Update( pcent );

}

function caveLoaded ( inCave ) {

	cave = inCave;

	// slight delay to allow repaint to display 100%.
	setTimeout( _delayedTasks1, 100 );

	function _delayedTasks1 () {

		progressBar.End();
		progressBar.Start( 'Rendering...' );

		setTimeout( _delayedTasks2, 100 );

	}

	function _delayedTasks2 () {

		Viewer.loadCave( cave );
		progressBar.End();

		// viewComplete executed as 'newCave'' event handler
	}

}

function viewComplete () {

	// display shading mode and initialize

	Viewer.shadingMode = SHADING_HEIGHT;

	surveyTree = Viewer.getSurveyTree();
	routes = Viewer.getRoutes();

	isCaveLoaded = true;

	cave = null; // drop reference to cave to free heap space

	initUI();

}

function keyDown ( event ) {

	if ( ! isCaveLoaded ) return;

	switch ( event.keyCode ) {

	case 49: // change colouring scheme to depth - '1'

		Viewer.shadingMode = SHADING_HEIGHT;

		break;

	case 50: // change colouring scheme to angle - '2'

		Viewer.shadingMode = SHADING_INCLINATION;

		break;

	case 51: // change colouring scheme to length - '3'

		Viewer.shadingMode = SHADING_LENGTH;

		break;

	case 52: // change colouring scheme to height cursor - '4'

		Viewer.shadingMode = SHADING_CURSOR;

		break;

	case 53: // change colouring scheme to white - '5'

		Viewer.shadingMode = SHADING_SINGLE;

		break;

	case 54: // change colouring scheme to per survey section - '6'

		Viewer.shadingMode = SHADING_SURVEY;

		break;

	case 55: // change colouring scheme to per survey section - '7'

		Viewer.shadingMode = SHADING_PATH;

		break;

	case 56: // change colouring scheme to per survey section - '8'

		Viewer.shadingMode = SHADING_DEPTH;

		break;

	case 57: // change colouring scheme to depth - '9'

		Viewer.shadingMode = SHADING_DEPTH_CURSOR;

		break;

	case 67: // toggle scraps visibility - 'c'

		if ( Viewer.hasScraps ) Viewer.scraps = ! Viewer.scraps;

		break;

	case 68: // toggle dye traces visibility - 'd'

		if ( Viewer.hasTraces ) Viewer.traces = ! Viewer.traces;

		break;

	case 73: // toggle entrance labels - 'i'

		Viewer.developerInfo = true;

		break;

	case 74: // toggle entrance labels - 'j'

		if ( Viewer.hasStationLabels ) Viewer.stationLabels = ! Viewer.stationLabels;

		break;

	case 76: // toggle entrance labels - 'l'

		if ( Viewer.hasEntrances ) Viewer.entrances = ! Viewer.entrances;

		break;

	case 78: // load next cave in list - 'n'

		nextCave();

		break;

	case 79: // switch view to orthoganal - 'o'

		Viewer.cameraType = CAMERA_ORTHOGRAPHIC;

		break;

	case 80: // switch view to perspective -'p'

		Viewer.cameraType = CAMERA_PERSPECTIVE;

		break;

	case 81: // switch view to perspective -'q'

		if ( Viewer.hasSplays ) Viewer.splays = ! Viewer.splays;

		break;

	case 82: // reset camera positions and settings to initial plan view -'r'

		Viewer.view = VIEW_PLAN;

		break;

	case 83: // switch view to perspective - 's'

		if ( Viewer.hasSurfaceLegs ) Viewer.surfaceLegs = ! Viewer.surfaceLegs;

		break;

	case 84: // switch terrain on/off - 't'

		if ( Viewer.hasTerrain ) Viewer.terrain = ! Viewer.terrain;

		break;

	case 86: // cut selected survey section - 'v'

		resetUI();
		Viewer.cut = true;

		break;

	case 87: // switch walls on/off - 'w'

		if ( Viewer.hasWalls ) Viewer.walls = ! Viewer.walls;

		break;

	case 88: // look ast last POI - 'x'

		Viewer.setPOI = true; // actual value here is ignored.

		break;

	case 90: // show station markers - 'z'

		Viewer.stations = ! Viewer.stations;

		break;

	case 107: // increase cursor depth - '+' (keypad)
	case 219: // '[' key

		Viewer.cursorHeight++;

		break;

	case 109: // decrease cursor depth - '-' (keypad)
	case 221: // ']' key

		Viewer.cursorHeight--;

		break;

	case 188: // decrease terrain opacity '<' key

		if ( Viewer.hasTerrain ) Viewer.terrainOpacity = Math.max( Viewer.terrainOpacity - 0.05, 0 );

		break;

	case 190: // increase terrain opacity '>' key

		if ( Viewer.hasTerrain ) Viewer.terrainOpacity = Math.min( Viewer.terrainOpacity + 0.05, 1 );

		break;

	}

}

// export public interface

var UI = {
	init:         init$2,
	loadCave:     loadCave$1,
	loadCaveList: loadCaveList
};


// EOF

exports.setEnvironment = setEnvironment;
exports.Viewer = Viewer;
exports.UI = UI;
exports.CaveLoader = CaveLoader;
exports.VERSION = VERSION;
exports.MATERIAL_LINE = MATERIAL_LINE;
exports.MATERIAL_SURFACE = MATERIAL_SURFACE;
exports.CAMERA_ORTHOGRAPHIC = CAMERA_ORTHOGRAPHIC;
exports.CAMERA_PERSPECTIVE = CAMERA_PERSPECTIVE;
exports.CAMERA_OFFSET = CAMERA_OFFSET;
exports.VIEW_NONE = VIEW_NONE;
exports.VIEW_PLAN = VIEW_PLAN;
exports.VIEW_ELEVATION_N = VIEW_ELEVATION_N;
exports.VIEW_ELEVATION_S = VIEW_ELEVATION_S;
exports.VIEW_ELEVATION_E = VIEW_ELEVATION_E;
exports.VIEW_ELEVATION_W = VIEW_ELEVATION_W;
exports.MOUSE_MODE_NORMAL = MOUSE_MODE_NORMAL;
exports.MOUSE_MODE_ROUTE_EDIT = MOUSE_MODE_ROUTE_EDIT;
exports.SHADING_HEIGHT = SHADING_HEIGHT;
exports.SHADING_LENGTH = SHADING_LENGTH;
exports.SHADING_INCLINATION = SHADING_INCLINATION;
exports.SHADING_CURSOR = SHADING_CURSOR;
exports.SHADING_SINGLE = SHADING_SINGLE;
exports.SHADING_SURVEY = SHADING_SURVEY;
exports.SHADING_OVERLAY = SHADING_OVERLAY;
exports.SHADING_SHADED = SHADING_SHADED;
exports.SHADING_DEPTH = SHADING_DEPTH;
exports.SHADING_PATH = SHADING_PATH;
exports.SHADING_DEPTH_CURSOR = SHADING_DEPTH_CURSOR;
exports.LEG_CAVE = LEG_CAVE;
exports.LEG_SPLAY = LEG_SPLAY;
exports.LEG_SURFACE = LEG_SURFACE;
exports.FEATURE_BOX = FEATURE_BOX;
exports.FEATURE_SELECTED_BOX = FEATURE_SELECTED_BOX;
exports.FEATURE_ENTRANCES = FEATURE_ENTRANCES;
exports.FEATURE_TERRAIN = FEATURE_TERRAIN;
exports.FEATURE_STATIONS = FEATURE_STATIONS;
exports.FEATURE_TRACES = FEATURE_TRACES;
exports.FACE_WALLS = FACE_WALLS;
exports.FACE_SCRAPS = FACE_SCRAPS;
exports.LABEL_STATION = LABEL_STATION;
exports.NORMAL = NORMAL;
exports.SURFACE = SURFACE;
exports.SPLAY = SPLAY;
exports.DIVING = DIVING;
exports.STATION_NORMAL = STATION_NORMAL;
exports.STATION_ENTRANCE = STATION_ENTRANCE;
exports.upAxis = upAxis;

Object.defineProperty(exports, '__esModule', { value: true });

})));