troggle-unchained/imagekit/processors.py

135 lines
5.0 KiB
Python
Raw Normal View History

""" Imagekit Image "ImageProcessors"
A processor defines a set of class variables (optional) and a
class method named "process" which processes the supplied image using
the class properties as settings. The process method can be overridden as well allowing user to define their
own effects/processes entirely.
"""
from imagekit.lib import *
class ImageProcessor(object):
""" Base image processor class """
@classmethod
def process(cls, image, obj=None):
return image
class Adjustment(ImageProcessor):
color = 1.0
brightness = 1.0
contrast = 1.0
sharpness = 1.0
@classmethod
def process(cls, image, obj=None):
for name in ['Color', 'Brightness', 'Contrast', 'Sharpness']:
factor = getattr(cls, name.lower())
if factor != 1.0:
image = getattr(ImageEnhance, name)(image).enhance(factor)
return image
class Reflection(ImageProcessor):
background_color = '#FFFFFF'
size = 0.0
opacity = 0.6
@classmethod
def process(cls, image, obj=None):
# convert bgcolor string to rgb value
background_color = ImageColor.getrgb(cls.background_color)
# copy orignial image and flip the orientation
reflection = image.copy().transpose(Image.FLIP_TOP_BOTTOM)
# create a new image filled with the bgcolor the same size
background = Image.new("RGB", image.size, background_color)
# calculate our alpha mask
start = int(255 - (255 * cls.opacity)) # The start of our gradient
steps = int(255 * cls.size) # the number of intermedite values
increment = (255 - start) / float(steps)
mask = Image.new('L', (1, 255))
for y in range(255):
if y < steps:
val = int(y * increment + start)
else:
val = 255
mask.putpixel((0, y), val)
alpha_mask = mask.resize(image.size)
# merge the reflection onto our background color using the alpha mask
reflection = Image.composite(background, reflection, alpha_mask)
# crop the reflection
reflection_height = int(image.size[1] * cls.size)
reflection = reflection.crop((0, 0, image.size[0], reflection_height))
# create new image sized to hold both the original image and the reflection
composite = Image.new("RGB", (image.size[0], image.size[1]+reflection_height), background_color)
# paste the orignal image and the reflection into the composite image
composite.paste(image, (0, 0))
composite.paste(reflection, (0, image.size[1]))
# return the image complete with reflection effect
return composite
class Resize(ImageProcessor):
width = None
height = None
crop = False
upscale = False
@classmethod
def process(cls, image, obj=None):
cur_width, cur_height = image.size
if cls.crop:
crop_horz = getattr(obj, obj._ik.crop_horz_field, 1)
crop_vert = getattr(obj, obj._ik.crop_vert_field, 1)
ratio = max(float(cls.width)/cur_width, float(cls.height)/cur_height)
resize_x, resize_y = ((cur_width * ratio), (cur_height * ratio))
crop_x, crop_y = (abs(cls.width - resize_x), abs(cls.height - resize_y))
x_diff, y_diff = (int(crop_x / 2), int(crop_y / 2))
box_left, box_right = {
0: (0, cls.width),
1: (int(x_diff), int(x_diff + cls.width)),
2: (int(crop_x), int(resize_x)),
}[crop_horz]
box_upper, box_lower = {
0: (0, cls.height),
1: (int(y_diff), int(y_diff + cls.height)),
2: (int(crop_y), int(resize_y)),
}[crop_vert]
box = (box_left, box_upper, box_right, box_lower)
image = image.resize((int(resize_x), int(resize_y)), Image.ANTIALIAS).crop(box)
else:
if not cls.width is None and not cls.height is None:
ratio = min(float(cls.width)/cur_width,
float(cls.height)/cur_height)
else:
if cls.width is None:
ratio = float(cls.height)/cur_height
else:
ratio = float(cls.width)/cur_width
new_dimensions = (int(round(cur_width*ratio)),
int(round(cur_height*ratio)))
if new_dimensions[0] > cur_width or \
new_dimensions[1] > cur_height:
if not cls.upscale:
return image
image = image.resize(new_dimensions, Image.ANTIALIAS)
return image
class Transpose(ImageProcessor):
""" Rotates or flips the image
Method should be one of the following strings:
- FLIP_LEFT RIGHT
- FLIP_TOP_BOTTOM
- ROTATE_90
- ROTATE_270
- ROTATE_180
"""
method = 'FLIP_LEFT_RIGHT'
@classmethod
def process(cls, image, obj=None):
return image.transpose(getattr(Image, cls.method))