(function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'], factory) : (factory((global.CV = global.CV || {}))); }(this, (function (exports) { 'use strict'; // Polyfills if ( Number.EPSILON === undefined ) { Number.EPSILON = Math.pow( 2, - 52 ); } if ( Number.isInteger === undefined ) { // Missing in IE // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger Number.isInteger = function ( value ) { return typeof value === 'number' && isFinite( value ) && Math.floor( value ) === value; }; } // if ( Math.sign === undefined ) { // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign Math.sign = function ( x ) { return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x; }; } if ( Function.prototype.name === undefined ) { // Missing in IE // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name Object.defineProperty( Function.prototype, 'name', { get: function () { return this.toString().match( /^\s*function\s*([^\(\s]*)/ )[ 1 ]; } } ); } if ( Object.assign === undefined ) { // Missing in IE // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign ( function () { Object.assign = function ( target ) { 'use strict'; if ( target === undefined || target === null ) { throw new TypeError( 'Cannot convert undefined or null to object' ); } var output = Object( target ); for ( var index = 1; index < arguments.length; index ++ ) { var source = arguments[ index ]; if ( source !== undefined && source !== null ) { for ( var nextKey in source ) { if ( Object.prototype.hasOwnProperty.call( source, nextKey ) ) { output[ nextKey ] = source[ nextKey ]; } } } } return output; }; } )(); } /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ var _Math = { DEG2RAD: Math.PI / 180, RAD2DEG: 180 / Math.PI, generateUUID: function () { // http://www.broofa.com/Tools/Math.uuid.htm var chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'.split( '' ); var uuid = new Array( 36 ); var rnd = 0, r; return function generateUUID() { for ( var i = 0; i < 36; i ++ ) { if ( i === 8 || i === 13 || i === 18 || i === 23 ) { uuid[ i ] = '-'; } else if ( i === 14 ) { uuid[ i ] = '4'; } else { if ( rnd <= 0x02 ) rnd = 0x2000000 + ( Math.random() * 0x1000000 ) | 0; r = rnd & 0xf; rnd = rnd >> 4; uuid[ i ] = chars[ ( i === 19 ) ? ( r & 0x3 ) | 0x8 : r ]; } } return uuid.join( '' ); }; }(), clamp: function ( value, min, max ) { return Math.max( min, Math.min( max, value ) ); }, // compute euclidian modulo of m % n // https://en.wikipedia.org/wiki/Modulo_operation euclideanModulo: function ( n, m ) { return ( ( n % m ) + m ) % m; }, // Linear mapping from range to range mapLinear: function ( x, a1, a2, b1, b2 ) { return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); }, // https://en.wikipedia.org/wiki/Linear_interpolation lerp: function ( x, y, t ) { return ( 1 - t ) * x + t * y; }, // http://en.wikipedia.org/wiki/Smoothstep smoothstep: function ( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * ( 3 - 2 * x ); }, smootherstep: function ( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * x * ( x * ( x * 6 - 15 ) + 10 ); }, // Random integer from interval randInt: function ( low, high ) { return low + Math.floor( Math.random() * ( high - low + 1 ) ); }, // Random float from interval randFloat: function ( low, high ) { return low + Math.random() * ( high - low ); }, // Random float from <-range/2, range/2> interval randFloatSpread: function ( range ) { return range * ( 0.5 - Math.random() ); }, degToRad: function ( degrees ) { return degrees * _Math.DEG2RAD; }, radToDeg: function ( radians ) { return radians * _Math.RAD2DEG; }, isPowerOfTwo: function ( value ) { return ( value & ( value - 1 ) ) === 0 && value !== 0; }, nearestPowerOfTwo: function ( value ) { return Math.pow( 2, Math.round( Math.log( value ) / Math.LN2 ) ); }, nextPowerOfTwo: function ( value ) { value --; value |= value >> 1; value |= value >> 2; value |= value >> 4; value |= value >> 8; value |= value >> 16; value ++; return value; } }; /** * @author mrdoob / http://mrdoob.com/ * @author supereggbert / http://www.paulbrunt.co.uk/ * @author philogb / http://blog.thejit.org/ * @author jordi_ros / http://plattsoft.com * @author D1plo1d / http://github.com/D1plo1d * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author timknip / http://www.floorplanner.com/ * @author bhouston / http://clara.io * @author WestLangley / http://github.com/WestLangley */ function Matrix4() { this.elements = [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ]; if ( arguments.length > 0 ) { console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' ); } } Object.assign( Matrix4.prototype, { isMatrix4: true, set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { var te = this.elements; te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14; te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24; te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34; te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44; return this; }, identity: function () { this.set( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; }, clone: function () { return new Matrix4().fromArray( this.elements ); }, copy: function ( m ) { var te = this.elements; var me = m.elements; te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ]; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ]; return this; }, copyPosition: function ( m ) { var te = this.elements, me = m.elements; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; return this; }, extractBasis: function ( xAxis, yAxis, zAxis ) { xAxis.setFromMatrixColumn( this, 0 ); yAxis.setFromMatrixColumn( this, 1 ); zAxis.setFromMatrixColumn( this, 2 ); return this; }, makeBasis: function ( xAxis, yAxis, zAxis ) { this.set( xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1 ); return this; }, extractRotation: function () { var v1 = new Vector3(); return function extractRotation( m ) { var te = this.elements; var me = m.elements; var scaleX = 1 / v1.setFromMatrixColumn( m, 0 ).length(); var scaleY = 1 / v1.setFromMatrixColumn( m, 1 ).length(); var scaleZ = 1 / v1.setFromMatrixColumn( m, 2 ).length(); te[ 0 ] = me[ 0 ] * scaleX; te[ 1 ] = me[ 1 ] * scaleX; te[ 2 ] = me[ 2 ] * scaleX; te[ 4 ] = me[ 4 ] * scaleY; te[ 5 ] = me[ 5 ] * scaleY; te[ 6 ] = me[ 6 ] * scaleY; te[ 8 ] = me[ 8 ] * scaleZ; te[ 9 ] = me[ 9 ] * scaleZ; te[ 10 ] = me[ 10 ] * scaleZ; return this; }; }(), makeRotationFromEuler: function ( euler ) { if ( ! ( euler && euler.isEuler ) ) { console.error( 'THREE.Matrix: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' ); } var te = this.elements; var x = euler.x, y = euler.y, z = euler.z; var a = Math.cos( x ), b = Math.sin( x ); var c = Math.cos( y ), d = Math.sin( y ); var e = Math.cos( z ), f = Math.sin( z ); if ( euler.order === 'XYZ' ) { var ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = - c * f; te[ 8 ] = d; te[ 1 ] = af + be * d; te[ 5 ] = ae - bf * d; te[ 9 ] = - b * c; te[ 2 ] = bf - ae * d; te[ 6 ] = be + af * d; te[ 10 ] = a * c; } else if ( euler.order === 'YXZ' ) { var ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce + df * b; te[ 4 ] = de * b - cf; te[ 8 ] = a * d; te[ 1 ] = a * f; te[ 5 ] = a * e; te[ 9 ] = - b; te[ 2 ] = cf * b - de; te[ 6 ] = df + ce * b; te[ 10 ] = a * c; } else if ( euler.order === 'ZXY' ) { var ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce - df * b; te[ 4 ] = - a * f; te[ 8 ] = de + cf * b; te[ 1 ] = cf + de * b; te[ 5 ] = a * e; te[ 9 ] = df - ce * b; te[ 2 ] = - a * d; te[ 6 ] = b; te[ 10 ] = a * c; } else if ( euler.order === 'ZYX' ) { var ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = be * d - af; te[ 8 ] = ae * d + bf; te[ 1 ] = c * f; te[ 5 ] = bf * d + ae; te[ 9 ] = af * d - be; te[ 2 ] = - d; te[ 6 ] = b * c; te[ 10 ] = a * c; } else if ( euler.order === 'YZX' ) { var ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = bd - ac * f; te[ 8 ] = bc * f + ad; te[ 1 ] = f; te[ 5 ] = a * e; te[ 9 ] = - b * e; te[ 2 ] = - d * e; te[ 6 ] = ad * f + bc; te[ 10 ] = ac - bd * f; } else if ( euler.order === 'XZY' ) { var ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = - f; te[ 8 ] = d * e; te[ 1 ] = ac * f + bd; te[ 5 ] = a * e; te[ 9 ] = ad * f - bc; te[ 2 ] = bc * f - ad; te[ 6 ] = b * e; te[ 10 ] = bd * f + ac; } // last column te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; // bottom row te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; }, makeRotationFromQuaternion: function ( q ) { var te = this.elements; var x = q._x, y = q._y, z = q._z, w = q._w; var x2 = x + x, y2 = y + y, z2 = z + z; var xx = x * x2, xy = x * y2, xz = x * z2; var yy = y * y2, yz = y * z2, zz = z * z2; var wx = w * x2, wy = w * y2, wz = w * z2; te[ 0 ] = 1 - ( yy + zz ); te[ 4 ] = xy - wz; te[ 8 ] = xz + wy; te[ 1 ] = xy + wz; te[ 5 ] = 1 - ( xx + zz ); te[ 9 ] = yz - wx; te[ 2 ] = xz - wy; te[ 6 ] = yz + wx; te[ 10 ] = 1 - ( xx + yy ); // last column te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; // bottom row te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; }, lookAt: function () { var x = new Vector3(); var y = new Vector3(); var z = new Vector3(); return function lookAt( eye, target, up ) { var te = this.elements; z.subVectors( eye, target ); if ( z.lengthSq() === 0 ) { // eye and target are in the same position z.z = 1; } z.normalize(); x.crossVectors( up, z ); if ( x.lengthSq() === 0 ) { // up and z are parallel if ( Math.abs( up.z ) === 1 ) { z.x += 0.0001; } else { z.z += 0.0001; } z.normalize(); x.crossVectors( up, z ); } x.normalize(); y.crossVectors( z, x ); te[ 0 ] = x.x; te[ 4 ] = y.x; te[ 8 ] = z.x; te[ 1 ] = x.y; te[ 5 ] = y.y; te[ 9 ] = z.y; te[ 2 ] = x.z; te[ 6 ] = y.z; te[ 10 ] = z.z; return this; }; }(), multiply: function ( m, n ) { if ( n !== undefined ) { console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' ); return this.multiplyMatrices( m, n ); } return this.multiplyMatrices( this, m ); }, premultiply: function ( m ) { return this.multiplyMatrices( m, this ); }, multiplyMatrices: function ( a, b ) { var ae = a.elements; var be = b.elements; var te = this.elements; var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ]; var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ]; var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ]; var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ]; var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ]; var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ]; var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ]; var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; return this; }, multiplyScalar: function ( s ) { var te = this.elements; te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s; te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s; te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s; te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s; return this; }, applyToBufferAttribute: function () { var v1 = new Vector3(); return function applyToBufferAttribute( attribute ) { for ( var i = 0, l = attribute.count; i < l; i ++ ) { v1.x = attribute.getX( i ); v1.y = attribute.getY( i ); v1.z = attribute.getZ( i ); v1.applyMatrix4( this ); attribute.setXYZ( i, v1.x, v1.y, v1.z ); } return attribute; }; }(), determinant: function () { var te = this.elements; var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ]; var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ]; var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ]; var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ]; //TODO: make this more efficient //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) return ( n41 * ( + n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34 ) + n42 * ( + n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31 ) + n43 * ( + n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31 ) + n44 * ( - n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31 ) ); }, transpose: function () { var te = this.elements; var tmp; tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp; tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp; tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp; tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp; tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp; tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp; return this; }, setPosition: function ( v ) { var te = this.elements; te[ 12 ] = v.x; te[ 13 ] = v.y; te[ 14 ] = v.z; return this; }, getInverse: function ( m, throwOnDegenerate ) { // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm var te = this.elements, me = m.elements, n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ], n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ], n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ], n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ], t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14; if ( det === 0 ) { var msg = "THREE.Matrix4.getInverse(): can't invert matrix, determinant is 0"; if ( throwOnDegenerate === true ) { throw new Error( msg ); } else { console.warn( msg ); } return this.identity(); } var detInv = 1 / det; te[ 0 ] = t11 * detInv; te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv; te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv; te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv; te[ 4 ] = t12 * detInv; te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv; te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv; te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv; te[ 8 ] = t13 * detInv; te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv; te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv; te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv; te[ 12 ] = t14 * detInv; te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv; te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv; te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv; return this; }, scale: function ( v ) { var te = this.elements; var x = v.x, y = v.y, z = v.z; te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z; te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z; te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z; te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z; return this; }, getMaxScaleOnAxis: function () { var te = this.elements; var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ]; var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ]; var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ]; return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) ); }, makeTranslation: function ( x, y, z ) { this.set( 1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1 ); return this; }, makeRotationX: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( 1, 0, 0, 0, 0, c, - s, 0, 0, s, c, 0, 0, 0, 0, 1 ); return this; }, makeRotationY: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, 0, s, 0, 0, 1, 0, 0, - s, 0, c, 0, 0, 0, 0, 1 ); return this; }, makeRotationZ: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, - s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; }, makeRotationAxis: function ( axis, angle ) { // Based on http://www.gamedev.net/reference/articles/article1199.asp var c = Math.cos( angle ); var s = Math.sin( angle ); var t = 1 - c; var x = axis.x, y = axis.y, z = axis.z; var tx = t * x, ty = t * y; this.set( tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1 ); return this; }, makeScale: function ( x, y, z ) { this.set( x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 ); return this; }, makeShear: function ( x, y, z ) { this.set( 1, y, z, 0, x, 1, z, 0, x, y, 1, 0, 0, 0, 0, 1 ); return this; }, compose: function ( position, quaternion, scale ) { this.makeRotationFromQuaternion( quaternion ); this.scale( scale ); this.setPosition( position ); return this; }, decompose: function () { var vector = new Vector3(); var matrix = new Matrix4(); return function decompose( position, quaternion, scale ) { var te = this.elements; var sx = vector.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length(); var sy = vector.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length(); var sz = vector.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length(); // if determine is negative, we need to invert one scale var det = this.determinant(); if ( det < 0 ) sx = - sx; position.x = te[ 12 ]; position.y = te[ 13 ]; position.z = te[ 14 ]; // scale the rotation part matrix.copy( this ); var invSX = 1 / sx; var invSY = 1 / sy; var invSZ = 1 / sz; matrix.elements[ 0 ] *= invSX; matrix.elements[ 1 ] *= invSX; matrix.elements[ 2 ] *= invSX; matrix.elements[ 4 ] *= invSY; matrix.elements[ 5 ] *= invSY; matrix.elements[ 6 ] *= invSY; matrix.elements[ 8 ] *= invSZ; matrix.elements[ 9 ] *= invSZ; matrix.elements[ 10 ] *= invSZ; quaternion.setFromRotationMatrix( matrix ); scale.x = sx; scale.y = sy; scale.z = sz; return this; }; }(), makePerspective: function ( left, right, top, bottom, near, far ) { if ( far === undefined ) { console.warn( 'THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.' ); } var te = this.elements; var x = 2 * near / ( right - left ); var y = 2 * near / ( top - bottom ); var a = ( right + left ) / ( right - left ); var b = ( top + bottom ) / ( top - bottom ); var c = - ( far + near ) / ( far - near ); var d = - 2 * far * near / ( far - near ); te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0; te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0; return this; }, makeOrthographic: function ( left, right, top, bottom, near, far ) { var te = this.elements; var w = 1.0 / ( right - left ); var h = 1.0 / ( top - bottom ); var p = 1.0 / ( far - near ); var x = ( right + left ) * w; var y = ( top + bottom ) * h; var z = ( far + near ) * p; te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x; te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 * p; te[ 14 ] = - z; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1; return this; }, equals: function ( matrix ) { var te = this.elements; var me = matrix.elements; for ( var i = 0; i < 16; i ++ ) { if ( te[ i ] !== me[ i ] ) return false; } return true; }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; for ( var i = 0; i < 16; i ++ ) { this.elements[ i ] = array[ i + offset ]; } return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; var te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; array[ offset + 9 ] = te[ 9 ]; array[ offset + 10 ] = te[ 10 ]; array[ offset + 11 ] = te[ 11 ]; array[ offset + 12 ] = te[ 12 ]; array[ offset + 13 ] = te[ 13 ]; array[ offset + 14 ] = te[ 14 ]; array[ offset + 15 ] = te[ 15 ]; return array; } } ); /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://clara.io */ function Quaternion( x, y, z, w ) { this._x = x || 0; this._y = y || 0; this._z = z || 0; this._w = ( w !== undefined ) ? w : 1; } Object.assign( Quaternion, { slerp: function ( qa, qb, qm, t ) { return qm.copy( qa ).slerp( qb, t ); }, slerpFlat: function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) { // fuzz-free, array-based Quaternion SLERP operation var x0 = src0[ srcOffset0 + 0 ], y0 = src0[ srcOffset0 + 1 ], z0 = src0[ srcOffset0 + 2 ], w0 = src0[ srcOffset0 + 3 ], x1 = src1[ srcOffset1 + 0 ], y1 = src1[ srcOffset1 + 1 ], z1 = src1[ srcOffset1 + 2 ], w1 = src1[ srcOffset1 + 3 ]; if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) { var s = 1 - t, cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, dir = ( cos >= 0 ? 1 : - 1 ), sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems: if ( sqrSin > Number.EPSILON ) { var sin = Math.sqrt( sqrSin ), len = Math.atan2( sin, cos * dir ); s = Math.sin( s * len ) / sin; t = Math.sin( t * len ) / sin; } var tDir = t * dir; x0 = x0 * s + x1 * tDir; y0 = y0 * s + y1 * tDir; z0 = z0 * s + z1 * tDir; w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp: if ( s === 1 - t ) { var f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 ); x0 *= f; y0 *= f; z0 *= f; w0 *= f; } } dst[ dstOffset ] = x0; dst[ dstOffset + 1 ] = y0; dst[ dstOffset + 2 ] = z0; dst[ dstOffset + 3 ] = w0; } } ); Object.defineProperties( Quaternion.prototype, { x: { get: function () { return this._x; }, set: function ( value ) { this._x = value; this.onChangeCallback(); } }, y: { get: function () { return this._y; }, set: function ( value ) { this._y = value; this.onChangeCallback(); } }, z: { get: function () { return this._z; }, set: function ( value ) { this._z = value; this.onChangeCallback(); } }, w: { get: function () { return this._w; }, set: function ( value ) { this._w = value; this.onChangeCallback(); } } } ); Object.assign( Quaternion.prototype, { set: function ( x, y, z, w ) { this._x = x; this._y = y; this._z = z; this._w = w; this.onChangeCallback(); return this; }, clone: function () { return new this.constructor( this._x, this._y, this._z, this._w ); }, copy: function ( quaternion ) { this._x = quaternion.x; this._y = quaternion.y; this._z = quaternion.z; this._w = quaternion.w; this.onChangeCallback(); return this; }, setFromEuler: function ( euler, update ) { if ( ! ( euler && euler.isEuler ) ) { throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' ); } var x = euler._x, y = euler._y, z = euler._z, order = euler.order; // http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ // content/SpinCalc.m var cos = Math.cos; var sin = Math.sin; var c1 = cos( x / 2 ); var c2 = cos( y / 2 ); var c3 = cos( z / 2 ); var s1 = sin( x / 2 ); var s2 = sin( y / 2 ); var s3 = sin( z / 2 ); if ( order === 'XYZ' ) { this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'YXZ' ) { this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; } else if ( order === 'ZXY' ) { this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'ZYX' ) { this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; } else if ( order === 'YZX' ) { this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'XZY' ) { this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; } if ( update !== false ) this.onChangeCallback(); return this; }, setFromAxisAngle: function ( axis, angle ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // assumes axis is normalized var halfAngle = angle / 2, s = Math.sin( halfAngle ); this._x = axis.x * s; this._y = axis.y * s; this._z = axis.z * s; this._w = Math.cos( halfAngle ); this.onChangeCallback(); return this; }, setFromRotationMatrix: function ( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ], trace = m11 + m22 + m33, s; if ( trace > 0 ) { s = 0.5 / Math.sqrt( trace + 1.0 ); this._w = 0.25 / s; this._x = ( m32 - m23 ) * s; this._y = ( m13 - m31 ) * s; this._z = ( m21 - m12 ) * s; } else if ( m11 > m22 && m11 > m33 ) { s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 ); this._w = ( m32 - m23 ) / s; this._x = 0.25 * s; this._y = ( m12 + m21 ) / s; this._z = ( m13 + m31 ) / s; } else if ( m22 > m33 ) { s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 ); this._w = ( m13 - m31 ) / s; this._x = ( m12 + m21 ) / s; this._y = 0.25 * s; this._z = ( m23 + m32 ) / s; } else { s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 ); this._w = ( m21 - m12 ) / s; this._x = ( m13 + m31 ) / s; this._y = ( m23 + m32 ) / s; this._z = 0.25 * s; } this.onChangeCallback(); return this; }, setFromUnitVectors: function () { // assumes direction vectors vFrom and vTo are normalized var v1 = new Vector3(); var r; var EPS = 0.000001; return function setFromUnitVectors( vFrom, vTo ) { if ( v1 === undefined ) v1 = new Vector3(); r = vFrom.dot( vTo ) + 1; if ( r < EPS ) { r = 0; if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) { v1.set( - vFrom.y, vFrom.x, 0 ); } else { v1.set( 0, - vFrom.z, vFrom.y ); } } else { v1.crossVectors( vFrom, vTo ); } this._x = v1.x; this._y = v1.y; this._z = v1.z; this._w = r; return this.normalize(); }; }(), inverse: function () { return this.conjugate().normalize(); }, conjugate: function () { this._x *= - 1; this._y *= - 1; this._z *= - 1; this.onChangeCallback(); return this; }, dot: function ( v ) { return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; }, lengthSq: function () { return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; }, length: function () { return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w ); }, normalize: function () { var l = this.length(); if ( l === 0 ) { this._x = 0; this._y = 0; this._z = 0; this._w = 1; } else { l = 1 / l; this._x = this._x * l; this._y = this._y * l; this._z = this._z * l; this._w = this._w * l; } this.onChangeCallback(); return this; }, multiply: function ( q, p ) { if ( p !== undefined ) { console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' ); return this.multiplyQuaternions( q, p ); } return this.multiplyQuaternions( this, q ); }, premultiply: function ( q ) { return this.multiplyQuaternions( q, this ); }, multiplyQuaternions: function ( a, b ) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w; this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; this.onChangeCallback(); return this; }, slerp: function ( qb, t ) { if ( t === 0 ) return this; if ( t === 1 ) return this.copy( qb ); var x = this._x, y = this._y, z = this._z, w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; if ( cosHalfTheta < 0 ) { this._w = - qb._w; this._x = - qb._x; this._y = - qb._y; this._z = - qb._z; cosHalfTheta = - cosHalfTheta; } else { this.copy( qb ); } if ( cosHalfTheta >= 1.0 ) { this._w = w; this._x = x; this._y = y; this._z = z; return this; } var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta ); if ( Math.abs( sinHalfTheta ) < 0.001 ) { this._w = 0.5 * ( w + this._w ); this._x = 0.5 * ( x + this._x ); this._y = 0.5 * ( y + this._y ); this._z = 0.5 * ( z + this._z ); return this; } var halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta ); var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; this._w = ( w * ratioA + this._w * ratioB ); this._x = ( x * ratioA + this._x * ratioB ); this._y = ( y * ratioA + this._y * ratioB ); this._z = ( z * ratioA + this._z * ratioB ); this.onChangeCallback(); return this; }, equals: function ( quaternion ) { return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this._x = array[ offset ]; this._y = array[ offset + 1 ]; this._z = array[ offset + 2 ]; this._w = array[ offset + 3 ]; this.onChangeCallback(); return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._w; return array; }, onChange: function ( callback ) { this.onChangeCallback = callback; return this; }, onChangeCallback: function () {} } ); /** * @author mrdoob / http://mrdoob.com/ * @author kile / http://kile.stravaganza.org/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ * @author WestLangley / http://github.com/WestLangley */ function Vector3( x, y, z ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; } Object.assign( Vector3.prototype, { isVector3: true, set: function ( x, y, z ) { this.x = x; this.y = y; this.z = z; return this; }, setScalar: function ( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setZ: function ( z ) { this.z = z; return this; }, setComponent: function ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; }, getComponent: function ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; default: throw new Error( 'index is out of range: ' + index ); } }, clone: function () { return new this.constructor( this.x, this.y, this.z ); }, copy: function ( v ) { this.x = v.x; this.y = v.y; this.z = v.z; return this; }, add: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; this.z += v.z; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; this.z += s; return this; }, addVectors: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; return this; }, addScaledVector: function ( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; return this; }, sub: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; this.z -= v.z; return this; }, subScalar: function ( s ) { this.x -= s; this.y -= s; this.z -= s; return this; }, subVectors: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; return this; }, multiply: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' ); return this.multiplyVectors( v, w ); } this.x *= v.x; this.y *= v.y; this.z *= v.z; return this; }, multiplyScalar: function ( scalar ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; return this; }, multiplyVectors: function ( a, b ) { this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z; return this; }, applyEuler: function () { var quaternion = new Quaternion(); return function applyEuler( euler ) { if ( ! ( euler && euler.isEuler ) ) { console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' ); } return this.applyQuaternion( quaternion.setFromEuler( euler ) ); }; }(), applyAxisAngle: function () { var quaternion = new Quaternion(); return function applyAxisAngle( axis, angle ) { return this.applyQuaternion( quaternion.setFromAxisAngle( axis, angle ) ); }; }(), applyMatrix3: function ( m ) { var x = this.x, y = this.y, z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z; this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z; return this; }, applyMatrix4: function ( m ) { var x = this.x, y = this.y, z = this.z; var e = m.elements; var w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] ); this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w; this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w; this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w; return this; }, applyQuaternion: function ( q ) { var x = this.x, y = this.y, z = this.z; var qx = q.x, qy = q.y, qz = q.z, qw = q.w; // calculate quat * vector var ix = qw * x + qy * z - qz * y; var iy = qw * y + qz * x - qx * z; var iz = qw * z + qx * y - qy * x; var iw = - qx * x - qy * y - qz * z; // calculate result * inverse quat this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy; this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz; this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx; return this; }, project: function () { var matrix = new Matrix4(); return function project( camera ) { matrix.multiplyMatrices( camera.projectionMatrix, matrix.getInverse( camera.matrixWorld ) ); return this.applyMatrix4( matrix ); }; }(), unproject: function () { var matrix = new Matrix4(); return function unproject( camera ) { matrix.multiplyMatrices( camera.matrixWorld, matrix.getInverse( camera.projectionMatrix ) ); return this.applyMatrix4( matrix ); }; }(), transformDirection: function ( m ) { // input: THREE.Matrix4 affine matrix // vector interpreted as a direction var x = this.x, y = this.y, z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; return this.normalize(); }, divide: function ( v ) { this.x /= v.x; this.y /= v.y; this.z /= v.z; return this; }, divideScalar: function ( scalar ) { return this.multiplyScalar( 1 / scalar ); }, min: function ( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); return this; }, max: function ( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); return this; }, clamp: function ( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); return this; }, clampScalar: function () { var min = new Vector3(); var max = new Vector3(); return function clampScalar( minVal, maxVal ) { min.set( minVal, minVal, minVal ); max.set( maxVal, maxVal, maxVal ); return this.clamp( min, max ); }; }(), clampLength: function ( min, max ) { var length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); }, floor: function () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); return this; }, ceil: function () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); return this; }, round: function () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); return this; }, roundToZero: function () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); return this; }, negate: function () { this.x = - this.x; this.y = - this.y; this.z = - this.z; return this; }, dot: function ( v ) { return this.x * v.x + this.y * v.y + this.z * v.z; }, // TODO lengthSquared? lengthSq: function () { return this.x * this.x + this.y * this.y + this.z * this.z; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z ); }, lengthManhattan: function () { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ); }, normalize: function () { return this.divideScalar( this.length() || 1 ); }, setLength: function ( length ) { return this.normalize().multiplyScalar( length ); }, lerp: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; return this; }, lerpVectors: function ( v1, v2, alpha ) { return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 ); }, cross: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' ); return this.crossVectors( v, w ); } var x = this.x, y = this.y, z = this.z; this.x = y * v.z - z * v.y; this.y = z * v.x - x * v.z; this.z = x * v.y - y * v.x; return this; }, crossVectors: function ( a, b ) { var ax = a.x, ay = a.y, az = a.z; var bx = b.x, by = b.y, bz = b.z; this.x = ay * bz - az * by; this.y = az * bx - ax * bz; this.z = ax * by - ay * bx; return this; }, projectOnVector: function ( vector ) { var scalar = vector.dot( this ) / vector.lengthSq(); return this.copy( vector ).multiplyScalar( scalar ); }, projectOnPlane: function () { var v1 = new Vector3(); return function projectOnPlane( planeNormal ) { v1.copy( this ).projectOnVector( planeNormal ); return this.sub( v1 ); }; }(), reflect: function () { // reflect incident vector off plane orthogonal to normal // normal is assumed to have unit length var v1 = new Vector3(); return function reflect( normal ) { return this.sub( v1.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) ); }; }(), angleTo: function ( v ) { var theta = this.dot( v ) / ( Math.sqrt( this.lengthSq() * v.lengthSq() ) ); // clamp, to handle numerical problems return Math.acos( _Math.clamp( theta, - 1, 1 ) ); }, distanceTo: function ( v ) { return Math.sqrt( this.distanceToSquared( v ) ); }, distanceToSquared: function ( v ) { var dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z; return dx * dx + dy * dy + dz * dz; }, distanceToManhattan: function ( v ) { return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z ); }, setFromSpherical: function ( s ) { var sinPhiRadius = Math.sin( s.phi ) * s.radius; this.x = sinPhiRadius * Math.sin( s.theta ); this.y = Math.cos( s.phi ) * s.radius; this.z = sinPhiRadius * Math.cos( s.theta ); return this; }, setFromCylindrical: function ( c ) { this.x = c.radius * Math.sin( c.theta ); this.y = c.y; this.z = c.radius * Math.cos( c.theta ); return this; }, setFromMatrixPosition: function ( m ) { var e = m.elements; this.x = e[ 12 ]; this.y = e[ 13 ]; this.z = e[ 14 ]; return this; }, setFromMatrixScale: function ( m ) { var sx = this.setFromMatrixColumn( m, 0 ).length(); var sy = this.setFromMatrixColumn( m, 1 ).length(); var sz = this.setFromMatrixColumn( m, 2 ).length(); this.x = sx; this.y = sy; this.z = sz; return this; }, setFromMatrixColumn: function ( m, index ) { return this.fromArray( m.elements, index * 4 ); }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; return array; }, fromBufferAttribute: function ( attribute, index, offset ) { if ( offset !== undefined ) { console.warn( 'THREE.Vector3: offset has been removed from .fromBufferAttribute().' ); } this.x = attribute.getX( index ); this.y = attribute.getY( index ); this.z = attribute.getZ( index ); return this; } } ); var VERSION = '1.2.2'; var MATERIAL_LINE = 1; var MATERIAL_SURFACE = 2; var CAMERA_ORTHOGRAPHIC = 1; var CAMERA_PERSPECTIVE = 2; var CAMERA_OFFSET = 600; // preset camera views var VIEW_NONE = 0; var VIEW_PLAN = 1; var VIEW_ELEVATION_N = 2; var VIEW_ELEVATION_S = 3; var VIEW_ELEVATION_E = 4; var VIEW_ELEVATION_W = 5; // mouse selection operation mode var MOUSE_MODE_NORMAL = 0; var MOUSE_MODE_ROUTE_EDIT = 1; // shading types var SHADING_HEIGHT = 1; var SHADING_LENGTH = 2; var SHADING_INCLINATION = 3; var SHADING_CURSOR = 4; var SHADING_SINGLE = 5; var SHADING_SURVEY = 6; var SHADING_OVERLAY = 7; var SHADING_SHADED = 8; var SHADING_DEPTH = 9; var SHADING_PATH = 10; var SHADING_DEPTH_CURSOR = 11; // layer tags for scene objects var LEG_CAVE = 1; var LEG_SPLAY = 2; var LEG_SURFACE = 3; var FEATURE_BOX = 4; var FEATURE_SELECTED_BOX = 5; var FEATURE_ENTRANCES = 6; var FEATURE_TERRAIN = 7; var FEATURE_STATIONS = 8; var FEATURE_TRACES = 9; var FACE_WALLS = 10; var FACE_SCRAPS = 11; var LABEL_STATION = 12; // flags in legs exported by Cave models var NORMAL = 0; var SURFACE = 1; var SPLAY = 2; var DIVING = 3; var STATION_NORMAL = 0; var STATION_ENTRANCE = 1; var upAxis = new Vector3( 0, 0, 1 ); // EOF var environment = new Map(); function setEnvironment ( envs ) { if ( envs === undefined ) return; var pName; for ( pName in envs ) { environment.set ( pName , envs[ pName ] ); } } function getEnvironmentValue ( item, defaultValue ) { if ( environment.has( item ) ) { return environment.get( item ); } else { return defaultValue; } } function replaceExtension( fileName, newExtention ) { return fileName.split( '.' ).shift() + '.' + newExtention; } // polyfill padStart for IE11 - now supported for Chrome, FireFox and Edge if ( ! String.prototype.padStart ) { String.prototype.padStart = function padStart( targetLength, padString ) { targetLength = targetLength >> 0; //floor if number or convert non-number to 0; padString = String( padString || ' ' ); if (this.length > targetLength) { return String( this ); } else { targetLength = targetLength - this.length; if ( targetLength > padString.length ) { padString += padString.repeat( targetLength / padString.length ); //append to original to ensure we are longer than needed } return padString.slice( 0, targetLength ) + String( this ); } }; } if ( ! String.prototype.repeat ) { String.prototype.repeat = function( count ) { if ( this == null ) throw new TypeError( 'can\'t convert ' + this + ' to object' ); var str = '' + this; count = +count; if ( count != count ) count = 0; if ( count < 0 ) throw new RangeError( 'repeat count must be non-negative' ); if ( count == Infinity ) throw new RangeError( 'repeat count must be less than infinity' ); count = Math.floor( count ); if ( str.length == 0 || count == 0 ) return ''; // Ensuring count is a 31-bit integer allows us to heavily optimize the // main part. But anyway, most current (August 2014) browsers can't handle // strings 1 << 28 chars or longer, so: if ( str.length * count >= 1 << 28 ) throw new RangeError('repeat count must not overflow maximum string size'); var rpt = ''; for (;;) { if ( ( count & 1) == 1 ) rpt += str; count >>>= 1; if ( count == 0 ) break; str += str; } // Could we try: // return Array(count + 1).join(this); return rpt; }; } // EOF function HudObject () {} HudObject.stdWidth = 40; HudObject.stdMargin = 5; HudObject.prototype.removeDomObjects = function () { var obj; for ( var i = 0, l = this.domObjects.length; i < l; i++ ) { obj = this.domObjects[ i ]; obj.parentElement.removeChild( obj ); } this.domObjects = []; }; HudObject.prototype.setVisibility = function ( visible ) { var style; this.visible = visible; style = ( visible ? 'block' : 'none' ); for ( var i = 0, l = this.domObjects.length; i < l; i++ ) { this.domObjects[ i ].style.display = style; } }; // EOF /** * @author mrdoob / http://mrdoob.com/ */ var ColorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF, 'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2, 'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50, 'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B, 'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B, 'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F, 'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3, 'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222, 'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700, 'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4, 'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00, 'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3, 'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA, 'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32, 'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3, 'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC, 'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD, 'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6, 'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9, 'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F, 'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE, 'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA, 'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0, 'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 }; function Color( r, g, b ) { if ( g === undefined && b === undefined ) { // r is THREE.Color, hex or string return this.set( r ); } return this.setRGB( r, g, b ); } Object.assign( Color.prototype, { isColor: true, r: 1, g: 1, b: 1, set: function ( value ) { if ( value && value.isColor ) { this.copy( value ); } else if ( typeof value === 'number' ) { this.setHex( value ); } else if ( typeof value === 'string' ) { this.setStyle( value ); } return this; }, setScalar: function ( scalar ) { this.r = scalar; this.g = scalar; this.b = scalar; return this; }, setHex: function ( hex ) { hex = Math.floor( hex ); this.r = ( hex >> 16 & 255 ) / 255; this.g = ( hex >> 8 & 255 ) / 255; this.b = ( hex & 255 ) / 255; return this; }, setRGB: function ( r, g, b ) { this.r = r; this.g = g; this.b = b; return this; }, setHSL: function () { function hue2rgb( p, q, t ) { if ( t < 0 ) t += 1; if ( t > 1 ) t -= 1; if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t; if ( t < 1 / 2 ) return q; if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t ); return p; } return function setHSL( h, s, l ) { // h,s,l ranges are in 0.0 - 1.0 h = _Math.euclideanModulo( h, 1 ); s = _Math.clamp( s, 0, 1 ); l = _Math.clamp( l, 0, 1 ); if ( s === 0 ) { this.r = this.g = this.b = l; } else { var p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s ); var q = ( 2 * l ) - p; this.r = hue2rgb( q, p, h + 1 / 3 ); this.g = hue2rgb( q, p, h ); this.b = hue2rgb( q, p, h - 1 / 3 ); } return this; }; }(), setStyle: function ( style ) { function handleAlpha( string ) { if ( string === undefined ) return; if ( parseFloat( string ) < 1 ) { console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' ); } } var m; if ( m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec( style ) ) { // rgb / hsl var color; var name = m[ 1 ]; var components = m[ 2 ]; switch ( name ) { case 'rgb': case 'rgba': if ( color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) { // rgb(255,0,0) rgba(255,0,0,0.5) this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255; this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255; this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255; handleAlpha( color[ 5 ] ); return this; } if ( color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) { // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100; this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100; this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100; handleAlpha( color[ 5 ] ); return this; } break; case 'hsl': case 'hsla': if ( color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) { // hsl(120,50%,50%) hsla(120,50%,50%,0.5) var h = parseFloat( color[ 1 ] ) / 360; var s = parseInt( color[ 2 ], 10 ) / 100; var l = parseInt( color[ 3 ], 10 ) / 100; handleAlpha( color[ 5 ] ); return this.setHSL( h, s, l ); } break; } } else if ( m = /^\#([A-Fa-f0-9]+)$/.exec( style ) ) { // hex color var hex = m[ 1 ]; var size = hex.length; if ( size === 3 ) { // #ff0 this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255; this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255; this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255; return this; } else if ( size === 6 ) { // #ff0000 this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255; this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255; this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255; return this; } } if ( style && style.length > 0 ) { // color keywords var hex = ColorKeywords[ style ]; if ( hex !== undefined ) { // red this.setHex( hex ); } else { // unknown color console.warn( 'THREE.Color: Unknown color ' + style ); } } return this; }, clone: function () { return new this.constructor( this.r, this.g, this.b ); }, copy: function ( color ) { this.r = color.r; this.g = color.g; this.b = color.b; return this; }, copyGammaToLinear: function ( color, gammaFactor ) { if ( gammaFactor === undefined ) gammaFactor = 2.0; this.r = Math.pow( color.r, gammaFactor ); this.g = Math.pow( color.g, gammaFactor ); this.b = Math.pow( color.b, gammaFactor ); return this; }, copyLinearToGamma: function ( color, gammaFactor ) { if ( gammaFactor === undefined ) gammaFactor = 2.0; var safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0; this.r = Math.pow( color.r, safeInverse ); this.g = Math.pow( color.g, safeInverse ); this.b = Math.pow( color.b, safeInverse ); return this; }, convertGammaToLinear: function () { var r = this.r, g = this.g, b = this.b; this.r = r * r; this.g = g * g; this.b = b * b; return this; }, convertLinearToGamma: function () { this.r = Math.sqrt( this.r ); this.g = Math.sqrt( this.g ); this.b = Math.sqrt( this.b ); return this; }, getHex: function () { return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0; }, getHexString: function () { return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 ); }, getHSL: function ( optionalTarget ) { // h,s,l ranges are in 0.0 - 1.0 var hsl = optionalTarget || { h: 0, s: 0, l: 0 }; var r = this.r, g = this.g, b = this.b; var max = Math.max( r, g, b ); var min = Math.min( r, g, b ); var hue, saturation; var lightness = ( min + max ) / 2.0; if ( min === max ) { hue = 0; saturation = 0; } else { var delta = max - min; saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min ); switch ( max ) { case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break; case g: hue = ( b - r ) / delta + 2; break; case b: hue = ( r - g ) / delta + 4; break; } hue /= 6; } hsl.h = hue; hsl.s = saturation; hsl.l = lightness; return hsl; }, getStyle: function () { return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')'; }, offsetHSL: function ( h, s, l ) { var hsl = this.getHSL(); hsl.h += h; hsl.s += s; hsl.l += l; this.setHSL( hsl.h, hsl.s, hsl.l ); return this; }, add: function ( color ) { this.r += color.r; this.g += color.g; this.b += color.b; return this; }, addColors: function ( color1, color2 ) { this.r = color1.r + color2.r; this.g = color1.g + color2.g; this.b = color1.b + color2.b; return this; }, addScalar: function ( s ) { this.r += s; this.g += s; this.b += s; return this; }, sub: function( color ) { this.r = Math.max( 0, this.r - color.r ); this.g = Math.max( 0, this.g - color.g ); this.b = Math.max( 0, this.b - color.b ); return this; }, multiply: function ( color ) { this.r *= color.r; this.g *= color.g; this.b *= color.b; return this; }, multiplyScalar: function ( s ) { this.r *= s; this.g *= s; this.b *= s; return this; }, lerp: function ( color, alpha ) { this.r += ( color.r - this.r ) * alpha; this.g += ( color.g - this.g ) * alpha; this.b += ( color.b - this.b ) * alpha; return this; }, equals: function ( c ) { return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this.r = array[ offset ]; this.g = array[ offset + 1 ]; this.b = array[ offset + 2 ]; return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this.r; array[ offset + 1 ] = this.g; array[ offset + 2 ] = this.b; return array; }, toJSON: function () { return this.getHex(); } } ); var gradientColours = [[235,99,111],[235,99,112],[234,99,113],[234,100,114],[233,100,114],[233,100,115],[232,100,116],[232,101,117],[231,101,118],[231,101,119],[230,101,119],[230,101,120],[230,102,121],[229,102,122],[229,102,123],[228,102,124],[228,103,124],[227,103,125],[227,103,126],[226,103,127],[226,103,128],[226,104,129],[225,104,129],[225,104,130],[224,104,131],[224,104,132],[223,105,133],[223,105,134],[222,105,134],[222,105,135],[221,106,136],[221,106,137],[221,106,138],[220,106,139],[220,106,139],[219,107,140],[219,107,141],[218,107,142],[218,107,143],[217,108,144],[217,108,144],[216,108,145],[216,108,146],[216,108,147],[215,109,148],[215,109,149],[214,109,149],[214,109,150],[213,110,151],[213,110,152],[212,110,153],[212,110,154],[211,110,154],[211,111,155],[211,111,156],[210,111,157],[210,111,158],[209,111,159],[209,112,159],[208,112,160],[208,112,161],[207,112,162],[207,113,163],[207,113,164],[206,113,164],[206,113,165],[205,113,166],[205,114,167],[204,114,168],[204,114,169],[203,114,169],[203,115,170],[202,115,171],[202,115,172],[201,115,172],[200,116,173],[199,116,173],[198,116,173],[197,117,174],[196,117,174],[194,118,174],[193,118,175],[192,118,175],[191,119,176],[190,119,176],[189,119,176],[188,120,177],[187,120,177],[186,121,177],[185,121,178],[184,121,178],[183,122,178],[181,122,179],[180,122,179],[179,123,179],[178,123,180],[177,124,180],[176,124,181],[175,124,181],[174,125,181],[173,125,182],[172,125,182],[171,126,182],[170,126,183],[168,126,183],[167,127,183],[166,127,184],[165,128,184],[164,128,184],[163,128,185],[162,129,185],[161,129,186],[160,129,186],[159,130,186],[158,130,187],[157,131,187],[155,131,187],[154,131,188],[153,132,188],[152,132,188],[151,132,189],[150,133,189],[149,133,189],[148,133,190],[147,134,190],[146,134,191],[145,135,191],[144,135,191],[142,135,192],[141,136,192],[140,136,192],[139,136,193],[138,137,193],[137,137,193],[136,138,194],[135,138,194],[134,138,194],[133,139,195],[132,139,195],[131,139,196],[129,140,196],[128,140,196],[127,141,197],[126,141,197],[125,141,197],[124,142,198],[123,142,198],[122,142,198],[120,142,197],[119,143,197],[117,143,197],[116,143,197],[114,143,196],[113,144,196],[111,144,196],[110,144,195],[108,144,195],[107,144,195],[105,145,195],[104,145,194],[102,145,194],[101,145,194],[100,146,193],[98,146,193],[97,146,193],[95,146,193],[94,146,192],[92,147,192],[91,147,192],[89,147,191],[88,147,191],[86,147,191],[85,148,191],[83,148,190],[82,148,190],[80,148,190],[79,149,189],[78,149,189],[76,149,189],[75,149,189],[73,149,188],[72,150,188],[70,150,188],[69,150,187],[67,150,187],[66,151,187],[64,151,186],[63,151,186],[61,151,186],[60,151,186],[59,152,185],[57,152,185],[56,152,185],[54,152,184],[53,153,184],[51,153,184],[50,153,184],[48,153,183],[47,153,183],[45,154,183],[44,154,182],[42,154,182],[41,154,182],[39,154,182],[38,155,181],[37,155,181],[35,155,181],[34,155,180],[32,156,180],[31,156,180],[29,156,180],[28,156,179],[26,156,179],[25,157,179],[23,157,178],[22,157,178],[20,157,178],[19,158,178],[17,158,177],[16,158,177],[16,158,176],[17,158,176],[17,158,175],[18,158,174],[18,158,174],[19,158,173],[19,158,172],[20,158,171],[20,158,171],[21,158,170],[21,158,169],[22,158,169],[22,159,168],[23,159,167],[23,159,167],[23,159,166],[24,159,165],[24,159,164],[25,159,164],[25,159,163],[26,159,162],[26,159,162],[27,159,161],[27,159,160],[28,159,160],[28,159,159],[29,159,158],[29,159,157],[30,159,157],[30,159,156],[30,159,155],[31,159,155],[31,159,154],[32,159,153],[32,159,153],[33,159,152],[33,160,151],[34,160,150],[34,160,150],[35,160,149],[35,160,148],[36,160,148],[36,160,147],[36,160,146],[37,160,146],[37,160,145],[38,160,144],[38,160,143],[39,160,143],[39,160,142],[40,160,141],[40,160,141],[41,160,140],[41,160,139],[42,160,139],[42,160,138],[43,160,137],[43,160,136],[43,160,136],[44,160,135],[44,161,134],[45,161,134],[45,161,133],[46,161,132],[46,161,132],[47,161,131],[47,161,130],[48,161,129],[48,161,129],[49,161,128],[49,161,127],[50,161,127],[50,161,126],[51,161,125],[52,161,125],[53,161,124],[54,161,123],[55,161,123],[56,161,122],[56,160,121],[57,160,121],[58,160,120],[59,160,120],[60,160,119],[61,160,118],[62,160,118],[63,160,117],[64,160,116],[65,160,116],[66,160,115],[67,160,114],[67,159,114],[68,159,113],[69,159,112],[70,159,112],[71,159,111],[72,159,111],[73,159,110],[74,159,109],[75,159,109],[76,159,108],[77,159,107],[78,159,107],[78,158,106],[79,158,105],[80,158,105],[81,158,104],[82,158,103],[83,158,103],[84,158,102],[85,158,102],[86,158,101],[87,158,100],[88,158,100],[89,158,99],[89,157,98],[90,157,98],[91,157,97],[92,157,96],[93,157,96],[94,157,95],[95,157,94],[96,157,94],[97,157,93],[98,157,93],[99,157,92],[100,157,91],[100,156,91],[101,156,90],[102,156,89],[103,156,89],[104,156,88],[105,156,87],[106,156,87],[107,156,86],[108,156,85],[109,156,85],[110,156,84],[111,156,84],[111,155,83],[112,155,82],[113,155,82],[114,155,81],[115,155,80],[116,155,80],[117,155,79],[118,155,79],[118,155,79],[119,154,78],[120,154,78],[121,154,78],[121,154,78],[122,154,78],[123,153,77],[123,153,77],[124,153,77],[125,153,77],[126,153,77],[126,152,77],[127,152,76],[128,152,76],[128,152,76],[129,152,76],[130,151,76],[131,151,75],[131,151,75],[132,151,75],[133,150,75],[133,150,75],[134,150,74],[135,150,74],[136,150,74],[136,149,74],[137,149,74],[138,149,73],[138,149,73],[139,149,73],[140,148,73],[141,148,73],[141,148,72],[142,148,72],[143,148,72],[143,147,72],[144,147,72],[145,147,72],[145,147,71],[146,147,71],[147,146,71],[148,146,71],[148,146,71],[149,146,70],[150,146,70],[150,145,70],[151,145,70],[152,145,70],[153,145,69],[153,145,69],[154,144,69],[155,144,69],[155,144,69],[156,144,68],[157,143,68],[158,143,68],[158,143,68],[159,143,68],[160,143,67],[160,142,67],[161,142,67],[162,142,67],[163,142,67],[163,142,67],[164,141,66],[165,141,66],[165,141,66],[166,141,66],[167,141,66],[168,140,65],[168,140,65],[169,140,65],[169,140,65],[170,140,66],[170,139,66],[171,139,66],[171,139,67],[172,139,67],[172,139,67],[172,138,68],[173,138,68],[173,138,68],[174,138,69],[174,138,69],[175,137,69],[175,137,70],[175,137,70],[176,137,70],[176,137,71],[177,136,71],[177,136,71],[177,136,72],[178,136,72],[178,135,72],[179,135,73],[179,135,73],[180,135,73],[180,135,74],[180,134,74],[181,134,74],[181,134,75],[182,134,75],[182,134,75],[183,133,76],[183,133,76],[183,133,76],[184,133,77],[184,133,77],[185,132,77],[185,132,77],[186,132,78],[186,132,78],[186,132,78],[187,131,79],[187,131,79],[188,131,79],[188,131,80],[189,131,80],[189,130,80],[189,130,81],[190,130,81],[190,130,81],[191,130,82],[191,129,82],[192,129,82],[192,129,83],[192,129,83],[193,128,83],[193,128,84],[194,128,84],[194,128,84],[194,128,85],[195,127,85],[195,127,85],[196,127,86],[196,127,86],[197,127,86],[197,126,87],[197,126,87],[198,126,87],[198,126,88],[199,126,88],[199,125,88],[200,125,89],[200,125,89]]; var depthColours = [[255,255,204],[255,255,203],[255,255,203],[255,254,202],[255,254,202],[255,254,201],[255,254,200],[255,253,200],[255,253,199],[255,253,199],[255,253,198],[255,252,197],[255,252,197],[255,252,196],[255,252,196],[255,251,195],[255,251,194],[255,251,194],[255,251,193],[255,250,193],[255,250,192],[255,250,191],[255,250,191],[255,249,190],[255,249,190],[255,249,189],[255,249,188],[255,248,188],[255,248,187],[255,248,187],[255,248,186],[255,247,185],[255,247,185],[255,247,184],[255,247,184],[255,246,183],[255,246,182],[255,246,182],[255,246,181],[255,245,180],[255,245,180],[255,245,179],[255,245,179],[255,244,178],[255,244,177],[255,244,177],[255,244,176],[255,243,176],[255,243,175],[255,243,174],[255,243,174],[255,242,173],[255,242,173],[255,242,172],[255,242,171],[255,241,171],[255,241,170],[255,241,170],[255,241,169],[255,240,168],[255,240,168],[255,240,167],[255,240,167],[255,239,166],[255,239,165],[255,239,165],[255,239,164],[255,238,164],[255,238,163],[255,238,162],[255,238,162],[255,237,161],[255,237,161],[255,237,160],[255,237,159],[255,236,159],[255,236,158],[255,236,158],[255,236,157],[255,235,157],[255,235,156],[255,235,155],[255,235,155],[255,234,154],[255,234,154],[255,234,153],[255,233,153],[255,233,152],[255,233,151],[255,233,151],[255,232,150],[255,232,150],[255,232,149],[255,232,148],[255,231,148],[255,231,147],[255,231,147],[255,230,146],[255,230,146],[255,230,145],[255,230,144],[255,229,144],[255,229,143],[255,229,143],[255,229,142],[255,228,142],[255,228,141],[255,228,140],[255,227,140],[255,227,139],[254,227,139],[254,227,138],[254,226,138],[254,226,137],[254,226,136],[254,225,136],[254,225,135],[254,225,135],[254,225,134],[254,224,134],[254,224,133],[254,224,132],[254,224,132],[254,223,131],[254,223,131],[254,223,130],[254,222,130],[254,222,129],[254,222,128],[254,222,128],[254,221,127],[254,221,127],[254,221,126],[254,221,125],[254,220,125],[254,220,124],[254,220,124],[254,219,123],[254,219,123],[254,219,122],[254,219,121],[254,218,121],[254,218,120],[254,218,120],[254,218,119],[254,217,119],[254,217,118],[254,216,117],[254,216,117],[254,215,116],[254,215,116],[254,214,115],[254,214,115],[254,213,114],[254,213,113],[254,212,113],[254,212,112],[254,211,112],[254,211,111],[254,210,111],[254,210,110],[254,209,109],[254,208,109],[254,208,108],[254,207,108],[254,207,107],[254,206,106],[254,206,106],[254,205,105],[254,205,105],[254,204,104],[254,204,104],[254,203,103],[254,203,102],[254,202,102],[254,202,101],[254,201,101],[254,200,100],[254,200,100],[254,199,99],[254,199,98],[254,198,98],[254,198,97],[254,197,97],[254,197,96],[254,196,96],[254,196,95],[254,195,94],[254,195,94],[254,194,93],[254,193,93],[254,193,92],[254,192,92],[254,192,91],[254,191,90],[254,191,90],[254,190,89],[254,190,89],[254,189,88],[254,189,88],[254,188,87],[254,188,86],[254,187,86],[254,187,85],[254,186,85],[254,185,84],[254,185,83],[254,184,83],[254,184,82],[254,183,82],[254,183,81],[254,182,81],[254,182,80],[254,181,79],[254,181,79],[254,180,78],[254,180,78],[254,179,77],[254,179,77],[254,178,76],[254,177,76],[254,177,76],[254,176,75],[254,176,75],[254,175,75],[254,175,75],[254,174,74],[254,174,74],[254,173,74],[254,173,74],[254,172,74],[254,172,73],[254,171,73],[254,171,73],[254,170,73],[254,170,72],[254,169,72],[254,169,72],[254,168,72],[254,168,72],[254,167,71],[254,167,71],[254,166,71],[254,166,71],[254,165,71],[254,165,70],[254,164,70],[254,164,70],[254,163,70],[254,163,69],[254,162,69],[254,162,69],[254,161,69],[254,161,69],[254,160,68],[254,160,68],[253,159,68],[253,159,68],[253,158,67],[253,158,67],[253,157,67],[253,157,67],[253,156,67],[253,156,66],[253,155,66],[253,155,66],[253,154,66],[253,154,65],[253,153,65],[253,153,65],[253,152,65],[253,152,65],[253,151,64],[253,151,64],[253,150,64],[253,150,64],[253,149,64],[253,149,63],[253,148,63],[253,148,63],[253,147,63],[253,147,62],[253,146,62],[253,146,62],[253,145,62],[253,145,62],[253,144,61],[253,144,61],[253,143,61],[253,143,61],[253,142,60],[253,142,60],[253,141,60],[253,140,60],[253,139,60],[253,138,59],[253,138,59],[253,137,59],[253,136,59],[253,135,58],[253,134,58],[253,133,58],[253,132,58],[253,132,57],[253,131,57],[253,130,57],[253,129,57],[253,128,56],[253,127,56],[253,126,56],[253,125,56],[253,125,55],[253,124,55],[253,123,55],[253,122,55],[253,121,54],[253,120,54],[253,119,54],[253,119,54],[253,118,53],[253,117,53],[253,116,53],[253,115,53],[253,114,52],[253,113,52],[253,113,52],[253,112,52],[253,111,51],[253,110,51],[252,109,51],[252,108,51],[252,107,50],[252,106,50],[252,106,50],[252,105,50],[252,104,49],[252,103,49],[252,102,49],[252,101,49],[252,100,48],[252,100,48],[252,99,48],[252,98,48],[252,97,47],[252,96,47],[252,95,47],[252,94,47],[252,94,46],[252,93,46],[252,92,46],[252,91,46],[252,90,45],[252,89,45],[252,88,45],[252,87,45],[252,87,44],[252,86,44],[252,85,44],[252,84,44],[252,83,43],[252,82,43],[252,81,43],[252,81,43],[252,80,42],[252,79,42],[252,78,42],[252,77,42],[251,77,42],[251,76,41],[251,75,41],[250,74,41],[250,74,41],[250,73,41],[249,72,40],[249,72,40],[249,71,40],[248,70,40],[248,69,40],[248,69,40],[247,68,39],[247,67,39],[247,67,39],[246,66,39],[246,65,39],[245,64,38],[245,64,38],[245,63,38],[244,62,38],[244,62,38],[244,61,37],[243,60,37],[243,59,37],[243,59,37],[242,58,37],[242,57,36],[242,57,36],[241,56,36],[241,55,36],[241,54,36],[240,54,35],[240,53,35],[240,52,35],[239,52,35],[239,51,35],[239,50,35],[238,50,34],[238,49,34],[238,48,34],[237,47,34],[237,47,34],[237,46,33],[236,45,33],[236,45,33],[236,44,33],[235,43,33],[235,42,32],[235,42,32],[234,41,32],[234,40,32],[234,40,32],[233,39,31],[233,38,31],[232,37,31],[232,37,31],[232,36,31],[231,35,30],[231,35,30],[231,34,30],[230,33,30],[230,32,30],[230,32,30],[229,31,29],[229,30,29],[229,30,29],[228,29,29],[228,28,29],[228,27,28],[227,27,28],[227,26,28],[226,26,28],[226,25,28],[225,25,28],[224,25,29],[224,24,29],[223,24,29],[222,24,29],[222,23,29],[221,23,29],[220,22,29],[219,22,30],[219,22,30],[218,21,30],[217,21,30],[217,21,30],[216,20,30],[215,20,30],[215,20,30],[214,19,31],[213,19,31],[213,19,31],[212,18,31],[211,18,31],[211,17,31],[210,17,31],[209,17,32],[209,16,32],[208,16,32],[207,16,32],[206,15,32],[206,15,32],[205,15,32],[204,14,33],[204,14,33],[203,14,33],[202,13,33],[202,13,33],[201,12,33],[200,12,33],[200,12,33],[199,11,34],[198,11,34],[198,11,34],[197,10,34],[196,10,34],[195,10,34],[195,9,34],[194,9,35],[193,9,35],[193,8,35],[192,8,35],[191,7,35],[191,7,35],[190,7,35],[189,6,36],[189,6,36],[188,6,36],[187,5,36],[187,5,36],[186,5,36],[185,4,36],[185,4,36],[184,4,37],[183,3,37],[182,3,37],[182,2,37],[181,2,37],[180,2,37],[180,1,37],[179,1,38],[178,1,38],[178,0,38],[177,0,38]]; var inclinationColours = [[255,255,0],[253,254,2],[251,253,4],[249,252,5],[247,251,7],[245,250,9],[243,249,11],[241,249,13],[239,248,14],[237,247,16],[235,246,18],[233,245,20],[231,244,22],[229,243,23],[227,242,25],[225,241,27],[223,240,29],[221,239,31],[219,238,32],[217,237,34],[215,237,36],[213,236,38],[211,235,40],[209,234,41],[207,233,43],[205,232,45],[203,231,47],[201,230,49],[199,229,50],[197,228,52],[195,227,54],[193,226,56],[191,226,58],[189,225,60],[187,224,61],[185,223,63],[183,222,65],[181,221,67],[179,220,69],[177,219,70],[175,218,72],[173,217,74],[171,216,76],[169,215,78],[167,214,79],[165,214,81],[163,213,83],[161,212,85],[159,211,87],[157,210,88],[155,209,90],[153,208,92],[151,207,94],[149,206,96],[147,205,97],[145,204,99],[143,203,101],[141,202,103],[139,202,105],[137,201,106],[135,200,108],[133,199,110],[131,198,112],[129,197,114],[126,196,115],[124,195,117],[122,194,119],[120,193,121],[118,192,123],[116,191,124],[114,191,126],[112,190,128],[110,189,130],[108,188,132],[106,187,133],[104,186,135],[102,185,137],[100,184,139],[98,183,141],[96,182,142],[94,181,144],[92,180,146],[90,179,148],[88,179,150],[86,178,151],[84,177,153],[82,176,155],[80,175,157],[78,174,159],[76,173,160],[74,172,162],[72,171,164],[70,170,166],[68,169,168],[66,168,169],[64,167,171],[62,167,173],[60,166,175],[58,165,177],[56,164,179],[54,163,180],[52,162,182],[50,161,184],[48,160,186],[46,159,188],[44,158,189],[42,157,191],[40,156,193],[38,156,195],[36,155,197],[34,154,198],[32,153,200],[30,152,202],[28,151,204],[26,150,206],[24,149,207],[22,148,209],[20,147,211],[18,146,213],[16,145,215],[14,144,216],[12,144,218],[10,143,220],[8,142,222],[6,141,224],[4,140,225],[2,139,227],[0,138,229]]; var terrainColours = [[50,205,50],[52,205,52],[53,206,53],[55,206,55],[56,207,56],[58,207,58],[60,207,60],[61,208,61],[63,208,63],[65,209,65],[66,209,66],[68,209,68],[69,210,69],[71,210,71],[73,211,73],[74,211,74],[76,211,76],[77,212,77],[79,212,79],[81,212,81],[82,213,82],[84,213,84],[86,214,86],[87,214,87],[89,214,89],[90,215,90],[92,215,92],[94,216,94],[95,216,95],[97,216,97],[98,217,98],[100,217,100],[102,218,102],[103,218,103],[105,218,105],[106,219,106],[108,219,108],[110,220,110],[111,220,111],[113,220,113],[115,221,115],[116,221,116],[118,222,118],[119,222,119],[121,222,121],[123,223,123],[124,223,124],[126,224,126],[127,224,127],[129,224,129],[131,225,131],[132,225,132],[134,225,134],[136,226,136],[137,226,137],[139,227,139],[140,227,140],[142,227,142],[144,228,144],[145,228,145],[147,229,147],[148,229,148],[150,229,150],[152,230,152],[153,230,153],[155,231,155],[157,231,157],[158,231,158],[160,232,160],[161,232,161],[163,233,163],[165,233,165],[166,233,166],[168,234,168],[169,234,169],[171,235,171],[173,235,173],[174,235,174],[176,236,176],[178,236,178],[179,236,179],[181,237,181],[182,237,182],[184,238,184],[186,238,186],[187,238,187],[189,239,189],[190,239,190],[192,240,192],[194,240,194],[195,240,195],[197,241,197],[199,241,199],[200,242,200],[202,242,202],[203,242,203],[205,243,205],[207,243,207],[208,244,208],[210,244,210],[211,244,211],[213,245,213],[215,245,215],[216,246,216],[218,246,218],[219,246,219],[221,247,221],[223,247,223],[224,248,224],[226,248,226],[228,248,228],[229,249,229],[231,249,231],[232,249,232],[234,250,234],[236,250,236],[237,251,237],[239,251,239],[240,251,240],[242,252,242],[244,252,244],[245,253,245],[247,253,247],[249,253,249],[250,254,250],[252,254,252],[253,255,253],[255,255,255]]; var surveyColours = [[0xa6,0xce,0xe3],[0x1f,0x78,0xb4],[0xb2,0xdf,0x8a],[0x33,0xa0,0x2c],[0xfb,0x9a,0x99],[0xe3,0x1a,0x1c],[0xfd,0xbf,0x6f],[0xff,0x7f,0x00],[0xca,0xb2,0xd6],[0x6a,0x3d,0x9a],[0xff,0xff,0x99]]; var spectrumColours = [[100,60,60],[100,63,60],[100,66,60],[100,68,60],[100,71,60],[100,73,60],[100,76,60],[100,79,60],[100,81,60],[100,84,60],[100,86,60],[100,89,60],[100,92,60],[100,94,60],[100,97,60],[99,100,60],[97,100,60],[94,100,60],[92,100,60],[89,100,60],[86,100,60],[84,100,60],[81,100,60],[79,100,60],[76,100,60],[73,100,60],[71,100,60],[68,100,60],[65,100,60],[63,100,60],[60,100,60],[60,100,63],[60,100,66],[60,100,68],[60,100,71],[60,100,73],[60,100,76],[60,100,79],[60,100,81],[60,100,84],[60,100,86],[60,100,89],[60,100,92],[60,100,94],[60,100,97],[60,99,100],[60,97,100],[60,94,100],[60,92,100],[60,89,100],[60,86,100],[60,84,100],[60,81,100],[60,79,100],[60,76,100],[60,73,100],[60,71,100],[60,68,100],[60,65,100],[60,63,100],[60,60,100],[63,60,100],[66,60,100],[68,60,100],[71,60,100],[73,60,100],[76,60,100],[79,60,100],[81,60,100],[84,60,100],[87,60,100],[89,60,100],[92,60,100],[94,60,100],[97,60,100],[100,60,99],[100,60,97],[100,60,94],[100,60,92],[100,60,89],[100,60,86],[100,60,84],[100,60,81],[100,60,78],[100,60,76],[100,60,73],[100,60,71],[100,60,68],[100,60,65],[100,60,63],[100,60,60],[100,63,60],[100,66,60],[100,68,60],[100,71,60],[100,73,60],[100,76,60],[100,79,60],[100,81,60],[100,84,60],[100,87,60],[100,89,60],[100,92,60],[100,94,60],[100,97,60],[99,100,60],[97,100,60],[94,100,60],[92,100,60],[89,100,60],[86,100,60],[84,100,60],[81,100,60],[78,100,60],[76,100,60],[73,100,60],[71,100,60],[68,100,60],[65,100,60],[63,100,60],[60,100,60],[60,100,63],[60,100,66],[60,100,68],[60,100,71],[60,100,74],[60,100,76],[60,100,79]]; var Colours = { inclination: inclinationColours, terrain: terrainColours, gradient: gradientColours, survey: surveyColours, depth: depthColours, spectrum: spectrumColours }; /** * https://github.com/mrdoob/eventdispatcher.js/ */ function EventDispatcher() {} Object.assign( EventDispatcher.prototype, { addEventListener: function ( type, listener ) { if ( this._listeners === undefined ) this._listeners = {}; var listeners = this._listeners; if ( listeners[ type ] === undefined ) { listeners[ type ] = []; } if ( listeners[ type ].indexOf( listener ) === - 1 ) { listeners[ type ].push( listener ); } }, hasEventListener: function ( type, listener ) { if ( this._listeners === undefined ) return false; var listeners = this._listeners; return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1; }, removeEventListener: function ( type, listener ) { if ( this._listeners === undefined ) return; var listeners = this._listeners; var listenerArray = listeners[ type ]; if ( listenerArray !== undefined ) { var index = listenerArray.indexOf( listener ); if ( index !== - 1 ) { listenerArray.splice( index, 1 ); } } }, dispatchEvent: function ( event ) { if ( this._listeners === undefined ) return; var listeners = this._listeners; var listenerArray = listeners[ event.type ]; if ( listenerArray !== undefined ) { event.target = this; var array = listenerArray.slice( 0 ); for ( var i = 0, l = array.length; i < l; i ++ ) { array[ i ].call( this, event ); } } } } ); var REVISION = '86'; var MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2 }; var CullFaceNone = 0; var CullFaceBack = 1; var CullFaceFront = 2; var FrontFaceDirectionCW = 0; var PCFShadowMap = 1; var PCFSoftShadowMap = 2; var FrontSide = 0; var BackSide = 1; var DoubleSide = 2; var FlatShading = 1; var SmoothShading = 2; var NoColors = 0; var FaceColors = 1; var VertexColors = 2; var NoBlending = 0; var NormalBlending = 1; var AdditiveBlending = 2; var SubtractiveBlending = 3; var MultiplyBlending = 4; var CustomBlending = 5; var AddEquation = 100; var SubtractEquation = 101; var ReverseSubtractEquation = 102; var MinEquation = 103; var MaxEquation = 104; var ZeroFactor = 200; var OneFactor = 201; var SrcColorFactor = 202; var OneMinusSrcColorFactor = 203; var SrcAlphaFactor = 204; var OneMinusSrcAlphaFactor = 205; var DstAlphaFactor = 206; var OneMinusDstAlphaFactor = 207; var DstColorFactor = 208; var OneMinusDstColorFactor = 209; var SrcAlphaSaturateFactor = 210; var NeverDepth = 0; var AlwaysDepth = 1; var LessDepth = 2; var LessEqualDepth = 3; var EqualDepth = 4; var GreaterEqualDepth = 5; var GreaterDepth = 6; var NotEqualDepth = 7; var MultiplyOperation = 0; var MixOperation = 1; var AddOperation = 2; var NoToneMapping = 0; var LinearToneMapping = 1; var ReinhardToneMapping = 2; var Uncharted2ToneMapping = 3; var CineonToneMapping = 4; var UVMapping = 300; var CubeReflectionMapping = 301; var CubeRefractionMapping = 302; var EquirectangularReflectionMapping = 303; var EquirectangularRefractionMapping = 304; var SphericalReflectionMapping = 305; var CubeUVReflectionMapping = 306; var CubeUVRefractionMapping = 307; var RepeatWrapping = 1000; var ClampToEdgeWrapping = 1001; var MirroredRepeatWrapping = 1002; var NearestFilter = 1003; var NearestMipMapNearestFilter = 1004; var NearestMipMapLinearFilter = 1005; var LinearFilter = 1006; var LinearMipMapNearestFilter = 1007; var LinearMipMapLinearFilter = 1008; var UnsignedByteType = 1009; var ByteType = 1010; var ShortType = 1011; var UnsignedShortType = 1012; var IntType = 1013; var UnsignedIntType = 1014; var FloatType = 1015; var HalfFloatType = 1016; var UnsignedShort4444Type = 1017; var UnsignedShort5551Type = 1018; var UnsignedShort565Type = 1019; var UnsignedInt248Type = 1020; var AlphaFormat = 1021; var RGBFormat = 1022; var RGBAFormat = 1023; var LuminanceFormat = 1024; var LuminanceAlphaFormat = 1025; var DepthFormat = 1026; var DepthStencilFormat = 1027; var RGB_S3TC_DXT1_Format = 2001; var RGBA_S3TC_DXT1_Format = 2002; var RGBA_S3TC_DXT3_Format = 2003; var RGBA_S3TC_DXT5_Format = 2004; var RGB_PVRTC_4BPPV1_Format = 2100; var RGB_PVRTC_2BPPV1_Format = 2101; var RGBA_PVRTC_4BPPV1_Format = 2102; var RGBA_PVRTC_2BPPV1_Format = 2103; var RGB_ETC1_Format = 2151; var LoopOnce = 2200; var LoopRepeat = 2201; var LoopPingPong = 2202; var InterpolateDiscrete = 2300; var InterpolateLinear = 2301; var InterpolateSmooth = 2302; var ZeroCurvatureEnding = 2400; var ZeroSlopeEnding = 2401; var WrapAroundEnding = 2402; var TrianglesDrawMode = 0; var TriangleStripDrawMode = 1; var TriangleFanDrawMode = 2; var LinearEncoding = 3000; var sRGBEncoding = 3001; var GammaEncoding = 3007; var RGBEEncoding = 3002; var RGBM7Encoding = 3004; var RGBM16Encoding = 3005; var RGBDEncoding = 3006; var BasicDepthPacking = 3200; var RGBADepthPacking = 3201; /** * @author mrdoob / http://mrdoob.com/ * @author philogb / http://blog.thejit.org/ * @author egraether / http://egraether.com/ * @author zz85 / http://www.lab4games.net/zz85/blog */ function Vector2( x, y ) { this.x = x || 0; this.y = y || 0; } Object.defineProperties( Vector2.prototype, { "width" : { get: function () { return this.x; }, set: function ( value ) { this.x = value; } }, "height" : { get: function () { return this.y; }, set: function ( value ) { this.y = value; } } } ); Object.assign( Vector2.prototype, { isVector2: true, set: function ( x, y ) { this.x = x; this.y = y; return this; }, setScalar: function ( scalar ) { this.x = scalar; this.y = scalar; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setComponent: function ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; }, getComponent: function ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; default: throw new Error( 'index is out of range: ' + index ); } }, clone: function () { return new this.constructor( this.x, this.y ); }, copy: function ( v ) { this.x = v.x; this.y = v.y; return this; }, add: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; return this; }, addVectors: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; return this; }, addScaledVector: function ( v, s ) { this.x += v.x * s; this.y += v.y * s; return this; }, sub: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; return this; }, subScalar: function ( s ) { this.x -= s; this.y -= s; return this; }, subVectors: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; return this; }, multiply: function ( v ) { this.x *= v.x; this.y *= v.y; return this; }, multiplyScalar: function ( scalar ) { this.x *= scalar; this.y *= scalar; return this; }, divide: function ( v ) { this.x /= v.x; this.y /= v.y; return this; }, divideScalar: function ( scalar ) { return this.multiplyScalar( 1 / scalar ); }, min: function ( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); return this; }, max: function ( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); return this; }, clamp: function ( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); return this; }, clampScalar: function () { var min = new Vector2(); var max = new Vector2(); return function clampScalar( minVal, maxVal ) { min.set( minVal, minVal ); max.set( maxVal, maxVal ); return this.clamp( min, max ); }; }(), clampLength: function ( min, max ) { var length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); }, floor: function () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); return this; }, ceil: function () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); return this; }, round: function () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); return this; }, roundToZero: function () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); return this; }, negate: function () { this.x = - this.x; this.y = - this.y; return this; }, dot: function ( v ) { return this.x * v.x + this.y * v.y; }, lengthSq: function () { return this.x * this.x + this.y * this.y; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y ); }, lengthManhattan: function() { return Math.abs( this.x ) + Math.abs( this.y ); }, normalize: function () { return this.divideScalar( this.length() || 1 ); }, angle: function () { // computes the angle in radians with respect to the positive x-axis var angle = Math.atan2( this.y, this.x ); if ( angle < 0 ) angle += 2 * Math.PI; return angle; }, distanceTo: function ( v ) { return Math.sqrt( this.distanceToSquared( v ) ); }, distanceToSquared: function ( v ) { var dx = this.x - v.x, dy = this.y - v.y; return dx * dx + dy * dy; }, distanceToManhattan: function ( v ) { return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ); }, setLength: function ( length ) { return this.normalize().multiplyScalar( length ); }, lerp: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; return this; }, lerpVectors: function ( v1, v2, alpha ) { return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 ); }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this.x = array[ offset ]; this.y = array[ offset + 1 ]; return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this.x; array[ offset + 1 ] = this.y; return array; }, fromBufferAttribute: function ( attribute, index, offset ) { if ( offset !== undefined ) { console.warn( 'THREE.Vector2: offset has been removed from .fromBufferAttribute().' ); } this.x = attribute.getX( index ); this.y = attribute.getY( index ); return this; }, rotateAround: function ( center, angle ) { var c = Math.cos( angle ), s = Math.sin( angle ); var x = this.x - center.x; var y = this.y - center.y; this.x = x * c - y * s + center.x; this.y = x * s + y * c + center.y; return this; } } ); /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ */ var textureId = 0; function Texture( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) { Object.defineProperty( this, 'id', { value: textureId ++ } ); this.uuid = _Math.generateUUID(); this.name = ''; this.image = image !== undefined ? image : Texture.DEFAULT_IMAGE; this.mipmaps = []; this.mapping = mapping !== undefined ? mapping : Texture.DEFAULT_MAPPING; this.wrapS = wrapS !== undefined ? wrapS : ClampToEdgeWrapping; this.wrapT = wrapT !== undefined ? wrapT : ClampToEdgeWrapping; this.magFilter = magFilter !== undefined ? magFilter : LinearFilter; this.minFilter = minFilter !== undefined ? minFilter : LinearMipMapLinearFilter; this.anisotropy = anisotropy !== undefined ? anisotropy : 1; this.format = format !== undefined ? format : RGBAFormat; this.type = type !== undefined ? type : UnsignedByteType; this.offset = new Vector2( 0, 0 ); this.repeat = new Vector2( 1, 1 ); this.generateMipmaps = true; this.premultiplyAlpha = false; this.flipY = true; this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) // Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap. // // Also changing the encoding after already used by a Material will not automatically make the Material // update. You need to explicitly call Material.needsUpdate to trigger it to recompile. this.encoding = encoding !== undefined ? encoding : LinearEncoding; this.version = 0; this.onUpdate = null; } Texture.DEFAULT_IMAGE = undefined; Texture.DEFAULT_MAPPING = UVMapping; Object.defineProperty( Texture.prototype, "needsUpdate", { set: function ( value ) { if ( value === true ) this.version ++; } } ); Object.assign( Texture.prototype, EventDispatcher.prototype, { constructor: Texture, isTexture: true, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.name = source.name; this.image = source.image; this.mipmaps = source.mipmaps.slice( 0 ); this.mapping = source.mapping; this.wrapS = source.wrapS; this.wrapT = source.wrapT; this.magFilter = source.magFilter; this.minFilter = source.minFilter; this.anisotropy = source.anisotropy; this.format = source.format; this.type = source.type; this.offset.copy( source.offset ); this.repeat.copy( source.repeat ); this.generateMipmaps = source.generateMipmaps; this.premultiplyAlpha = source.premultiplyAlpha; this.flipY = source.flipY; this.unpackAlignment = source.unpackAlignment; this.encoding = source.encoding; return this; }, toJSON: function ( meta ) { if ( meta.textures[ this.uuid ] !== undefined ) { return meta.textures[ this.uuid ]; } function getDataURL( image ) { var canvas; if ( image.toDataURL !== undefined ) { canvas = image; } else { canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); canvas.width = image.width; canvas.height = image.height; canvas.getContext( '2d' ).drawImage( image, 0, 0, image.width, image.height ); } if ( canvas.width > 2048 || canvas.height > 2048 ) { return canvas.toDataURL( 'image/jpeg', 0.6 ); } else { return canvas.toDataURL( 'image/png' ); } } var output = { metadata: { version: 4.5, type: 'Texture', generator: 'Texture.toJSON' }, uuid: this.uuid, name: this.name, mapping: this.mapping, repeat: [ this.repeat.x, this.repeat.y ], offset: [ this.offset.x, this.offset.y ], wrap: [ this.wrapS, this.wrapT ], minFilter: this.minFilter, magFilter: this.magFilter, anisotropy: this.anisotropy, flipY: this.flipY }; if ( this.image !== undefined ) { // TODO: Move to THREE.Image var image = this.image; if ( image.uuid === undefined ) { image.uuid = _Math.generateUUID(); // UGH } if ( meta.images[ image.uuid ] === undefined ) { meta.images[ image.uuid ] = { uuid: image.uuid, url: getDataURL( image ) }; } output.image = image.uuid; } meta.textures[ this.uuid ] = output; return output; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); }, transformUv: function ( uv ) { if ( this.mapping !== UVMapping ) return; uv.multiply( this.repeat ); uv.add( this.offset ); if ( uv.x < 0 || uv.x > 1 ) { switch ( this.wrapS ) { case RepeatWrapping: uv.x = uv.x - Math.floor( uv.x ); break; case ClampToEdgeWrapping: uv.x = uv.x < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) { uv.x = Math.ceil( uv.x ) - uv.x; } else { uv.x = uv.x - Math.floor( uv.x ); } break; } } if ( uv.y < 0 || uv.y > 1 ) { switch ( this.wrapT ) { case RepeatWrapping: uv.y = uv.y - Math.floor( uv.y ); break; case ClampToEdgeWrapping: uv.y = uv.y < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) { uv.y = Math.ceil( uv.y ) - uv.y; } else { uv.y = uv.y - Math.floor( uv.y ); } break; } } if ( this.flipY ) { uv.y = 1 - uv.y; } } } ); /** * @author alteredq / http://alteredqualia.com/ */ function DataTexture( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) { Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ); this.image = { data: data, width: width, height: height }; this.magFilter = magFilter !== undefined ? magFilter : NearestFilter; this.minFilter = minFilter !== undefined ? minFilter : NearestFilter; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; } DataTexture.prototype = Object.create( Texture.prototype ); DataTexture.prototype.constructor = DataTexture; DataTexture.prototype.isDataTexture = true; // define colors to share THREE.Color objects var caches = { 'colors': [], 'texture' : [] }; function createTexture ( scale ) { var l = scale.length; var data = new Uint8Array( l * 3 ); for ( var i = 0; i < l; ) { var c = scale[ l - ++i ]; var offset = i * 3; data[ offset ] = c[0]; data[ offset + 1 ] = c[1]; data[ offset + 2 ] = c[2]; } var texture = new DataTexture( data, l, 1, RGBFormat, UnsignedByteType ); texture.needsUpdate = true; return texture; } function createColors ( scale ) { var cache = []; var c; for ( var i = 0, l = scale.length; i < l; i++ ) { c = scale[ i ]; cache[ i ] = new Color( c[ 0 ] / 255, c[ 1 ] / 255, c[ 2 ] / 255 ); } return cache; } function getCacheEntry( cacheName, createFunc, name ) { var cache = caches[ cacheName ]; var entry = cache[ name ]; if ( entry === undefined ) { var scale = Colours[ name ]; if ( scale === undefined ) console.error( 'unknown colour scale requested ' + name ); entry = createFunc( scale ); cache[ name ] = entry; } return entry; } function getTexture( name ) { return getCacheEntry( 'texture', createTexture, name ); } function getColors( name ) { return getCacheEntry( 'colors', createColors, name ); } var ColourCache = { getTexture: getTexture, getColors: getColors, red: new Color( 0xff0000 ), yellow: new Color( 0xffff00 ), green: new Color( 0x00ff00 ), white: new Color( 0xffffff ), grey: new Color( 0x444444 ), lightGrey: new Color( 0x888888 ), hudBlue: new Color( 0x106f8d ), hudRed: new Color( 0x802100 ) }; /** * @author supereggbert / http://www.paulbrunt.co.uk/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ * @author WestLangley / http://github.com/WestLangley */ function Vector4( x, y, z, w ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; this.w = ( w !== undefined ) ? w : 1; } Object.assign( Vector4.prototype, { isVector4: true, set: function ( x, y, z, w ) { this.x = x; this.y = y; this.z = z; this.w = w; return this; }, setScalar: function ( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; this.w = scalar; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setZ: function ( z ) { this.z = z; return this; }, setW: function ( w ) { this.w = w; return this; }, setComponent: function ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; case 3: this.w = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; }, getComponent: function ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; case 3: return this.w; default: throw new Error( 'index is out of range: ' + index ); } }, clone: function () { return new this.constructor( this.x, this.y, this.z, this.w ); }, copy: function ( v ) { this.x = v.x; this.y = v.y; this.z = v.z; this.w = ( v.w !== undefined ) ? v.w : 1; return this; }, add: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; this.z += v.z; this.w += v.w; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; this.z += s; this.w += s; return this; }, addVectors: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; this.w = a.w + b.w; return this; }, addScaledVector: function ( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; this.w += v.w * s; return this; }, sub: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; this.z -= v.z; this.w -= v.w; return this; }, subScalar: function ( s ) { this.x -= s; this.y -= s; this.z -= s; this.w -= s; return this; }, subVectors: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; this.w = a.w - b.w; return this; }, multiplyScalar: function ( scalar ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; this.w *= scalar; return this; }, applyMatrix4: function ( m ) { var x = this.x, y = this.y, z = this.z, w = this.w; var e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w; this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w; return this; }, divideScalar: function ( scalar ) { return this.multiplyScalar( 1 / scalar ); }, setAxisAngleFromQuaternion: function ( q ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm // q is assumed to be normalized this.w = 2 * Math.acos( q.w ); var s = Math.sqrt( 1 - q.w * q.w ); if ( s < 0.0001 ) { this.x = 1; this.y = 0; this.z = 0; } else { this.x = q.x / s; this.y = q.y / s; this.z = q.z / s; } return this; }, setAxisAngleFromRotationMatrix: function ( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var angle, x, y, z, // variables for result epsilon = 0.01, // margin to allow for rounding errors epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; if ( ( Math.abs( m12 - m21 ) < epsilon ) && ( Math.abs( m13 - m31 ) < epsilon ) && ( Math.abs( m23 - m32 ) < epsilon ) ) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms if ( ( Math.abs( m12 + m21 ) < epsilon2 ) && ( Math.abs( m13 + m31 ) < epsilon2 ) && ( Math.abs( m23 + m32 ) < epsilon2 ) && ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) { // this singularity is identity matrix so angle = 0 this.set( 1, 0, 0, 0 ); return this; // zero angle, arbitrary axis } // otherwise this singularity is angle = 180 angle = Math.PI; var xx = ( m11 + 1 ) / 2; var yy = ( m22 + 1 ) / 2; var zz = ( m33 + 1 ) / 2; var xy = ( m12 + m21 ) / 4; var xz = ( m13 + m31 ) / 4; var yz = ( m23 + m32 ) / 4; if ( ( xx > yy ) && ( xx > zz ) ) { // m11 is the largest diagonal term if ( xx < epsilon ) { x = 0; y = 0.707106781; z = 0.707106781; } else { x = Math.sqrt( xx ); y = xy / x; z = xz / x; } } else if ( yy > zz ) { // m22 is the largest diagonal term if ( yy < epsilon ) { x = 0.707106781; y = 0; z = 0.707106781; } else { y = Math.sqrt( yy ); x = xy / y; z = yz / y; } } else { // m33 is the largest diagonal term so base result on this if ( zz < epsilon ) { x = 0.707106781; y = 0.707106781; z = 0; } else { z = Math.sqrt( zz ); x = xz / z; y = yz / z; } } this.set( x, y, z, angle ); return this; // return 180 deg rotation } // as we have reached here there are no singularities so we can handle normally var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) + ( m13 - m31 ) * ( m13 - m31 ) + ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize if ( Math.abs( s ) < 0.001 ) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I've left it in just in case this.x = ( m32 - m23 ) / s; this.y = ( m13 - m31 ) / s; this.z = ( m21 - m12 ) / s; this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 ); return this; }, min: function ( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); this.w = Math.min( this.w, v.w ); return this; }, max: function ( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); this.w = Math.max( this.w, v.w ); return this; }, clamp: function ( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); this.w = Math.max( min.w, Math.min( max.w, this.w ) ); return this; }, clampScalar: function () { var min, max; return function clampScalar( minVal, maxVal ) { if ( min === undefined ) { min = new Vector4(); max = new Vector4(); } min.set( minVal, minVal, minVal, minVal ); max.set( maxVal, maxVal, maxVal, maxVal ); return this.clamp( min, max ); }; }(), clampLength: function ( min, max ) { var length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); }, floor: function () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); this.w = Math.floor( this.w ); return this; }, ceil: function () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); this.w = Math.ceil( this.w ); return this; }, round: function () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); this.w = Math.round( this.w ); return this; }, roundToZero: function () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w ); return this; }, negate: function () { this.x = - this.x; this.y = - this.y; this.z = - this.z; this.w = - this.w; return this; }, dot: function ( v ) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; }, lengthSq: function () { return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); }, lengthManhattan: function () { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w ); }, normalize: function () { return this.divideScalar( this.length() || 1 ); }, setLength: function ( length ) { return this.normalize().multiplyScalar( length ); }, lerp: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; this.w += ( v.w - this.w ) * alpha; return this; }, lerpVectors: function ( v1, v2, alpha ) { return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 ); }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; this.w = array[ offset + 3 ]; return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; array[ offset + 3 ] = this.w; return array; }, fromBufferAttribute: function ( attribute, index, offset ) { if ( offset !== undefined ) { console.warn( 'THREE.Vector4: offset has been removed from .fromBufferAttribute().' ); } this.x = attribute.getX( index ); this.y = attribute.getY( index ); this.z = attribute.getZ( index ); this.w = attribute.getW( index ); return this; } } ); /** * @author szimek / https://github.com/szimek/ * @author alteredq / http://alteredqualia.com/ * @author Marius Kintel / https://github.com/kintel */ /* In options, we can specify: * Texture parameters for an auto-generated target texture * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers */ function WebGLRenderTarget( width, height, options ) { this.uuid = _Math.generateUUID(); this.width = width; this.height = height; this.scissor = new Vector4( 0, 0, width, height ); this.scissorTest = false; this.viewport = new Vector4( 0, 0, width, height ); options = options || {}; if ( options.minFilter === undefined ) options.minFilter = LinearFilter; this.texture = new Texture( undefined, undefined, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding ); this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true; this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true; this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null; } Object.assign( WebGLRenderTarget.prototype, EventDispatcher.prototype, { isWebGLRenderTarget: true, setSize: function ( width, height ) { if ( this.width !== width || this.height !== height ) { this.width = width; this.height = height; this.dispose(); } this.viewport.set( 0, 0, width, height ); this.scissor.set( 0, 0, width, height ); }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.width = source.width; this.height = source.height; this.viewport.copy( source.viewport ); this.texture = source.texture.clone(); this.depthBuffer = source.depthBuffer; this.stencilBuffer = source.stencilBuffer; this.depthTexture = source.depthTexture; return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } } ); /** * @author mrdoob / http://mrdoob.com/ */ function CubeTexture( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) { images = images !== undefined ? images : []; mapping = mapping !== undefined ? mapping : CubeReflectionMapping; Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ); this.flipY = false; } CubeTexture.prototype = Object.create( Texture.prototype ); CubeTexture.prototype.constructor = CubeTexture; CubeTexture.prototype.isCubeTexture = true; Object.defineProperty( CubeTexture.prototype, 'images', { get: function () { return this.image; }, set: function ( value ) { this.image = value; } } ); /** * @author tschw * * Uniforms of a program. * Those form a tree structure with a special top-level container for the root, * which you get by calling 'new WebGLUniforms( gl, program, renderer )'. * * * Properties of inner nodes including the top-level container: * * .seq - array of nested uniforms * .map - nested uniforms by name * * * Methods of all nodes except the top-level container: * * .setValue( gl, value, [renderer] ) * * uploads a uniform value(s) * the 'renderer' parameter is needed for sampler uniforms * * * Static methods of the top-level container (renderer factorizations): * * .upload( gl, seq, values, renderer ) * * sets uniforms in 'seq' to 'values[id].value' * * .seqWithValue( seq, values ) : filteredSeq * * filters 'seq' entries with corresponding entry in values * * * Methods of the top-level container (renderer factorizations): * * .setValue( gl, name, value ) * * sets uniform with name 'name' to 'value' * * .set( gl, obj, prop ) * * sets uniform from object and property with same name than uniform * * .setOptional( gl, obj, prop ) * * like .set for an optional property of the object * */ var emptyTexture = new Texture(); var emptyCubeTexture = new CubeTexture(); // --- Base for inner nodes (including the root) --- function UniformContainer() { this.seq = []; this.map = {}; } // --- Utilities --- // Array Caches (provide typed arrays for temporary by size) var arrayCacheF32 = []; var arrayCacheI32 = []; // Float32Array caches used for uploading Matrix uniforms var mat4array = new Float32Array( 16 ); var mat3array = new Float32Array( 9 ); // Flattening for arrays of vectors and matrices function flatten( array, nBlocks, blockSize ) { var firstElem = array[ 0 ]; if ( firstElem <= 0 || firstElem > 0 ) return array; // unoptimized: ! isNaN( firstElem ) // see http://jacksondunstan.com/articles/983 var n = nBlocks * blockSize, r = arrayCacheF32[ n ]; if ( r === undefined ) { r = new Float32Array( n ); arrayCacheF32[ n ] = r; } if ( nBlocks !== 0 ) { firstElem.toArray( r, 0 ); for ( var i = 1, offset = 0; i !== nBlocks; ++ i ) { offset += blockSize; array[ i ].toArray( r, offset ); } } return r; } // Texture unit allocation function allocTexUnits( renderer, n ) { var r = arrayCacheI32[ n ]; if ( r === undefined ) { r = new Int32Array( n ); arrayCacheI32[ n ] = r; } for ( var i = 0; i !== n; ++ i ) r[ i ] = renderer.allocTextureUnit(); return r; } // --- Setters --- // Note: Defining these methods externally, because they come in a bunch // and this way their names minify. // Single scalar function setValue1f( gl, v ) { gl.uniform1f( this.addr, v ); } function setValue1i( gl, v ) { gl.uniform1i( this.addr, v ); } // Single float vector (from flat array or THREE.VectorN) function setValue2fv( gl, v ) { if ( v.x === undefined ) gl.uniform2fv( this.addr, v ); else gl.uniform2f( this.addr, v.x, v.y ); } function setValue3fv( gl, v ) { if ( v.x !== undefined ) gl.uniform3f( this.addr, v.x, v.y, v.z ); else if ( v.r !== undefined ) gl.uniform3f( this.addr, v.r, v.g, v.b ); else gl.uniform3fv( this.addr, v ); } function setValue4fv( gl, v ) { if ( v.x === undefined ) gl.uniform4fv( this.addr, v ); else gl.uniform4f( this.addr, v.x, v.y, v.z, v.w ); } // Single matrix (from flat array or MatrixN) function setValue2fm( gl, v ) { gl.uniformMatrix2fv( this.addr, false, v.elements || v ); } function setValue3fm( gl, v ) { if ( v.elements === undefined ) { gl.uniformMatrix3fv( this.addr, false, v ); } else { mat3array.set( v.elements ); gl.uniformMatrix3fv( this.addr, false, mat3array ); } } function setValue4fm( gl, v ) { if ( v.elements === undefined ) { gl.uniformMatrix4fv( this.addr, false, v ); } else { mat4array.set( v.elements ); gl.uniformMatrix4fv( this.addr, false, mat4array ); } } // Single texture (2D / Cube) function setValueT1( gl, v, renderer ) { var unit = renderer.allocTextureUnit(); gl.uniform1i( this.addr, unit ); renderer.setTexture2D( v || emptyTexture, unit ); } function setValueT6( gl, v, renderer ) { var unit = renderer.allocTextureUnit(); gl.uniform1i( this.addr, unit ); renderer.setTextureCube( v || emptyCubeTexture, unit ); } // Integer / Boolean vectors or arrays thereof (always flat arrays) function setValue2iv( gl, v ) { gl.uniform2iv( this.addr, v ); } function setValue3iv( gl, v ) { gl.uniform3iv( this.addr, v ); } function setValue4iv( gl, v ) { gl.uniform4iv( this.addr, v ); } // Helper to pick the right setter for the singular case function getSingularSetter( type ) { switch ( type ) { case 0x1406: return setValue1f; // FLOAT case 0x8b50: return setValue2fv; // _VEC2 case 0x8b51: return setValue3fv; // _VEC3 case 0x8b52: return setValue4fv; // _VEC4 case 0x8b5a: return setValue2fm; // _MAT2 case 0x8b5b: return setValue3fm; // _MAT3 case 0x8b5c: return setValue4fm; // _MAT4 case 0x8b5e: case 0x8d66: return setValueT1; // SAMPLER_2D, SAMPLER_EXTERNAL_OES case 0x8b60: return setValueT6; // SAMPLER_CUBE case 0x1404: case 0x8b56: return setValue1i; // INT, BOOL case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2 case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3 case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4 } } // Array of scalars function setValue1fv( gl, v ) { gl.uniform1fv( this.addr, v ); } function setValue1iv( gl, v ) { gl.uniform1iv( this.addr, v ); } // Array of vectors (flat or from THREE classes) function setValueV2a( gl, v ) { gl.uniform2fv( this.addr, flatten( v, this.size, 2 ) ); } function setValueV3a( gl, v ) { gl.uniform3fv( this.addr, flatten( v, this.size, 3 ) ); } function setValueV4a( gl, v ) { gl.uniform4fv( this.addr, flatten( v, this.size, 4 ) ); } // Array of matrices (flat or from THREE clases) function setValueM2a( gl, v ) { gl.uniformMatrix2fv( this.addr, false, flatten( v, this.size, 4 ) ); } function setValueM3a( gl, v ) { gl.uniformMatrix3fv( this.addr, false, flatten( v, this.size, 9 ) ); } function setValueM4a( gl, v ) { gl.uniformMatrix4fv( this.addr, false, flatten( v, this.size, 16 ) ); } // Array of textures (2D / Cube) function setValueT1a( gl, v, renderer ) { var n = v.length, units = allocTexUnits( renderer, n ); gl.uniform1iv( this.addr, units ); for ( var i = 0; i !== n; ++ i ) { renderer.setTexture2D( v[ i ] || emptyTexture, units[ i ] ); } } function setValueT6a( gl, v, renderer ) { var n = v.length, units = allocTexUnits( renderer, n ); gl.uniform1iv( this.addr, units ); for ( var i = 0; i !== n; ++ i ) { renderer.setTextureCube( v[ i ] || emptyCubeTexture, units[ i ] ); } } // Helper to pick the right setter for a pure (bottom-level) array function getPureArraySetter( type ) { switch ( type ) { case 0x1406: return setValue1fv; // FLOAT case 0x8b50: return setValueV2a; // _VEC2 case 0x8b51: return setValueV3a; // _VEC3 case 0x8b52: return setValueV4a; // _VEC4 case 0x8b5a: return setValueM2a; // _MAT2 case 0x8b5b: return setValueM3a; // _MAT3 case 0x8b5c: return setValueM4a; // _MAT4 case 0x8b5e: return setValueT1a; // SAMPLER_2D case 0x8b60: return setValueT6a; // SAMPLER_CUBE case 0x1404: case 0x8b56: return setValue1iv; // INT, BOOL case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2 case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3 case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4 } } // --- Uniform Classes --- function SingleUniform( id, activeInfo, addr ) { this.id = id; this.addr = addr; this.setValue = getSingularSetter( activeInfo.type ); // this.path = activeInfo.name; // DEBUG } function PureArrayUniform( id, activeInfo, addr ) { this.id = id; this.addr = addr; this.size = activeInfo.size; this.setValue = getPureArraySetter( activeInfo.type ); // this.path = activeInfo.name; // DEBUG } function StructuredUniform( id ) { this.id = id; UniformContainer.call( this ); // mix-in } StructuredUniform.prototype.setValue = function ( gl, value ) { // Note: Don't need an extra 'renderer' parameter, since samplers // are not allowed in structured uniforms. var seq = this.seq; for ( var i = 0, n = seq.length; i !== n; ++ i ) { var u = seq[ i ]; u.setValue( gl, value[ u.id ] ); } }; // --- Top-level --- // Parser - builds up the property tree from the path strings var RePathPart = /([\w\d_]+)(\])?(\[|\.)?/g; // extracts // - the identifier (member name or array index) // - followed by an optional right bracket (found when array index) // - followed by an optional left bracket or dot (type of subscript) // // Note: These portions can be read in a non-overlapping fashion and // allow straightforward parsing of the hierarchy that WebGL encodes // in the uniform names. function addUniform( container, uniformObject ) { container.seq.push( uniformObject ); container.map[ uniformObject.id ] = uniformObject; } function parseUniform( activeInfo, addr, container ) { var path = activeInfo.name, pathLength = path.length; // reset RegExp object, because of the early exit of a previous run RePathPart.lastIndex = 0; for ( ; ; ) { var match = RePathPart.exec( path ), matchEnd = RePathPart.lastIndex, id = match[ 1 ], idIsIndex = match[ 2 ] === ']', subscript = match[ 3 ]; if ( idIsIndex ) id = id | 0; // convert to integer if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) { // bare name or "pure" bottom-level array "[0]" suffix addUniform( container, subscript === undefined ? new SingleUniform( id, activeInfo, addr ) : new PureArrayUniform( id, activeInfo, addr ) ); break; } else { // step into inner node / create it in case it doesn't exist var map = container.map, next = map[ id ]; if ( next === undefined ) { next = new StructuredUniform( id ); addUniform( container, next ); } container = next; } } } // Root Container function WebGLUniforms( gl, program, renderer ) { UniformContainer.call( this ); this.renderer = renderer; var n = gl.getProgramParameter( program, gl.ACTIVE_UNIFORMS ); for ( var i = 0; i < n; ++ i ) { var info = gl.getActiveUniform( program, i ), path = info.name, addr = gl.getUniformLocation( program, path ); parseUniform( info, addr, this ); } } WebGLUniforms.prototype.setValue = function ( gl, name, value ) { var u = this.map[ name ]; if ( u !== undefined ) u.setValue( gl, value, this.renderer ); }; WebGLUniforms.prototype.setOptional = function ( gl, object, name ) { var v = object[ name ]; if ( v !== undefined ) this.setValue( gl, name, v ); }; // Static interface WebGLUniforms.upload = function ( gl, seq, values, renderer ) { for ( var i = 0, n = seq.length; i !== n; ++ i ) { var u = seq[ i ], v = values[ u.id ]; if ( v.needsUpdate !== false ) { // note: always updating when .needsUpdate is undefined u.setValue( gl, v.value, renderer ); } } }; WebGLUniforms.seqWithValue = function ( seq, values ) { var r = []; for ( var i = 0, n = seq.length; i !== n; ++ i ) { var u = seq[ i ]; if ( u.id in values ) r.push( u ); } return r; }; /** * Uniforms library for shared webgl shaders */ var UniformsLib = { common: { diffuse: { value: new Color( 0xeeeeee ) }, opacity: { value: 1.0 }, map: { value: null }, offsetRepeat: { value: new Vector4( 0, 0, 1, 1 ) }, specularMap: { value: null }, alphaMap: { value: null }, envMap: { value: null }, flipEnvMap: { value: - 1 }, reflectivity: { value: 1.0 }, refractionRatio: { value: 0.98 } }, aomap: { aoMap: { value: null }, aoMapIntensity: { value: 1 } }, lightmap: { lightMap: { value: null }, lightMapIntensity: { value: 1 } }, emissivemap: { emissiveMap: { value: null } }, bumpmap: { bumpMap: { value: null }, bumpScale: { value: 1 } }, normalmap: { normalMap: { value: null }, normalScale: { value: new Vector2( 1, 1 ) } }, displacementmap: { displacementMap: { value: null }, displacementScale: { value: 1 }, displacementBias: { value: 0 } }, roughnessmap: { roughnessMap: { value: null } }, metalnessmap: { metalnessMap: { value: null } }, gradientmap: { gradientMap: { value: null } }, fog: { fogDensity: { value: 0.00025 }, fogNear: { value: 1 }, fogFar: { value: 2000 }, fogColor: { value: new Color( 0xffffff ) } }, lights: { ambientLightColor: { value: [] }, directionalLights: { value: [], properties: { direction: {}, color: {}, shadow: {}, shadowBias: {}, shadowRadius: {}, shadowMapSize: {} } }, directionalShadowMap: { value: [] }, directionalShadowMatrix: { value: [] }, spotLights: { value: [], properties: { color: {}, position: {}, direction: {}, distance: {}, coneCos: {}, penumbraCos: {}, decay: {}, shadow: {}, shadowBias: {}, shadowRadius: {}, shadowMapSize: {} } }, spotShadowMap: { value: [] }, spotShadowMatrix: { value: [] }, pointLights: { value: [], properties: { color: {}, position: {}, decay: {}, distance: {}, shadow: {}, shadowBias: {}, shadowRadius: {}, shadowMapSize: {} } }, pointShadowMap: { value: [] }, pointShadowMatrix: { value: [] }, hemisphereLights: { value: [], properties: { direction: {}, skyColor: {}, groundColor: {} } }, // TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src rectAreaLights: { value: [], properties: { color: {}, position: {}, width: {}, height: {} } } }, points: { diffuse: { value: new Color( 0xeeeeee ) }, opacity: { value: 1.0 }, size: { value: 1.0 }, scale: { value: 1.0 }, map: { value: null }, offsetRepeat: { value: new Vector4( 0, 0, 1, 1 ) } } }; /** * Uniform Utilities */ var UniformsUtils = { merge: function ( uniforms ) { var merged = {}; for ( var u = 0; u < uniforms.length; u ++ ) { var tmp = this.clone( uniforms[ u ] ); for ( var p in tmp ) { merged[ p ] = tmp[ p ]; } } return merged; }, clone: function ( uniforms_src ) { var uniforms_dst = {}; for ( var u in uniforms_src ) { uniforms_dst[ u ] = {}; for ( var p in uniforms_src[ u ] ) { var parameter_src = uniforms_src[ u ][ p ]; if ( parameter_src && ( parameter_src.isColor || parameter_src.isMatrix3 || parameter_src.isMatrix4 || parameter_src.isVector2 || parameter_src.isVector3 || parameter_src.isVector4 || parameter_src.isTexture ) ) { uniforms_dst[ u ][ p ] = parameter_src.clone(); } else if ( Array.isArray( parameter_src ) ) { uniforms_dst[ u ][ p ] = parameter_src.slice(); } else { uniforms_dst[ u ][ p ] = parameter_src; } } } return uniforms_dst; } }; var alphamap_fragment = "#ifdef USE_ALPHAMAP\r\n\r\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\r\n\r\n#endif\r\n"; var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\r\n\r\n\tuniform sampler2D alphaMap;\r\n\r\n#endif\r\n"; var alphatest_fragment = "#ifdef ALPHATEST\r\n\r\n\tif ( diffuseColor.a < ALPHATEST ) discard;\r\n\r\n#endif\r\n"; var aomap_fragment = "#ifdef USE_AOMAP\r\n\r\n\t// reads channel R, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\r\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\r\n\r\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\r\n\r\n\t#if defined( USE_ENVMAP ) && defined( PHYSICAL )\r\n\r\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\r\n\r\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\r\n\r\n\t#endif\r\n\r\n#endif\r\n"; var aomap_pars_fragment = "#ifdef USE_AOMAP\r\n\r\n\tuniform sampler2D aoMap;\r\n\tuniform float aoMapIntensity;\r\n\r\n#endif"; var begin_vertex = "\r\nvec3 transformed = vec3( position );\r\n"; var beginnormal_vertex = "\r\nvec3 objectNormal = vec3( normal );\r\n"; var bsdfs = "float punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\r\n\r\n\tif( decayExponent > 0.0 ) {\r\n\r\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\r\n\r\n\t\t// based upon Frostbite 3 Moving to Physically-based Rendering\r\n\t\t// page 32, equation 26: E[window1]\r\n\t\t// http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr_v2.pdf\r\n\t\t// this is intended to be used on spot and point lights who are represented as luminous intensity\r\n\t\t// but who must be converted to luminous irradiance for surface lighting calculation\r\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\r\n\t\tfloat maxDistanceCutoffFactor = pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\r\n\t\treturn distanceFalloff * maxDistanceCutoffFactor;\r\n\r\n#else\r\n\r\n\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\r\n\r\n#endif\r\n\r\n\t}\r\n\r\n\treturn 1.0;\r\n\r\n}\r\n\r\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\r\n\r\n\treturn RECIPROCAL_PI * diffuseColor;\r\n\r\n} // validated\r\n\r\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\r\n\r\n\t// Original approximation by Christophe Schlick '94\r\n\t// float fresnel = pow( 1.0 - dotLH, 5.0 );\r\n\r\n\t// Optimized variant (presented by Epic at SIGGRAPH '13)\r\n\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\r\n\r\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\r\n\r\n} // validated\r\n\r\n// Microfacet Models for Refraction through Rough Surfaces - equation (34)\r\n// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html\r\n// alpha is \"roughness squared\" in Disney’s reparameterization\r\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\r\n\r\n\t// geometry term = G(l)⋅G(v) / 4(n⋅l)(n⋅v)\r\n\r\n\tfloat a2 = pow2( alpha );\r\n\r\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\r\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\r\n\r\n\treturn 1.0 / ( gl * gv );\r\n\r\n} // validated\r\n\r\n// Moving Frostbite to Physically Based Rendering 2.0 - page 12, listing 2\r\n// http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr_v2.pdf\r\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\r\n\r\n\tfloat a2 = pow2( alpha );\r\n\r\n\t// dotNL and dotNV are explicitly swapped. This is not a mistake.\r\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\r\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\r\n\r\n\treturn 0.5 / max( gv + gl, EPSILON );\r\n}\r\n\r\n// Microfacet Models for Refraction through Rough Surfaces - equation (33)\r\n// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html\r\n// alpha is \"roughness squared\" in Disney’s reparameterization\r\nfloat D_GGX( const in float alpha, const in float dotNH ) {\r\n\r\n\tfloat a2 = pow2( alpha );\r\n\r\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0; // avoid alpha = 0 with dotNH = 1\r\n\r\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\r\n\r\n}\r\n\r\n// GGX Distribution, Schlick Fresnel, GGX-Smith Visibility\r\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\r\n\r\n\tfloat alpha = pow2( roughness ); // UE4's roughness\r\n\r\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\r\n\r\n\tfloat dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );\r\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\r\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\r\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\r\n\r\n\tvec3 F = F_Schlick( specularColor, dotLH );\r\n\r\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\r\n\r\n\tfloat D = D_GGX( alpha, dotNH );\r\n\r\n\treturn F * ( G * D );\r\n\r\n} // validated\r\n\r\n// Rect Area Light\r\n\r\n// Area light computation code adapted from:\r\n// Real-Time Polygonal-Light Shading with Linearly Transformed Cosines\r\n// By: Eric Heitz, Jonathan Dupuy, Stephen Hill and David Neubelt\r\n// https://drive.google.com/file/d/0BzvWIdpUpRx_d09ndGVjNVJzZjA/view\r\n// https://eheitzresearch.wordpress.com/415-2/\r\n// http://blog.selfshadow.com/sandbox/ltc.html\r\n\r\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\r\n\r\n\tconst float LUT_SIZE = 64.0;\r\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\r\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\r\n\r\n\tfloat theta = acos( dot( N, V ) );\r\n\r\n\t// Parameterization of texture:\r\n\t// sqrt(roughness) -> [0,1]\r\n\t// theta -> [0, PI/2]\r\n\tvec2 uv = vec2(\r\n\t\tsqrt( saturate( roughness ) ),\r\n\t\tsaturate( theta / ( 0.5 * PI ) ) );\r\n\r\n\t// Ensure we don't have nonlinearities at the look-up table's edges\r\n\t// see: http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter24.html\r\n\t// \"Shader Analysis\" section\r\n\tuv = uv * LUT_SCALE + LUT_BIAS;\r\n\r\n\treturn uv;\r\n\r\n}\r\n\r\n// Real-Time Area Lighting: a Journey from Research to Production\r\n// By: Stephen Hill & Eric Heitz\r\n// http://advances.realtimerendering.com/s2016/s2016_ltc_rnd.pdf\r\n// An approximation for the form factor of a clipped rectangle.\r\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\r\n\r\n\tfloat l = length( f );\r\n\r\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\r\n\r\n}\r\n\r\n// Real-Time Polygonal-Light Shading with Linearly Transformed Cosines\r\n// also Real-Time Area Lighting: a Journey from Research to Production\r\n// http://advances.realtimerendering.com/s2016/s2016_ltc_rnd.pdf\r\n// Normalization by 2*PI is incorporated in this function itself.\r\n// theta/sin(theta) is approximated by rational polynomial\r\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\r\n\r\n\tfloat x = dot( v1, v2 );\r\n\r\n\tfloat y = abs( x );\r\n\tfloat a = 0.86267 + (0.49788 + 0.01436 * y ) * y;\r\n\tfloat b = 3.45068 + (4.18814 + y) * y;\r\n\tfloat v = a / b;\r\n\r\n\tfloat theta_sintheta = (x > 0.0) ? v : 0.5 * inversesqrt( 1.0 - x * x ) - v;\r\n\r\n\treturn cross( v1, v2 ) * theta_sintheta;\r\n\r\n}\r\n\r\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\r\n\r\n\t// bail if point is on back side of plane of light\r\n\t// assumes ccw winding order of light vertices\r\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\r\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\r\n\tvec3 lightNormal = cross( v1, v2 );\r\n\r\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\r\n\r\n\t// construct orthonormal basis around N\r\n\tvec3 T1, T2;\r\n\tT1 = normalize( V - N * dot( V, N ) );\r\n\tT2 = - cross( N, T1 ); // negated from paper; possibly due to a different assumed handedness of world coordinate system\r\n\r\n\t// compute transform\r\n\tmat3 mat = mInv * transpose( mat3( T1, T2, N ) );\r\n\r\n\t// transform rect\r\n\tvec3 coords[ 4 ];\r\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\r\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\r\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\r\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\r\n\r\n\t// project rect onto sphere\r\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\r\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\r\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\r\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\r\n\r\n\t// calculate vector form factor\r\n\tvec3 vectorFormFactor = vec3( 0.0 );\r\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\r\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\r\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\r\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\r\n\r\n\t// adjust for horizon clipping\r\n\tvec3 result = vec3( LTC_ClippedSphereFormFactor( vectorFormFactor ) );\r\n\r\n\treturn result;\r\n\r\n}\r\n\r\n// End Rect Area Light\r\n\r\n// ref: https://www.unrealengine.com/blog/physically-based-shading-on-mobile - environmentBRDF for GGX on mobile\r\nvec3 BRDF_Specular_GGX_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\r\n\r\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\r\n\r\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\r\n\r\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\r\n\r\n\tvec4 r = roughness * c0 + c1;\r\n\r\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\r\n\r\n\tvec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;\r\n\r\n\treturn specularColor * AB.x + AB.y;\r\n\r\n} // validated\r\n\r\n\r\nfloat G_BlinnPhong_Implicit( ) {\r\n\r\n\t// geometry term is (n dot l)(n dot v) / 4(n dot l)(n dot v)\r\n\treturn 0.25;\r\n\r\n}\r\n\r\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\r\n\r\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\r\n\r\n}\r\n\r\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\r\n\r\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\r\n\r\n\t//float dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );\r\n\t//float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\r\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\r\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\r\n\r\n\tvec3 F = F_Schlick( specularColor, dotLH );\r\n\r\n\tfloat G = G_BlinnPhong_Implicit( );\r\n\r\n\tfloat D = D_BlinnPhong( shininess, dotNH );\r\n\r\n\treturn F * ( G * D );\r\n\r\n} // validated\r\n\r\n// source: http://simonstechblog.blogspot.ca/2011/12/microfacet-brdf.html\r\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\r\n\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\r\n}\r\n\r\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\r\n\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\r\n}\r\n"; var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\r\n\r\n\tuniform sampler2D bumpMap;\r\n\tuniform float bumpScale;\r\n\r\n\t// Derivative maps - bump mapping unparametrized surfaces by Morten Mikkelsen\r\n\t// http://mmikkelsen3d.blogspot.sk/2011/07/derivative-maps.html\r\n\r\n\t// Evaluate the derivative of the height w.r.t. screen-space using forward differencing (listing 2)\r\n\r\n\tvec2 dHdxy_fwd() {\r\n\r\n\t\tvec2 dSTdx = dFdx( vUv );\r\n\t\tvec2 dSTdy = dFdy( vUv );\r\n\r\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\r\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\r\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\r\n\r\n\t\treturn vec2( dBx, dBy );\r\n\r\n\t}\r\n\r\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\r\n\r\n\t\t// Workaround for Adreno 3XX dFd*( vec3 ) bug. See #9988\r\n\r\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\r\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\r\n\t\tvec3 vN = surf_norm;\t\t// normalized\r\n\r\n\t\tvec3 R1 = cross( vSigmaY, vN );\r\n\t\tvec3 R2 = cross( vN, vSigmaX );\r\n\r\n\t\tfloat fDet = dot( vSigmaX, R1 );\r\n\r\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\r\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\r\n\r\n\t}\r\n\r\n#endif\r\n"; var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\r\n\r\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; ++ i ) {\r\n\r\n\t\tvec4 plane = clippingPlanes[ i ];\r\n\t\tif ( dot( vViewPosition, plane.xyz ) > plane.w ) discard;\r\n\r\n\t}\r\n\t\t\r\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\r\n\r\n\t\tbool clipped = true;\r\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; ++ i ) {\r\n\t\t\tvec4 plane = clippingPlanes[ i ];\r\n\t\t\tclipped = ( dot( vViewPosition, plane.xyz ) > plane.w ) && clipped;\r\n\t\t}\r\n\r\n\t\tif ( clipped ) discard;\r\n\t\r\n\t#endif\r\n\r\n#endif\r\n"; var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\r\n\r\n\t#if ! defined( PHYSICAL ) && ! defined( PHONG )\r\n\t\tvarying vec3 vViewPosition;\r\n\t#endif\r\n\r\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\r\n\r\n#endif\r\n"; var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\r\n\tvarying vec3 vViewPosition;\r\n#endif\r\n"; var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\r\n\tvViewPosition = - mvPosition.xyz;\r\n#endif\r\n\r\n"; var color_fragment = "#ifdef USE_COLOR\r\n\r\n\tdiffuseColor.rgb *= vColor;\r\n\r\n#endif"; var color_pars_fragment = "#ifdef USE_COLOR\r\n\r\n\tvarying vec3 vColor;\r\n\r\n#endif\r\n"; var color_pars_vertex = "#ifdef USE_COLOR\r\n\r\n\tvarying vec3 vColor;\r\n\r\n#endif"; var color_vertex = "#ifdef USE_COLOR\r\n\r\n\tvColor.xyz = color.xyz;\r\n\r\n#endif"; var common = "#define PI 3.14159265359\r\n#define PI2 6.28318530718\r\n#define PI_HALF 1.5707963267949\r\n#define RECIPROCAL_PI 0.31830988618\r\n#define RECIPROCAL_PI2 0.15915494\r\n#define LOG2 1.442695\r\n#define EPSILON 1e-6\r\n\r\n#define saturate(a) clamp( a, 0.0, 1.0 )\r\n#define whiteCompliment(a) ( 1.0 - saturate( a ) )\r\n\r\nfloat pow2( const in float x ) { return x*x; }\r\nfloat pow3( const in float x ) { return x*x*x; }\r\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\r\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\r\n// expects values in the range of [0,1]x[0,1], returns values in the [0,1] range.\r\n// do not collapse into a single function per: http://byteblacksmith.com/improvements-to-the-canonical-one-liner-glsl-rand-for-opengl-es-2-0/\r\nhighp float rand( const in vec2 uv ) {\r\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\r\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\r\n\treturn fract(sin(sn) * c);\r\n}\r\n\r\nstruct IncidentLight {\r\n\tvec3 color;\r\n\tvec3 direction;\r\n\tbool visible;\r\n};\r\n\r\nstruct ReflectedLight {\r\n\tvec3 directDiffuse;\r\n\tvec3 directSpecular;\r\n\tvec3 indirectDiffuse;\r\n\tvec3 indirectSpecular;\r\n};\r\n\r\nstruct GeometricContext {\r\n\tvec3 position;\r\n\tvec3 normal;\r\n\tvec3 viewDir;\r\n};\r\n\r\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\r\n\r\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\r\n\r\n}\r\n\r\n// http://en.wikibooks.org/wiki/GLSL_Programming/Applying_Matrix_Transformations\r\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\r\n\r\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\r\n\r\n}\r\n\r\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\r\n\r\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\r\n\r\n\treturn - distance * planeNormal + point;\r\n\r\n}\r\n\r\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\r\n\r\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\r\n\r\n}\r\n\r\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\r\n\r\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\r\n\r\n}\r\n\r\nmat3 transpose( const in mat3 v ) {\r\n\r\n\tmat3 tmp;\r\n\ttmp[0] = vec3(v[0].x, v[1].x, v[2].x);\r\n\ttmp[1] = vec3(v[0].y, v[1].y, v[2].y);\r\n\ttmp[2] = vec3(v[0].z, v[1].z, v[2].z);\r\n\r\n\treturn tmp;\r\n\r\n}\r\n"; var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\r\n\r\n#define cubeUV_textureSize (1024.0)\r\n\r\nint getFaceFromDirection(vec3 direction) {\r\n\tvec3 absDirection = abs(direction);\r\n\tint face = -1;\r\n\tif( absDirection.x > absDirection.z ) {\r\n\t\tif(absDirection.x > absDirection.y )\r\n\t\t\tface = direction.x > 0.0 ? 0 : 3;\r\n\t\telse\r\n\t\t\tface = direction.y > 0.0 ? 1 : 4;\r\n\t}\r\n\telse {\r\n\t\tif(absDirection.z > absDirection.y )\r\n\t\t\tface = direction.z > 0.0 ? 2 : 5;\r\n\t\telse\r\n\t\t\tface = direction.y > 0.0 ? 1 : 4;\r\n\t}\r\n\treturn face;\r\n}\r\n#define cubeUV_maxLods1 (log2(cubeUV_textureSize*0.25) - 1.0)\r\n#define cubeUV_rangeClamp (exp2((6.0 - 1.0) * 2.0))\r\n\r\nvec2 MipLevelInfo( vec3 vec, float roughnessLevel, float roughness ) {\r\n\tfloat scale = exp2(cubeUV_maxLods1 - roughnessLevel);\r\n\tfloat dxRoughness = dFdx(roughness);\r\n\tfloat dyRoughness = dFdy(roughness);\r\n\tvec3 dx = dFdx( vec * scale * dxRoughness );\r\n\tvec3 dy = dFdy( vec * scale * dyRoughness );\r\n\tfloat d = max( dot( dx, dx ), dot( dy, dy ) );\r\n\t// Clamp the value to the max mip level counts. hard coded to 6 mips\r\n\td = clamp(d, 1.0, cubeUV_rangeClamp);\r\n\tfloat mipLevel = 0.5 * log2(d);\r\n\treturn vec2(floor(mipLevel), fract(mipLevel));\r\n}\r\n\r\n#define cubeUV_maxLods2 (log2(cubeUV_textureSize*0.25) - 2.0)\r\n#define cubeUV_rcpTextureSize (1.0 / cubeUV_textureSize)\r\n\r\nvec2 getCubeUV(vec3 direction, float roughnessLevel, float mipLevel) {\r\n\tmipLevel = roughnessLevel > cubeUV_maxLods2 - 3.0 ? 0.0 : mipLevel;\r\n\tfloat a = 16.0 * cubeUV_rcpTextureSize;\r\n\r\n\tvec2 exp2_packed = exp2( vec2( roughnessLevel, mipLevel ) );\r\n\tvec2 rcp_exp2_packed = vec2( 1.0 ) / exp2_packed;\r\n\t// float powScale = exp2(roughnessLevel + mipLevel);\r\n\tfloat powScale = exp2_packed.x * exp2_packed.y;\r\n\t// float scale = 1.0 / exp2(roughnessLevel + 2.0 + mipLevel);\r\n\tfloat scale = rcp_exp2_packed.x * rcp_exp2_packed.y * 0.25;\r\n\t// float mipOffset = 0.75*(1.0 - 1.0/exp2(mipLevel))/exp2(roughnessLevel);\r\n\tfloat mipOffset = 0.75*(1.0 - rcp_exp2_packed.y) * rcp_exp2_packed.x;\r\n\r\n\tbool bRes = mipLevel == 0.0;\r\n\tscale = bRes && (scale < a) ? a : scale;\r\n\r\n\tvec3 r;\r\n\tvec2 offset;\r\n\tint face = getFaceFromDirection(direction);\r\n\r\n\tfloat rcpPowScale = 1.0 / powScale;\r\n\r\n\tif( face == 0) {\r\n\t\tr = vec3(direction.x, -direction.z, direction.y);\r\n\t\toffset = vec2(0.0+mipOffset,0.75 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\r\n\t}\r\n\telse if( face == 1) {\r\n\t\tr = vec3(direction.y, direction.x, direction.z);\r\n\t\toffset = vec2(scale+mipOffset, 0.75 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\r\n\t}\r\n\telse if( face == 2) {\r\n\t\tr = vec3(direction.z, direction.x, direction.y);\r\n\t\toffset = vec2(2.0*scale+mipOffset, 0.75 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\r\n\t}\r\n\telse if( face == 3) {\r\n\t\tr = vec3(direction.x, direction.z, direction.y);\r\n\t\toffset = vec2(0.0+mipOffset,0.5 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\r\n\t}\r\n\telse if( face == 4) {\r\n\t\tr = vec3(direction.y, direction.x, -direction.z);\r\n\t\toffset = vec2(scale+mipOffset, 0.5 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\r\n\t}\r\n\telse {\r\n\t\tr = vec3(direction.z, -direction.x, direction.y);\r\n\t\toffset = vec2(2.0*scale+mipOffset, 0.5 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\r\n\t}\r\n\tr = normalize(r);\r\n\tfloat texelOffset = 0.5 * cubeUV_rcpTextureSize;\r\n\tvec2 s = ( r.yz / abs( r.x ) + vec2( 1.0 ) ) * 0.5;\r\n\tvec2 base = offset + vec2( texelOffset );\r\n\treturn base + s * ( scale - 2.0 * texelOffset );\r\n}\r\n\r\n#define cubeUV_maxLods3 (log2(cubeUV_textureSize*0.25) - 3.0)\r\n\r\nvec4 textureCubeUV(vec3 reflectedDirection, float roughness ) {\r\n\tfloat roughnessVal = roughness* cubeUV_maxLods3;\r\n\tfloat r1 = floor(roughnessVal);\r\n\tfloat r2 = r1 + 1.0;\r\n\tfloat t = fract(roughnessVal);\r\n\tvec2 mipInfo = MipLevelInfo(reflectedDirection, r1, roughness);\r\n\tfloat s = mipInfo.y;\r\n\tfloat level0 = mipInfo.x;\r\n\tfloat level1 = level0 + 1.0;\r\n\tlevel1 = level1 > 5.0 ? 5.0 : level1;\r\n\r\n\t// round to nearest mipmap if we are not interpolating.\r\n\tlevel0 += min( floor( s + 0.5 ), 5.0 );\r\n\r\n\t// Tri linear interpolation.\r\n\tvec2 uv_10 = getCubeUV(reflectedDirection, r1, level0);\r\n\tvec4 color10 = envMapTexelToLinear(texture2D(envMap, uv_10));\r\n\r\n\tvec2 uv_20 = getCubeUV(reflectedDirection, r2, level0);\r\n\tvec4 color20 = envMapTexelToLinear(texture2D(envMap, uv_20));\r\n\r\n\tvec4 result = mix(color10, color20, t);\r\n\r\n\treturn vec4(result.rgb, 1.0);\r\n}\r\n\r\n#endif\r\n"; var defaultnormal_vertex = "vec3 transformedNormal = normalMatrix * objectNormal;\r\n\r\n#ifdef FLIP_SIDED\r\n\r\n\ttransformedNormal = - transformedNormal;\r\n\r\n#endif\r\n"; var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\r\n\r\n\tuniform sampler2D displacementMap;\r\n\tuniform float displacementScale;\r\n\tuniform float displacementBias;\r\n\r\n#endif\r\n"; var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\r\n\r\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, uv ).x * displacementScale + displacementBias );\r\n\r\n#endif\r\n"; var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\r\n\r\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\r\n\r\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\r\n\r\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\r\n\r\n#endif\r\n"; var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\r\n\r\n\tuniform sampler2D emissiveMap;\r\n\r\n#endif\r\n"; var encodings_fragment = " gl_FragColor = linearToOutputTexel( gl_FragColor );\r\n"; var encodings_pars_fragment = "// For a discussion of what this is, please read this: http://lousodrome.net/blog/light/2013/05/26/gamma-correct-and-hdr-rendering-in-a-32-bits-buffer/\r\n\r\nvec4 LinearToLinear( in vec4 value ) {\r\n\treturn value;\r\n}\r\n\r\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\r\n\treturn vec4( pow( value.xyz, vec3( gammaFactor ) ), value.w );\r\n}\r\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\r\n\treturn vec4( pow( value.xyz, vec3( 1.0 / gammaFactor ) ), value.w );\r\n}\r\n\r\nvec4 sRGBToLinear( in vec4 value ) {\r\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.w );\r\n}\r\nvec4 LinearTosRGB( in vec4 value ) {\r\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.w );\r\n}\r\n\r\nvec4 RGBEToLinear( in vec4 value ) {\r\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\r\n}\r\nvec4 LinearToRGBE( in vec4 value ) {\r\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\r\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\r\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\r\n// return vec4( value.brg, ( 3.0 + 128.0 ) / 256.0 );\r\n}\r\n\r\n// reference: http://iwasbeingirony.blogspot.ca/2010/06/difference-between-rgbm-and-rgbd.html\r\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\r\n\treturn vec4( value.xyz * value.w * maxRange, 1.0 );\r\n}\r\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\r\n\tfloat maxRGB = max( value.x, max( value.g, value.b ) );\r\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\r\n\tM = ceil( M * 255.0 ) / 255.0;\r\n\treturn vec4( value.rgb / ( M * maxRange ), M );\r\n}\r\n\r\n// reference: http://iwasbeingirony.blogspot.ca/2010/06/difference-between-rgbm-and-rgbd.html\r\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\r\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\r\n}\r\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\r\n\tfloat maxRGB = max( value.x, max( value.g, value.b ) );\r\n\tfloat D = max( maxRange / maxRGB, 1.0 );\r\n\tD = min( floor( D ) / 255.0, 1.0 );\r\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\r\n}\r\n\r\n// LogLuv reference: http://graphicrants.blogspot.ca/2009/04/rgbm-color-encoding.html\r\n\r\n// M matrix, for encoding\r\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\r\nvec4 LinearToLogLuv( in vec4 value ) {\r\n\tvec3 Xp_Y_XYZp = value.rgb * cLogLuvM;\r\n\tXp_Y_XYZp = max(Xp_Y_XYZp, vec3(1e-6, 1e-6, 1e-6));\r\n\tvec4 vResult;\r\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\r\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\r\n\tvResult.w = fract(Le);\r\n\tvResult.z = (Le - (floor(vResult.w*255.0))/255.0)/255.0;\r\n\treturn vResult;\r\n}\r\n\r\n// Inverse M matrix, for decoding\r\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\r\nvec4 LogLuvToLinear( in vec4 value ) {\r\n\tfloat Le = value.z * 255.0 + value.w;\r\n\tvec3 Xp_Y_XYZp;\r\n\tXp_Y_XYZp.y = exp2((Le - 127.0) / 2.0);\r\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\r\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\r\n\tvec3 vRGB = Xp_Y_XYZp.rgb * cLogLuvInverseM;\r\n\treturn vec4( max(vRGB, 0.0), 1.0 );\r\n}\r\n"; var envmap_fragment = "#ifdef USE_ENVMAP\r\n\r\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\r\n\r\n\t\tvec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );\r\n\r\n\t\t// Transforming Normal Vectors with the Inverse Transformation\r\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\r\n\r\n\t\t#ifdef ENVMAP_MODE_REFLECTION\r\n\r\n\t\t\tvec3 reflectVec = reflect( cameraToVertex, worldNormal );\r\n\r\n\t\t#else\r\n\r\n\t\t\tvec3 reflectVec = refract( cameraToVertex, worldNormal, refractionRatio );\r\n\r\n\t\t#endif\r\n\r\n\t#else\r\n\r\n\t\tvec3 reflectVec = vReflect;\r\n\r\n\t#endif\r\n\r\n\t#ifdef ENVMAP_TYPE_CUBE\r\n\r\n\t\tvec4 envColor = textureCube( envMap, flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\r\n\r\n\t#elif defined( ENVMAP_TYPE_EQUIREC )\r\n\r\n\t\tvec2 sampleUV;\r\n\t\tsampleUV.y = asin( flipNormal * reflectVec.y ) * RECIPROCAL_PI + 0.5;\r\n\t\tsampleUV.x = atan( flipNormal * reflectVec.z, flipNormal * reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\r\n\t\tvec4 envColor = texture2D( envMap, sampleUV );\r\n\r\n\t#elif defined( ENVMAP_TYPE_SPHERE )\r\n\r\n\t\tvec3 reflectView = flipNormal * normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0, 0.0, 1.0 ) );\r\n\t\tvec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );\r\n\r\n\t#else\r\n\r\n\t\tvec4 envColor = vec4( 0.0 );\r\n\r\n\t#endif\r\n\r\n\tenvColor = envMapTexelToLinear( envColor );\r\n\r\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\r\n\r\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\r\n\r\n\t#elif defined( ENVMAP_BLENDING_MIX )\r\n\r\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\r\n\r\n\t#elif defined( ENVMAP_BLENDING_ADD )\r\n\r\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\r\n\r\n\t#endif\r\n\r\n#endif\r\n"; var envmap_pars_fragment = "#if defined( USE_ENVMAP ) || defined( PHYSICAL )\r\n\tuniform float reflectivity;\r\n\tuniform float envMapIntensity;\r\n#endif\r\n\r\n#ifdef USE_ENVMAP\r\n\r\n\t#if ! defined( PHYSICAL ) && ( defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) )\r\n\t\tvarying vec3 vWorldPosition;\r\n\t#endif\r\n\r\n\t#ifdef ENVMAP_TYPE_CUBE\r\n\t\tuniform samplerCube envMap;\r\n\t#else\r\n\t\tuniform sampler2D envMap;\r\n\t#endif\r\n\tuniform float flipEnvMap;\r\n\r\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( PHYSICAL )\r\n\t\tuniform float refractionRatio;\r\n\t#else\r\n\t\tvarying vec3 vReflect;\r\n\t#endif\r\n\r\n#endif\r\n"; var envmap_pars_vertex = "#ifdef USE_ENVMAP\r\n\r\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\r\n\t\tvarying vec3 vWorldPosition;\r\n\r\n\t#else\r\n\r\n\t\tvarying vec3 vReflect;\r\n\t\tuniform float refractionRatio;\r\n\r\n\t#endif\r\n\r\n#endif\r\n"; var envmap_vertex = "#ifdef USE_ENVMAP\r\n\r\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\r\n\r\n\t\tvWorldPosition = worldPosition.xyz;\r\n\r\n\t#else\r\n\r\n\t\tvec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );\r\n\r\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\r\n\r\n\t\t#ifdef ENVMAP_MODE_REFLECTION\r\n\r\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\r\n\r\n\t\t#else\r\n\r\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\r\n\r\n\t\t#endif\r\n\r\n\t#endif\r\n\r\n#endif\r\n"; var fog_vertex = "\r\n#ifdef USE_FOG\r\nfogDepth = -mvPosition.z;\r\n#endif"; var fog_pars_vertex = "#ifdef USE_FOG\r\n\r\n varying float fogDepth;\r\n\r\n#endif\r\n"; var fog_fragment = "#ifdef USE_FOG\r\n\r\n\t#ifdef FOG_EXP2\r\n\r\n\t\tfloat fogFactor = whiteCompliment( exp2( - fogDensity * fogDensity * fogDepth * fogDepth * LOG2 ) );\r\n\r\n\t#else\r\n\r\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\r\n\r\n\t#endif\r\n\r\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\r\n\r\n#endif\r\n"; var fog_pars_fragment = "#ifdef USE_FOG\r\n\r\n\tuniform vec3 fogColor;\r\n\tvarying float fogDepth;\r\n\r\n\t#ifdef FOG_EXP2\r\n\r\n\t\tuniform float fogDensity;\r\n\r\n\t#else\r\n\r\n\t\tuniform float fogNear;\r\n\t\tuniform float fogFar;\r\n\r\n\t#endif\r\n\r\n#endif\r\n"; var gradientmap_pars_fragment = "#ifdef TOON\r\n\r\n\tuniform sampler2D gradientMap;\r\n\r\n\tvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\r\n\r\n\t\t// dotNL will be from -1.0 to 1.0\r\n\t\tfloat dotNL = dot( normal, lightDirection );\r\n\t\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\r\n\r\n\t\t#ifdef USE_GRADIENTMAP\r\n\r\n\t\t\treturn texture2D( gradientMap, coord ).rgb;\r\n\r\n\t\t#else\r\n\r\n\t\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\r\n\r\n\t\t#endif\r\n\r\n\r\n\t}\r\n\r\n#endif\r\n"; var lightmap_fragment = "#ifdef USE_LIGHTMAP\r\n\r\n\treflectedLight.indirectDiffuse += PI * texture2D( lightMap, vUv2 ).xyz * lightMapIntensity; // factor of PI should not be present; included here to prevent breakage\r\n\r\n#endif\r\n"; var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\r\n\r\n\tuniform sampler2D lightMap;\r\n\tuniform float lightMapIntensity;\r\n\r\n#endif"; var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\r\n\r\nGeometricContext geometry;\r\ngeometry.position = mvPosition.xyz;\r\ngeometry.normal = normalize( transformedNormal );\r\ngeometry.viewDir = normalize( -mvPosition.xyz );\r\n\r\nGeometricContext backGeometry;\r\nbackGeometry.position = geometry.position;\r\nbackGeometry.normal = -geometry.normal;\r\nbackGeometry.viewDir = geometry.viewDir;\r\n\r\nvLightFront = vec3( 0.0 );\r\n\r\n#ifdef DOUBLE_SIDED\r\n\tvLightBack = vec3( 0.0 );\r\n#endif\r\n\r\nIncidentLight directLight;\r\nfloat dotNL;\r\nvec3 directLightColor_Diffuse;\r\n\r\n#if NUM_POINT_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\r\n\r\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\r\n\r\n\t\tdotNL = dot( geometry.normal, directLight.direction );\r\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\r\n\r\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#ifdef DOUBLE_SIDED\r\n\r\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#endif\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if NUM_SPOT_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\r\n\r\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\r\n\r\n\t\tdotNL = dot( geometry.normal, directLight.direction );\r\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\r\n\r\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#ifdef DOUBLE_SIDED\r\n\r\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#endif\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n\r\n#if NUM_DIR_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\r\n\r\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\r\n\r\n\t\tdotNL = dot( geometry.normal, directLight.direction );\r\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\r\n\r\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#ifdef DOUBLE_SIDED\r\n\r\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#endif\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if NUM_HEMI_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\r\n\r\n\t\tvLightFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\r\n\r\n\t\t#ifdef DOUBLE_SIDED\r\n\r\n\t\t\tvLightBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\r\n\r\n\t\t#endif\r\n\r\n\t}\r\n\r\n#endif\r\n"; var lights_pars = "uniform vec3 ambientLightColor;\r\n\r\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\r\n\r\n\tvec3 irradiance = ambientLightColor;\r\n\r\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\tirradiance *= PI;\r\n\r\n\t#endif\r\n\r\n\treturn irradiance;\r\n\r\n}\r\n\r\n#if NUM_DIR_LIGHTS > 0\r\n\r\n\tstruct DirectionalLight {\r\n\t\tvec3 direction;\r\n\t\tvec3 color;\r\n\r\n\t\tint shadow;\r\n\t\tfloat shadowBias;\r\n\t\tfloat shadowRadius;\r\n\t\tvec2 shadowMapSize;\r\n\t};\r\n\r\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\r\n\r\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\r\n\r\n\t\tdirectLight.color = directionalLight.color;\r\n\t\tdirectLight.direction = directionalLight.direction;\r\n\t\tdirectLight.visible = true;\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n#if NUM_POINT_LIGHTS > 0\r\n\r\n\tstruct PointLight {\r\n\t\tvec3 position;\r\n\t\tvec3 color;\r\n\t\tfloat distance;\r\n\t\tfloat decay;\r\n\r\n\t\tint shadow;\r\n\t\tfloat shadowBias;\r\n\t\tfloat shadowRadius;\r\n\t\tvec2 shadowMapSize;\r\n\t};\r\n\r\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\r\n\r\n\t// directLight is an out parameter as having it as a return value caused compiler errors on some devices\r\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\r\n\r\n\t\tvec3 lVector = pointLight.position - geometry.position;\r\n\t\tdirectLight.direction = normalize( lVector );\r\n\r\n\t\tfloat lightDistance = length( lVector );\r\n\r\n\t\tdirectLight.color = pointLight.color;\r\n\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\r\n\t\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n#if NUM_SPOT_LIGHTS > 0\r\n\r\n\tstruct SpotLight {\r\n\t\tvec3 position;\r\n\t\tvec3 direction;\r\n\t\tvec3 color;\r\n\t\tfloat distance;\r\n\t\tfloat decay;\r\n\t\tfloat coneCos;\r\n\t\tfloat penumbraCos;\r\n\r\n\t\tint shadow;\r\n\t\tfloat shadowBias;\r\n\t\tfloat shadowRadius;\r\n\t\tvec2 shadowMapSize;\r\n\t};\r\n\r\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\r\n\r\n\t// directLight is an out parameter as having it as a return value caused compiler errors on some devices\r\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) {\r\n\r\n\t\tvec3 lVector = spotLight.position - geometry.position;\r\n\t\tdirectLight.direction = normalize( lVector );\r\n\r\n\t\tfloat lightDistance = length( lVector );\r\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\r\n\r\n\t\tif ( angleCos > spotLight.coneCos ) {\r\n\r\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\r\n\r\n\t\t\tdirectLight.color = spotLight.color;\r\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\r\n\t\t\tdirectLight.visible = true;\r\n\r\n\t\t} else {\r\n\r\n\t\t\tdirectLight.color = vec3( 0.0 );\r\n\t\t\tdirectLight.visible = false;\r\n\r\n\t\t}\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n#if NUM_RECT_AREA_LIGHTS > 0\r\n\r\n\tstruct RectAreaLight {\r\n\t\tvec3 color;\r\n\t\tvec3 position;\r\n\t\tvec3 halfWidth;\r\n\t\tvec3 halfHeight;\r\n\t};\r\n\r\n\t// Pre-computed values of LinearTransformedCosine approximation of BRDF\r\n\t// BRDF approximation Texture is 64x64\r\n\tuniform sampler2D ltcMat; // RGBA Float\r\n\tuniform sampler2D ltcMag; // Alpha Float (only has w component)\r\n\r\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\r\n\r\n#endif\r\n\r\n\r\n#if NUM_HEMI_LIGHTS > 0\r\n\r\n\tstruct HemisphereLight {\r\n\t\tvec3 direction;\r\n\t\tvec3 skyColor;\r\n\t\tvec3 groundColor;\r\n\t};\r\n\r\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\r\n\r\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\r\n\r\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\r\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\r\n\r\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\r\n\r\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\t\tirradiance *= PI;\r\n\r\n\t\t#endif\r\n\r\n\t\treturn irradiance;\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n#if defined( USE_ENVMAP ) && defined( PHYSICAL )\r\n\r\n\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\r\n\r\n\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\r\n\r\n\t\t#ifdef ENVMAP_TYPE_CUBE\r\n\r\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\r\n\r\n\t\t\t// TODO: replace with properly filtered cubemaps and access the irradiance LOD level, be it the last LOD level\r\n\t\t\t// of a specular cubemap, or just the default level of a specially created irradiance cubemap.\r\n\r\n\t\t\t#ifdef TEXTURE_LOD_EXT\r\n\r\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\r\n\r\n\t\t\t#else\r\n\r\n\t\t\t\t// force the bias high to get the last LOD level as it is the most blurred.\r\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\r\n\r\n\t\t\t#endif\r\n\r\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\r\n\r\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\r\n\r\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\r\n\t\t\tvec4 envMapColor = textureCubeUV( queryVec, 1.0 );\r\n\r\n\t\t#else\r\n\r\n\t\t\tvec4 envMapColor = vec4( 0.0 );\r\n\r\n\t\t#endif\r\n\r\n\t\treturn PI * envMapColor.rgb * envMapIntensity;\r\n\r\n\t}\r\n\r\n\t// taken from here: http://casual-effects.blogspot.ca/2011/08/plausible-environment-lighting-in-two.html\r\n\tfloat getSpecularMIPLevel( const in float blinnShininessExponent, const in int maxMIPLevel ) {\r\n\r\n\t\t//float envMapWidth = pow( 2.0, maxMIPLevelScalar );\r\n\t\t//float desiredMIPLevel = log2( envMapWidth * sqrt( 3.0 ) ) - 0.5 * log2( pow2( blinnShininessExponent ) + 1.0 );\r\n\r\n\t\tfloat maxMIPLevelScalar = float( maxMIPLevel );\r\n\t\tfloat desiredMIPLevel = maxMIPLevelScalar - 0.79248 - 0.5 * log2( pow2( blinnShininessExponent ) + 1.0 );\r\n\r\n\t\t// clamp to allowable LOD ranges.\r\n\t\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\r\n\r\n\t}\r\n\r\n\tvec3 getLightProbeIndirectRadiance( const in GeometricContext geometry, const in float blinnShininessExponent, const in int maxMIPLevel ) {\r\n\r\n\t\t#ifdef ENVMAP_MODE_REFLECTION\r\n\r\n\t\t\tvec3 reflectVec = reflect( -geometry.viewDir, geometry.normal );\r\n\r\n\t\t#else\r\n\r\n\t\t\tvec3 reflectVec = refract( -geometry.viewDir, geometry.normal, refractionRatio );\r\n\r\n\t\t#endif\r\n\r\n\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\r\n\r\n\t\tfloat specularMIPLevel = getSpecularMIPLevel( blinnShininessExponent, maxMIPLevel );\r\n\r\n\t\t#ifdef ENVMAP_TYPE_CUBE\r\n\r\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\r\n\r\n\t\t\t#ifdef TEXTURE_LOD_EXT\r\n\r\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\r\n\r\n\t\t\t#else\r\n\r\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\r\n\r\n\t\t\t#endif\r\n\r\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\r\n\r\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\r\n\r\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\r\n\t\t\tvec4 envMapColor = textureCubeUV(queryReflectVec, BlinnExponentToGGXRoughness(blinnShininessExponent));\r\n\r\n\t\t#elif defined( ENVMAP_TYPE_EQUIREC )\r\n\r\n\t\t\tvec2 sampleUV;\r\n\t\t\tsampleUV.y = saturate( reflectVec.y * 0.5 + 0.5 );\r\n\t\t\tsampleUV.x = atan( reflectVec.z, reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\r\n\r\n\t\t\t#ifdef TEXTURE_LOD_EXT\r\n\r\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, sampleUV, specularMIPLevel );\r\n\r\n\t\t\t#else\r\n\r\n\t\t\t\tvec4 envMapColor = texture2D( envMap, sampleUV, specularMIPLevel );\r\n\r\n\t\t\t#endif\r\n\r\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\r\n\r\n\t\t#elif defined( ENVMAP_TYPE_SPHERE )\r\n\r\n\t\t\tvec3 reflectView = normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0,0.0,1.0 ) );\r\n\r\n\t\t\t#ifdef TEXTURE_LOD_EXT\r\n\r\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\r\n\r\n\t\t\t#else\r\n\r\n\t\t\t\tvec4 envMapColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\r\n\r\n\t\t\t#endif\r\n\r\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\r\n\r\n\t\t#endif\r\n\r\n\t\treturn envMapColor.rgb * envMapIntensity;\r\n\r\n\t}\r\n\r\n#endif\r\n"; var lights_phong_fragment = "BlinnPhongMaterial material;\r\nmaterial.diffuseColor = diffuseColor.rgb;\r\nmaterial.specularColor = specular;\r\nmaterial.specularShininess = shininess;\r\nmaterial.specularStrength = specularStrength;\r\n"; var lights_phong_pars_fragment = "varying vec3 vViewPosition;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n\r\nstruct BlinnPhongMaterial {\r\n\r\n\tvec3\tdiffuseColor;\r\n\tvec3\tspecularColor;\r\n\tfloat\tspecularShininess;\r\n\tfloat\tspecularStrength;\r\n\r\n};\r\n\r\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\t#ifdef TOON\r\n\r\n\t\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\r\n\r\n\t#else\r\n\r\n\t\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\r\n\t\tvec3 irradiance = dotNL * directLight.color;\r\n\r\n\t#endif\r\n\r\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\tirradiance *= PI; // punctual light\r\n\r\n\t#endif\r\n\r\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\r\n\r\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\r\n\r\n}\r\n\r\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\r\n\r\n}\r\n\r\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\r\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\r\n\r\n#define Material_LightProbeLOD( material )\t(0)\r\n"; var lights_physical_fragment = "PhysicalMaterial material;\r\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\r\nmaterial.specularRoughness = clamp( roughnessFactor, 0.04, 1.0 );\r\n#ifdef STANDARD\r\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\r\n#else\r\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\r\n\tmaterial.clearCoat = saturate( clearCoat ); // Burley clearcoat model\r\n\tmaterial.clearCoatRoughness = clamp( clearCoatRoughness, 0.04, 1.0 );\r\n#endif\r\n"; var lights_physical_pars_fragment = "struct PhysicalMaterial {\r\n\r\n\tvec3\tdiffuseColor;\r\n\tfloat\tspecularRoughness;\r\n\tvec3\tspecularColor;\r\n\r\n\t#ifndef STANDARD\r\n\t\tfloat clearCoat;\r\n\t\tfloat clearCoatRoughness;\r\n\t#endif\r\n\r\n};\r\n\r\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\r\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\r\n\r\n// Clear coat directional hemishperical reflectance (this approximation should be improved)\r\nfloat clearCoatDHRApprox( const in float roughness, const in float dotNL ) {\r\n\r\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\r\n\r\n}\r\n\r\n#if NUM_RECT_AREA_LIGHTS > 0\r\n\r\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\t\tvec3 normal = geometry.normal;\r\n\t\tvec3 viewDir = geometry.viewDir;\r\n\t\tvec3 position = geometry.position;\r\n\t\tvec3 lightPos = rectAreaLight.position;\r\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\r\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\r\n\t\tvec3 lightColor = rectAreaLight.color;\r\n\t\tfloat roughness = material.specularRoughness;\r\n\r\n\t\tvec3 rectCoords[ 4 ];\r\n\t\trectCoords[ 0 ] = lightPos - halfWidth - halfHeight; // counterclockwise\r\n\t\trectCoords[ 1 ] = lightPos + halfWidth - halfHeight;\r\n\t\trectCoords[ 2 ] = lightPos + halfWidth + halfHeight;\r\n\t\trectCoords[ 3 ] = lightPos - halfWidth + halfHeight;\r\n\r\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\r\n\r\n\t\tfloat norm = texture2D( ltcMag, uv ).a;\r\n\r\n\t\tvec4 t = texture2D( ltcMat, uv );\r\n\r\n\t\tmat3 mInv = mat3(\r\n\t\t\tvec3( 1, 0, t.y ),\r\n\t\t\tvec3( 0, t.z, 0 ),\r\n\t\t\tvec3( t.w, 0, t.x )\r\n\t\t);\r\n\r\n\t\treflectedLight.directSpecular += lightColor * material.specularColor * norm * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords ); // no fresnel\r\n\r\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1 ), rectCoords );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\r\n\r\n\tvec3 irradiance = dotNL * directLight.color;\r\n\r\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\tirradiance *= PI; // punctual light\r\n\r\n\t#endif\r\n\r\n\t#ifndef STANDARD\r\n\t\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\r\n\t#else\r\n\t\tfloat clearCoatDHR = 0.0;\r\n\t#endif\r\n\r\n\treflectedLight.directSpecular += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry, material.specularColor, material.specularRoughness );\r\n\r\n\treflectedLight.directDiffuse += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\r\n\r\n\t#ifndef STANDARD\r\n\r\n\t\treflectedLight.directSpecular += irradiance * material.clearCoat * BRDF_Specular_GGX( directLight, geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\r\n\r\n\t#endif\r\n\r\n}\r\n\r\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\r\n\r\n}\r\n\r\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 clearCoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\t#ifndef STANDARD\r\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\r\n\t\tfloat dotNL = dotNV;\r\n\t\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\r\n\t#else\r\n\t\tfloat clearCoatDHR = 0.0;\r\n\t#endif\r\n\r\n\treflectedLight.indirectSpecular += ( 1.0 - clearCoatDHR ) * radiance * BRDF_Specular_GGX_Environment( geometry, material.specularColor, material.specularRoughness );\r\n\r\n\t#ifndef STANDARD\r\n\r\n\t\treflectedLight.indirectSpecular += clearCoatRadiance * material.clearCoat * BRDF_Specular_GGX_Environment( geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\r\n\r\n\t#endif\r\n\r\n}\r\n\r\n#define RE_Direct\t\t\t\tRE_Direct_Physical\r\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\r\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\r\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\r\n\r\n#define Material_BlinnShininessExponent( material ) GGXRoughnessToBlinnExponent( material.specularRoughness )\r\n#define Material_ClearCoat_BlinnShininessExponent( material ) GGXRoughnessToBlinnExponent( material.clearCoatRoughness )\r\n\r\n// ref: http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr_v2.pdf\r\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\r\n\r\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\r\n\r\n}\r\n"; var lights_template = "\r\n\r\nGeometricContext geometry;\r\n\r\ngeometry.position = - vViewPosition;\r\ngeometry.normal = normal;\r\ngeometry.viewDir = normalize( vViewPosition );\r\n\r\nIncidentLight directLight;\r\n\r\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\r\n\r\n\tPointLight pointLight;\r\n\r\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\r\n\r\n\t\tpointLight = pointLights[ i ];\r\n\r\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\r\n\r\n\t\t#ifdef USE_SHADOWMAP\r\n\t\tdirectLight.color *= all( bvec2( pointLight.shadow, directLight.visible ) ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\r\n\t\t#endif\r\n\r\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\r\n\r\n\tSpotLight spotLight;\r\n\r\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\r\n\r\n\t\tspotLight = spotLights[ i ];\r\n\r\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\r\n\r\n\t\t#ifdef USE_SHADOWMAP\r\n\t\tdirectLight.color *= all( bvec2( spotLight.shadow, directLight.visible ) ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\r\n\t\t#endif\r\n\r\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\r\n\r\n\tDirectionalLight directionalLight;\r\n\r\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\r\n\r\n\t\tdirectionalLight = directionalLights[ i ];\r\n\r\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\r\n\r\n\t\t#ifdef USE_SHADOWMAP\r\n\t\tdirectLight.color *= all( bvec2( directionalLight.shadow, directLight.visible ) ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\r\n\t\t#endif\r\n\r\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\r\n\r\n\tRectAreaLight rectAreaLight;\r\n\r\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\r\n\r\n\t\trectAreaLight = rectAreaLights[ i ];\r\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if defined( RE_IndirectDiffuse )\r\n\r\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\r\n\r\n\t#ifdef USE_LIGHTMAP\r\n\r\n\t\tvec3 lightMapIrradiance = texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\r\n\r\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\t\tlightMapIrradiance *= PI; // factor of PI should not be present; included here to prevent breakage\r\n\r\n\t\t#endif\r\n\r\n\t\tirradiance += lightMapIrradiance;\r\n\r\n\t#endif\r\n\r\n\t#if ( NUM_HEMI_LIGHTS > 0 )\r\n\r\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\r\n\r\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\r\n\r\n\t\t}\r\n\r\n\t#endif\r\n\r\n\t#if defined( USE_ENVMAP ) && defined( PHYSICAL ) && defined( ENVMAP_TYPE_CUBE_UV )\r\n\r\n\t\t// TODO, replace 8 with the real maxMIPLevel\r\n\t\tirradiance += getLightProbeIndirectIrradiance( geometry, 8 );\r\n\r\n\t#endif\r\n\r\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\r\n\r\n#endif\r\n\r\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\r\n\r\n\t// TODO, replace 8 with the real maxMIPLevel\r\n\tvec3 radiance = getLightProbeIndirectRadiance( geometry, Material_BlinnShininessExponent( material ), 8 );\r\n\r\n\t#ifndef STANDARD\r\n\t\tvec3 clearCoatRadiance = getLightProbeIndirectRadiance( geometry, Material_ClearCoat_BlinnShininessExponent( material ), 8 );\r\n\t#else\r\n\t\tvec3 clearCoatRadiance = vec3( 0.0 );\r\n\t#endif\r\n\r\n\tRE_IndirectSpecular( radiance, clearCoatRadiance, geometry, material, reflectedLight );\r\n\r\n#endif\r\n"; var logdepthbuf_fragment = "#if defined(USE_LOGDEPTHBUF) && defined(USE_LOGDEPTHBUF_EXT)\r\n\r\n\tgl_FragDepthEXT = log2(vFragDepth) * logDepthBufFC * 0.5;\r\n\r\n#endif"; var logdepthbuf_pars_fragment = "#ifdef USE_LOGDEPTHBUF\r\n\r\n\tuniform float logDepthBufFC;\r\n\r\n\t#ifdef USE_LOGDEPTHBUF_EXT\r\n\r\n\t\tvarying float vFragDepth;\r\n\r\n\t#endif\r\n\r\n#endif\r\n"; var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\r\n\r\n\t#ifdef USE_LOGDEPTHBUF_EXT\r\n\r\n\t\tvarying float vFragDepth;\r\n\r\n\t#endif\r\n\r\n\tuniform float logDepthBufFC;\r\n\r\n#endif"; var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\r\n\r\n\tgl_Position.z = log2(max( EPSILON, gl_Position.w + 1.0 )) * logDepthBufFC;\r\n\r\n\t#ifdef USE_LOGDEPTHBUF_EXT\r\n\r\n\t\tvFragDepth = 1.0 + gl_Position.w;\r\n\r\n\t#else\r\n\r\n\t\tgl_Position.z = (gl_Position.z - 1.0) * gl_Position.w;\r\n\r\n\t#endif\r\n\r\n#endif\r\n"; var map_fragment = "#ifdef USE_MAP\r\n\r\n\tvec4 texelColor = texture2D( map, vUv );\r\n\r\n\ttexelColor = mapTexelToLinear( texelColor );\r\n\tdiffuseColor *= texelColor;\r\n\r\n#endif\r\n"; var map_pars_fragment = "#ifdef USE_MAP\r\n\r\n\tuniform sampler2D map;\r\n\r\n#endif\r\n"; var map_particle_fragment = "#ifdef USE_MAP\r\n\r\n\tvec4 mapTexel = texture2D( map, vec2( gl_PointCoord.x, 1.0 - gl_PointCoord.y ) * offsetRepeat.zw + offsetRepeat.xy );\r\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\r\n\r\n#endif\r\n"; var map_particle_pars_fragment = "#ifdef USE_MAP\r\n\r\n\tuniform vec4 offsetRepeat;\r\n\tuniform sampler2D map;\r\n\r\n#endif\r\n"; var metalnessmap_fragment = "float metalnessFactor = metalness;\r\n\r\n#ifdef USE_METALNESSMAP\r\n\r\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\r\n\r\n\t// reads channel B, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\r\n\tmetalnessFactor *= texelMetalness.b;\r\n\r\n#endif\r\n"; var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\r\n\r\n\tuniform sampler2D metalnessMap;\r\n\r\n#endif"; var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\r\n\r\n\tobjectNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];\r\n\tobjectNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];\r\n\tobjectNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];\r\n\tobjectNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];\r\n\r\n#endif\r\n"; var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\r\n\r\n\t#ifndef USE_MORPHNORMALS\r\n\r\n\tuniform float morphTargetInfluences[ 8 ];\r\n\r\n\t#else\r\n\r\n\tuniform float morphTargetInfluences[ 4 ];\r\n\r\n\t#endif\r\n\r\n#endif"; var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\r\n\r\n\ttransformed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];\r\n\ttransformed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];\r\n\ttransformed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];\r\n\ttransformed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];\r\n\r\n\t#ifndef USE_MORPHNORMALS\r\n\r\n\ttransformed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];\r\n\ttransformed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];\r\n\ttransformed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];\r\n\ttransformed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];\r\n\r\n\t#endif\r\n\r\n#endif\r\n"; var normal_flip = "#ifdef DOUBLE_SIDED\r\n\tfloat flipNormal = ( float( gl_FrontFacing ) * 2.0 - 1.0 );\r\n#else\r\n\tfloat flipNormal = 1.0;\r\n#endif\r\n"; var normal_fragment = "#ifdef FLAT_SHADED\r\n\r\n\t// Workaround for Adreno/Nexus5 not able able to do dFdx( vViewPosition ) ...\r\n\r\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\r\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\r\n\tvec3 normal = normalize( cross( fdx, fdy ) );\r\n\r\n#else\r\n\r\n\tvec3 normal = normalize( vNormal ) * flipNormal;\r\n\r\n#endif\r\n\r\n#ifdef USE_NORMALMAP\r\n\r\n\tnormal = perturbNormal2Arb( -vViewPosition, normal );\r\n\r\n#elif defined( USE_BUMPMAP )\r\n\r\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\r\n\r\n#endif\r\n"; var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\r\n\r\n\tuniform sampler2D normalMap;\r\n\tuniform vec2 normalScale;\r\n\r\n\t// Per-Pixel Tangent Space Normal Mapping\r\n\t// http://hacksoflife.blogspot.ch/2009/11/per-pixel-tangent-space-normal-mapping.html\r\n\r\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm ) {\r\n\r\n\t\t// Workaround for Adreno 3XX dFd*( vec3 ) bug. See #9988\r\n\r\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\r\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\r\n\t\tvec2 st0 = dFdx( vUv.st );\r\n\t\tvec2 st1 = dFdy( vUv.st );\r\n\r\n\t\tvec3 S = normalize( q0 * st1.t - q1 * st0.t );\r\n\t\tvec3 T = normalize( -q0 * st1.s + q1 * st0.s );\r\n\t\tvec3 N = normalize( surf_norm );\r\n\r\n\t\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\r\n\t\tmapN.xy = normalScale * mapN.xy;\r\n\t\tmat3 tsn = mat3( S, T, N );\r\n\t\treturn normalize( tsn * mapN );\r\n\r\n\t}\r\n\r\n#endif\r\n"; var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\r\n\treturn normalize( normal ) * 0.5 + 0.5;\r\n}\r\n\r\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\r\n\treturn 1.0 - 2.0 * rgb.xyz;\r\n}\r\n\r\nconst float PackUpscale = 256. / 255.; // fraction -> 0..1 (including 1)\r\nconst float UnpackDownscale = 255. / 256.; // 0..1 -> fraction (excluding 1)\r\n\r\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\r\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\r\n\r\nconst float ShiftRight8 = 1. / 256.;\r\n\r\nvec4 packDepthToRGBA( const in float v ) {\r\n\tvec4 r = vec4( fract( v * PackFactors ), v );\r\n\tr.yzw -= r.xyz * ShiftRight8; // tidy overflow\r\n\treturn r * PackUpscale;\r\n}\r\n\r\nfloat unpackRGBAToDepth( const in vec4 v ) {\r\n\treturn dot( v, UnpackFactors );\r\n}\r\n\r\n// NOTE: viewZ/eyeZ is < 0 when in front of the camera per OpenGL conventions\r\n\r\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\r\n\treturn ( viewZ + near ) / ( near - far );\r\n}\r\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\r\n\treturn linearClipZ * ( near - far ) - near;\r\n}\r\n\r\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\r\n\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\r\n}\r\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\r\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\r\n}\r\n"; var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\r\n\r\n\t// Get get normal blending with premultipled, use with CustomBlending, OneFactor, OneMinusSrcAlphaFactor, AddEquation.\r\n\tgl_FragColor.rgb *= gl_FragColor.a;\r\n\r\n#endif\r\n"; var project_vertex = "vec4 mvPosition = modelViewMatrix * vec4( transformed, 1.0 );\r\n\r\ngl_Position = projectionMatrix * mvPosition;\r\n"; var dithering_fragment = "#if defined( DITHERING )\r\n\r\n gl_FragColor.rgb = dithering( gl_FragColor.rgb );\r\n\r\n#endif\r\n"; var dithering_pars_fragment = "#if defined( DITHERING )\r\n\r\n\t// based on https://www.shadertoy.com/view/MslGR8\r\n\tvec3 dithering( vec3 color ) {\r\n\t\t//Calculate grid position\r\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\r\n\r\n\t\t//Shift the individual colors differently, thus making it even harder to see the dithering pattern\r\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\r\n\r\n\t\t//modify shift acording to grid position.\r\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\r\n\r\n\t\t//shift the color by dither_shift\r\n\t\treturn color + dither_shift_RGB;\r\n\t}\r\n\r\n#endif\r\n"; var roughnessmap_fragment = "float roughnessFactor = roughness;\r\n\r\n#ifdef USE_ROUGHNESSMAP\r\n\r\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\r\n\r\n\t// reads channel G, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\r\n\troughnessFactor *= texelRoughness.g;\r\n\r\n#endif\r\n"; var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\r\n\r\n\tuniform sampler2D roughnessMap;\r\n\r\n#endif"; var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\r\n\r\n\t#if NUM_DIR_LIGHTS > 0\r\n\r\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHTS ];\r\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\t#if NUM_SPOT_LIGHTS > 0\r\n\r\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHTS ];\r\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\t#if NUM_POINT_LIGHTS > 0\r\n\r\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHTS ];\r\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\r\n\r\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\r\n\r\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\r\n\r\n\t}\r\n\r\n\tfloat texture2DShadowLerp( sampler2D depths, vec2 size, vec2 uv, float compare ) {\r\n\r\n\t\tconst vec2 offset = vec2( 0.0, 1.0 );\r\n\r\n\t\tvec2 texelSize = vec2( 1.0 ) / size;\r\n\t\tvec2 centroidUV = floor( uv * size + 0.5 ) / size;\r\n\r\n\t\tfloat lb = texture2DCompare( depths, centroidUV + texelSize * offset.xx, compare );\r\n\t\tfloat lt = texture2DCompare( depths, centroidUV + texelSize * offset.xy, compare );\r\n\t\tfloat rb = texture2DCompare( depths, centroidUV + texelSize * offset.yx, compare );\r\n\t\tfloat rt = texture2DCompare( depths, centroidUV + texelSize * offset.yy, compare );\r\n\r\n\t\tvec2 f = fract( uv * size + 0.5 );\r\n\r\n\t\tfloat a = mix( lb, lt, f.y );\r\n\t\tfloat b = mix( rb, rt, f.y );\r\n\t\tfloat c = mix( a, b, f.x );\r\n\r\n\t\treturn c;\r\n\r\n\t}\r\n\r\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\r\n\r\n\t\tfloat shadow = 1.0;\r\n\r\n\t\tshadowCoord.xyz /= shadowCoord.w;\r\n\t\tshadowCoord.z += shadowBias;\r\n\r\n\t\t// if ( something && something ) breaks ATI OpenGL shader compiler\r\n\t\t// if ( all( something, something ) ) using this instead\r\n\r\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\r\n\t\tbool inFrustum = all( inFrustumVec );\r\n\r\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\r\n\r\n\t\tbool frustumTest = all( frustumTestVec );\r\n\r\n\t\tif ( frustumTest ) {\r\n\r\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\r\n\r\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\r\n\r\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\r\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\r\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\r\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\r\n\r\n\t\t\tshadow = (\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\r\n\t\t\t) * ( 1.0 / 9.0 );\r\n\r\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\r\n\r\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\r\n\r\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\r\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\r\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\r\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\r\n\r\n\t\t\tshadow = (\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy, shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\r\n\t\t\t) * ( 1.0 / 9.0 );\r\n\r\n\t\t#else // no percentage-closer filtering:\r\n\r\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\r\n\r\n\t\t#endif\r\n\r\n\t\t}\r\n\r\n\t\treturn shadow;\r\n\r\n\t}\r\n\r\n\t// cubeToUV() maps a 3D direction vector suitable for cube texture mapping to a 2D\r\n\t// vector suitable for 2D texture mapping. This code uses the following layout for the\r\n\t// 2D texture:\r\n\t//\r\n\t// xzXZ\r\n\t// y Y\r\n\t//\r\n\t// Y - Positive y direction\r\n\t// y - Negative y direction\r\n\t// X - Positive x direction\r\n\t// x - Negative x direction\r\n\t// Z - Positive z direction\r\n\t// z - Negative z direction\r\n\t//\r\n\t// Source and test bed:\r\n\t// https://gist.github.com/tschw/da10c43c467ce8afd0c4\r\n\r\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\r\n\r\n\t\t// Number of texels to avoid at the edge of each square\r\n\r\n\t\tvec3 absV = abs( v );\r\n\r\n\t\t// Intersect unit cube\r\n\r\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\r\n\t\tabsV *= scaleToCube;\r\n\r\n\t\t// Apply scale to avoid seams\r\n\r\n\t\t// two texels less per square (one texel will do for NEAREST)\r\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\r\n\r\n\t\t// Unwrap\r\n\r\n\t\t// space: -1 ... 1 range for each square\r\n\t\t//\r\n\t\t// #X##\t\tdim := ( 4 , 2 )\r\n\t\t// # #\t\tcenter := ( 1 , 1 )\r\n\r\n\t\tvec2 planar = v.xy;\r\n\r\n\t\tfloat almostATexel = 1.5 * texelSizeY;\r\n\t\tfloat almostOne = 1.0 - almostATexel;\r\n\r\n\t\tif ( absV.z >= almostOne ) {\r\n\r\n\t\t\tif ( v.z > 0.0 )\r\n\t\t\t\tplanar.x = 4.0 - v.x;\r\n\r\n\t\t} else if ( absV.x >= almostOne ) {\r\n\r\n\t\t\tfloat signX = sign( v.x );\r\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\r\n\r\n\t\t} else if ( absV.y >= almostOne ) {\r\n\r\n\t\t\tfloat signY = sign( v.y );\r\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\r\n\t\t\tplanar.y = v.z * signY - 2.0;\r\n\r\n\t\t}\r\n\r\n\t\t// Transform to UV space\r\n\r\n\t\t// scale := 0.5 / dim\r\n\t\t// translate := ( center + 0.5 ) / dim\r\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\r\n\r\n\t}\r\n\r\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\r\n\r\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\r\n\r\n\t\t// for point lights, the uniform @vShadowCoord is re-purposed to hold\r\n\t\t// the distance from the light to the world-space position of the fragment.\r\n\t\tvec3 lightToPosition = shadowCoord.xyz;\r\n\r\n\t\t// bd3D = base direction 3D\r\n\t\tvec3 bd3D = normalize( lightToPosition );\r\n\t\t// dp = distance from light to fragment position\r\n\t\tfloat dp = ( length( lightToPosition ) - shadowBias ) / 1000.0;\r\n\r\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT )\r\n\r\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\r\n\r\n\t\t\treturn (\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\r\n\t\t\t) * ( 1.0 / 9.0 );\r\n\r\n\t\t#else // no percentage-closer filtering\r\n\r\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\r\n\r\n\t\t#endif\r\n\r\n\t}\r\n\r\n#endif\r\n"; var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\r\n\r\n\t#if NUM_DIR_LIGHTS > 0\r\n\r\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHTS ];\r\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\t#if NUM_SPOT_LIGHTS > 0\r\n\r\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHTS ];\r\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\t#if NUM_POINT_LIGHTS > 0\r\n\r\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHTS ];\r\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\r\n\r\n#endif\r\n"; var shadowmap_vertex = "#ifdef USE_SHADOWMAP\r\n\r\n\t#if NUM_DIR_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\r\n\r\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * worldPosition;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\t#if NUM_SPOT_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\r\n\r\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * worldPosition;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\t#if NUM_POINT_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\r\n\r\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * worldPosition;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\r\n\r\n#endif\r\n"; var shadowmask_pars_fragment = "float getShadowMask() {\r\n\r\n\tfloat shadow = 1.0;\r\n\r\n\t#ifdef USE_SHADOWMAP\r\n\r\n\t#if NUM_DIR_LIGHTS > 0\r\n\r\n\tDirectionalLight directionalLight;\r\n\r\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\r\n\r\n\t\tdirectionalLight = directionalLights[ i ];\r\n\t\tshadow *= bool( directionalLight.shadow ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\t#if NUM_SPOT_LIGHTS > 0\r\n\r\n\tSpotLight spotLight;\r\n\r\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\r\n\r\n\t\tspotLight = spotLights[ i ];\r\n\t\tshadow *= bool( spotLight.shadow ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\t#if NUM_POINT_LIGHTS > 0\r\n\r\n\tPointLight pointLight;\r\n\r\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\r\n\r\n\t\tpointLight = pointLights[ i ];\r\n\t\tshadow *= bool( pointLight.shadow ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\r\n\r\n\t#endif\r\n\r\n\treturn shadow;\r\n\r\n}\r\n"; var skinbase_vertex = "#ifdef USE_SKINNING\r\n\r\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\r\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\r\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\r\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\r\n\r\n#endif"; var skinning_pars_vertex = "#ifdef USE_SKINNING\r\n\r\n\tuniform mat4 bindMatrix;\r\n\tuniform mat4 bindMatrixInverse;\r\n\r\n\t#ifdef BONE_TEXTURE\r\n\r\n\t\tuniform sampler2D boneTexture;\r\n\t\tuniform int boneTextureSize;\r\n\r\n\t\tmat4 getBoneMatrix( const in float i ) {\r\n\r\n\t\t\tfloat j = i * 4.0;\r\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\r\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\r\n\r\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\r\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\r\n\r\n\t\t\ty = dy * ( y + 0.5 );\r\n\r\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\r\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\r\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\r\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\r\n\r\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\r\n\r\n\t\t\treturn bone;\r\n\r\n\t\t}\r\n\r\n\t#else\r\n\r\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\r\n\r\n\t\tmat4 getBoneMatrix( const in float i ) {\r\n\r\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\r\n\t\t\treturn bone;\r\n\r\n\t\t}\r\n\r\n\t#endif\r\n\r\n#endif\r\n"; var skinning_vertex = "#ifdef USE_SKINNING\r\n\r\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\r\n\r\n\tvec4 skinned = vec4( 0.0 );\r\n\tskinned += boneMatX * skinVertex * skinWeight.x;\r\n\tskinned += boneMatY * skinVertex * skinWeight.y;\r\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\r\n\tskinned += boneMatW * skinVertex * skinWeight.w;\r\n\r\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\r\n\r\n#endif\r\n"; var skinnormal_vertex = "#ifdef USE_SKINNING\r\n\r\n\tmat4 skinMatrix = mat4( 0.0 );\r\n\tskinMatrix += skinWeight.x * boneMatX;\r\n\tskinMatrix += skinWeight.y * boneMatY;\r\n\tskinMatrix += skinWeight.z * boneMatZ;\r\n\tskinMatrix += skinWeight.w * boneMatW;\r\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\r\n\r\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\r\n\r\n#endif\r\n"; var specularmap_fragment = "float specularStrength;\r\n\r\n#ifdef USE_SPECULARMAP\r\n\r\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\r\n\tspecularStrength = texelSpecular.r;\r\n\r\n#else\r\n\r\n\tspecularStrength = 1.0;\r\n\r\n#endif"; var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\r\n\r\n\tuniform sampler2D specularMap;\r\n\r\n#endif"; var tonemapping_fragment = "#if defined( TONE_MAPPING )\r\n\r\n gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\r\n\r\n#endif\r\n"; var tonemapping_pars_fragment = "#define saturate(a) clamp( a, 0.0, 1.0 )\r\n\r\nuniform float toneMappingExposure;\r\nuniform float toneMappingWhitePoint;\r\n\r\n// exposure only\r\nvec3 LinearToneMapping( vec3 color ) {\r\n\r\n\treturn toneMappingExposure * color;\r\n\r\n}\r\n\r\n// source: https://www.cs.utah.edu/~reinhard/cdrom/\r\nvec3 ReinhardToneMapping( vec3 color ) {\r\n\r\n\tcolor *= toneMappingExposure;\r\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\r\n\r\n}\r\n\r\n// source: http://filmicgames.com/archives/75\r\n#define Uncharted2Helper( x ) max( ( ( x * ( 0.15 * x + 0.10 * 0.50 ) + 0.20 * 0.02 ) / ( x * ( 0.15 * x + 0.50 ) + 0.20 * 0.30 ) ) - 0.02 / 0.30, vec3( 0.0 ) )\r\nvec3 Uncharted2ToneMapping( vec3 color ) {\r\n\r\n\t// John Hable's filmic operator from Uncharted 2 video game\r\n\tcolor *= toneMappingExposure;\r\n\treturn saturate( Uncharted2Helper( color ) / Uncharted2Helper( vec3( toneMappingWhitePoint ) ) );\r\n\r\n}\r\n\r\n// source: http://filmicgames.com/archives/75\r\nvec3 OptimizedCineonToneMapping( vec3 color ) {\r\n\r\n\t// optimized filmic operator by Jim Hejl and Richard Burgess-Dawson\r\n\tcolor *= toneMappingExposure;\r\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\r\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\r\n\r\n}\r\n"; var uv_pars_fragment = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\r\n\r\n\tvarying vec2 vUv;\r\n\r\n#endif"; var uv_pars_vertex = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\r\n\r\n\tvarying vec2 vUv;\r\n\tuniform vec4 offsetRepeat;\r\n\r\n#endif\r\n"; var uv_vertex = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\r\n\r\n\tvUv = uv * offsetRepeat.zw + offsetRepeat.xy;\r\n\r\n#endif"; var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\r\n\r\n\tvarying vec2 vUv2;\r\n\r\n#endif"; var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\r\n\r\n\tattribute vec2 uv2;\r\n\tvarying vec2 vUv2;\r\n\r\n#endif"; var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\r\n\r\n\tvUv2 = uv2;\r\n\r\n#endif"; var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( PHONG ) || defined( PHYSICAL ) || defined( LAMBERT ) || defined ( USE_SHADOWMAP )\r\n\r\n\tvec4 worldPosition = modelMatrix * vec4( transformed, 1.0 );\r\n\r\n#endif\r\n"; var cube_frag = "uniform samplerCube tCube;\r\nuniform float tFlip;\r\nuniform float opacity;\r\n\r\nvarying vec3 vWorldPosition;\r\n\r\n#include \r\n\r\nvoid main() {\r\n\r\n\tgl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );\r\n\tgl_FragColor.a *= opacity;\r\n\r\n}\r\n"; var cube_vert = "varying vec3 vWorldPosition;\r\n\r\n#include \r\n\r\nvoid main() {\r\n\r\n\tvWorldPosition = transformDirection( position, modelMatrix );\r\n\r\n\t#include \r\n\t#include \r\n\r\n}\r\n"; var depth_frag = "#if DEPTH_PACKING == 3200\r\n\r\n\tuniform float opacity;\r\n\r\n#endif\r\n\r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\r\n\tvec4 diffuseColor = vec4( 1.0 );\r\n\r\n\t#if DEPTH_PACKING == 3200\r\n\r\n\t\tdiffuseColor.a = opacity;\r\n\r\n\t#endif\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\t#include \r\n\r\n\t#if DEPTH_PACKING == 3200\r\n\r\n\t\tgl_FragColor = vec4( vec3( gl_FragCoord.z ), opacity );\r\n\r\n\t#elif DEPTH_PACKING == 3201\r\n\r\n\t\tgl_FragColor = packDepthToRGBA( gl_FragCoord.z );\r\n\r\n\t#endif\r\n\r\n}\r\n"; var depth_vert = "#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\r\n\t#include \r\n\r\n\t#ifdef USE_DISPLACEMENTMAP\r\n\r\n\t\t#include \r\n\t\t#include \r\n\t\t#include \r\n\r\n\t#endif\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n}\r\n"; var distanceRGBA_frag = "uniform vec3 lightPos;\r\nvarying vec4 vWorldPosition;\r\n\r\n#include \r\n#include \r\n#include \r\n\r\nvoid main () {\r\n\r\n\t#include \r\n\r\n\tgl_FragColor = packDepthToRGBA( length( vWorldPosition.xyz - lightPos.xyz ) / 1000.0 );\r\n\r\n}\r\n"; var distanceRGBA_vert = "varying vec4 vWorldPosition;\r\n\r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\tvWorldPosition = worldPosition;\r\n\r\n}\r\n"; var equirect_frag = "uniform sampler2D tEquirect;\r\nuniform float tFlip;\r\n\r\nvarying vec3 vWorldPosition;\r\n\r\n#include \r\n\r\nvoid main() {\r\n\r\n\t// \tgl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );\r\n\tvec3 direction = normalize( vWorldPosition );\r\n\tvec2 sampleUV;\r\n\tsampleUV.y = saturate( tFlip * direction.y * -0.5 + 0.5 );\r\n\tsampleUV.x = atan( direction.z, direction.x ) * RECIPROCAL_PI2 + 0.5;\r\n\tgl_FragColor = texture2D( tEquirect, sampleUV );\r\n\r\n}\r\n"; var equirect_vert = "varying vec3 vWorldPosition;\r\n\r\n#include \r\n\r\nvoid main() {\r\n\r\n\tvWorldPosition = transformDirection( position, modelMatrix );\r\n\r\n\t#include \r\n\t#include \r\n\r\n}\r\n"; var linedashed_frag = "uniform vec3 diffuse;\r\nuniform float opacity;\r\n\r\nuniform float dashSize;\r\nuniform float totalSize;\r\n\r\nvarying float vLineDistance;\r\n\r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\r\n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\r\n\r\n\t\tdiscard;\r\n\r\n\t}\r\n\r\n\tvec3 outgoingLight = vec3( 0.0 );\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\r\n\t#include \r\n\t#include \r\n\r\n\toutgoingLight = diffuseColor.rgb; // simple shader\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n}\r\n"; var linedashed_vert = "uniform float scale;\r\nattribute float lineDistance;\r\n\r\nvarying float vLineDistance;\r\n\r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\r\n\tvLineDistance = scale * lineDistance;\r\n\r\n\tvec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );\r\n\tgl_Position = projectionMatrix * mvPosition;\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n}\r\n"; var meshbasic_frag = "uniform vec3 diffuse;\r\nuniform float opacity;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\r\n\r\n\t// accumulation (baked indirect lighting only)\r\n\t#ifdef USE_LIGHTMAP\r\n\r\n\t\treflectedLight.indirectDiffuse += texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\r\n\r\n\t#else\r\n\r\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\r\n\r\n\t#endif\r\n\r\n\t// modulation\r\n\t#include \r\n\r\n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\r\n\r\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\r\n\r\n\t#include \r\n\t#include \r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n}\r\n"; var meshbasic_vert = "#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\t#ifdef USE_ENVMAP\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\t#endif\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n}\r\n"; var meshlambert_frag = "uniform vec3 diffuse;\r\nuniform vec3 emissive;\r\nuniform float opacity;\r\n\r\nvarying vec3 vLightFront;\r\n\r\n#ifdef DOUBLE_SIDED\r\n\r\n\tvarying vec3 vLightBack;\r\n\r\n#endif\r\n\r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\r\n\tvec3 totalEmissiveRadiance = emissive;\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\t// accumulation\r\n\treflectedLight.indirectDiffuse = getAmbientLightIrradiance( ambientLightColor );\r\n\r\n\t#include \r\n\r\n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\r\n\r\n\t#ifdef DOUBLE_SIDED\r\n\r\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\r\n\r\n\t#else\r\n\r\n\t\treflectedLight.directDiffuse = vLightFront;\r\n\r\n\t#endif\r\n\r\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\r\n\r\n\t// modulation\r\n\t#include \r\n\r\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\r\n\r\n\t#include \r\n\t#include \r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n}\r\n"; var meshlambert_vert = "#define LAMBERT\r\n\r\nvarying vec3 vLightFront;\r\n\r\n#ifdef DOUBLE_SIDED\r\n\r\n\tvarying vec3 vLightBack;\r\n\r\n#endif\r\n\r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n}\r\n"; var meshphong_frag = "#define PHONG\r\n\r\nuniform vec3 diffuse;\r\nuniform vec3 emissive;\r\nuniform vec3 specular;\r\nuniform float shininess;\r\nuniform float opacity;\r\n\r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\r\n\tvec3 totalEmissiveRadiance = emissive;\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\t// accumulation\r\n\t#include \r\n\t#include \r\n\r\n\t// modulation\r\n\t#include \r\n\r\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\r\n\r\n\t#include \r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n}\r\n"; var meshphong_vert = "#define PHONG\r\n\r\nvarying vec3 vViewPosition;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n#ifndef FLAT_SHADED // Normal computed with derivatives when FLAT_SHADED\r\n\r\n\tvNormal = normalize( transformedNormal );\r\n\r\n#endif\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\tvViewPosition = - mvPosition.xyz;\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n}\r\n"; var meshphysical_frag = "#define PHYSICAL\r\n\r\nuniform vec3 diffuse;\r\nuniform vec3 emissive;\r\nuniform float roughness;\r\nuniform float metalness;\r\nuniform float opacity;\r\n\r\n#ifndef STANDARD\r\n\tuniform float clearCoat;\r\n\tuniform float clearCoatRoughness;\r\n#endif\r\n\r\nvarying vec3 vViewPosition;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\r\n\tvec3 totalEmissiveRadiance = emissive;\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\t// accumulation\r\n\t#include \r\n\t#include \r\n\r\n\t// modulation\r\n\t#include \r\n\r\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n}\r\n"; var meshphysical_vert = "#define PHYSICAL\r\n\r\nvarying vec3 vViewPosition;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n#ifndef FLAT_SHADED // Normal computed with derivatives when FLAT_SHADED\r\n\r\n\tvNormal = normalize( transformedNormal );\r\n\r\n#endif\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\tvViewPosition = - mvPosition.xyz;\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n}\r\n"; var normal_frag = "#define NORMAL\r\n\r\nuniform float opacity;\r\n\r\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\r\n\r\n\tvarying vec3 vViewPosition;\r\n\r\n#endif\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\r\n\r\n}\r\n"; var normal_vert = "#define NORMAL\r\n\r\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\r\n\r\n\tvarying vec3 vViewPosition;\r\n\r\n#endif\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n#ifndef FLAT_SHADED // Normal computed with derivatives when FLAT_SHADED\r\n\r\n\tvNormal = normalize( transformedNormal );\r\n\r\n#endif\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\r\n\r\n\tvViewPosition = - mvPosition.xyz;\r\n\r\n#endif\r\n\r\n}\r\n"; var points_frag = "uniform vec3 diffuse;\r\nuniform float opacity;\r\n\r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\r\n\tvec3 outgoingLight = vec3( 0.0 );\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\toutgoingLight = diffuseColor.rgb;\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n}\r\n"; var points_vert = "uniform float size;\r\nuniform float scale;\r\n\r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\t#ifdef USE_SIZEATTENUATION\r\n\t\tgl_PointSize = size * ( scale / - mvPosition.z );\r\n\t#else\r\n\t\tgl_PointSize = size;\r\n\t#endif\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n}\r\n"; var shadow_frag = "uniform float opacity;\r\n\r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\tgl_FragColor = vec4( 0.0, 0.0, 0.0, opacity * ( 1.0 - getShadowMask() ) );\r\n\r\n}\r\n"; var shadow_vert = "#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n}\r\n"; var ShaderChunk = { alphamap_fragment: alphamap_fragment, alphamap_pars_fragment: alphamap_pars_fragment, alphatest_fragment: alphatest_fragment, aomap_fragment: aomap_fragment, aomap_pars_fragment: aomap_pars_fragment, begin_vertex: begin_vertex, beginnormal_vertex: beginnormal_vertex, bsdfs: bsdfs, bumpmap_pars_fragment: bumpmap_pars_fragment, clipping_planes_fragment: clipping_planes_fragment, clipping_planes_pars_fragment: clipping_planes_pars_fragment, clipping_planes_pars_vertex: clipping_planes_pars_vertex, clipping_planes_vertex: clipping_planes_vertex, color_fragment: color_fragment, color_pars_fragment: color_pars_fragment, color_pars_vertex: color_pars_vertex, color_vertex: color_vertex, common: common, cube_uv_reflection_fragment: cube_uv_reflection_fragment, defaultnormal_vertex: defaultnormal_vertex, displacementmap_pars_vertex: displacementmap_pars_vertex, displacementmap_vertex: displacementmap_vertex, emissivemap_fragment: emissivemap_fragment, emissivemap_pars_fragment: emissivemap_pars_fragment, encodings_fragment: encodings_fragment, encodings_pars_fragment: encodings_pars_fragment, envmap_fragment: envmap_fragment, envmap_pars_fragment: envmap_pars_fragment, envmap_pars_vertex: envmap_pars_vertex, envmap_vertex: envmap_vertex, fog_vertex: fog_vertex, fog_pars_vertex: fog_pars_vertex, fog_fragment: fog_fragment, fog_pars_fragment: fog_pars_fragment, gradientmap_pars_fragment: gradientmap_pars_fragment, lightmap_fragment: lightmap_fragment, lightmap_pars_fragment: lightmap_pars_fragment, lights_lambert_vertex: lights_lambert_vertex, lights_pars: lights_pars, lights_phong_fragment: lights_phong_fragment, lights_phong_pars_fragment: lights_phong_pars_fragment, lights_physical_fragment: lights_physical_fragment, lights_physical_pars_fragment: lights_physical_pars_fragment, lights_template: lights_template, logdepthbuf_fragment: logdepthbuf_fragment, logdepthbuf_pars_fragment: logdepthbuf_pars_fragment, logdepthbuf_pars_vertex: logdepthbuf_pars_vertex, logdepthbuf_vertex: logdepthbuf_vertex, map_fragment: map_fragment, map_pars_fragment: map_pars_fragment, map_particle_fragment: map_particle_fragment, map_particle_pars_fragment: map_particle_pars_fragment, metalnessmap_fragment: metalnessmap_fragment, metalnessmap_pars_fragment: metalnessmap_pars_fragment, morphnormal_vertex: morphnormal_vertex, morphtarget_pars_vertex: morphtarget_pars_vertex, morphtarget_vertex: morphtarget_vertex, normal_flip: normal_flip, normal_fragment: normal_fragment, normalmap_pars_fragment: normalmap_pars_fragment, packing: packing, premultiplied_alpha_fragment: premultiplied_alpha_fragment, project_vertex: project_vertex, dithering_fragment: dithering_fragment, dithering_pars_fragment: dithering_pars_fragment, roughnessmap_fragment: roughnessmap_fragment, roughnessmap_pars_fragment: roughnessmap_pars_fragment, shadowmap_pars_fragment: shadowmap_pars_fragment, shadowmap_pars_vertex: shadowmap_pars_vertex, shadowmap_vertex: shadowmap_vertex, shadowmask_pars_fragment: shadowmask_pars_fragment, skinbase_vertex: skinbase_vertex, skinning_pars_vertex: skinning_pars_vertex, skinning_vertex: skinning_vertex, skinnormal_vertex: skinnormal_vertex, specularmap_fragment: specularmap_fragment, specularmap_pars_fragment: specularmap_pars_fragment, tonemapping_fragment: tonemapping_fragment, tonemapping_pars_fragment: tonemapping_pars_fragment, uv_pars_fragment: uv_pars_fragment, uv_pars_vertex: uv_pars_vertex, uv_vertex: uv_vertex, uv2_pars_fragment: uv2_pars_fragment, uv2_pars_vertex: uv2_pars_vertex, uv2_vertex: uv2_vertex, worldpos_vertex: worldpos_vertex, cube_frag: cube_frag, cube_vert: cube_vert, depth_frag: depth_frag, depth_vert: depth_vert, distanceRGBA_frag: distanceRGBA_frag, distanceRGBA_vert: distanceRGBA_vert, equirect_frag: equirect_frag, equirect_vert: equirect_vert, linedashed_frag: linedashed_frag, linedashed_vert: linedashed_vert, meshbasic_frag: meshbasic_frag, meshbasic_vert: meshbasic_vert, meshlambert_frag: meshlambert_frag, meshlambert_vert: meshlambert_vert, meshphong_frag: meshphong_frag, meshphong_vert: meshphong_vert, meshphysical_frag: meshphysical_frag, meshphysical_vert: meshphysical_vert, normal_frag: normal_frag, normal_vert: normal_vert, points_frag: points_frag, points_vert: points_vert, shadow_frag: shadow_frag, shadow_vert: shadow_vert }; /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ */ var ShaderLib = { basic: { uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog ] ), vertexShader: ShaderChunk.meshbasic_vert, fragmentShader: ShaderChunk.meshbasic_frag }, lambert: { uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color( 0x000000 ) } } ] ), vertexShader: ShaderChunk.meshlambert_vert, fragmentShader: ShaderChunk.meshlambert_frag }, phong: { uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color( 0x000000 ) }, specular: { value: new Color( 0x111111 ) }, shininess: { value: 30 } } ] ), vertexShader: ShaderChunk.meshphong_vert, fragmentShader: ShaderChunk.meshphong_frag }, standard: { uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color( 0x000000 ) }, roughness: { value: 0.5 }, metalness: { value: 0.5 }, envMapIntensity: { value: 1 } // temporary } ] ), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }, points: { uniforms: UniformsUtils.merge( [ UniformsLib.points, UniformsLib.fog ] ), vertexShader: ShaderChunk.points_vert, fragmentShader: ShaderChunk.points_frag }, dashed: { uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.fog, { scale: { value: 1 }, dashSize: { value: 1 }, totalSize: { value: 2 } } ] ), vertexShader: ShaderChunk.linedashed_vert, fragmentShader: ShaderChunk.linedashed_frag }, depth: { uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.displacementmap ] ), vertexShader: ShaderChunk.depth_vert, fragmentShader: ShaderChunk.depth_frag }, normal: { uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, { opacity: { value: 1.0 } } ] ), vertexShader: ShaderChunk.normal_vert, fragmentShader: ShaderChunk.normal_frag }, /* ------------------------------------------------------------------------- // Cube map shader ------------------------------------------------------------------------- */ cube: { uniforms: { tCube: { value: null }, tFlip: { value: - 1 }, opacity: { value: 1.0 } }, vertexShader: ShaderChunk.cube_vert, fragmentShader: ShaderChunk.cube_frag }, /* ------------------------------------------------------------------------- // Cube map shader ------------------------------------------------------------------------- */ equirect: { uniforms: { tEquirect: { value: null }, tFlip: { value: - 1 } }, vertexShader: ShaderChunk.equirect_vert, fragmentShader: ShaderChunk.equirect_frag }, distanceRGBA: { uniforms: { lightPos: { value: new Vector3() } }, vertexShader: ShaderChunk.distanceRGBA_vert, fragmentShader: ShaderChunk.distanceRGBA_frag } }; ShaderLib.physical = { uniforms: UniformsUtils.merge( [ ShaderLib.standard.uniforms, { clearCoat: { value: 0 }, clearCoatRoughness: { value: 0 } } ] ), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }; /** * @author bhouston / http://clara.io */ function Box2( min, max ) { this.min = ( min !== undefined ) ? min : new Vector2( + Infinity, + Infinity ); this.max = ( max !== undefined ) ? max : new Vector2( - Infinity, - Infinity ); } Object.assign( Box2.prototype, { set: function ( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; }, setFromPoints: function ( points ) { this.makeEmpty(); for ( var i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ); } return this; }, setFromCenterAndSize: function () { var v1 = new Vector2(); return function setFromCenterAndSize( center, size ) { var halfSize = v1.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; }; }(), clone: function () { return new this.constructor().copy( this ); }, copy: function ( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; }, makeEmpty: function () { this.min.x = this.min.y = + Infinity; this.max.x = this.max.y = - Infinity; return this; }, isEmpty: function () { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ); }, getCenter: function ( optionalTarget ) { var result = optionalTarget || new Vector2(); return this.isEmpty() ? result.set( 0, 0 ) : result.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); }, getSize: function ( optionalTarget ) { var result = optionalTarget || new Vector2(); return this.isEmpty() ? result.set( 0, 0 ) : result.subVectors( this.max, this.min ); }, expandByPoint: function ( point ) { this.min.min( point ); this.max.max( point ); return this; }, expandByVector: function ( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; }, expandByScalar: function ( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; }, containsPoint: function ( point ) { return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ? false : true; }, containsBox: function ( box ) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y; }, getParameter: function ( point, optionalTarget ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. var result = optionalTarget || new Vector2(); return result.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ) ); }, intersectsBox: function ( box ) { // using 4 splitting planes to rule out intersections return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ? false : true; }, clampPoint: function ( point, optionalTarget ) { var result = optionalTarget || new Vector2(); return result.copy( point ).clamp( this.min, this.max ); }, distanceToPoint: function () { var v1 = new Vector2(); return function distanceToPoint( point ) { var clampedPoint = v1.copy( point ).clamp( this.min, this.max ); return clampedPoint.sub( point ).length(); }; }(), intersect: function ( box ) { this.min.max( box.min ); this.max.min( box.max ); return this; }, union: function ( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; }, translate: function ( offset ) { this.min.add( offset ); this.max.add( offset ); return this; }, equals: function ( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); } } ); /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ function LensFlarePlugin( renderer, flares ) { var gl = renderer.context; var state = renderer.state; var vertexBuffer, elementBuffer; var shader, program, attributes, uniforms; var tempTexture, occlusionTexture; function init() { var vertices = new Float32Array( [ - 1, - 1, 0, 0, 1, - 1, 1, 0, 1, 1, 1, 1, - 1, 1, 0, 1 ] ); var faces = new Uint16Array( [ 0, 1, 2, 0, 2, 3 ] ); // buffers vertexBuffer = gl.createBuffer(); elementBuffer = gl.createBuffer(); gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer ); gl.bufferData( gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW ); gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer ); gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, faces, gl.STATIC_DRAW ); // textures tempTexture = gl.createTexture(); occlusionTexture = gl.createTexture(); state.bindTexture( gl.TEXTURE_2D, tempTexture ); gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGB, 16, 16, 0, gl.RGB, gl.UNSIGNED_BYTE, null ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST ); state.bindTexture( gl.TEXTURE_2D, occlusionTexture ); gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGBA, 16, 16, 0, gl.RGBA, gl.UNSIGNED_BYTE, null ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST ); shader = { vertexShader: [ "uniform lowp int renderType;", "uniform vec3 screenPosition;", "uniform vec2 scale;", "uniform float rotation;", "uniform sampler2D occlusionMap;", "attribute vec2 position;", "attribute vec2 uv;", "varying vec2 vUV;", "varying float vVisibility;", "void main() {", "vUV = uv;", "vec2 pos = position;", "if ( renderType == 2 ) {", "vec4 visibility = texture2D( occlusionMap, vec2( 0.1, 0.1 ) );", "visibility += texture2D( occlusionMap, vec2( 0.5, 0.1 ) );", "visibility += texture2D( occlusionMap, vec2( 0.9, 0.1 ) );", "visibility += texture2D( occlusionMap, vec2( 0.9, 0.5 ) );", "visibility += texture2D( occlusionMap, vec2( 0.9, 0.9 ) );", "visibility += texture2D( occlusionMap, vec2( 0.5, 0.9 ) );", "visibility += texture2D( occlusionMap, vec2( 0.1, 0.9 ) );", "visibility += texture2D( occlusionMap, vec2( 0.1, 0.5 ) );", "visibility += texture2D( occlusionMap, vec2( 0.5, 0.5 ) );", "vVisibility = visibility.r / 9.0;", "vVisibility *= 1.0 - visibility.g / 9.0;", "vVisibility *= visibility.b / 9.0;", "vVisibility *= 1.0 - visibility.a / 9.0;", "pos.x = cos( rotation ) * position.x - sin( rotation ) * position.y;", "pos.y = sin( rotation ) * position.x + cos( rotation ) * position.y;", "}", "gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );", "}" ].join( "\n" ), fragmentShader: [ "uniform lowp int renderType;", "uniform sampler2D map;", "uniform float opacity;", "uniform vec3 color;", "varying vec2 vUV;", "varying float vVisibility;", "void main() {", // pink square "if ( renderType == 0 ) {", "gl_FragColor = vec4( 1.0, 0.0, 1.0, 0.0 );", // restore "} else if ( renderType == 1 ) {", "gl_FragColor = texture2D( map, vUV );", // flare "} else {", "vec4 texture = texture2D( map, vUV );", "texture.a *= opacity * vVisibility;", "gl_FragColor = texture;", "gl_FragColor.rgb *= color;", "}", "}" ].join( "\n" ) }; program = createProgram( shader ); attributes = { vertex: gl.getAttribLocation ( program, "position" ), uv: gl.getAttribLocation ( program, "uv" ) }; uniforms = { renderType: gl.getUniformLocation( program, "renderType" ), map: gl.getUniformLocation( program, "map" ), occlusionMap: gl.getUniformLocation( program, "occlusionMap" ), opacity: gl.getUniformLocation( program, "opacity" ), color: gl.getUniformLocation( program, "color" ), scale: gl.getUniformLocation( program, "scale" ), rotation: gl.getUniformLocation( program, "rotation" ), screenPosition: gl.getUniformLocation( program, "screenPosition" ) }; } /* * Render lens flares * Method: renders 16x16 0xff00ff-colored points scattered over the light source area, * reads these back and calculates occlusion. */ this.render = function ( scene, camera, viewport ) { if ( flares.length === 0 ) return; var tempPosition = new Vector3(); var invAspect = viewport.w / viewport.z, halfViewportWidth = viewport.z * 0.5, halfViewportHeight = viewport.w * 0.5; var size = 16 / viewport.w, scale = new Vector2( size * invAspect, size ); var screenPosition = new Vector3( 1, 1, 0 ), screenPositionPixels = new Vector2( 1, 1 ); var validArea = new Box2(); validArea.min.set( viewport.x, viewport.y ); validArea.max.set( viewport.x + ( viewport.z - 16 ), viewport.y + ( viewport.w - 16 ) ); if ( program === undefined ) { init(); } gl.useProgram( program ); state.initAttributes(); state.enableAttribute( attributes.vertex ); state.enableAttribute( attributes.uv ); state.disableUnusedAttributes(); // loop through all lens flares to update their occlusion and positions // setup gl and common used attribs/uniforms gl.uniform1i( uniforms.occlusionMap, 0 ); gl.uniform1i( uniforms.map, 1 ); gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer ); gl.vertexAttribPointer( attributes.vertex, 2, gl.FLOAT, false, 2 * 8, 0 ); gl.vertexAttribPointer( attributes.uv, 2, gl.FLOAT, false, 2 * 8, 8 ); gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer ); state.disable( gl.CULL_FACE ); state.buffers.depth.setMask( false ); for ( var i = 0, l = flares.length; i < l; i ++ ) { size = 16 / viewport.w; scale.set( size * invAspect, size ); // calc object screen position var flare = flares[ i ]; tempPosition.set( flare.matrixWorld.elements[ 12 ], flare.matrixWorld.elements[ 13 ], flare.matrixWorld.elements[ 14 ] ); tempPosition.applyMatrix4( camera.matrixWorldInverse ); tempPosition.applyMatrix4( camera.projectionMatrix ); // setup arrays for gl programs screenPosition.copy( tempPosition ); // horizontal and vertical coordinate of the lower left corner of the pixels to copy screenPositionPixels.x = viewport.x + ( screenPosition.x * halfViewportWidth ) + halfViewportWidth - 8; screenPositionPixels.y = viewport.y + ( screenPosition.y * halfViewportHeight ) + halfViewportHeight - 8; // screen cull if ( validArea.containsPoint( screenPositionPixels ) === true ) { // save current RGB to temp texture state.activeTexture( gl.TEXTURE0 ); state.bindTexture( gl.TEXTURE_2D, null ); state.activeTexture( gl.TEXTURE1 ); state.bindTexture( gl.TEXTURE_2D, tempTexture ); gl.copyTexImage2D( gl.TEXTURE_2D, 0, gl.RGB, screenPositionPixels.x, screenPositionPixels.y, 16, 16, 0 ); // render pink quad gl.uniform1i( uniforms.renderType, 0 ); gl.uniform2f( uniforms.scale, scale.x, scale.y ); gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z ); state.disable( gl.BLEND ); state.enable( gl.DEPTH_TEST ); gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 ); // copy result to occlusionMap state.activeTexture( gl.TEXTURE0 ); state.bindTexture( gl.TEXTURE_2D, occlusionTexture ); gl.copyTexImage2D( gl.TEXTURE_2D, 0, gl.RGBA, screenPositionPixels.x, screenPositionPixels.y, 16, 16, 0 ); // restore graphics gl.uniform1i( uniforms.renderType, 1 ); state.disable( gl.DEPTH_TEST ); state.activeTexture( gl.TEXTURE1 ); state.bindTexture( gl.TEXTURE_2D, tempTexture ); gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 ); // update object positions flare.positionScreen.copy( screenPosition ); if ( flare.customUpdateCallback ) { flare.customUpdateCallback( flare ); } else { flare.updateLensFlares(); } // render flares gl.uniform1i( uniforms.renderType, 2 ); state.enable( gl.BLEND ); for ( var j = 0, jl = flare.lensFlares.length; j < jl; j ++ ) { var sprite = flare.lensFlares[ j ]; if ( sprite.opacity > 0.001 && sprite.scale > 0.001 ) { screenPosition.x = sprite.x; screenPosition.y = sprite.y; screenPosition.z = sprite.z; size = sprite.size * sprite.scale / viewport.w; scale.x = size * invAspect; scale.y = size; gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z ); gl.uniform2f( uniforms.scale, scale.x, scale.y ); gl.uniform1f( uniforms.rotation, sprite.rotation ); gl.uniform1f( uniforms.opacity, sprite.opacity ); gl.uniform3f( uniforms.color, sprite.color.r, sprite.color.g, sprite.color.b ); state.setBlending( sprite.blending, sprite.blendEquation, sprite.blendSrc, sprite.blendDst ); renderer.setTexture2D( sprite.texture, 1 ); gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 ); } } } } // restore gl state.enable( gl.CULL_FACE ); state.enable( gl.DEPTH_TEST ); state.buffers.depth.setMask( true ); renderer.resetGLState(); }; function createProgram( shader ) { var program = gl.createProgram(); var fragmentShader = gl.createShader( gl.FRAGMENT_SHADER ); var vertexShader = gl.createShader( gl.VERTEX_SHADER ); var prefix = "precision " + renderer.getPrecision() + " float;\n"; gl.shaderSource( fragmentShader, prefix + shader.fragmentShader ); gl.shaderSource( vertexShader, prefix + shader.vertexShader ); gl.compileShader( fragmentShader ); gl.compileShader( vertexShader ); gl.attachShader( program, fragmentShader ); gl.attachShader( program, vertexShader ); gl.linkProgram( program ); return program; } } /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ function SpritePlugin( renderer, sprites ) { var gl = renderer.context; var state = renderer.state; var vertexBuffer, elementBuffer; var program, attributes, uniforms; var texture; // decompose matrixWorld var spritePosition = new Vector3(); var spriteRotation = new Quaternion(); var spriteScale = new Vector3(); function init() { var vertices = new Float32Array( [ - 0.5, - 0.5, 0, 0, 0.5, - 0.5, 1, 0, 0.5, 0.5, 1, 1, - 0.5, 0.5, 0, 1 ] ); var faces = new Uint16Array( [ 0, 1, 2, 0, 2, 3 ] ); vertexBuffer = gl.createBuffer(); elementBuffer = gl.createBuffer(); gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer ); gl.bufferData( gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW ); gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer ); gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, faces, gl.STATIC_DRAW ); program = createProgram(); attributes = { position: gl.getAttribLocation ( program, 'position' ), uv: gl.getAttribLocation ( program, 'uv' ) }; uniforms = { uvOffset: gl.getUniformLocation( program, 'uvOffset' ), uvScale: gl.getUniformLocation( program, 'uvScale' ), rotation: gl.getUniformLocation( program, 'rotation' ), scale: gl.getUniformLocation( program, 'scale' ), color: gl.getUniformLocation( program, 'color' ), map: gl.getUniformLocation( program, 'map' ), opacity: gl.getUniformLocation( program, 'opacity' ), modelViewMatrix: gl.getUniformLocation( program, 'modelViewMatrix' ), projectionMatrix: gl.getUniformLocation( program, 'projectionMatrix' ), fogType: gl.getUniformLocation( program, 'fogType' ), fogDensity: gl.getUniformLocation( program, 'fogDensity' ), fogNear: gl.getUniformLocation( program, 'fogNear' ), fogFar: gl.getUniformLocation( program, 'fogFar' ), fogColor: gl.getUniformLocation( program, 'fogColor' ), alphaTest: gl.getUniformLocation( program, 'alphaTest' ) }; var canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); canvas.width = 8; canvas.height = 8; var context = canvas.getContext( '2d' ); context.fillStyle = 'white'; context.fillRect( 0, 0, 8, 8 ); texture = new Texture( canvas ); texture.needsUpdate = true; } this.render = function ( scene, camera ) { if ( sprites.length === 0 ) return; // setup gl if ( program === undefined ) { init(); } gl.useProgram( program ); state.initAttributes(); state.enableAttribute( attributes.position ); state.enableAttribute( attributes.uv ); state.disableUnusedAttributes(); state.disable( gl.CULL_FACE ); state.enable( gl.BLEND ); gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer ); gl.vertexAttribPointer( attributes.position, 2, gl.FLOAT, false, 2 * 8, 0 ); gl.vertexAttribPointer( attributes.uv, 2, gl.FLOAT, false, 2 * 8, 8 ); gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer ); gl.uniformMatrix4fv( uniforms.projectionMatrix, false, camera.projectionMatrix.elements ); state.activeTexture( gl.TEXTURE0 ); gl.uniform1i( uniforms.map, 0 ); var oldFogType = 0; var sceneFogType = 0; var fog = scene.fog; if ( fog ) { gl.uniform3f( uniforms.fogColor, fog.color.r, fog.color.g, fog.color.b ); if ( fog.isFog ) { gl.uniform1f( uniforms.fogNear, fog.near ); gl.uniform1f( uniforms.fogFar, fog.far ); gl.uniform1i( uniforms.fogType, 1 ); oldFogType = 1; sceneFogType = 1; } else if ( fog.isFogExp2 ) { gl.uniform1f( uniforms.fogDensity, fog.density ); gl.uniform1i( uniforms.fogType, 2 ); oldFogType = 2; sceneFogType = 2; } } else { gl.uniform1i( uniforms.fogType, 0 ); oldFogType = 0; sceneFogType = 0; } // update positions and sort for ( var i = 0, l = sprites.length; i < l; i ++ ) { var sprite = sprites[ i ]; sprite.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, sprite.matrixWorld ); sprite.z = - sprite.modelViewMatrix.elements[ 14 ]; } sprites.sort( painterSortStable ); // render all sprites var scale = []; for ( var i = 0, l = sprites.length; i < l; i ++ ) { var sprite = sprites[ i ]; var material = sprite.material; if ( material.visible === false ) continue; sprite.onBeforeRender( renderer, scene, camera, undefined, material, undefined ); gl.uniform1f( uniforms.alphaTest, material.alphaTest ); gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, sprite.modelViewMatrix.elements ); sprite.matrixWorld.decompose( spritePosition, spriteRotation, spriteScale ); scale[ 0 ] = spriteScale.x; scale[ 1 ] = spriteScale.y; var fogType = 0; if ( scene.fog && material.fog ) { fogType = sceneFogType; } if ( oldFogType !== fogType ) { gl.uniform1i( uniforms.fogType, fogType ); oldFogType = fogType; } if ( material.map !== null ) { gl.uniform2f( uniforms.uvOffset, material.map.offset.x, material.map.offset.y ); gl.uniform2f( uniforms.uvScale, material.map.repeat.x, material.map.repeat.y ); } else { gl.uniform2f( uniforms.uvOffset, 0, 0 ); gl.uniform2f( uniforms.uvScale, 1, 1 ); } gl.uniform1f( uniforms.opacity, material.opacity ); gl.uniform3f( uniforms.color, material.color.r, material.color.g, material.color.b ); gl.uniform1f( uniforms.rotation, material.rotation ); gl.uniform2fv( uniforms.scale, scale ); state.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha ); state.buffers.depth.setTest( material.depthTest ); state.buffers.depth.setMask( material.depthWrite ); if ( material.map ) { renderer.setTexture2D( material.map, 0 ); } else { renderer.setTexture2D( texture, 0 ); } gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 ); sprite.onAfterRender( renderer, scene, camera, undefined, material, undefined ); } // restore gl state.enable( gl.CULL_FACE ); renderer.resetGLState(); }; function createProgram() { var program = gl.createProgram(); var vertexShader = gl.createShader( gl.VERTEX_SHADER ); var fragmentShader = gl.createShader( gl.FRAGMENT_SHADER ); gl.shaderSource( vertexShader, [ 'precision ' + renderer.getPrecision() + ' float;', '#define SHADER_NAME ' + 'SpriteMaterial', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform float rotation;', 'uniform vec2 scale;', 'uniform vec2 uvOffset;', 'uniform vec2 uvScale;', 'attribute vec2 position;', 'attribute vec2 uv;', 'varying vec2 vUV;', 'void main() {', 'vUV = uvOffset + uv * uvScale;', 'vec2 alignedPosition = position * scale;', 'vec2 rotatedPosition;', 'rotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;', 'rotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;', 'vec4 finalPosition;', 'finalPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );', 'finalPosition.xy += rotatedPosition;', 'finalPosition = projectionMatrix * finalPosition;', 'gl_Position = finalPosition;', '}' ].join( '\n' ) ); gl.shaderSource( fragmentShader, [ 'precision ' + renderer.getPrecision() + ' float;', '#define SHADER_NAME ' + 'SpriteMaterial', 'uniform vec3 color;', 'uniform sampler2D map;', 'uniform float opacity;', 'uniform int fogType;', 'uniform vec3 fogColor;', 'uniform float fogDensity;', 'uniform float fogNear;', 'uniform float fogFar;', 'uniform float alphaTest;', 'varying vec2 vUV;', 'void main() {', 'vec4 texture = texture2D( map, vUV );', 'if ( texture.a < alphaTest ) discard;', 'gl_FragColor = vec4( color * texture.xyz, texture.a * opacity );', 'if ( fogType > 0 ) {', 'float depth = gl_FragCoord.z / gl_FragCoord.w;', 'float fogFactor = 0.0;', 'if ( fogType == 1 ) {', 'fogFactor = smoothstep( fogNear, fogFar, depth );', '} else {', 'const float LOG2 = 1.442695;', 'fogFactor = exp2( - fogDensity * fogDensity * depth * depth * LOG2 );', 'fogFactor = 1.0 - clamp( fogFactor, 0.0, 1.0 );', '}', 'gl_FragColor = mix( gl_FragColor, vec4( fogColor, gl_FragColor.w ), fogFactor );', '}', '}' ].join( '\n' ) ); gl.compileShader( vertexShader ); gl.compileShader( fragmentShader ); gl.attachShader( program, vertexShader ); gl.attachShader( program, fragmentShader ); gl.linkProgram( program ); return program; } function painterSortStable( a, b ) { if ( a.renderOrder !== b.renderOrder ) { return a.renderOrder - b.renderOrder; } else if ( a.z !== b.z ) { return b.z - a.z; } else { return b.id - a.id; } } } /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ var materialId = 0; function Material() { Object.defineProperty( this, 'id', { value: materialId ++ } ); this.uuid = _Math.generateUUID(); this.name = ''; this.type = 'Material'; this.fog = true; this.lights = true; this.blending = NormalBlending; this.side = FrontSide; this.shading = SmoothShading; // THREE.FlatShading, THREE.SmoothShading this.vertexColors = NoColors; // THREE.NoColors, THREE.VertexColors, THREE.FaceColors this.opacity = 1; this.transparent = false; this.blendSrc = SrcAlphaFactor; this.blendDst = OneMinusSrcAlphaFactor; this.blendEquation = AddEquation; this.blendSrcAlpha = null; this.blendDstAlpha = null; this.blendEquationAlpha = null; this.depthFunc = LessEqualDepth; this.depthTest = true; this.depthWrite = true; this.clippingPlanes = null; this.clipIntersection = false; this.clipShadows = false; this.colorWrite = true; this.precision = null; // override the renderer's default precision for this material this.polygonOffset = false; this.polygonOffsetFactor = 0; this.polygonOffsetUnits = 0; this.dithering = false; this.alphaTest = 0; this.premultipliedAlpha = false; this.overdraw = 0; // Overdrawn pixels (typically between 0 and 1) for fixing antialiasing gaps in CanvasRenderer this.visible = true; this.needsUpdate = true; } Object.assign( Material.prototype, EventDispatcher.prototype, { isMaterial: true, onBeforeCompile: function () {}, setValues: function ( values ) { if ( values === undefined ) return; for ( var key in values ) { var newValue = values[ key ]; if ( newValue === undefined ) { console.warn( "THREE.Material: '" + key + "' parameter is undefined." ); continue; } var currentValue = this[ key ]; if ( currentValue === undefined ) { console.warn( "THREE." + this.type + ": '" + key + "' is not a property of this material." ); continue; } if ( currentValue && currentValue.isColor ) { currentValue.set( newValue ); } else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) { currentValue.copy( newValue ); } else if ( key === 'overdraw' ) { // ensure overdraw is backwards-compatible with legacy boolean type this[ key ] = Number( newValue ); } else { this[ key ] = newValue; } } }, toJSON: function ( meta ) { var isRoot = meta === undefined; if ( isRoot ) { meta = { textures: {}, images: {} }; } var data = { metadata: { version: 4.5, type: 'Material', generator: 'Material.toJSON' } }; // standard Material serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( this.color && this.color.isColor ) data.color = this.color.getHex(); if ( this.roughness !== undefined ) data.roughness = this.roughness; if ( this.metalness !== undefined ) data.metalness = this.metalness; if ( this.emissive && this.emissive.isColor ) data.emissive = this.emissive.getHex(); if ( this.specular && this.specular.isColor ) data.specular = this.specular.getHex(); if ( this.shininess !== undefined ) data.shininess = this.shininess; if ( this.clearCoat !== undefined ) data.clearCoat = this.clearCoat; if ( this.clearCoatRoughness !== undefined ) data.clearCoatRoughness = this.clearCoatRoughness; if ( this.map && this.map.isTexture ) data.map = this.map.toJSON( meta ).uuid; if ( this.alphaMap && this.alphaMap.isTexture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid; if ( this.lightMap && this.lightMap.isTexture ) data.lightMap = this.lightMap.toJSON( meta ).uuid; if ( this.bumpMap && this.bumpMap.isTexture ) { data.bumpMap = this.bumpMap.toJSON( meta ).uuid; data.bumpScale = this.bumpScale; } if ( this.normalMap && this.normalMap.isTexture ) { data.normalMap = this.normalMap.toJSON( meta ).uuid; data.normalScale = this.normalScale.toArray(); } if ( this.displacementMap && this.displacementMap.isTexture ) { data.displacementMap = this.displacementMap.toJSON( meta ).uuid; data.displacementScale = this.displacementScale; data.displacementBias = this.displacementBias; } if ( this.roughnessMap && this.roughnessMap.isTexture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid; if ( this.metalnessMap && this.metalnessMap.isTexture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid; if ( this.emissiveMap && this.emissiveMap.isTexture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid; if ( this.specularMap && this.specularMap.isTexture ) data.specularMap = this.specularMap.toJSON( meta ).uuid; if ( this.envMap && this.envMap.isTexture ) { data.envMap = this.envMap.toJSON( meta ).uuid; data.reflectivity = this.reflectivity; // Scale behind envMap } if ( this.gradientMap && this.gradientMap.isTexture ) { data.gradientMap = this.gradientMap.toJSON( meta ).uuid; } if ( this.size !== undefined ) data.size = this.size; if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation; if ( this.blending !== NormalBlending ) data.blending = this.blending; if ( this.shading !== SmoothShading ) data.shading = this.shading; if ( this.side !== FrontSide ) data.side = this.side; if ( this.vertexColors !== NoColors ) data.vertexColors = this.vertexColors; if ( this.opacity < 1 ) data.opacity = this.opacity; if ( this.transparent === true ) data.transparent = this.transparent; data.depthFunc = this.depthFunc; data.depthTest = this.depthTest; data.depthWrite = this.depthWrite; if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest; if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = this.premultipliedAlpha; if ( this.wireframe === true ) data.wireframe = this.wireframe; if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth; if ( this.wireframeLinecap !== 'round' ) data.wireframeLinecap = this.wireframeLinecap; if ( this.wireframeLinejoin !== 'round' ) data.wireframeLinejoin = this.wireframeLinejoin; data.skinning = this.skinning; data.morphTargets = this.morphTargets; data.dithering = this.dithering; // TODO: Copied from Object3D.toJSON function extractFromCache( cache ) { var values = []; for ( var key in cache ) { var data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } if ( isRoot ) { var textures = extractFromCache( meta.textures ); var images = extractFromCache( meta.images ); if ( textures.length > 0 ) data.textures = textures; if ( images.length > 0 ) data.images = images; } return data; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.name = source.name; this.fog = source.fog; this.lights = source.lights; this.blending = source.blending; this.side = source.side; this.shading = source.shading; this.vertexColors = source.vertexColors; this.opacity = source.opacity; this.transparent = source.transparent; this.blendSrc = source.blendSrc; this.blendDst = source.blendDst; this.blendEquation = source.blendEquation; this.blendSrcAlpha = source.blendSrcAlpha; this.blendDstAlpha = source.blendDstAlpha; this.blendEquationAlpha = source.blendEquationAlpha; this.depthFunc = source.depthFunc; this.depthTest = source.depthTest; this.depthWrite = source.depthWrite; this.colorWrite = source.colorWrite; this.precision = source.precision; this.polygonOffset = source.polygonOffset; this.polygonOffsetFactor = source.polygonOffsetFactor; this.polygonOffsetUnits = source.polygonOffsetUnits; this.dithering = source.dithering; this.alphaTest = source.alphaTest; this.premultipliedAlpha = source.premultipliedAlpha; this.overdraw = source.overdraw; this.visible = source.visible; this.clipShadows = source.clipShadows; this.clipIntersection = source.clipIntersection; var srcPlanes = source.clippingPlanes, dstPlanes = null; if ( srcPlanes !== null ) { var n = srcPlanes.length; dstPlanes = new Array( n ); for ( var i = 0; i !== n; ++ i ) dstPlanes[ i ] = srcPlanes[ i ].clone(); } this.clippingPlanes = dstPlanes; return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } } ); /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * defines: { "label" : "value" }, * uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } }, * * fragmentShader: , * vertexShader: , * * wireframe: , * wireframeLinewidth: , * * lights: , * * skinning: , * morphTargets: , * morphNormals: * } */ function ShaderMaterial( parameters ) { Material.call( this ); this.type = 'ShaderMaterial'; this.defines = {}; this.uniforms = {}; this.vertexShader = 'void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}'; this.fragmentShader = 'void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}'; this.linewidth = 1; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; // set to use scene fog this.lights = false; // set to use scene lights this.clipping = false; // set to use user-defined clipping planes this.skinning = false; // set to use skinning attribute streams this.morphTargets = false; // set to use morph targets this.morphNormals = false; // set to use morph normals this.extensions = { derivatives: false, // set to use derivatives fragDepth: false, // set to use fragment depth values drawBuffers: false, // set to use draw buffers shaderTextureLOD: false // set to use shader texture LOD }; // When rendered geometry doesn't include these attributes but the material does, // use these default values in WebGL. This avoids errors when buffer data is missing. this.defaultAttributeValues = { 'color': [ 1, 1, 1 ], 'uv': [ 0, 0 ], 'uv2': [ 0, 0 ] }; this.index0AttributeName = undefined; if ( parameters !== undefined ) { if ( parameters.attributes !== undefined ) { console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' ); } this.setValues( parameters ); } } ShaderMaterial.prototype = Object.create( Material.prototype ); ShaderMaterial.prototype.constructor = ShaderMaterial; ShaderMaterial.prototype.isShaderMaterial = true; ShaderMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.fragmentShader = source.fragmentShader; this.vertexShader = source.vertexShader; this.uniforms = UniformsUtils.clone( source.uniforms ); this.defines = source.defines; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.lights = source.lights; this.clipping = source.clipping; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; this.extensions = source.extensions; return this; }; ShaderMaterial.prototype.toJSON = function ( meta ) { var data = Material.prototype.toJSON.call( this, meta ); data.uniforms = this.uniforms; data.vertexShader = this.vertexShader; data.fragmentShader = this.fragmentShader; return data; }; /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author bhouston / https://clara.io * @author WestLangley / http://github.com/WestLangley * * parameters = { * * opacity: , * * map: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * wireframe: , * wireframeLinewidth: * } */ function MeshDepthMaterial( parameters ) { Material.call( this ); this.type = 'MeshDepthMaterial'; this.depthPacking = BasicDepthPacking; this.skinning = false; this.morphTargets = false; this.map = null; this.alphaMap = null; this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; this.lights = false; this.setValues( parameters ); } MeshDepthMaterial.prototype = Object.create( Material.prototype ); MeshDepthMaterial.prototype.constructor = MeshDepthMaterial; MeshDepthMaterial.prototype.isMeshDepthMaterial = true; MeshDepthMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.depthPacking = source.depthPacking; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.map = source.map; this.alphaMap = source.alphaMap; this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; return this; }; /** * @author bhouston / http://clara.io * @author WestLangley / http://github.com/WestLangley */ function Box3( min, max ) { this.min = ( min !== undefined ) ? min : new Vector3( + Infinity, + Infinity, + Infinity ); this.max = ( max !== undefined ) ? max : new Vector3( - Infinity, - Infinity, - Infinity ); } Object.assign( Box3.prototype, { isBox3: true, set: function ( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; }, setFromArray: function ( array ) { var minX = + Infinity; var minY = + Infinity; var minZ = + Infinity; var maxX = - Infinity; var maxY = - Infinity; var maxZ = - Infinity; for ( var i = 0, l = array.length; i < l; i += 3 ) { var x = array[ i ]; var y = array[ i + 1 ]; var z = array[ i + 2 ]; if ( x < minX ) minX = x; if ( y < minY ) minY = y; if ( z < minZ ) minZ = z; if ( x > maxX ) maxX = x; if ( y > maxY ) maxY = y; if ( z > maxZ ) maxZ = z; } this.min.set( minX, minY, minZ ); this.max.set( maxX, maxY, maxZ ); return this; }, setFromBufferAttribute: function ( attribute ) { var minX = + Infinity; var minY = + Infinity; var minZ = + Infinity; var maxX = - Infinity; var maxY = - Infinity; var maxZ = - Infinity; for ( var i = 0, l = attribute.count; i < l; i ++ ) { var x = attribute.getX( i ); var y = attribute.getY( i ); var z = attribute.getZ( i ); if ( x < minX ) minX = x; if ( y < minY ) minY = y; if ( z < minZ ) minZ = z; if ( x > maxX ) maxX = x; if ( y > maxY ) maxY = y; if ( z > maxZ ) maxZ = z; } this.min.set( minX, minY, minZ ); this.max.set( maxX, maxY, maxZ ); return this; }, setFromPoints: function ( points ) { this.makeEmpty(); for ( var i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ); } return this; }, setFromCenterAndSize: function () { var v1 = new Vector3(); return function setFromCenterAndSize( center, size ) { var halfSize = v1.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; }; }(), setFromObject: function ( object ) { this.makeEmpty(); return this.expandByObject( object ); }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; }, makeEmpty: function () { this.min.x = this.min.y = this.min.z = + Infinity; this.max.x = this.max.y = this.max.z = - Infinity; return this; }, isEmpty: function () { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z ); }, getCenter: function ( optionalTarget ) { var result = optionalTarget || new Vector3(); return this.isEmpty() ? result.set( 0, 0, 0 ) : result.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); }, getSize: function ( optionalTarget ) { var result = optionalTarget || new Vector3(); return this.isEmpty() ? result.set( 0, 0, 0 ) : result.subVectors( this.max, this.min ); }, expandByPoint: function ( point ) { this.min.min( point ); this.max.max( point ); return this; }, expandByVector: function ( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; }, expandByScalar: function ( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; }, expandByObject: function () { // Computes the world-axis-aligned bounding box of an object (including its children), // accounting for both the object's, and children's, world transforms var v1 = new Vector3(); return function expandByObject( object ) { var scope = this; object.updateMatrixWorld( true ); object.traverse( function ( node ) { var i, l; var geometry = node.geometry; if ( geometry !== undefined ) { if ( geometry.isGeometry ) { var vertices = geometry.vertices; for ( i = 0, l = vertices.length; i < l; i ++ ) { v1.copy( vertices[ i ] ); v1.applyMatrix4( node.matrixWorld ); scope.expandByPoint( v1 ); } } else if ( geometry.isBufferGeometry ) { var attribute = geometry.attributes.position; if ( attribute !== undefined ) { for ( i = 0, l = attribute.count; i < l; i ++ ) { v1.fromBufferAttribute( attribute, i ).applyMatrix4( node.matrixWorld ); scope.expandByPoint( v1 ); } } } } } ); return this; }; }(), containsPoint: function ( point ) { return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true; }, containsBox: function ( box ) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z; }, getParameter: function ( point, optionalTarget ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. var result = optionalTarget || new Vector3(); return result.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ), ( point.z - this.min.z ) / ( this.max.z - this.min.z ) ); }, intersectsBox: function ( box ) { // using 6 splitting planes to rule out intersections. return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true; }, intersectsSphere: ( function () { var closestPoint = new Vector3(); return function intersectsSphere( sphere ) { // Find the point on the AABB closest to the sphere center. this.clampPoint( sphere.center, closestPoint ); // If that point is inside the sphere, the AABB and sphere intersect. return closestPoint.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius ); }; } )(), intersectsPlane: function ( plane ) { // We compute the minimum and maximum dot product values. If those values // are on the same side (back or front) of the plane, then there is no intersection. var min, max; if ( plane.normal.x > 0 ) { min = plane.normal.x * this.min.x; max = plane.normal.x * this.max.x; } else { min = plane.normal.x * this.max.x; max = plane.normal.x * this.min.x; } if ( plane.normal.y > 0 ) { min += plane.normal.y * this.min.y; max += plane.normal.y * this.max.y; } else { min += plane.normal.y * this.max.y; max += plane.normal.y * this.min.y; } if ( plane.normal.z > 0 ) { min += plane.normal.z * this.min.z; max += plane.normal.z * this.max.z; } else { min += plane.normal.z * this.max.z; max += plane.normal.z * this.min.z; } return ( min <= plane.constant && max >= plane.constant ); }, clampPoint: function ( point, optionalTarget ) { var result = optionalTarget || new Vector3(); return result.copy( point ).clamp( this.min, this.max ); }, distanceToPoint: function () { var v1 = new Vector3(); return function distanceToPoint( point ) { var clampedPoint = v1.copy( point ).clamp( this.min, this.max ); return clampedPoint.sub( point ).length(); }; }(), getBoundingSphere: function () { var v1 = new Vector3(); return function getBoundingSphere( optionalTarget ) { var result = optionalTarget || new Sphere(); this.getCenter( result.center ); result.radius = this.getSize( v1 ).length() * 0.5; return result; }; }(), intersect: function ( box ) { this.min.max( box.min ); this.max.min( box.max ); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values. if( this.isEmpty() ) this.makeEmpty(); return this; }, union: function ( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; }, applyMatrix4: function () { var points = [ new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3() ]; return function applyMatrix4( matrix ) { // transform of empty box is an empty box. if( this.isEmpty() ) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000 points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001 points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010 points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011 points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100 points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101 points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110 points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111 this.setFromPoints( points ); return this; }; }(), translate: function ( offset ) { this.min.add( offset ); this.max.add( offset ); return this; }, equals: function ( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); } } ); /** * @author bhouston / http://clara.io * @author mrdoob / http://mrdoob.com/ */ function Sphere( center, radius ) { this.center = ( center !== undefined ) ? center : new Vector3(); this.radius = ( radius !== undefined ) ? radius : 0; } Object.assign( Sphere.prototype, { set: function ( center, radius ) { this.center.copy( center ); this.radius = radius; return this; }, setFromPoints: function () { var box = new Box3(); return function setFromPoints( points, optionalCenter ) { var center = this.center; if ( optionalCenter !== undefined ) { center.copy( optionalCenter ); } else { box.setFromPoints( points ).getCenter( center ); } var maxRadiusSq = 0; for ( var i = 0, il = points.length; i < il; i ++ ) { maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) ); } this.radius = Math.sqrt( maxRadiusSq ); return this; }; }(), clone: function () { return new this.constructor().copy( this ); }, copy: function ( sphere ) { this.center.copy( sphere.center ); this.radius = sphere.radius; return this; }, empty: function () { return ( this.radius <= 0 ); }, containsPoint: function ( point ) { return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) ); }, distanceToPoint: function ( point ) { return ( point.distanceTo( this.center ) - this.radius ); }, intersectsSphere: function ( sphere ) { var radiusSum = this.radius + sphere.radius; return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum ); }, intersectsBox: function ( box ) { return box.intersectsSphere( this ); }, intersectsPlane: function ( plane ) { // We use the following equation to compute the signed distance from // the center of the sphere to the plane. // // distance = q * n - d // // If this distance is greater than the radius of the sphere, // then there is no intersection. return Math.abs( this.center.dot( plane.normal ) - plane.constant ) <= this.radius; }, clampPoint: function ( point, optionalTarget ) { var deltaLengthSq = this.center.distanceToSquared( point ); var result = optionalTarget || new Vector3(); result.copy( point ); if ( deltaLengthSq > ( this.radius * this.radius ) ) { result.sub( this.center ).normalize(); result.multiplyScalar( this.radius ).add( this.center ); } return result; }, getBoundingBox: function ( optionalTarget ) { var box = optionalTarget || new Box3(); box.set( this.center, this.center ); box.expandByScalar( this.radius ); return box; }, applyMatrix4: function ( matrix ) { this.center.applyMatrix4( matrix ); this.radius = this.radius * matrix.getMaxScaleOnAxis(); return this; }, translate: function ( offset ) { this.center.add( offset ); return this; }, equals: function ( sphere ) { return sphere.center.equals( this.center ) && ( sphere.radius === this.radius ); } } ); /** * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://clara.io * @author tschw */ function Matrix3() { this.elements = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]; if ( arguments.length > 0 ) { console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' ); } } Object.assign( Matrix3.prototype, { isMatrix3: true, set: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { var te = this.elements; te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31; te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32; te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33; return this; }, identity: function () { this.set( 1, 0, 0, 0, 1, 0, 0, 0, 1 ); return this; }, clone: function () { return new this.constructor().fromArray( this.elements ); }, copy: function ( m ) { var te = this.elements; var me = m.elements; te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ]; return this; }, setFromMatrix4: function ( m ) { var me = m.elements; this.set( me[ 0 ], me[ 4 ], me[ 8 ], me[ 1 ], me[ 5 ], me[ 9 ], me[ 2 ], me[ 6 ], me[ 10 ] ); return this; }, applyToBufferAttribute: function () { var v1 = new Vector3(); return function applyToBufferAttribute( attribute ) { for ( var i = 0, l = attribute.count; i < l; i ++ ) { v1.x = attribute.getX( i ); v1.y = attribute.getY( i ); v1.z = attribute.getZ( i ); v1.applyMatrix3( this ); attribute.setXYZ( i, v1.x, v1.y, v1.z ); } return attribute; }; }(), multiply: function ( m ) { return this.multiplyMatrices( this, m ); }, premultiply: function ( m ) { return this.multiplyMatrices( m, this ); }, multiplyMatrices: function ( a, b ) { var ae = a.elements; var be = b.elements; var te = this.elements; var a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ]; var a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ]; var a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ]; var b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ]; var b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ]; var b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31; te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32; te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31; te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32; te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31; te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32; te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33; return this; }, multiplyScalar: function ( s ) { var te = this.elements; te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s; te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s; te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s; return this; }, determinant: function () { var te = this.elements; var a = te[ 0 ], b = te[ 1 ], c = te[ 2 ], d = te[ 3 ], e = te[ 4 ], f = te[ 5 ], g = te[ 6 ], h = te[ 7 ], i = te[ 8 ]; return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; }, getInverse: function ( matrix, throwOnDegenerate ) { if ( matrix && matrix.isMatrix4 ) { console.error( "THREE.Matrix3.getInverse no longer takes a Matrix4 argument." ); } var me = matrix.elements, te = this.elements, n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n12 = me[ 3 ], n22 = me[ 4 ], n32 = me[ 5 ], n13 = me[ 6 ], n23 = me[ 7 ], n33 = me[ 8 ], t11 = n33 * n22 - n32 * n23, t12 = n32 * n13 - n33 * n12, t13 = n23 * n12 - n22 * n13, det = n11 * t11 + n21 * t12 + n31 * t13; if ( det === 0 ) { var msg = "THREE.Matrix3.getInverse(): can't invert matrix, determinant is 0"; if ( throwOnDegenerate === true ) { throw new Error( msg ); } else { console.warn( msg ); } return this.identity(); } var detInv = 1 / det; te[ 0 ] = t11 * detInv; te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv; te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv; te[ 3 ] = t12 * detInv; te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv; te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv; te[ 6 ] = t13 * detInv; te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv; te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv; return this; }, transpose: function () { var tmp, m = this.elements; tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp; tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp; tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp; return this; }, getNormalMatrix: function ( matrix4 ) { return this.setFromMatrix4( matrix4 ).getInverse( this ).transpose(); }, transposeIntoArray: function ( r ) { var m = this.elements; r[ 0 ] = m[ 0 ]; r[ 1 ] = m[ 3 ]; r[ 2 ] = m[ 6 ]; r[ 3 ] = m[ 1 ]; r[ 4 ] = m[ 4 ]; r[ 5 ] = m[ 7 ]; r[ 6 ] = m[ 2 ]; r[ 7 ] = m[ 5 ]; r[ 8 ] = m[ 8 ]; return this; }, equals: function ( matrix ) { var te = this.elements; var me = matrix.elements; for ( var i = 0; i < 9; i ++ ) { if ( te[ i ] !== me[ i ] ) return false; } return true; }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; for ( var i = 0; i < 9; i ++ ) { this.elements[ i ] = array[ i + offset ]; } return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; var te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; return array; } } ); /** * @author bhouston / http://clara.io */ function Plane( normal, constant ) { this.normal = ( normal !== undefined ) ? normal : new Vector3( 1, 0, 0 ); this.constant = ( constant !== undefined ) ? constant : 0; } Object.assign( Plane.prototype, { set: function ( normal, constant ) { this.normal.copy( normal ); this.constant = constant; return this; }, setComponents: function ( x, y, z, w ) { this.normal.set( x, y, z ); this.constant = w; return this; }, setFromNormalAndCoplanarPoint: function ( normal, point ) { this.normal.copy( normal ); this.constant = - point.dot( this.normal ); // must be this.normal, not normal, as this.normal is normalized return this; }, setFromCoplanarPoints: function () { var v1 = new Vector3(); var v2 = new Vector3(); return function setFromCoplanarPoints( a, b, c ) { var normal = v1.subVectors( c, b ).cross( v2.subVectors( a, b ) ).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? this.setFromNormalAndCoplanarPoint( normal, a ); return this; }; }(), clone: function () { return new this.constructor().copy( this ); }, copy: function ( plane ) { this.normal.copy( plane.normal ); this.constant = plane.constant; return this; }, normalize: function () { // Note: will lead to a divide by zero if the plane is invalid. var inverseNormalLength = 1.0 / this.normal.length(); this.normal.multiplyScalar( inverseNormalLength ); this.constant *= inverseNormalLength; return this; }, negate: function () { this.constant *= - 1; this.normal.negate(); return this; }, distanceToPoint: function ( point ) { return this.normal.dot( point ) + this.constant; }, distanceToSphere: function ( sphere ) { return this.distanceToPoint( sphere.center ) - sphere.radius; }, projectPoint: function ( point, optionalTarget ) { return this.orthoPoint( point, optionalTarget ).sub( point ).negate(); }, orthoPoint: function ( point, optionalTarget ) { var perpendicularMagnitude = this.distanceToPoint( point ); var result = optionalTarget || new Vector3(); return result.copy( this.normal ).multiplyScalar( perpendicularMagnitude ); }, intersectLine: function () { var v1 = new Vector3(); return function intersectLine( line, optionalTarget ) { var result = optionalTarget || new Vector3(); var direction = line.delta( v1 ); var denominator = this.normal.dot( direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( this.distanceToPoint( line.start ) === 0 ) { return result.copy( line.start ); } // Unsure if this is the correct method to handle this case. return undefined; } var t = - ( line.start.dot( this.normal ) + this.constant ) / denominator; if ( t < 0 || t > 1 ) { return undefined; } return result.copy( direction ).multiplyScalar( t ).add( line.start ); }; }(), intersectsLine: function ( line ) { // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. var startSign = this.distanceToPoint( line.start ); var endSign = this.distanceToPoint( line.end ); return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 ); }, intersectsBox: function ( box ) { return box.intersectsPlane( this ); }, intersectsSphere: function ( sphere ) { return sphere.intersectsPlane( this ); }, coplanarPoint: function ( optionalTarget ) { var result = optionalTarget || new Vector3(); return result.copy( this.normal ).multiplyScalar( - this.constant ); }, applyMatrix4: function () { var v1 = new Vector3(); var m1 = new Matrix3(); return function applyMatrix4( matrix, optionalNormalMatrix ) { var referencePoint = this.coplanarPoint( v1 ).applyMatrix4( matrix ); // transform normal based on theory here: // http://www.songho.ca/opengl/gl_normaltransform.html var normalMatrix = optionalNormalMatrix || m1.getNormalMatrix( matrix ); var normal = this.normal.applyMatrix3( normalMatrix ).normalize(); // recalculate constant (like in setFromNormalAndCoplanarPoint) this.constant = - referencePoint.dot( normal ); return this; }; }(), translate: function ( offset ) { this.constant = this.constant - offset.dot( this.normal ); return this; }, equals: function ( plane ) { return plane.normal.equals( this.normal ) && ( plane.constant === this.constant ); } } ); /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author bhouston / http://clara.io */ function Frustum( p0, p1, p2, p3, p4, p5 ) { this.planes = [ ( p0 !== undefined ) ? p0 : new Plane(), ( p1 !== undefined ) ? p1 : new Plane(), ( p2 !== undefined ) ? p2 : new Plane(), ( p3 !== undefined ) ? p3 : new Plane(), ( p4 !== undefined ) ? p4 : new Plane(), ( p5 !== undefined ) ? p5 : new Plane() ]; } Object.assign( Frustum.prototype, { set: function ( p0, p1, p2, p3, p4, p5 ) { var planes = this.planes; planes[ 0 ].copy( p0 ); planes[ 1 ].copy( p1 ); planes[ 2 ].copy( p2 ); planes[ 3 ].copy( p3 ); planes[ 4 ].copy( p4 ); planes[ 5 ].copy( p5 ); return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( frustum ) { var planes = this.planes; for ( var i = 0; i < 6; i ++ ) { planes[ i ].copy( frustum.planes[ i ] ); } return this; }, setFromMatrix: function ( m ) { var planes = this.planes; var me = m.elements; var me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ]; var me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ]; var me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ]; var me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ]; planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize(); planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize(); planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize(); planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize(); planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize(); planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize(); return this; }, intersectsObject: function () { var sphere = new Sphere(); return function intersectsObject( object ) { var geometry = object.geometry; if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); sphere.copy( geometry.boundingSphere ) .applyMatrix4( object.matrixWorld ); return this.intersectsSphere( sphere ); }; }(), intersectsSprite: function () { var sphere = new Sphere(); return function intersectsSprite( sprite ) { sphere.center.set( 0, 0, 0 ); sphere.radius = 0.7071067811865476; sphere.applyMatrix4( sprite.matrixWorld ); return this.intersectsSphere( sphere ); }; }(), intersectsSphere: function ( sphere ) { var planes = this.planes; var center = sphere.center; var negRadius = - sphere.radius; for ( var i = 0; i < 6; i ++ ) { var distance = planes[ i ].distanceToPoint( center ); if ( distance < negRadius ) { return false; } } return true; }, intersectsBox: function () { var p1 = new Vector3(), p2 = new Vector3(); return function intersectsBox( box ) { var planes = this.planes; for ( var i = 0; i < 6; i ++ ) { var plane = planes[ i ]; p1.x = plane.normal.x > 0 ? box.min.x : box.max.x; p2.x = plane.normal.x > 0 ? box.max.x : box.min.x; p1.y = plane.normal.y > 0 ? box.min.y : box.max.y; p2.y = plane.normal.y > 0 ? box.max.y : box.min.y; p1.z = plane.normal.z > 0 ? box.min.z : box.max.z; p2.z = plane.normal.z > 0 ? box.max.z : box.min.z; var d1 = plane.distanceToPoint( p1 ); var d2 = plane.distanceToPoint( p2 ); // if both outside plane, no intersection if ( d1 < 0 && d2 < 0 ) { return false; } } return true; }; }(), containsPoint: function ( point ) { var planes = this.planes; for ( var i = 0; i < 6; i ++ ) { if ( planes[ i ].distanceToPoint( point ) < 0 ) { return false; } } return true; } } ); /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ function WebGLShadowMap( _renderer, _lights, _objects, capabilities ) { var _gl = _renderer.context, _state = _renderer.state, _frustum = new Frustum(), _projScreenMatrix = new Matrix4(), _lightShadows = _lights.shadows, _shadowMapSize = new Vector2(), _maxShadowMapSize = new Vector2( capabilities.maxTextureSize, capabilities.maxTextureSize ), _lookTarget = new Vector3(), _lightPositionWorld = new Vector3(), _MorphingFlag = 1, _SkinningFlag = 2, _NumberOfMaterialVariants = ( _MorphingFlag | _SkinningFlag ) + 1, _depthMaterials = new Array( _NumberOfMaterialVariants ), _distanceMaterials = new Array( _NumberOfMaterialVariants ), _materialCache = {}; var cubeDirections = [ new Vector3( 1, 0, 0 ), new Vector3( - 1, 0, 0 ), new Vector3( 0, 0, 1 ), new Vector3( 0, 0, - 1 ), new Vector3( 0, 1, 0 ), new Vector3( 0, - 1, 0 ) ]; var cubeUps = [ new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 0, 1 ), new Vector3( 0, 0, - 1 ) ]; var cube2DViewPorts = [ new Vector4(), new Vector4(), new Vector4(), new Vector4(), new Vector4(), new Vector4() ]; // init var depthMaterialTemplate = new MeshDepthMaterial(); depthMaterialTemplate.depthPacking = RGBADepthPacking; depthMaterialTemplate.clipping = true; var distanceShader = ShaderLib[ "distanceRGBA" ]; var distanceUniforms = UniformsUtils.clone( distanceShader.uniforms ); for ( var i = 0; i !== _NumberOfMaterialVariants; ++ i ) { var useMorphing = ( i & _MorphingFlag ) !== 0; var useSkinning = ( i & _SkinningFlag ) !== 0; var depthMaterial = depthMaterialTemplate.clone(); depthMaterial.morphTargets = useMorphing; depthMaterial.skinning = useSkinning; _depthMaterials[ i ] = depthMaterial; var distanceMaterial = new ShaderMaterial( { defines: { 'USE_SHADOWMAP': '' }, uniforms: distanceUniforms, vertexShader: distanceShader.vertexShader, fragmentShader: distanceShader.fragmentShader, morphTargets: useMorphing, skinning: useSkinning, clipping: true } ); _distanceMaterials[ i ] = distanceMaterial; } // var scope = this; this.enabled = false; this.autoUpdate = true; this.needsUpdate = false; this.type = PCFShadowMap; this.renderReverseSided = true; this.renderSingleSided = true; this.render = function ( scene, camera ) { if ( scope.enabled === false ) return; if ( scope.autoUpdate === false && scope.needsUpdate === false ) return; if ( _lightShadows.length === 0 ) return; // Set GL state for depth map. _state.disable( _gl.BLEND ); _state.buffers.color.setClear( 1, 1, 1, 1 ); _state.buffers.depth.setTest( true ); _state.setScissorTest( false ); // render depth map var faceCount; for ( var i = 0, il = _lightShadows.length; i < il; i ++ ) { var light = _lightShadows[ i ]; var shadow = light.shadow; var isPointLight = light && light.isPointLight; if ( shadow === undefined ) { console.warn( 'THREE.WebGLShadowMap:', light, 'has no shadow.' ); continue; } var shadowCamera = shadow.camera; _shadowMapSize.copy( shadow.mapSize ); _shadowMapSize.min( _maxShadowMapSize ); if ( isPointLight ) { var vpWidth = _shadowMapSize.x; var vpHeight = _shadowMapSize.y; // These viewports map a cube-map onto a 2D texture with the // following orientation: // // xzXZ // y Y // // X - Positive x direction // x - Negative x direction // Y - Positive y direction // y - Negative y direction // Z - Positive z direction // z - Negative z direction // positive X cube2DViewPorts[ 0 ].set( vpWidth * 2, vpHeight, vpWidth, vpHeight ); // negative X cube2DViewPorts[ 1 ].set( 0, vpHeight, vpWidth, vpHeight ); // positive Z cube2DViewPorts[ 2 ].set( vpWidth * 3, vpHeight, vpWidth, vpHeight ); // negative Z cube2DViewPorts[ 3 ].set( vpWidth, vpHeight, vpWidth, vpHeight ); // positive Y cube2DViewPorts[ 4 ].set( vpWidth * 3, 0, vpWidth, vpHeight ); // negative Y cube2DViewPorts[ 5 ].set( vpWidth, 0, vpWidth, vpHeight ); _shadowMapSize.x *= 4.0; _shadowMapSize.y *= 2.0; } if ( shadow.map === null ) { var pars = { minFilter: NearestFilter, magFilter: NearestFilter, format: RGBAFormat }; shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars ); shadow.map.texture.name = light.name + ".shadowMap"; shadowCamera.updateProjectionMatrix(); } if ( shadow.isSpotLightShadow ) { shadow.update( light ); } var shadowMap = shadow.map; var shadowMatrix = shadow.matrix; _lightPositionWorld.setFromMatrixPosition( light.matrixWorld ); shadowCamera.position.copy( _lightPositionWorld ); if ( isPointLight ) { faceCount = 6; // for point lights we set the shadow matrix to be a translation-only matrix // equal to inverse of the light's position shadowMatrix.makeTranslation( - _lightPositionWorld.x, - _lightPositionWorld.y, - _lightPositionWorld.z ); } else { faceCount = 1; _lookTarget.setFromMatrixPosition( light.target.matrixWorld ); shadowCamera.lookAt( _lookTarget ); shadowCamera.updateMatrixWorld(); // compute shadow matrix shadowMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); shadowMatrix.multiply( shadowCamera.projectionMatrix ); shadowMatrix.multiply( shadowCamera.matrixWorldInverse ); } _renderer.setRenderTarget( shadowMap ); _renderer.clear(); // render shadow map for each cube face (if omni-directional) or // run a single pass if not for ( var face = 0; face < faceCount; face ++ ) { if ( isPointLight ) { _lookTarget.copy( shadowCamera.position ); _lookTarget.add( cubeDirections[ face ] ); shadowCamera.up.copy( cubeUps[ face ] ); shadowCamera.lookAt( _lookTarget ); shadowCamera.updateMatrixWorld(); var vpDimensions = cube2DViewPorts[ face ]; _state.viewport( vpDimensions ); } // update camera matrices and frustum _projScreenMatrix.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix ); // set object matrices & frustum culling renderObject( scene, camera, shadowCamera, isPointLight ); } } // Restore GL state. var clearColor = _renderer.getClearColor(); var clearAlpha = _renderer.getClearAlpha(); _renderer.setClearColor( clearColor, clearAlpha ); scope.needsUpdate = false; }; function getDepthMaterial( object, material, isPointLight, lightPositionWorld ) { var geometry = object.geometry; var result = null; var materialVariants = _depthMaterials; var customMaterial = object.customDepthMaterial; if ( isPointLight ) { materialVariants = _distanceMaterials; customMaterial = object.customDistanceMaterial; } if ( ! customMaterial ) { var useMorphing = false; if ( material.morphTargets ) { if ( geometry && geometry.isBufferGeometry ) { useMorphing = geometry.morphAttributes && geometry.morphAttributes.position && geometry.morphAttributes.position.length > 0; } else if ( geometry && geometry.isGeometry ) { useMorphing = geometry.morphTargets && geometry.morphTargets.length > 0; } } if ( object.isSkinnedMesh && material.skinning === false ) { console.warn( 'THREE.WebGLShadowMap: THREE.SkinnedMesh with material.skinning set to false:', object ); } var useSkinning = object.isSkinnedMesh && material.skinning; var variantIndex = 0; if ( useMorphing ) variantIndex |= _MorphingFlag; if ( useSkinning ) variantIndex |= _SkinningFlag; result = materialVariants[ variantIndex ]; } else { result = customMaterial; } if ( _renderer.localClippingEnabled && material.clipShadows === true && material.clippingPlanes.length !== 0 ) { // in this case we need a unique material instance reflecting the // appropriate state var keyA = result.uuid, keyB = material.uuid; var materialsForVariant = _materialCache[ keyA ]; if ( materialsForVariant === undefined ) { materialsForVariant = {}; _materialCache[ keyA ] = materialsForVariant; } var cachedMaterial = materialsForVariant[ keyB ]; if ( cachedMaterial === undefined ) { cachedMaterial = result.clone(); materialsForVariant[ keyB ] = cachedMaterial; } result = cachedMaterial; } result.visible = material.visible; result.wireframe = material.wireframe; var side = material.side; if ( scope.renderSingleSided && side == DoubleSide ) { side = FrontSide; } if ( scope.renderReverseSided ) { if ( side === FrontSide ) side = BackSide; else if ( side === BackSide ) side = FrontSide; } result.side = side; result.clipShadows = material.clipShadows; result.clippingPlanes = material.clippingPlanes; result.wireframeLinewidth = material.wireframeLinewidth; result.linewidth = material.linewidth; if ( isPointLight && result.uniforms.lightPos !== undefined ) { result.uniforms.lightPos.value.copy( lightPositionWorld ); } return result; } function renderObject( object, camera, shadowCamera, isPointLight ) { if ( object.visible === false ) return; var visible = object.layers.test( camera.layers ); if ( visible && ( object.isMesh || object.isLine || object.isPoints ) ) { if ( object.castShadow && ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) ) { object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld ); var geometry = _objects.update( object ); var material = object.material; if ( Array.isArray( material ) ) { var groups = geometry.groups; for ( var k = 0, kl = groups.length; k < kl; k ++ ) { var group = groups[ k ]; var groupMaterial = material[ group.materialIndex ]; if ( groupMaterial && groupMaterial.visible ) { var depthMaterial = getDepthMaterial( object, groupMaterial, isPointLight, _lightPositionWorld ); _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group ); } } } else if ( material.visible ) { var depthMaterial = getDepthMaterial( object, material, isPointLight, _lightPositionWorld ); _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null ); } } } var children = object.children; for ( var i = 0, l = children.length; i < l; i ++ ) { renderObject( children[ i ], camera, shadowCamera, isPointLight ); } } } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLAttributes( gl ) { var buffers = {}; function createBuffer( attribute, bufferType ) { var array = attribute.array; var usage = attribute.dynamic ? gl.DYNAMIC_DRAW : gl.STATIC_DRAW; var buffer = gl.createBuffer(); gl.bindBuffer( bufferType, buffer ); gl.bufferData( bufferType, array, usage ); attribute.onUploadCallback(); var type = gl.FLOAT; if ( array instanceof Float32Array ) { type = gl.FLOAT; } else if ( array instanceof Float64Array ) { console.warn( 'THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.' ); } else if ( array instanceof Uint16Array ) { type = gl.UNSIGNED_SHORT; } else if ( array instanceof Int16Array ) { type = gl.SHORT; } else if ( array instanceof Uint32Array ) { type = gl.UNSIGNED_INT; } else if ( array instanceof Int32Array ) { type = gl.INT; } else if ( array instanceof Int8Array ) { type = gl.BYTE; } else if ( array instanceof Uint8Array ) { type = gl.UNSIGNED_BYTE; } return { buffer: buffer, type: type, bytesPerElement: array.BYTES_PER_ELEMENT, version: attribute.version }; } function updateBuffer( buffer, attribute, bufferType ) { var array = attribute.array; var updateRange = attribute.updateRange; gl.bindBuffer( bufferType, buffer ); if ( attribute.dynamic === false ) { gl.bufferData( bufferType, array, gl.STATIC_DRAW ); } else if ( updateRange.count === - 1 ) { // Not using update ranges gl.bufferSubData( bufferType, 0, array ); } else if ( updateRange.count === 0 ) { console.error( 'THREE.WebGLObjects.updateBuffer: dynamic THREE.BufferAttribute marked as needsUpdate but updateRange.count is 0, ensure you are using set methods or updating manually.' ); } else { gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray( updateRange.offset, updateRange.offset + updateRange.count ) ); updateRange.count = -1; // reset range } } // function get( attribute ) { if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; return buffers[ attribute.uuid ]; } function remove( attribute ) { if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; var data = buffers[ attribute.uuid ]; if ( data ) { gl.deleteBuffer( data.buffer ); delete buffers[ attribute.uuid ]; } } function update( attribute, bufferType ) { if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; var data = buffers[ attribute.uuid ]; if ( data === undefined ) { buffers[ attribute.uuid ] = createBuffer( attribute, bufferType ); } else if ( data.version < attribute.version ) { updateBuffer( data.buffer, attribute, bufferType ); data.version = attribute.version; } } return { get: get, remove: remove, update: update }; } /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://clara.io */ function Euler( x, y, z, order ) { this._x = x || 0; this._y = y || 0; this._z = z || 0; this._order = order || Euler.DefaultOrder; } Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ]; Euler.DefaultOrder = 'XYZ'; Object.defineProperties( Euler.prototype, { x: { get: function () { return this._x; }, set: function ( value ) { this._x = value; this.onChangeCallback(); } }, y: { get: function () { return this._y; }, set: function ( value ) { this._y = value; this.onChangeCallback(); } }, z: { get: function () { return this._z; }, set: function ( value ) { this._z = value; this.onChangeCallback(); } }, order: { get: function () { return this._order; }, set: function ( value ) { this._order = value; this.onChangeCallback(); } } } ); Object.assign( Euler.prototype, { isEuler: true, set: function ( x, y, z, order ) { this._x = x; this._y = y; this._z = z; this._order = order || this._order; this.onChangeCallback(); return this; }, clone: function () { return new this.constructor( this._x, this._y, this._z, this._order ); }, copy: function ( euler ) { this._x = euler._x; this._y = euler._y; this._z = euler._z; this._order = euler._order; this.onChangeCallback(); return this; }, setFromRotationMatrix: function ( m, order, update ) { var clamp = _Math.clamp; // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var te = m.elements; var m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ]; var m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ]; var m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; order = order || this._order; if ( order === 'XYZ' ) { this._y = Math.asin( clamp( m13, - 1, 1 ) ); if ( Math.abs( m13 ) < 0.99999 ) { this._x = Math.atan2( - m23, m33 ); this._z = Math.atan2( - m12, m11 ); } else { this._x = Math.atan2( m32, m22 ); this._z = 0; } } else if ( order === 'YXZ' ) { this._x = Math.asin( - clamp( m23, - 1, 1 ) ); if ( Math.abs( m23 ) < 0.99999 ) { this._y = Math.atan2( m13, m33 ); this._z = Math.atan2( m21, m22 ); } else { this._y = Math.atan2( - m31, m11 ); this._z = 0; } } else if ( order === 'ZXY' ) { this._x = Math.asin( clamp( m32, - 1, 1 ) ); if ( Math.abs( m32 ) < 0.99999 ) { this._y = Math.atan2( - m31, m33 ); this._z = Math.atan2( - m12, m22 ); } else { this._y = 0; this._z = Math.atan2( m21, m11 ); } } else if ( order === 'ZYX' ) { this._y = Math.asin( - clamp( m31, - 1, 1 ) ); if ( Math.abs( m31 ) < 0.99999 ) { this._x = Math.atan2( m32, m33 ); this._z = Math.atan2( m21, m11 ); } else { this._x = 0; this._z = Math.atan2( - m12, m22 ); } } else if ( order === 'YZX' ) { this._z = Math.asin( clamp( m21, - 1, 1 ) ); if ( Math.abs( m21 ) < 0.99999 ) { this._x = Math.atan2( - m23, m22 ); this._y = Math.atan2( - m31, m11 ); } else { this._x = 0; this._y = Math.atan2( m13, m33 ); } } else if ( order === 'XZY' ) { this._z = Math.asin( - clamp( m12, - 1, 1 ) ); if ( Math.abs( m12 ) < 0.99999 ) { this._x = Math.atan2( m32, m22 ); this._y = Math.atan2( m13, m11 ); } else { this._x = Math.atan2( - m23, m33 ); this._y = 0; } } else { console.warn( 'THREE.Euler: .setFromRotationMatrix() given unsupported order: ' + order ); } this._order = order; if ( update !== false ) this.onChangeCallback(); return this; }, setFromQuaternion: function () { var matrix = new Matrix4(); return function setFromQuaternion( q, order, update ) { matrix.makeRotationFromQuaternion( q ); return this.setFromRotationMatrix( matrix, order, update ); }; }(), setFromVector3: function ( v, order ) { return this.set( v.x, v.y, v.z, order || this._order ); }, reorder: function () { // WARNING: this discards revolution information -bhouston var q = new Quaternion(); return function reorder( newOrder ) { q.setFromEuler( this ); return this.setFromQuaternion( q, newOrder ); }; }(), equals: function ( euler ) { return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order ); }, fromArray: function ( array ) { this._x = array[ 0 ]; this._y = array[ 1 ]; this._z = array[ 2 ]; if ( array[ 3 ] !== undefined ) this._order = array[ 3 ]; this.onChangeCallback(); return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._order; return array; }, toVector3: function ( optionalResult ) { if ( optionalResult ) { return optionalResult.set( this._x, this._y, this._z ); } else { return new Vector3( this._x, this._y, this._z ); } }, onChange: function ( callback ) { this.onChangeCallback = callback; return this; }, onChangeCallback: function () {} } ); /** * @author mrdoob / http://mrdoob.com/ */ function Layers() { this.mask = 1 | 0; } Object.assign( Layers.prototype, { set: function ( channel ) { this.mask = 1 << channel | 0; }, enable: function ( channel ) { this.mask |= 1 << channel | 0; }, toggle: function ( channel ) { this.mask ^= 1 << channel | 0; }, disable: function ( channel ) { this.mask &= ~ ( 1 << channel | 0 ); }, test: function ( layers ) { return ( this.mask & layers.mask ) !== 0; } } ); /** * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author elephantatwork / www.elephantatwork.ch */ var object3DId = 0; function Object3D() { Object.defineProperty( this, 'id', { value: object3DId ++ } ); this.uuid = _Math.generateUUID(); this.name = ''; this.type = 'Object3D'; this.parent = null; this.children = []; this.up = Object3D.DefaultUp.clone(); var position = new Vector3(); var rotation = new Euler(); var quaternion = new Quaternion(); var scale = new Vector3( 1, 1, 1 ); function onRotationChange() { quaternion.setFromEuler( rotation, false ); } function onQuaternionChange() { rotation.setFromQuaternion( quaternion, undefined, false ); } rotation.onChange( onRotationChange ); quaternion.onChange( onQuaternionChange ); Object.defineProperties( this, { position: { enumerable: true, value: position }, rotation: { enumerable: true, value: rotation }, quaternion: { enumerable: true, value: quaternion }, scale: { enumerable: true, value: scale }, modelViewMatrix: { value: new Matrix4() }, normalMatrix: { value: new Matrix3() } } ); this.matrix = new Matrix4(); this.matrixWorld = new Matrix4(); this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate; this.matrixWorldNeedsUpdate = false; this.layers = new Layers(); this.visible = true; this.castShadow = false; this.receiveShadow = false; this.frustumCulled = true; this.renderOrder = 0; this.userData = {}; } Object3D.DefaultUp = new Vector3( 0, 1, 0 ); Object3D.DefaultMatrixAutoUpdate = true; Object.assign( Object3D.prototype, EventDispatcher.prototype, { isObject3D: true, onBeforeRender: function () {}, onAfterRender: function () {}, applyMatrix: function ( matrix ) { this.matrix.multiplyMatrices( matrix, this.matrix ); this.matrix.decompose( this.position, this.quaternion, this.scale ); }, applyQuaternion: function ( q ) { this.quaternion.premultiply( q ); return this; }, setRotationFromAxisAngle: function ( axis, angle ) { // assumes axis is normalized this.quaternion.setFromAxisAngle( axis, angle ); }, setRotationFromEuler: function ( euler ) { this.quaternion.setFromEuler( euler, true ); }, setRotationFromMatrix: function ( m ) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) this.quaternion.setFromRotationMatrix( m ); }, setRotationFromQuaternion: function ( q ) { // assumes q is normalized this.quaternion.copy( q ); }, rotateOnAxis: function () { // rotate object on axis in object space // axis is assumed to be normalized var q1 = new Quaternion(); return function rotateOnAxis( axis, angle ) { q1.setFromAxisAngle( axis, angle ); this.quaternion.multiply( q1 ); return this; }; }(), rotateX: function () { var v1 = new Vector3( 1, 0, 0 ); return function rotateX( angle ) { return this.rotateOnAxis( v1, angle ); }; }(), rotateY: function () { var v1 = new Vector3( 0, 1, 0 ); return function rotateY( angle ) { return this.rotateOnAxis( v1, angle ); }; }(), rotateZ: function () { var v1 = new Vector3( 0, 0, 1 ); return function rotateZ( angle ) { return this.rotateOnAxis( v1, angle ); }; }(), translateOnAxis: function () { // translate object by distance along axis in object space // axis is assumed to be normalized var v1 = new Vector3(); return function translateOnAxis( axis, distance ) { v1.copy( axis ).applyQuaternion( this.quaternion ); this.position.add( v1.multiplyScalar( distance ) ); return this; }; }(), translateX: function () { var v1 = new Vector3( 1, 0, 0 ); return function translateX( distance ) { return this.translateOnAxis( v1, distance ); }; }(), translateY: function () { var v1 = new Vector3( 0, 1, 0 ); return function translateY( distance ) { return this.translateOnAxis( v1, distance ); }; }(), translateZ: function () { var v1 = new Vector3( 0, 0, 1 ); return function translateZ( distance ) { return this.translateOnAxis( v1, distance ); }; }(), localToWorld: function ( vector ) { return vector.applyMatrix4( this.matrixWorld ); }, worldToLocal: function () { var m1 = new Matrix4(); return function worldToLocal( vector ) { return vector.applyMatrix4( m1.getInverse( this.matrixWorld ) ); }; }(), lookAt: function () { // This method does not support objects with rotated and/or translated parent(s) var m1 = new Matrix4(); return function lookAt( vector ) { if ( this.isCamera ) { m1.lookAt( this.position, vector, this.up ); } else { m1.lookAt( vector, this.position, this.up ); } this.quaternion.setFromRotationMatrix( m1 ); }; }(), add: function ( object ) { if ( arguments.length > 1 ) { for ( var i = 0; i < arguments.length; i ++ ) { this.add( arguments[ i ] ); } return this; } if ( object === this ) { console.error( "THREE.Object3D.add: object can't be added as a child of itself.", object ); return this; } if ( ( object && object.isObject3D ) ) { if ( object.parent !== null ) { object.parent.remove( object ); } object.parent = this; object.dispatchEvent( { type: 'added' } ); this.children.push( object ); } else { console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object ); } return this; }, remove: function ( object ) { if ( arguments.length > 1 ) { for ( var i = 0; i < arguments.length; i ++ ) { this.remove( arguments[ i ] ); } return this; } var index = this.children.indexOf( object ); if ( index !== - 1 ) { object.parent = null; object.dispatchEvent( { type: 'removed' } ); this.children.splice( index, 1 ); } return this; }, getObjectById: function ( id ) { return this.getObjectByProperty( 'id', id ); }, getObjectByName: function ( name ) { return this.getObjectByProperty( 'name', name ); }, getObjectByProperty: function ( name, value ) { if ( this[ name ] === value ) return this; for ( var i = 0, l = this.children.length; i < l; i ++ ) { var child = this.children[ i ]; var object = child.getObjectByProperty( name, value ); if ( object !== undefined ) { return object; } } return undefined; }, getWorldPosition: function ( optionalTarget ) { var result = optionalTarget || new Vector3(); this.updateMatrixWorld( true ); return result.setFromMatrixPosition( this.matrixWorld ); }, getWorldQuaternion: function () { var position = new Vector3(); var scale = new Vector3(); return function getWorldQuaternion( optionalTarget ) { var result = optionalTarget || new Quaternion(); this.updateMatrixWorld( true ); this.matrixWorld.decompose( position, result, scale ); return result; }; }(), getWorldRotation: function () { var quaternion = new Quaternion(); return function getWorldRotation( optionalTarget ) { var result = optionalTarget || new Euler(); this.getWorldQuaternion( quaternion ); return result.setFromQuaternion( quaternion, this.rotation.order, false ); }; }(), getWorldScale: function () { var position = new Vector3(); var quaternion = new Quaternion(); return function getWorldScale( optionalTarget ) { var result = optionalTarget || new Vector3(); this.updateMatrixWorld( true ); this.matrixWorld.decompose( position, quaternion, result ); return result; }; }(), getWorldDirection: function () { var quaternion = new Quaternion(); return function getWorldDirection( optionalTarget ) { var result = optionalTarget || new Vector3(); this.getWorldQuaternion( quaternion ); return result.set( 0, 0, 1 ).applyQuaternion( quaternion ); }; }(), raycast: function () {}, traverse: function ( callback ) { callback( this ); var children = this.children; for ( var i = 0, l = children.length; i < l; i ++ ) { children[ i ].traverse( callback ); } }, traverseVisible: function ( callback ) { if ( this.visible === false ) return; callback( this ); var children = this.children; for ( var i = 0, l = children.length; i < l; i ++ ) { children[ i ].traverseVisible( callback ); } }, traverseAncestors: function ( callback ) { var parent = this.parent; if ( parent !== null ) { callback( parent ); parent.traverseAncestors( callback ); } }, updateMatrix: function () { this.matrix.compose( this.position, this.quaternion, this.scale ); this.matrixWorldNeedsUpdate = true; }, updateMatrixWorld: function ( force ) { if ( this.matrixAutoUpdate ) this.updateMatrix(); if ( this.matrixWorldNeedsUpdate || force ) { if ( this.parent === null ) { this.matrixWorld.copy( this.matrix ); } else { this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); } this.matrixWorldNeedsUpdate = false; force = true; } // update children var children = this.children; for ( var i = 0, l = children.length; i < l; i ++ ) { children[ i ].updateMatrixWorld( force ); } }, toJSON: function ( meta ) { // meta is '' when called from JSON.stringify var isRootObject = ( meta === undefined || meta === '' ); var output = {}; // meta is a hash used to collect geometries, materials. // not providing it implies that this is the root object // being serialized. if ( isRootObject ) { // initialize meta obj meta = { geometries: {}, materials: {}, textures: {}, images: {} }; output.metadata = { version: 4.5, type: 'Object', generator: 'Object3D.toJSON' }; } // standard Object3D serialization var object = {}; object.uuid = this.uuid; object.type = this.type; if ( this.name !== '' ) object.name = this.name; if ( JSON.stringify( this.userData ) !== '{}' ) object.userData = this.userData; if ( this.castShadow === true ) object.castShadow = true; if ( this.receiveShadow === true ) object.receiveShadow = true; if ( this.visible === false ) object.visible = false; object.matrix = this.matrix.toArray(); // function serialize( library, element ) { if ( library[ element.uuid ] === undefined ) { library[ element.uuid ] = element.toJSON( meta ); } return element.uuid; } if ( this.geometry !== undefined ) { object.geometry = serialize( meta.geometries, this.geometry ); } if ( this.material !== undefined ) { if ( Array.isArray( this.material ) ) { var uuids = []; for ( var i = 0, l = this.material.length; i < l; i ++ ) { uuids.push( serialize( meta.materials, this.material[ i ] ) ); } object.material = uuids; } else { object.material = serialize( meta.materials, this.material ); } } // if ( this.children.length > 0 ) { object.children = []; for ( var i = 0; i < this.children.length; i ++ ) { object.children.push( this.children[ i ].toJSON( meta ).object ); } } if ( isRootObject ) { var geometries = extractFromCache( meta.geometries ); var materials = extractFromCache( meta.materials ); var textures = extractFromCache( meta.textures ); var images = extractFromCache( meta.images ); if ( geometries.length > 0 ) output.geometries = geometries; if ( materials.length > 0 ) output.materials = materials; if ( textures.length > 0 ) output.textures = textures; if ( images.length > 0 ) output.images = images; } output.object = object; return output; // extract data from the cache hash // remove metadata on each item // and return as array function extractFromCache( cache ) { var values = []; for ( var key in cache ) { var data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } }, clone: function ( recursive ) { return new this.constructor().copy( this, recursive ); }, copy: function ( source, recursive ) { if ( recursive === undefined ) recursive = true; this.name = source.name; this.up.copy( source.up ); this.position.copy( source.position ); this.quaternion.copy( source.quaternion ); this.scale.copy( source.scale ); this.matrix.copy( source.matrix ); this.matrixWorld.copy( source.matrixWorld ); this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate; this.layers.mask = source.layers.mask; this.visible = source.visible; this.castShadow = source.castShadow; this.receiveShadow = source.receiveShadow; this.frustumCulled = source.frustumCulled; this.renderOrder = source.renderOrder; this.userData = JSON.parse( JSON.stringify( source.userData ) ); if ( recursive === true ) { for ( var i = 0; i < source.children.length; i ++ ) { var child = source.children[ i ]; this.add( child.clone() ); } } return this; } } ); /** * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ * @author WestLangley / http://github.com/WestLangley */ function Camera() { Object3D.call( this ); this.type = 'Camera'; this.matrixWorldInverse = new Matrix4(); this.projectionMatrix = new Matrix4(); } Camera.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Camera, isCamera: true, copy: function ( source, recursive ) { Object3D.prototype.copy.call( this, source, recursive ); this.matrixWorldInverse.copy( source.matrixWorldInverse ); this.projectionMatrix.copy( source.projectionMatrix ); return this; }, getWorldDirection: function () { var quaternion = new Quaternion(); return function getWorldDirection( optionalTarget ) { var result = optionalTarget || new Vector3(); this.getWorldQuaternion( quaternion ); return result.set( 0, 0, - 1 ).applyQuaternion( quaternion ); }; }(), updateMatrixWorld: function ( force ) { Object3D.prototype.updateMatrixWorld.call( this, force ); this.matrixWorldInverse.getInverse( this.matrixWorld ); }, clone: function () { return new this.constructor().copy( this ); } } ); /** * @author alteredq / http://alteredqualia.com/ * @author arose / http://github.com/arose */ function OrthographicCamera( left, right, top, bottom, near, far ) { Camera.call( this ); this.type = 'OrthographicCamera'; this.zoom = 1; this.view = null; this.left = left; this.right = right; this.top = top; this.bottom = bottom; this.near = ( near !== undefined ) ? near : 0.1; this.far = ( far !== undefined ) ? far : 2000; this.updateProjectionMatrix(); } OrthographicCamera.prototype = Object.assign( Object.create( Camera.prototype ), { constructor: OrthographicCamera, isOrthographicCamera: true, copy: function ( source, recursive ) { Camera.prototype.copy.call( this, source, recursive ); this.left = source.left; this.right = source.right; this.top = source.top; this.bottom = source.bottom; this.near = source.near; this.far = source.far; this.zoom = source.zoom; this.view = source.view === null ? null : Object.assign( {}, source.view ); return this; }, setViewOffset: function( fullWidth, fullHeight, x, y, width, height ) { this.view = { fullWidth: fullWidth, fullHeight: fullHeight, offsetX: x, offsetY: y, width: width, height: height }; this.updateProjectionMatrix(); }, clearViewOffset: function() { this.view = null; this.updateProjectionMatrix(); }, updateProjectionMatrix: function () { var dx = ( this.right - this.left ) / ( 2 * this.zoom ); var dy = ( this.top - this.bottom ) / ( 2 * this.zoom ); var cx = ( this.right + this.left ) / 2; var cy = ( this.top + this.bottom ) / 2; var left = cx - dx; var right = cx + dx; var top = cy + dy; var bottom = cy - dy; if ( this.view !== null ) { var zoomW = this.zoom / ( this.view.width / this.view.fullWidth ); var zoomH = this.zoom / ( this.view.height / this.view.fullHeight ); var scaleW = ( this.right - this.left ) / this.view.width; var scaleH = ( this.top - this.bottom ) / this.view.height; left += scaleW * ( this.view.offsetX / zoomW ); right = left + scaleW * ( this.view.width / zoomW ); top -= scaleH * ( this.view.offsetY / zoomH ); bottom = top - scaleH * ( this.view.height / zoomH ); } this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far ); }, toJSON: function ( meta ) { var data = Object3D.prototype.toJSON.call( this, meta ); data.object.zoom = this.zoom; data.object.left = this.left; data.object.right = this.right; data.object.top = this.top; data.object.bottom = this.bottom; data.object.near = this.near; data.object.far = this.far; if ( this.view !== null ) data.object.view = Object.assign( {}, this.view ); return data; } } ); /** * @author mrdoob / http://mrdoob.com/ * @author greggman / http://games.greggman.com/ * @author zz85 / http://www.lab4games.net/zz85/blog * @author tschw */ function PerspectiveCamera( fov, aspect, near, far ) { Camera.call( this ); this.type = 'PerspectiveCamera'; this.fov = fov !== undefined ? fov : 50; this.zoom = 1; this.near = near !== undefined ? near : 0.1; this.far = far !== undefined ? far : 2000; this.focus = 10; this.aspect = aspect !== undefined ? aspect : 1; this.view = null; this.filmGauge = 35; // width of the film (default in millimeters) this.filmOffset = 0; // horizontal film offset (same unit as gauge) this.updateProjectionMatrix(); } PerspectiveCamera.prototype = Object.assign( Object.create( Camera.prototype ), { constructor: PerspectiveCamera, isPerspectiveCamera: true, copy: function ( source, recursive ) { Camera.prototype.copy.call( this, source, recursive ); this.fov = source.fov; this.zoom = source.zoom; this.near = source.near; this.far = source.far; this.focus = source.focus; this.aspect = source.aspect; this.view = source.view === null ? null : Object.assign( {}, source.view ); this.filmGauge = source.filmGauge; this.filmOffset = source.filmOffset; return this; }, /** * Sets the FOV by focal length in respect to the current .filmGauge. * * The default film gauge is 35, so that the focal length can be specified for * a 35mm (full frame) camera. * * Values for focal length and film gauge must have the same unit. */ setFocalLength: function ( focalLength ) { // see http://www.bobatkins.com/photography/technical/field_of_view.html var vExtentSlope = 0.5 * this.getFilmHeight() / focalLength; this.fov = _Math.RAD2DEG * 2 * Math.atan( vExtentSlope ); this.updateProjectionMatrix(); }, /** * Calculates the focal length from the current .fov and .filmGauge. */ getFocalLength: function () { var vExtentSlope = Math.tan( _Math.DEG2RAD * 0.5 * this.fov ); return 0.5 * this.getFilmHeight() / vExtentSlope; }, getEffectiveFOV: function () { return _Math.RAD2DEG * 2 * Math.atan( Math.tan( _Math.DEG2RAD * 0.5 * this.fov ) / this.zoom ); }, getFilmWidth: function () { // film not completely covered in portrait format (aspect < 1) return this.filmGauge * Math.min( this.aspect, 1 ); }, getFilmHeight: function () { // film not completely covered in landscape format (aspect > 1) return this.filmGauge / Math.max( this.aspect, 1 ); }, /** * Sets an offset in a larger frustum. This is useful for multi-window or * multi-monitor/multi-machine setups. * * For example, if you have 3x2 monitors and each monitor is 1920x1080 and * the monitors are in grid like this * * +---+---+---+ * | A | B | C | * +---+---+---+ * | D | E | F | * +---+---+---+ * * then for each monitor you would call it like this * * var w = 1920; * var h = 1080; * var fullWidth = w * 3; * var fullHeight = h * 2; * * --A-- * camera.setOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); * --B-- * camera.setOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); * --C-- * camera.setOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); * --D-- * camera.setOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); * --E-- * camera.setOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); * --F-- * camera.setOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); * * Note there is no reason monitors have to be the same size or in a grid. */ setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) { this.aspect = fullWidth / fullHeight; this.view = { fullWidth: fullWidth, fullHeight: fullHeight, offsetX: x, offsetY: y, width: width, height: height }; this.updateProjectionMatrix(); }, clearViewOffset: function () { this.view = null; this.updateProjectionMatrix(); }, updateProjectionMatrix: function () { var near = this.near, top = near * Math.tan( _Math.DEG2RAD * 0.5 * this.fov ) / this.zoom, height = 2 * top, width = this.aspect * height, left = - 0.5 * width, view = this.view; if ( view !== null ) { var fullWidth = view.fullWidth, fullHeight = view.fullHeight; left += view.offsetX * width / fullWidth; top -= view.offsetY * height / fullHeight; width *= view.width / fullWidth; height *= view.height / fullHeight; } var skew = this.filmOffset; if ( skew !== 0 ) left += near * skew / this.getFilmWidth(); this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far ); }, toJSON: function ( meta ) { var data = Object3D.prototype.toJSON.call( this, meta ); data.object.fov = this.fov; data.object.zoom = this.zoom; data.object.near = this.near; data.object.far = this.far; data.object.focus = this.focus; data.object.aspect = this.aspect; if ( this.view !== null ) data.object.view = Object.assign( {}, this.view ); data.object.filmGauge = this.filmGauge; data.object.filmOffset = this.filmOffset; return data; } } ); /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function Face3( a, b, c, normal, color, materialIndex ) { this.a = a; this.b = b; this.c = c; this.normal = ( normal && normal.isVector3 ) ? normal : new Vector3(); this.vertexNormals = Array.isArray( normal ) ? normal : []; this.color = ( color && color.isColor ) ? color : new Color(); this.vertexColors = Array.isArray( color ) ? color : []; this.materialIndex = materialIndex !== undefined ? materialIndex : 0; } Object.assign( Face3.prototype, { clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.a = source.a; this.b = source.b; this.c = source.c; this.normal.copy( source.normal ); this.color.copy( source.color ); this.materialIndex = source.materialIndex; for ( var i = 0, il = source.vertexNormals.length; i < il; i ++ ) { this.vertexNormals[ i ] = source.vertexNormals[ i ].clone(); } for ( var i = 0, il = source.vertexColors.length; i < il; i ++ ) { this.vertexColors[ i ] = source.vertexColors[ i ].clone(); } return this; } } ); /** * @author mrdoob / http://mrdoob.com/ * @author kile / http://kile.stravaganza.org/ * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author zz85 / http://www.lab4games.net/zz85/blog * @author bhouston / http://clara.io */ var count = 0; function GeometryIdCount() { return count++; } function Geometry() { Object.defineProperty( this, 'id', { value: GeometryIdCount() } ); this.uuid = _Math.generateUUID(); this.name = ''; this.type = 'Geometry'; this.vertices = []; this.colors = []; this.faces = []; this.faceVertexUvs = [[]]; this.morphTargets = []; this.morphNormals = []; this.skinWeights = []; this.skinIndices = []; this.lineDistances = []; this.boundingBox = null; this.boundingSphere = null; // update flags this.elementsNeedUpdate = false; this.verticesNeedUpdate = false; this.uvsNeedUpdate = false; this.normalsNeedUpdate = false; this.colorsNeedUpdate = false; this.lineDistancesNeedUpdate = false; this.groupsNeedUpdate = false; } Object.assign( Geometry.prototype, EventDispatcher.prototype, { isGeometry: true, applyMatrix: function ( matrix ) { var normalMatrix = new Matrix3().getNormalMatrix( matrix ); for ( var i = 0, il = this.vertices.length; i < il; i ++ ) { var vertex = this.vertices[ i ]; vertex.applyMatrix4( matrix ); } for ( var i = 0, il = this.faces.length; i < il; i ++ ) { var face = this.faces[ i ]; face.normal.applyMatrix3( normalMatrix ).normalize(); for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) { face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize(); } } if ( this.boundingBox !== null ) { this.computeBoundingBox(); } if ( this.boundingSphere !== null ) { this.computeBoundingSphere(); } this.verticesNeedUpdate = true; this.normalsNeedUpdate = true; return this; }, rotateX: function () { // rotate geometry around world x-axis var m1 = new Matrix4(); return function rotateX( angle ) { m1.makeRotationX( angle ); this.applyMatrix( m1 ); return this; }; }(), rotateY: function () { // rotate geometry around world y-axis var m1 = new Matrix4(); return function rotateY( angle ) { m1.makeRotationY( angle ); this.applyMatrix( m1 ); return this; }; }(), rotateZ: function () { // rotate geometry around world z-axis var m1 = new Matrix4(); return function rotateZ( angle ) { m1.makeRotationZ( angle ); this.applyMatrix( m1 ); return this; }; }(), translate: function () { // translate geometry var m1 = new Matrix4(); return function translate( x, y, z ) { m1.makeTranslation( x, y, z ); this.applyMatrix( m1 ); return this; }; }(), scale: function () { // scale geometry var m1 = new Matrix4(); return function scale( x, y, z ) { m1.makeScale( x, y, z ); this.applyMatrix( m1 ); return this; }; }(), lookAt: function () { var obj = new Object3D(); return function lookAt( vector ) { obj.lookAt( vector ); obj.updateMatrix(); this.applyMatrix( obj.matrix ); }; }(), fromBufferGeometry: function ( geometry ) { var scope = this; var indices = geometry.index !== null ? geometry.index.array : undefined; var attributes = geometry.attributes; var positions = attributes.position.array; var normals = attributes.normal !== undefined ? attributes.normal.array : undefined; var colors = attributes.color !== undefined ? attributes.color.array : undefined; var uvs = attributes.uv !== undefined ? attributes.uv.array : undefined; var uvs2 = attributes.uv2 !== undefined ? attributes.uv2.array : undefined; if ( uvs2 !== undefined ) this.faceVertexUvs[ 1 ] = []; var tempNormals = []; var tempUVs = []; var tempUVs2 = []; for ( var i = 0, j = 0; i < positions.length; i += 3, j += 2 ) { scope.vertices.push( new Vector3( positions[ i ], positions[ i + 1 ], positions[ i + 2 ] ) ); if ( normals !== undefined ) { tempNormals.push( new Vector3( normals[ i ], normals[ i + 1 ], normals[ i + 2 ] ) ); } if ( colors !== undefined ) { scope.colors.push( new Color( colors[ i ], colors[ i + 1 ], colors[ i + 2 ] ) ); } if ( uvs !== undefined ) { tempUVs.push( new Vector2( uvs[ j ], uvs[ j + 1 ] ) ); } if ( uvs2 !== undefined ) { tempUVs2.push( new Vector2( uvs2[ j ], uvs2[ j + 1 ] ) ); } } function addFace( a, b, c, materialIndex ) { var vertexNormals = normals !== undefined ? [ tempNormals[ a ].clone(), tempNormals[ b ].clone(), tempNormals[ c ].clone() ] : []; var vertexColors = colors !== undefined ? [ scope.colors[ a ].clone(), scope.colors[ b ].clone(), scope.colors[ c ].clone() ] : []; var face = new Face3( a, b, c, vertexNormals, vertexColors, materialIndex ); scope.faces.push( face ); if ( uvs !== undefined ) { scope.faceVertexUvs[ 0 ].push( [ tempUVs[ a ].clone(), tempUVs[ b ].clone(), tempUVs[ c ].clone() ] ); } if ( uvs2 !== undefined ) { scope.faceVertexUvs[ 1 ].push( [ tempUVs2[ a ].clone(), tempUVs2[ b ].clone(), tempUVs2[ c ].clone() ] ); } } var groups = geometry.groups; if ( groups.length > 0 ) { for ( var i = 0; i < groups.length; i ++ ) { var group = groups[ i ]; var start = group.start; var count = group.count; for ( var j = start, jl = start + count; j < jl; j += 3 ) { if ( indices !== undefined ) { addFace( indices[ j ], indices[ j + 1 ], indices[ j + 2 ], group.materialIndex ); } else { addFace( j, j + 1, j + 2, group.materialIndex ); } } } } else { if ( indices !== undefined ) { for ( var i = 0; i < indices.length; i += 3 ) { addFace( indices[ i ], indices[ i + 1 ], indices[ i + 2 ] ); } } else { for ( var i = 0; i < positions.length / 3; i += 3 ) { addFace( i, i + 1, i + 2 ); } } } this.computeFaceNormals(); if ( geometry.boundingBox !== null ) { this.boundingBox = geometry.boundingBox.clone(); } if ( geometry.boundingSphere !== null ) { this.boundingSphere = geometry.boundingSphere.clone(); } return this; }, center: function () { this.computeBoundingBox(); var offset = this.boundingBox.getCenter().negate(); this.translate( offset.x, offset.y, offset.z ); return offset; }, normalize: function () { this.computeBoundingSphere(); var center = this.boundingSphere.center; var radius = this.boundingSphere.radius; var s = radius === 0 ? 1 : 1.0 / radius; var matrix = new Matrix4(); matrix.set( s, 0, 0, - s * center.x, 0, s, 0, - s * center.y, 0, 0, s, - s * center.z, 0, 0, 0, 1 ); this.applyMatrix( matrix ); return this; }, computeFaceNormals: function () { var cb = new Vector3(), ab = new Vector3(); for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) { var face = this.faces[ f ]; var vA = this.vertices[ face.a ]; var vB = this.vertices[ face.b ]; var vC = this.vertices[ face.c ]; cb.subVectors( vC, vB ); ab.subVectors( vA, vB ); cb.cross( ab ); cb.normalize(); face.normal.copy( cb ); } }, computeVertexNormals: function ( areaWeighted ) { if ( areaWeighted === undefined ) areaWeighted = true; var v, vl, f, fl, face, vertices; vertices = new Array( this.vertices.length ); for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { vertices[ v ] = new Vector3(); } if ( areaWeighted ) { // vertex normals weighted by triangle areas // http://www.iquilezles.org/www/articles/normals/normals.htm var vA, vB, vC; var cb = new Vector3(), ab = new Vector3(); for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; vA = this.vertices[ face.a ]; vB = this.vertices[ face.b ]; vC = this.vertices[ face.c ]; cb.subVectors( vC, vB ); ab.subVectors( vA, vB ); cb.cross( ab ); vertices[ face.a ].add( cb ); vertices[ face.b ].add( cb ); vertices[ face.c ].add( cb ); } } else { this.computeFaceNormals(); for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; vertices[ face.a ].add( face.normal ); vertices[ face.b ].add( face.normal ); vertices[ face.c ].add( face.normal ); } } for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { vertices[ v ].normalize(); } for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; var vertexNormals = face.vertexNormals; if ( vertexNormals.length === 3 ) { vertexNormals[ 0 ].copy( vertices[ face.a ] ); vertexNormals[ 1 ].copy( vertices[ face.b ] ); vertexNormals[ 2 ].copy( vertices[ face.c ] ); } else { vertexNormals[ 0 ] = vertices[ face.a ].clone(); vertexNormals[ 1 ] = vertices[ face.b ].clone(); vertexNormals[ 2 ] = vertices[ face.c ].clone(); } } if ( this.faces.length > 0 ) { this.normalsNeedUpdate = true; } }, computeFlatVertexNormals: function () { var f, fl, face; this.computeFaceNormals(); for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; var vertexNormals = face.vertexNormals; if ( vertexNormals.length === 3 ) { vertexNormals[ 0 ].copy( face.normal ); vertexNormals[ 1 ].copy( face.normal ); vertexNormals[ 2 ].copy( face.normal ); } else { vertexNormals[ 0 ] = face.normal.clone(); vertexNormals[ 1 ] = face.normal.clone(); vertexNormals[ 2 ] = face.normal.clone(); } } if ( this.faces.length > 0 ) { this.normalsNeedUpdate = true; } }, computeMorphNormals: function () { var i, il, f, fl, face; // save original normals // - create temp variables on first access // otherwise just copy (for faster repeated calls) for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; if ( ! face.__originalFaceNormal ) { face.__originalFaceNormal = face.normal.clone(); } else { face.__originalFaceNormal.copy( face.normal ); } if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = []; for ( i = 0, il = face.vertexNormals.length; i < il; i ++ ) { if ( ! face.__originalVertexNormals[ i ] ) { face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone(); } else { face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] ); } } } // use temp geometry to compute face and vertex normals for each morph var tmpGeo = new Geometry(); tmpGeo.faces = this.faces; for ( i = 0, il = this.morphTargets.length; i < il; i ++ ) { // create on first access if ( ! this.morphNormals[ i ] ) { this.morphNormals[ i ] = {}; this.morphNormals[ i ].faceNormals = []; this.morphNormals[ i ].vertexNormals = []; var dstNormalsFace = this.morphNormals[ i ].faceNormals; var dstNormalsVertex = this.morphNormals[ i ].vertexNormals; var faceNormal, vertexNormals; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { faceNormal = new Vector3(); vertexNormals = { a: new Vector3(), b: new Vector3(), c: new Vector3() }; dstNormalsFace.push( faceNormal ); dstNormalsVertex.push( vertexNormals ); } } var morphNormals = this.morphNormals[ i ]; // set vertices to morph target tmpGeo.vertices = this.morphTargets[ i ].vertices; // compute morph normals tmpGeo.computeFaceNormals(); tmpGeo.computeVertexNormals(); // store morph normals var faceNormal, vertexNormals; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; faceNormal = morphNormals.faceNormals[ f ]; vertexNormals = morphNormals.vertexNormals[ f ]; faceNormal.copy( face.normal ); vertexNormals.a.copy( face.vertexNormals[ 0 ] ); vertexNormals.b.copy( face.vertexNormals[ 1 ] ); vertexNormals.c.copy( face.vertexNormals[ 2 ] ); } } // restore original normals for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; face.normal = face.__originalFaceNormal; face.vertexNormals = face.__originalVertexNormals; } }, computeLineDistances: function () { var d = 0; var vertices = this.vertices; for ( var i = 0, il = vertices.length; i < il; i ++ ) { if ( i > 0 ) { d += vertices[ i ].distanceTo( vertices[ i - 1 ] ); } this.lineDistances[ i ] = d; } }, computeBoundingBox: function () { if ( this.boundingBox === null ) { this.boundingBox = new Box3(); } this.boundingBox.setFromPoints( this.vertices ); }, computeBoundingSphere: function () { if ( this.boundingSphere === null ) { this.boundingSphere = new Sphere(); } this.boundingSphere.setFromPoints( this.vertices ); }, merge: function ( geometry, matrix, materialIndexOffset ) { if ( ! ( geometry && geometry.isGeometry ) ) { console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry ); return; } var normalMatrix, vertexOffset = this.vertices.length, vertices1 = this.vertices, vertices2 = geometry.vertices, faces1 = this.faces, faces2 = geometry.faces, uvs1 = this.faceVertexUvs[ 0 ], uvs2 = geometry.faceVertexUvs[ 0 ], colors1 = this.colors, colors2 = geometry.colors; if ( materialIndexOffset === undefined ) materialIndexOffset = 0; if ( matrix !== undefined ) { normalMatrix = new Matrix3().getNormalMatrix( matrix ); } // vertices for ( var i = 0, il = vertices2.length; i < il; i ++ ) { var vertex = vertices2[ i ]; var vertexCopy = vertex.clone(); if ( matrix !== undefined ) vertexCopy.applyMatrix4( matrix ); vertices1.push( vertexCopy ); } // colors for ( var i = 0, il = colors2.length; i < il; i ++ ) { colors1.push( colors2[ i ].clone() ); } // faces for ( i = 0, il = faces2.length; i < il; i ++ ) { var face = faces2[ i ], faceCopy, normal, color, faceVertexNormals = face.vertexNormals, faceVertexColors = face.vertexColors; faceCopy = new Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset ); faceCopy.normal.copy( face.normal ); if ( normalMatrix !== undefined ) { faceCopy.normal.applyMatrix3( normalMatrix ).normalize(); } for ( var j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) { normal = faceVertexNormals[ j ].clone(); if ( normalMatrix !== undefined ) { normal.applyMatrix3( normalMatrix ).normalize(); } faceCopy.vertexNormals.push( normal ); } faceCopy.color.copy( face.color ); for ( var j = 0, jl = faceVertexColors.length; j < jl; j ++ ) { color = faceVertexColors[ j ]; faceCopy.vertexColors.push( color.clone() ); } faceCopy.materialIndex = face.materialIndex + materialIndexOffset; faces1.push( faceCopy ); } // uvs for ( i = 0, il = uvs2.length; i < il; i ++ ) { var uv = uvs2[ i ], uvCopy = []; if ( uv === undefined ) { continue; } for ( var j = 0, jl = uv.length; j < jl; j ++ ) { uvCopy.push( uv[ j ].clone() ); } uvs1.push( uvCopy ); } }, mergeMesh: function ( mesh ) { if ( ! ( mesh && mesh.isMesh ) ) { console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh ); return; } mesh.matrixAutoUpdate && mesh.updateMatrix(); this.merge( mesh.geometry, mesh.matrix ); }, /* * Checks for duplicate vertices with hashmap. * Duplicated vertices are removed * and faces' vertices are updated. */ mergeVertices: function () { var verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique) var unique = [], changes = []; var v, key; var precisionPoints = 4; // number of decimal points, e.g. 4 for epsilon of 0.0001 var precision = Math.pow( 10, precisionPoints ); var i, il, face; var indices, j, jl; for ( i = 0, il = this.vertices.length; i < il; i ++ ) { v = this.vertices[ i ]; key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision ); if ( verticesMap[ key ] === undefined ) { verticesMap[ key ] = i; unique.push( this.vertices[ i ] ); changes[ i ] = unique.length - 1; } else { //console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]); changes[ i ] = changes[ verticesMap[ key ] ]; } } // if faces are completely degenerate after merging vertices, we // have to remove them from the geometry. var faceIndicesToRemove = []; for ( i = 0, il = this.faces.length; i < il; i ++ ) { face = this.faces[ i ]; face.a = changes[ face.a ]; face.b = changes[ face.b ]; face.c = changes[ face.c ]; indices = [ face.a, face.b, face.c ]; // if any duplicate vertices are found in a Face3 // we have to remove the face as nothing can be saved for ( var n = 0; n < 3; n ++ ) { if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) { faceIndicesToRemove.push( i ); break; } } } for ( i = faceIndicesToRemove.length - 1; i >= 0; i -- ) { var idx = faceIndicesToRemove[ i ]; this.faces.splice( idx, 1 ); for ( j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) { this.faceVertexUvs[ j ].splice( idx, 1 ); } } // Use unique set of vertices var diff = this.vertices.length - unique.length; this.vertices = unique; return diff; }, sortFacesByMaterialIndex: function () { var faces = this.faces; var length = faces.length; // tag faces for ( var i = 0; i < length; i ++ ) { faces[ i ]._id = i; } // sort faces function materialIndexSort( a, b ) { return a.materialIndex - b.materialIndex; } faces.sort( materialIndexSort ); // sort uvs var uvs1 = this.faceVertexUvs[ 0 ]; var uvs2 = this.faceVertexUvs[ 1 ]; var newUvs1, newUvs2; if ( uvs1 && uvs1.length === length ) newUvs1 = []; if ( uvs2 && uvs2.length === length ) newUvs2 = []; for ( var i = 0; i < length; i ++ ) { var id = faces[ i ]._id; if ( newUvs1 ) newUvs1.push( uvs1[ id ] ); if ( newUvs2 ) newUvs2.push( uvs2[ id ] ); } if ( newUvs1 ) this.faceVertexUvs[ 0 ] = newUvs1; if ( newUvs2 ) this.faceVertexUvs[ 1 ] = newUvs2; }, toJSON: function () { var data = { metadata: { version: 4.5, type: 'Geometry', generator: 'Geometry.toJSON' } }; // standard Geometry serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( this.parameters !== undefined ) { var parameters = this.parameters; for ( var key in parameters ) { if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ]; } return data; } var vertices = []; for ( var i = 0; i < this.vertices.length; i ++ ) { var vertex = this.vertices[ i ]; vertices.push( vertex.x, vertex.y, vertex.z ); } var faces = []; var normals = []; var normalsHash = {}; var colors = []; var colorsHash = {}; var uvs = []; var uvsHash = {}; for ( var i = 0; i < this.faces.length; i ++ ) { var face = this.faces[ i ]; var hasMaterial = true; var hasFaceUv = false; // deprecated var hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i ] !== undefined; var hasFaceNormal = face.normal.length() > 0; var hasFaceVertexNormal = face.vertexNormals.length > 0; var hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1; var hasFaceVertexColor = face.vertexColors.length > 0; var faceType = 0; faceType = setBit( faceType, 0, 0 ); // isQuad faceType = setBit( faceType, 1, hasMaterial ); faceType = setBit( faceType, 2, hasFaceUv ); faceType = setBit( faceType, 3, hasFaceVertexUv ); faceType = setBit( faceType, 4, hasFaceNormal ); faceType = setBit( faceType, 5, hasFaceVertexNormal ); faceType = setBit( faceType, 6, hasFaceColor ); faceType = setBit( faceType, 7, hasFaceVertexColor ); faces.push( faceType ); faces.push( face.a, face.b, face.c ); faces.push( face.materialIndex ); if ( hasFaceVertexUv ) { var faceVertexUvs = this.faceVertexUvs[ 0 ][ i ]; faces.push( getUvIndex( faceVertexUvs[ 0 ] ), getUvIndex( faceVertexUvs[ 1 ] ), getUvIndex( faceVertexUvs[ 2 ] ) ); } if ( hasFaceNormal ) { faces.push( getNormalIndex( face.normal ) ); } if ( hasFaceVertexNormal ) { var vertexNormals = face.vertexNormals; faces.push( getNormalIndex( vertexNormals[ 0 ] ), getNormalIndex( vertexNormals[ 1 ] ), getNormalIndex( vertexNormals[ 2 ] ) ); } if ( hasFaceColor ) { faces.push( getColorIndex( face.color ) ); } if ( hasFaceVertexColor ) { var vertexColors = face.vertexColors; faces.push( getColorIndex( vertexColors[ 0 ] ), getColorIndex( vertexColors[ 1 ] ), getColorIndex( vertexColors[ 2 ] ) ); } } function setBit( value, position, enabled ) { return enabled ? value | ( 1 << position ) : value & ( ~ ( 1 << position ) ); } function getNormalIndex( normal ) { var hash = normal.x.toString() + normal.y.toString() + normal.z.toString(); if ( normalsHash[ hash ] !== undefined ) { return normalsHash[ hash ]; } normalsHash[ hash ] = normals.length / 3; normals.push( normal.x, normal.y, normal.z ); return normalsHash[ hash ]; } function getColorIndex( color ) { var hash = color.r.toString() + color.g.toString() + color.b.toString(); if ( colorsHash[ hash ] !== undefined ) { return colorsHash[ hash ]; } colorsHash[ hash ] = colors.length; colors.push( color.getHex() ); return colorsHash[ hash ]; } function getUvIndex( uv ) { var hash = uv.x.toString() + uv.y.toString(); if ( uvsHash[ hash ] !== undefined ) { return uvsHash[ hash ]; } uvsHash[ hash ] = uvs.length / 2; uvs.push( uv.x, uv.y ); return uvsHash[ hash ]; } data.data = {}; data.data.vertices = vertices; data.data.normals = normals; if ( colors.length > 0 ) data.data.colors = colors; if ( uvs.length > 0 ) data.data.uvs = [ uvs ]; // temporal backward compatibility data.data.faces = faces; return data; }, clone: function () { /* // Handle primitives var parameters = this.parameters; if ( parameters !== undefined ) { var values = []; for ( var key in parameters ) { values.push( parameters[ key ] ); } var geometry = Object.create( this.constructor.prototype ); this.constructor.apply( geometry, values ); return geometry; } return new this.constructor().copy( this ); */ return new Geometry().copy( this ); }, copy: function ( source ) { var i, il, j, jl, k, kl; // reset this.vertices = []; this.colors = []; this.faces = []; this.faceVertexUvs = [[]]; this.morphTargets = []; this.morphNormals = []; this.skinWeights = []; this.skinIndices = []; this.lineDistances = []; this.boundingBox = null; this.boundingSphere = null; // name this.name = source.name; // vertices var vertices = source.vertices; for ( i = 0, il = vertices.length; i < il; i ++ ) { this.vertices.push( vertices[ i ].clone() ); } // colors var colors = source.colors; for ( i = 0, il = colors.length; i < il; i ++ ) { this.colors.push( colors[ i ].clone() ); } // faces var faces = source.faces; for ( i = 0, il = faces.length; i < il; i ++ ) { this.faces.push( faces[ i ].clone() ); } // face vertex uvs for ( i = 0, il = source.faceVertexUvs.length; i < il; i ++ ) { var faceVertexUvs = source.faceVertexUvs[ i ]; if ( this.faceVertexUvs[ i ] === undefined ) { this.faceVertexUvs[ i ] = []; } for ( j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) { var uvs = faceVertexUvs[ j ], uvsCopy = []; for ( k = 0, kl = uvs.length; k < kl; k ++ ) { var uv = uvs[ k ]; uvsCopy.push( uv.clone() ); } this.faceVertexUvs[ i ].push( uvsCopy ); } } // morph targets var morphTargets = source.morphTargets; for ( i = 0, il = morphTargets.length; i < il; i ++ ) { var morphTarget = {}; morphTarget.name = morphTargets[ i ].name; // vertices if ( morphTargets[ i ].vertices !== undefined ) { morphTarget.vertices = []; for ( j = 0, jl = morphTargets[ i ].vertices.length; j < jl; j ++ ) { morphTarget.vertices.push( morphTargets[ i ].vertices[ j ].clone() ); } } // normals if ( morphTargets[ i ].normals !== undefined ) { morphTarget.normals = []; for ( j = 0, jl = morphTargets[ i ].normals.length; j < jl; j ++ ) { morphTarget.normals.push( morphTargets[ i ].normals[ j ].clone() ); } } this.morphTargets.push( morphTarget ); } // morph normals var morphNormals = source.morphNormals; for ( i = 0, il = morphNormals.length; i < il; i ++ ) { var morphNormal = {}; // vertex normals if ( morphNormals[ i ].vertexNormals !== undefined ) { morphNormal.vertexNormals = []; for ( j = 0, jl = morphNormals[ i ].vertexNormals.length; j < jl; j ++ ) { var srcVertexNormal = morphNormals[ i ].vertexNormals[ j ]; var destVertexNormal = {}; destVertexNormal.a = srcVertexNormal.a.clone(); destVertexNormal.b = srcVertexNormal.b.clone(); destVertexNormal.c = srcVertexNormal.c.clone(); morphNormal.vertexNormals.push( destVertexNormal ); } } // face normals if ( morphNormals[ i ].faceNormals !== undefined ) { morphNormal.faceNormals = []; for ( j = 0, jl = morphNormals[ i ].faceNormals.length; j < jl; j ++ ) { morphNormal.faceNormals.push( morphNormals[ i ].faceNormals[ j ].clone() ); } } this.morphNormals.push( morphNormal ); } // skin weights var skinWeights = source.skinWeights; for ( i = 0, il = skinWeights.length; i < il; i ++ ) { this.skinWeights.push( skinWeights[ i ].clone() ); } // skin indices var skinIndices = source.skinIndices; for ( i = 0, il = skinIndices.length; i < il; i ++ ) { this.skinIndices.push( skinIndices[ i ].clone() ); } // line distances var lineDistances = source.lineDistances; for ( i = 0, il = lineDistances.length; i < il; i ++ ) { this.lineDistances.push( lineDistances[ i ] ); } // bounding box var boundingBox = source.boundingBox; if ( boundingBox !== null ) { this.boundingBox = boundingBox.clone(); } // bounding sphere var boundingSphere = source.boundingSphere; if ( boundingSphere !== null ) { this.boundingSphere = boundingSphere.clone(); } // update flags this.elementsNeedUpdate = source.elementsNeedUpdate; this.verticesNeedUpdate = source.verticesNeedUpdate; this.uvsNeedUpdate = source.uvsNeedUpdate; this.normalsNeedUpdate = source.normalsNeedUpdate; this.colorsNeedUpdate = source.colorsNeedUpdate; this.lineDistancesNeedUpdate = source.lineDistancesNeedUpdate; this.groupsNeedUpdate = source.groupsNeedUpdate; return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } } ); /** * @author mrdoob / http://mrdoob.com/ */ function BufferAttribute( array, itemSize, normalized ) { if ( Array.isArray( array ) ) { throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' ); } this.uuid = _Math.generateUUID(); this.name = ''; this.array = array; this.itemSize = itemSize; this.count = array !== undefined ? array.length / itemSize : 0; this.normalized = normalized === true; this.dynamic = false; this.updateRange = { offset: 0, count: - 1 }; this.onUploadCallback = function () {}; this.version = 0; } Object.defineProperty( BufferAttribute.prototype, 'needsUpdate', { set: function ( value ) { if ( value === true ) this.version ++; } } ); Object.assign( BufferAttribute.prototype, { isBufferAttribute: true, setArray: function ( array ) { if ( Array.isArray( array ) ) { throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' ); } this.count = array !== undefined ? array.length / this.itemSize : 0; this.array = array; }, setDynamic: function ( value ) { this.dynamic = value; return this; }, copy: function ( source ) { this.array = new source.array.constructor( source.array ); this.itemSize = source.itemSize; this.count = source.count; this.normalized = source.normalized; this.dynamic = source.dynamic; return this; }, copyAt: function ( index1, attribute, index2 ) { index1 *= this.itemSize; index2 *= attribute.itemSize; for ( var i = 0, l = this.itemSize; i < l; i ++ ) { this.array[ index1 + i ] = attribute.array[ index2 + i ]; } return this; }, copyArray: function ( array ) { this.array.set( array ); return this; }, copyColorsArray: function ( colors ) { var array = this.array, offset = 0; for ( var i = 0, l = colors.length; i < l; i ++ ) { var color = colors[ i ]; if ( color === undefined ) { console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i ); color = new Color(); } array[ offset ++ ] = color.r; array[ offset ++ ] = color.g; array[ offset ++ ] = color.b; } return this; }, copyIndicesArray: function ( indices ) { var array = this.array, offset = 0; for ( var i = 0, l = indices.length; i < l; i ++ ) { var index = indices[ i ]; array[ offset ++ ] = index.a; array[ offset ++ ] = index.b; array[ offset ++ ] = index.c; } return this; }, copyVector2sArray: function ( vectors ) { var array = this.array, offset = 0; for ( var i = 0, l = vectors.length; i < l; i ++ ) { var vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i ); vector = new Vector2(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; } return this; }, copyVector3sArray: function ( vectors ) { var array = this.array, offset = 0; for ( var i = 0, l = vectors.length; i < l; i ++ ) { var vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i ); vector = new Vector3(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; array[ offset ++ ] = vector.z; } return this; }, copyVector4sArray: function ( vectors ) { var array = this.array, offset = 0; for ( var i = 0, l = vectors.length; i < l; i ++ ) { var vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i ); vector = new Vector4(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; array[ offset ++ ] = vector.z; array[ offset ++ ] = vector.w; } return this; }, set: function ( value, offset ) { if ( offset === undefined ) offset = 0; this.array.set( value, offset ); return this; }, getX: function ( index ) { return this.array[ index * this.itemSize ]; }, setX: function ( index, x ) { this.array[ index * this.itemSize ] = x; return this; }, getY: function ( index ) { return this.array[ index * this.itemSize + 1 ]; }, setY: function ( index, y ) { this.array[ index * this.itemSize + 1 ] = y; return this; }, getZ: function ( index ) { return this.array[ index * this.itemSize + 2 ]; }, setZ: function ( index, z ) { this.array[ index * this.itemSize + 2 ] = z; return this; }, getW: function ( index ) { return this.array[ index * this.itemSize + 3 ]; }, setW: function ( index, w ) { this.array[ index * this.itemSize + 3 ] = w; return this; }, setXY: function ( index, x, y ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; return this; }, setXYZ: function ( index, x, y, z ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; return this; }, setXYZW: function ( index, x, y, z, w ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; this.array[ index + 3 ] = w; return this; }, onUpload: function ( callback ) { this.onUploadCallback = callback; return this; }, clone: function () { return new this.constructor( this.array, this.itemSize ).copy( this ); } } ); function Uint16BufferAttribute( array, itemSize ) { BufferAttribute.call( this, new Uint16Array( array ), itemSize ); } Uint16BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Uint16BufferAttribute.prototype.constructor = Uint16BufferAttribute; function Uint32BufferAttribute( array, itemSize ) { BufferAttribute.call( this, new Uint32Array( array ), itemSize ); } Uint32BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Uint32BufferAttribute.prototype.constructor = Uint32BufferAttribute; function Float32BufferAttribute( array, itemSize ) { BufferAttribute.call( this, new Float32Array( array ), itemSize ); } Float32BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Float32BufferAttribute.prototype.constructor = Float32BufferAttribute; /** * @author mrdoob / http://mrdoob.com/ */ function DirectGeometry() { this.indices = []; this.vertices = []; this.normals = []; this.colors = []; this.uvs = []; this.uvs2 = []; this.groups = []; this.morphTargets = {}; this.skinWeights = []; this.skinIndices = []; // this.lineDistances = []; this.boundingBox = null; this.boundingSphere = null; // update flags this.verticesNeedUpdate = false; this.normalsNeedUpdate = false; this.colorsNeedUpdate = false; this.uvsNeedUpdate = false; this.groupsNeedUpdate = false; } Object.assign( DirectGeometry.prototype, { computeGroups: function ( geometry ) { var group; var groups = []; var materialIndex = undefined; var faces = geometry.faces; for ( var i = 0; i < faces.length; i ++ ) { var face = faces[ i ]; // materials if ( face.materialIndex !== materialIndex ) { materialIndex = face.materialIndex; if ( group !== undefined ) { group.count = ( i * 3 ) - group.start; groups.push( group ); } group = { start: i * 3, materialIndex: materialIndex }; } } if ( group !== undefined ) { group.count = ( i * 3 ) - group.start; groups.push( group ); } this.groups = groups; }, fromGeometry: function ( geometry ) { var faces = geometry.faces; var vertices = geometry.vertices; var faceVertexUvs = geometry.faceVertexUvs; var hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0; var hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0; // morphs var morphTargets = geometry.morphTargets; var morphTargetsLength = morphTargets.length; var morphTargetsPosition; if ( morphTargetsLength > 0 ) { morphTargetsPosition = []; for ( var i = 0; i < morphTargetsLength; i ++ ) { morphTargetsPosition[ i ] = []; } this.morphTargets.position = morphTargetsPosition; } var morphNormals = geometry.morphNormals; var morphNormalsLength = morphNormals.length; var morphTargetsNormal; if ( morphNormalsLength > 0 ) { morphTargetsNormal = []; for ( var i = 0; i < morphNormalsLength; i ++ ) { morphTargetsNormal[ i ] = []; } this.morphTargets.normal = morphTargetsNormal; } // skins var skinIndices = geometry.skinIndices; var skinWeights = geometry.skinWeights; var hasSkinIndices = skinIndices.length === vertices.length; var hasSkinWeights = skinWeights.length === vertices.length; // for ( var i = 0; i < faces.length; i ++ ) { var face = faces[ i ]; this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] ); var vertexNormals = face.vertexNormals; if ( vertexNormals.length === 3 ) { this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] ); } else { var normal = face.normal; this.normals.push( normal, normal, normal ); } var vertexColors = face.vertexColors; if ( vertexColors.length === 3 ) { this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] ); } else { var color = face.color; this.colors.push( color, color, color ); } if ( hasFaceVertexUv === true ) { var vertexUvs = faceVertexUvs[ 0 ][ i ]; if ( vertexUvs !== undefined ) { this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] ); } else { console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i ); this.uvs.push( new Vector2(), new Vector2(), new Vector2() ); } } if ( hasFaceVertexUv2 === true ) { var vertexUvs = faceVertexUvs[ 1 ][ i ]; if ( vertexUvs !== undefined ) { this.uvs2.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] ); } else { console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i ); this.uvs2.push( new Vector2(), new Vector2(), new Vector2() ); } } // morphs for ( var j = 0; j < morphTargetsLength; j ++ ) { var morphTarget = morphTargets[ j ].vertices; morphTargetsPosition[ j ].push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] ); } for ( var j = 0; j < morphNormalsLength; j ++ ) { var morphNormal = morphNormals[ j ].vertexNormals[ i ]; morphTargetsNormal[ j ].push( morphNormal.a, morphNormal.b, morphNormal.c ); } // skins if ( hasSkinIndices ) { this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] ); } if ( hasSkinWeights ) { this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] ); } } this.computeGroups( geometry ); this.verticesNeedUpdate = geometry.verticesNeedUpdate; this.normalsNeedUpdate = geometry.normalsNeedUpdate; this.colorsNeedUpdate = geometry.colorsNeedUpdate; this.uvsNeedUpdate = geometry.uvsNeedUpdate; this.groupsNeedUpdate = geometry.groupsNeedUpdate; return this; } } ); function arrayMax( array ) { if ( array.length === 0 ) return - Infinity; var max = array[ 0 ]; for ( var i = 1, l = array.length; i < l; ++ i ) { if ( array[ i ] > max ) max = array[ i ]; } return max; } /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ function BufferGeometry() { Object.defineProperty( this, 'id', { value: GeometryIdCount() } ); this.uuid = _Math.generateUUID(); this.name = ''; this.type = 'BufferGeometry'; this.index = null; this.attributes = {}; this.morphAttributes = {}; this.groups = []; this.boundingBox = null; this.boundingSphere = null; this.drawRange = { start: 0, count: Infinity }; } BufferGeometry.MaxIndex = 65535; Object.assign( BufferGeometry.prototype, EventDispatcher.prototype, { isBufferGeometry: true, getIndex: function () { return this.index; }, setIndex: function ( index ) { if ( Array.isArray( index ) ) { this.index = new ( arrayMax( index ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 ); } else { this.index = index; } }, addAttribute: function ( name, attribute ) { if ( ! ( attribute && attribute.isBufferAttribute ) && ! ( attribute && attribute.isInterleavedBufferAttribute ) ) { console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' ); this.addAttribute( name, new BufferAttribute( arguments[ 1 ], arguments[ 2 ] ) ); return; } if ( name === 'index' ) { console.warn( 'THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.' ); this.setIndex( attribute ); return; } this.attributes[ name ] = attribute; return this; }, getAttribute: function ( name ) { return this.attributes[ name ]; }, removeAttribute: function ( name ) { delete this.attributes[ name ]; return this; }, addGroup: function ( start, count, materialIndex ) { this.groups.push( { start: start, count: count, materialIndex: materialIndex !== undefined ? materialIndex : 0 } ); }, clearGroups: function () { this.groups = []; }, setDrawRange: function ( start, count ) { this.drawRange.start = start; this.drawRange.count = count; }, applyMatrix: function ( matrix ) { var position = this.attributes.position; if ( position !== undefined ) { matrix.applyToBufferAttribute( position ); position.needsUpdate = true; } var normal = this.attributes.normal; if ( normal !== undefined ) { var normalMatrix = new Matrix3().getNormalMatrix( matrix ); normalMatrix.applyToBufferAttribute( normal ); normal.needsUpdate = true; } if ( this.boundingBox !== null ) { this.computeBoundingBox(); } if ( this.boundingSphere !== null ) { this.computeBoundingSphere(); } return this; }, rotateX: function () { // rotate geometry around world x-axis var m1 = new Matrix4(); return function rotateX( angle ) { m1.makeRotationX( angle ); this.applyMatrix( m1 ); return this; }; }(), rotateY: function () { // rotate geometry around world y-axis var m1 = new Matrix4(); return function rotateY( angle ) { m1.makeRotationY( angle ); this.applyMatrix( m1 ); return this; }; }(), rotateZ: function () { // rotate geometry around world z-axis var m1 = new Matrix4(); return function rotateZ( angle ) { m1.makeRotationZ( angle ); this.applyMatrix( m1 ); return this; }; }(), translate: function () { // translate geometry var m1 = new Matrix4(); return function translate( x, y, z ) { m1.makeTranslation( x, y, z ); this.applyMatrix( m1 ); return this; }; }(), scale: function () { // scale geometry var m1 = new Matrix4(); return function scale( x, y, z ) { m1.makeScale( x, y, z ); this.applyMatrix( m1 ); return this; }; }(), lookAt: function () { var obj = new Object3D(); return function lookAt( vector ) { obj.lookAt( vector ); obj.updateMatrix(); this.applyMatrix( obj.matrix ); }; }(), center: function () { this.computeBoundingBox(); var offset = this.boundingBox.getCenter().negate(); this.translate( offset.x, offset.y, offset.z ); return offset; }, setFromObject: function ( object ) { // console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this ); var geometry = object.geometry; if ( object.isPoints || object.isLine ) { var positions = new Float32BufferAttribute( geometry.vertices.length * 3, 3 ); var colors = new Float32BufferAttribute( geometry.colors.length * 3, 3 ); this.addAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) ); this.addAttribute( 'color', colors.copyColorsArray( geometry.colors ) ); if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) { var lineDistances = new Float32BufferAttribute( geometry.lineDistances.length, 1 ); this.addAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) ); } if ( geometry.boundingSphere !== null ) { this.boundingSphere = geometry.boundingSphere.clone(); } if ( geometry.boundingBox !== null ) { this.boundingBox = geometry.boundingBox.clone(); } } else if ( object.isMesh ) { if ( geometry && geometry.isGeometry ) { this.fromGeometry( geometry ); } } return this; }, updateFromObject: function ( object ) { var geometry = object.geometry; if ( object.isMesh ) { var direct = geometry.__directGeometry; if ( geometry.elementsNeedUpdate === true ) { direct = undefined; geometry.elementsNeedUpdate = false; } if ( direct === undefined ) { return this.fromGeometry( geometry ); } direct.verticesNeedUpdate = geometry.verticesNeedUpdate; direct.normalsNeedUpdate = geometry.normalsNeedUpdate; direct.colorsNeedUpdate = geometry.colorsNeedUpdate; direct.uvsNeedUpdate = geometry.uvsNeedUpdate; direct.groupsNeedUpdate = geometry.groupsNeedUpdate; geometry.verticesNeedUpdate = false; geometry.normalsNeedUpdate = false; geometry.colorsNeedUpdate = false; geometry.uvsNeedUpdate = false; geometry.groupsNeedUpdate = false; geometry = direct; } var attribute; if ( geometry.verticesNeedUpdate === true ) { attribute = this.attributes.position; if ( attribute !== undefined ) { attribute.copyVector3sArray( geometry.vertices ); attribute.needsUpdate = true; } geometry.verticesNeedUpdate = false; } if ( geometry.normalsNeedUpdate === true ) { attribute = this.attributes.normal; if ( attribute !== undefined ) { attribute.copyVector3sArray( geometry.normals ); attribute.needsUpdate = true; } geometry.normalsNeedUpdate = false; } if ( geometry.colorsNeedUpdate === true ) { attribute = this.attributes.color; if ( attribute !== undefined ) { attribute.copyColorsArray( geometry.colors ); attribute.needsUpdate = true; } geometry.colorsNeedUpdate = false; } if ( geometry.uvsNeedUpdate ) { attribute = this.attributes.uv; if ( attribute !== undefined ) { attribute.copyVector2sArray( geometry.uvs ); attribute.needsUpdate = true; } geometry.uvsNeedUpdate = false; } if ( geometry.lineDistancesNeedUpdate ) { attribute = this.attributes.lineDistance; if ( attribute !== undefined ) { attribute.copyArray( geometry.lineDistances ); attribute.needsUpdate = true; } geometry.lineDistancesNeedUpdate = false; } if ( geometry.groupsNeedUpdate ) { geometry.computeGroups( object.geometry ); this.groups = geometry.groups; geometry.groupsNeedUpdate = false; } return this; }, fromGeometry: function ( geometry ) { geometry.__directGeometry = new DirectGeometry().fromGeometry( geometry ); return this.fromDirectGeometry( geometry.__directGeometry ); }, fromDirectGeometry: function ( geometry ) { var positions = new Float32Array( geometry.vertices.length * 3 ); this.addAttribute( 'position', new BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) ); if ( geometry.normals.length > 0 ) { var normals = new Float32Array( geometry.normals.length * 3 ); this.addAttribute( 'normal', new BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) ); } if ( geometry.colors.length > 0 ) { var colors = new Float32Array( geometry.colors.length * 3 ); this.addAttribute( 'color', new BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) ); } if ( geometry.uvs.length > 0 ) { var uvs = new Float32Array( geometry.uvs.length * 2 ); this.addAttribute( 'uv', new BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) ); } if ( geometry.uvs2.length > 0 ) { var uvs2 = new Float32Array( geometry.uvs2.length * 2 ); this.addAttribute( 'uv2', new BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) ); } if ( geometry.indices.length > 0 ) { var TypeArray = arrayMax( geometry.indices ) > 65535 ? Uint32Array : Uint16Array; var indices = new TypeArray( geometry.indices.length * 3 ); this.setIndex( new BufferAttribute( indices, 1 ).copyIndicesArray( geometry.indices ) ); } // groups this.groups = geometry.groups; // morphs for ( var name in geometry.morphTargets ) { var array = []; var morphTargets = geometry.morphTargets[ name ]; for ( var i = 0, l = morphTargets.length; i < l; i ++ ) { var morphTarget = morphTargets[ i ]; var attribute = new Float32BufferAttribute( morphTarget.length * 3, 3 ); array.push( attribute.copyVector3sArray( morphTarget ) ); } this.morphAttributes[ name ] = array; } // skinning if ( geometry.skinIndices.length > 0 ) { var skinIndices = new Float32BufferAttribute( geometry.skinIndices.length * 4, 4 ); this.addAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) ); } if ( geometry.skinWeights.length > 0 ) { var skinWeights = new Float32BufferAttribute( geometry.skinWeights.length * 4, 4 ); this.addAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) ); } // if ( geometry.boundingSphere !== null ) { this.boundingSphere = geometry.boundingSphere.clone(); } if ( geometry.boundingBox !== null ) { this.boundingBox = geometry.boundingBox.clone(); } return this; }, computeBoundingBox: function () { if ( this.boundingBox === null ) { this.boundingBox = new Box3(); } var position = this.attributes.position; if ( position !== undefined ) { this.boundingBox.setFromBufferAttribute( position ); } else { this.boundingBox.makeEmpty(); } if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) { console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this ); } }, computeBoundingSphere: function () { var box = new Box3(); var vector = new Vector3(); return function computeBoundingSphere() { if ( this.boundingSphere === null ) { this.boundingSphere = new Sphere(); } var position = this.attributes.position; if ( position ) { var center = this.boundingSphere.center; box.setFromBufferAttribute( position ); box.getCenter( center ); // hoping to find a boundingSphere with a radius smaller than the // boundingSphere of the boundingBox: sqrt(3) smaller in the best case var maxRadiusSq = 0; for ( var i = 0, il = position.count; i < il; i ++ ) { vector.x = position.getX( i ); vector.y = position.getY( i ); vector.z = position.getZ( i ); maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( vector ) ); } this.boundingSphere.radius = Math.sqrt( maxRadiusSq ); if ( isNaN( this.boundingSphere.radius ) ) { console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this ); } } }; }(), computeFaceNormals: function () { // backwards compatibility }, computeVertexNormals: function () { var index = this.index; var attributes = this.attributes; var groups = this.groups; if ( attributes.position ) { var positions = attributes.position.array; if ( attributes.normal === undefined ) { this.addAttribute( 'normal', new BufferAttribute( new Float32Array( positions.length ), 3 ) ); } else { // reset existing normals to zero var array = attributes.normal.array; for ( var i = 0, il = array.length; i < il; i ++ ) { array[ i ] = 0; } } var normals = attributes.normal.array; var vA, vB, vC; var pA = new Vector3(), pB = new Vector3(), pC = new Vector3(); var cb = new Vector3(), ab = new Vector3(); // indexed elements if ( index ) { var indices = index.array; if ( groups.length === 0 ) { this.addGroup( 0, indices.length ); } for ( var j = 0, jl = groups.length; j < jl; ++ j ) { var group = groups[ j ]; var start = group.start; var count = group.count; for ( var i = start, il = start + count; i < il; i += 3 ) { vA = indices[ i + 0 ] * 3; vB = indices[ i + 1 ] * 3; vC = indices[ i + 2 ] * 3; pA.fromArray( positions, vA ); pB.fromArray( positions, vB ); pC.fromArray( positions, vC ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); normals[ vA ] += cb.x; normals[ vA + 1 ] += cb.y; normals[ vA + 2 ] += cb.z; normals[ vB ] += cb.x; normals[ vB + 1 ] += cb.y; normals[ vB + 2 ] += cb.z; normals[ vC ] += cb.x; normals[ vC + 1 ] += cb.y; normals[ vC + 2 ] += cb.z; } } } else { // non-indexed elements (unconnected triangle soup) for ( var i = 0, il = positions.length; i < il; i += 9 ) { pA.fromArray( positions, i ); pB.fromArray( positions, i + 3 ); pC.fromArray( positions, i + 6 ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); normals[ i ] = cb.x; normals[ i + 1 ] = cb.y; normals[ i + 2 ] = cb.z; normals[ i + 3 ] = cb.x; normals[ i + 4 ] = cb.y; normals[ i + 5 ] = cb.z; normals[ i + 6 ] = cb.x; normals[ i + 7 ] = cb.y; normals[ i + 8 ] = cb.z; } } this.normalizeNormals(); attributes.normal.needsUpdate = true; } }, merge: function ( geometry, offset ) { if ( ! ( geometry && geometry.isBufferGeometry ) ) { console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry ); return; } if ( offset === undefined ) offset = 0; var attributes = this.attributes; for ( var key in attributes ) { if ( geometry.attributes[ key ] === undefined ) continue; var attribute1 = attributes[ key ]; var attributeArray1 = attribute1.array; var attribute2 = geometry.attributes[ key ]; var attributeArray2 = attribute2.array; var attributeSize = attribute2.itemSize; for ( var i = 0, j = attributeSize * offset; i < attributeArray2.length; i ++, j ++ ) { attributeArray1[ j ] = attributeArray2[ i ]; } } return this; }, normalizeNormals: function () { var normals = this.attributes.normal; var x, y, z, n; for ( var i = 0, il = normals.count; i < il; i ++ ) { x = normals.getX( i ); y = normals.getY( i ); z = normals.getZ( i ); n = 1.0 / Math.sqrt( x * x + y * y + z * z ); normals.setXYZ( i, x * n, y * n, z * n ); } }, toNonIndexed: function () { if ( this.index === null ) { console.warn( 'THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.' ); return this; } var geometry2 = new BufferGeometry(); var indices = this.index.array; var attributes = this.attributes; for ( var name in attributes ) { var attribute = attributes[ name ]; var array = attribute.array; var itemSize = attribute.itemSize; var array2 = new array.constructor( indices.length * itemSize ); var index = 0, index2 = 0; for ( var i = 0, l = indices.length; i < l; i ++ ) { index = indices[ i ] * itemSize; for ( var j = 0; j < itemSize; j ++ ) { array2[ index2 ++ ] = array[ index ++ ]; } } geometry2.addAttribute( name, new BufferAttribute( array2, itemSize ) ); } return geometry2; }, toJSON: function () { var data = { metadata: { version: 4.5, type: 'BufferGeometry', generator: 'BufferGeometry.toJSON' } }; // standard BufferGeometry serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( this.parameters !== undefined ) { var parameters = this.parameters; for ( var key in parameters ) { if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ]; } return data; } data.data = { attributes: {} }; var index = this.index; if ( index !== null ) { var array = Array.prototype.slice.call( index.array ); data.data.index = { type: index.array.constructor.name, array: array }; } var attributes = this.attributes; for ( var key in attributes ) { var attribute = attributes[ key ]; var array = Array.prototype.slice.call( attribute.array ); data.data.attributes[ key ] = { itemSize: attribute.itemSize, type: attribute.array.constructor.name, array: array, normalized: attribute.normalized }; } var groups = this.groups; if ( groups.length > 0 ) { data.data.groups = JSON.parse( JSON.stringify( groups ) ); } var boundingSphere = this.boundingSphere; if ( boundingSphere !== null ) { data.data.boundingSphere = { center: boundingSphere.center.toArray(), radius: boundingSphere.radius }; } return data; }, clone: function () { /* // Handle primitives var parameters = this.parameters; if ( parameters !== undefined ) { var values = []; for ( var key in parameters ) { values.push( parameters[ key ] ); } var geometry = Object.create( this.constructor.prototype ); this.constructor.apply( geometry, values ); return geometry; } return new this.constructor().copy( this ); */ return new BufferGeometry().copy( this ); }, copy: function ( source ) { var name, i, l; // reset this.index = null; this.attributes = {}; this.morphAttributes = {}; this.groups = []; this.boundingBox = null; this.boundingSphere = null; // name this.name = source.name; // index var index = source.index; if ( index !== null ) { this.setIndex( index.clone() ); } // attributes var attributes = source.attributes; for ( name in attributes ) { var attribute = attributes[ name ]; this.addAttribute( name, attribute.clone() ); } // morph attributes var morphAttributes = source.morphAttributes; for ( name in morphAttributes ) { var array = []; var morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes for ( i = 0, l = morphAttribute.length; i < l; i ++ ) { array.push( morphAttribute[ i ].clone() ); } this.morphAttributes[ name ] = array; } // groups var groups = source.groups; for ( i = 0, l = groups.length; i < l; i ++ ) { var group = groups[ i ]; this.addGroup( group.start, group.count, group.materialIndex ); } // bounding box var boundingBox = source.boundingBox; if ( boundingBox !== null ) { this.boundingBox = boundingBox.clone(); } // bounding sphere var boundingSphere = source.boundingSphere; if ( boundingSphere !== null ) { this.boundingSphere = boundingSphere.clone(); } // draw range this.drawRange.start = source.drawRange.start; this.drawRange.count = source.drawRange.count; return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } } ); /** * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 */ // BoxGeometry function BoxGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) { Geometry.call( this ); this.type = 'BoxGeometry'; this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments }; this.fromBufferGeometry( new BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) ); this.mergeVertices(); } BoxGeometry.prototype = Object.create( Geometry.prototype ); BoxGeometry.prototype.constructor = BoxGeometry; // BoxBufferGeometry function BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) { BufferGeometry.call( this ); this.type = 'BoxBufferGeometry'; this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments }; var scope = this; // segments widthSegments = Math.floor( widthSegments ) || 1; heightSegments = Math.floor( heightSegments ) || 1; depthSegments = Math.floor( depthSegments ) || 1; // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; // helper variables var numberOfVertices = 0; var groupStart = 0; // build each side of the box geometry buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz // build geometry this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) { var segmentWidth = width / gridX; var segmentHeight = height / gridY; var widthHalf = width / 2; var heightHalf = height / 2; var depthHalf = depth / 2; var gridX1 = gridX + 1; var gridY1 = gridY + 1; var vertexCounter = 0; var groupCount = 0; var ix, iy; var vector = new Vector3(); // generate vertices, normals and uvs for ( iy = 0; iy < gridY1; iy ++ ) { var y = iy * segmentHeight - heightHalf; for ( ix = 0; ix < gridX1; ix ++ ) { var x = ix * segmentWidth - widthHalf; // set values to correct vector component vector[ u ] = x * udir; vector[ v ] = y * vdir; vector[ w ] = depthHalf; // now apply vector to vertex buffer vertices.push( vector.x, vector.y, vector.z ); // set values to correct vector component vector[ u ] = 0; vector[ v ] = 0; vector[ w ] = depth > 0 ? 1 : - 1; // now apply vector to normal buffer normals.push( vector.x, vector.y, vector.z ); // uvs uvs.push( ix / gridX ); uvs.push( 1 - ( iy / gridY ) ); // counters vertexCounter += 1; } } // indices // 1. you need three indices to draw a single face // 2. a single segment consists of two faces // 3. so we need to generate six (2*3) indices per segment for ( iy = 0; iy < gridY; iy ++ ) { for ( ix = 0; ix < gridX; ix ++ ) { var a = numberOfVertices + ix + gridX1 * iy; var b = numberOfVertices + ix + gridX1 * ( iy + 1 ); var c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 ); var d = numberOfVertices + ( ix + 1 ) + gridX1 * iy; // faces indices.push( a, b, d ); indices.push( b, c, d ); // increase counter groupCount += 6; } } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, materialIndex ); // calculate new start value for groups groupStart += groupCount; // update total number of vertices numberOfVertices += vertexCounter; } } BoxBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); BoxBufferGeometry.prototype.constructor = BoxBufferGeometry; /** * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 */ // PlaneGeometry function PlaneGeometry( width, height, widthSegments, heightSegments ) { Geometry.call( this ); this.type = 'PlaneGeometry'; this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments }; this.fromBufferGeometry( new PlaneBufferGeometry( width, height, widthSegments, heightSegments ) ); this.mergeVertices(); } PlaneGeometry.prototype = Object.create( Geometry.prototype ); PlaneGeometry.prototype.constructor = PlaneGeometry; // PlaneBufferGeometry function PlaneBufferGeometry( width, height, widthSegments, heightSegments ) { BufferGeometry.call( this ); this.type = 'PlaneBufferGeometry'; this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments }; var width_half = width / 2; var height_half = height / 2; var gridX = Math.floor( widthSegments ) || 1; var gridY = Math.floor( heightSegments ) || 1; var gridX1 = gridX + 1; var gridY1 = gridY + 1; var segment_width = width / gridX; var segment_height = height / gridY; var ix, iy; // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; // generate vertices, normals and uvs for ( iy = 0; iy < gridY1; iy ++ ) { var y = iy * segment_height - height_half; for ( ix = 0; ix < gridX1; ix ++ ) { var x = ix * segment_width - width_half; vertices.push( x, - y, 0 ); normals.push( 0, 0, 1 ); uvs.push( ix / gridX ); uvs.push( 1 - ( iy / gridY ) ); } } // indices for ( iy = 0; iy < gridY; iy ++ ) { for ( ix = 0; ix < gridX; ix ++ ) { var a = ix + gridX1 * iy; var b = ix + gridX1 * ( iy + 1 ); var c = ( ix + 1 ) + gridX1 * ( iy + 1 ); var d = ( ix + 1 ) + gridX1 * iy; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } PlaneBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); PlaneBufferGeometry.prototype.constructor = PlaneBufferGeometry; /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * shading: THREE.SmoothShading, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * * skinning: , * morphTargets: * } */ function MeshBasicMaterial( parameters ) { Material.call( this ); this.type = 'MeshBasicMaterial'; this.color = new Color( 0xffffff ); // emissive this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.skinning = false; this.morphTargets = false; this.lights = false; this.setValues( parameters ); } MeshBasicMaterial.prototype = Object.create( Material.prototype ); MeshBasicMaterial.prototype.constructor = MeshBasicMaterial; MeshBasicMaterial.prototype.isMeshBasicMaterial = true; MeshBasicMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.skinning = source.skinning; this.morphTargets = source.morphTargets; return this; }; /** * @author bhouston / http://clara.io */ function Ray( origin, direction ) { this.origin = ( origin !== undefined ) ? origin : new Vector3(); this.direction = ( direction !== undefined ) ? direction : new Vector3(); } Object.assign( Ray.prototype, { set: function ( origin, direction ) { this.origin.copy( origin ); this.direction.copy( direction ); return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( ray ) { this.origin.copy( ray.origin ); this.direction.copy( ray.direction ); return this; }, at: function ( t, optionalTarget ) { var result = optionalTarget || new Vector3(); return result.copy( this.direction ).multiplyScalar( t ).add( this.origin ); }, lookAt: function ( v ) { this.direction.copy( v ).sub( this.origin ).normalize(); return this; }, recast: function () { var v1 = new Vector3(); return function recast( t ) { this.origin.copy( this.at( t, v1 ) ); return this; }; }(), closestPointToPoint: function ( point, optionalTarget ) { var result = optionalTarget || new Vector3(); result.subVectors( point, this.origin ); var directionDistance = result.dot( this.direction ); if ( directionDistance < 0 ) { return result.copy( this.origin ); } return result.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin ); }, distanceToPoint: function ( point ) { return Math.sqrt( this.distanceSqToPoint( point ) ); }, distanceSqToPoint: function () { var v1 = new Vector3(); return function distanceSqToPoint( point ) { var directionDistance = v1.subVectors( point, this.origin ).dot( this.direction ); // point behind the ray if ( directionDistance < 0 ) { return this.origin.distanceToSquared( point ); } v1.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin ); return v1.distanceToSquared( point ); }; }(), distanceSqToSegment: function () { var segCenter = new Vector3(); var segDir = new Vector3(); var diff = new Vector3(); return function distanceSqToSegment( v0, v1, optionalPointOnRay, optionalPointOnSegment ) { // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h // It returns the min distance between the ray and the segment // defined by v0 and v1 // It can also set two optional targets : // - The closest point on the ray // - The closest point on the segment segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 ); segDir.copy( v1 ).sub( v0 ).normalize(); diff.copy( this.origin ).sub( segCenter ); var segExtent = v0.distanceTo( v1 ) * 0.5; var a01 = - this.direction.dot( segDir ); var b0 = diff.dot( this.direction ); var b1 = - diff.dot( segDir ); var c = diff.lengthSq(); var det = Math.abs( 1 - a01 * a01 ); var s0, s1, sqrDist, extDet; if ( det > 0 ) { // The ray and segment are not parallel. s0 = a01 * b1 - b0; s1 = a01 * b0 - b1; extDet = segExtent * det; if ( s0 >= 0 ) { if ( s1 >= - extDet ) { if ( s1 <= extDet ) { // region 0 // Minimum at interior points of ray and segment. var invDet = 1 / det; s0 *= invDet; s1 *= invDet; sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c; } else { // region 1 s1 = segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { // region 5 s1 = - segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { if ( s1 <= - extDet ) { // region 4 s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } else if ( s1 <= extDet ) { // region 3 s0 = 0; s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = s1 * ( s1 + 2 * b1 ) + c; } else { // region 2 s0 = Math.max( 0, - ( a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } } else { // Ray and segment are parallel. s1 = ( a01 > 0 ) ? - segExtent : segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } if ( optionalPointOnRay ) { optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin ); } if ( optionalPointOnSegment ) { optionalPointOnSegment.copy( segDir ).multiplyScalar( s1 ).add( segCenter ); } return sqrDist; }; }(), intersectSphere: function () { var v1 = new Vector3(); return function intersectSphere( sphere, optionalTarget ) { v1.subVectors( sphere.center, this.origin ); var tca = v1.dot( this.direction ); var d2 = v1.dot( v1 ) - tca * tca; var radius2 = sphere.radius * sphere.radius; if ( d2 > radius2 ) return null; var thc = Math.sqrt( radius2 - d2 ); // t0 = first intersect point - entrance on front of sphere var t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere var t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null if ( t0 < 0 && t1 < 0 ) return null; // test to see if t0 is behind the ray: // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, // in order to always return an intersect point that is in front of the ray. if ( t0 < 0 ) return this.at( t1, optionalTarget ); // else t0 is in front of the ray, so return the first collision point scaled by t0 return this.at( t0, optionalTarget ); }; }(), intersectsSphere: function ( sphere ) { return this.distanceToPoint( sphere.center ) <= sphere.radius; }, distanceToPlane: function ( plane ) { var denominator = plane.normal.dot( this.direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( plane.distanceToPoint( this.origin ) === 0 ) { return 0; } // Null is preferable to undefined since undefined means.... it is undefined return null; } var t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator; // Return if the ray never intersects the plane return t >= 0 ? t : null; }, intersectPlane: function ( plane, optionalTarget ) { var t = this.distanceToPlane( plane ); if ( t === null ) { return null; } return this.at( t, optionalTarget ); }, intersectsPlane: function ( plane ) { // check if the ray lies on the plane first var distToPoint = plane.distanceToPoint( this.origin ); if ( distToPoint === 0 ) { return true; } var denominator = plane.normal.dot( this.direction ); if ( denominator * distToPoint < 0 ) { return true; } // ray origin is behind the plane (and is pointing behind it) return false; }, intersectBox: function ( box, optionalTarget ) { var tmin, tmax, tymin, tymax, tzmin, tzmax; var invdirx = 1 / this.direction.x, invdiry = 1 / this.direction.y, invdirz = 1 / this.direction.z; var origin = this.origin; if ( invdirx >= 0 ) { tmin = ( box.min.x - origin.x ) * invdirx; tmax = ( box.max.x - origin.x ) * invdirx; } else { tmin = ( box.max.x - origin.x ) * invdirx; tmax = ( box.min.x - origin.x ) * invdirx; } if ( invdiry >= 0 ) { tymin = ( box.min.y - origin.y ) * invdiry; tymax = ( box.max.y - origin.y ) * invdiry; } else { tymin = ( box.max.y - origin.y ) * invdiry; tymax = ( box.min.y - origin.y ) * invdiry; } if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null; // These lines also handle the case where tmin or tmax is NaN // (result of 0 * Infinity). x !== x returns true if x is NaN if ( tymin > tmin || tmin !== tmin ) tmin = tymin; if ( tymax < tmax || tmax !== tmax ) tmax = tymax; if ( invdirz >= 0 ) { tzmin = ( box.min.z - origin.z ) * invdirz; tzmax = ( box.max.z - origin.z ) * invdirz; } else { tzmin = ( box.max.z - origin.z ) * invdirz; tzmax = ( box.min.z - origin.z ) * invdirz; } if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null; if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin; if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax; //return point closest to the ray (positive side) if ( tmax < 0 ) return null; return this.at( tmin >= 0 ? tmin : tmax, optionalTarget ); }, intersectsBox: ( function () { var v = new Vector3(); return function intersectsBox( box ) { return this.intersectBox( box, v ) !== null; }; } )(), intersectTriangle: function () { // Compute the offset origin, edges, and normal. var diff = new Vector3(); var edge1 = new Vector3(); var edge2 = new Vector3(); var normal = new Vector3(); return function intersectTriangle( a, b, c, backfaceCulling, optionalTarget ) { // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h edge1.subVectors( b, a ); edge2.subVectors( c, a ); normal.crossVectors( edge1, edge2 ); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) var DdN = this.direction.dot( normal ); var sign; if ( DdN > 0 ) { if ( backfaceCulling ) return null; sign = 1; } else if ( DdN < 0 ) { sign = - 1; DdN = - DdN; } else { return null; } diff.subVectors( this.origin, a ); var DdQxE2 = sign * this.direction.dot( edge2.crossVectors( diff, edge2 ) ); // b1 < 0, no intersection if ( DdQxE2 < 0 ) { return null; } var DdE1xQ = sign * this.direction.dot( edge1.cross( diff ) ); // b2 < 0, no intersection if ( DdE1xQ < 0 ) { return null; } // b1+b2 > 1, no intersection if ( DdQxE2 + DdE1xQ > DdN ) { return null; } // Line intersects triangle, check if ray does. var QdN = - sign * diff.dot( normal ); // t < 0, no intersection if ( QdN < 0 ) { return null; } // Ray intersects triangle. return this.at( QdN / DdN, optionalTarget ); }; }(), applyMatrix4: function ( matrix4 ) { this.origin.applyMatrix4( matrix4 ); this.direction.transformDirection( matrix4 ); return this; }, equals: function ( ray ) { return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction ); } } ); /** * @author bhouston / http://clara.io */ function Line3( start, end ) { this.start = ( start !== undefined ) ? start : new Vector3(); this.end = ( end !== undefined ) ? end : new Vector3(); } Object.assign( Line3.prototype, { set: function ( start, end ) { this.start.copy( start ); this.end.copy( end ); return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( line ) { this.start.copy( line.start ); this.end.copy( line.end ); return this; }, getCenter: function ( optionalTarget ) { var result = optionalTarget || new Vector3(); return result.addVectors( this.start, this.end ).multiplyScalar( 0.5 ); }, delta: function ( optionalTarget ) { var result = optionalTarget || new Vector3(); return result.subVectors( this.end, this.start ); }, distanceSq: function () { return this.start.distanceToSquared( this.end ); }, distance: function () { return this.start.distanceTo( this.end ); }, at: function ( t, optionalTarget ) { var result = optionalTarget || new Vector3(); return this.delta( result ).multiplyScalar( t ).add( this.start ); }, closestPointToPointParameter: function () { var startP = new Vector3(); var startEnd = new Vector3(); return function closestPointToPointParameter( point, clampToLine ) { startP.subVectors( point, this.start ); startEnd.subVectors( this.end, this.start ); var startEnd2 = startEnd.dot( startEnd ); var startEnd_startP = startEnd.dot( startP ); var t = startEnd_startP / startEnd2; if ( clampToLine ) { t = _Math.clamp( t, 0, 1 ); } return t; }; }(), closestPointToPoint: function ( point, clampToLine, optionalTarget ) { var t = this.closestPointToPointParameter( point, clampToLine ); var result = optionalTarget || new Vector3(); return this.delta( result ).multiplyScalar( t ).add( this.start ); }, applyMatrix4: function ( matrix ) { this.start.applyMatrix4( matrix ); this.end.applyMatrix4( matrix ); return this; }, equals: function ( line ) { return line.start.equals( this.start ) && line.end.equals( this.end ); } } ); /** * @author bhouston / http://clara.io * @author mrdoob / http://mrdoob.com/ */ function Triangle( a, b, c ) { this.a = ( a !== undefined ) ? a : new Vector3(); this.b = ( b !== undefined ) ? b : new Vector3(); this.c = ( c !== undefined ) ? c : new Vector3(); } Object.assign( Triangle, { normal: function () { var v0 = new Vector3(); return function normal( a, b, c, optionalTarget ) { var result = optionalTarget || new Vector3(); result.subVectors( c, b ); v0.subVectors( a, b ); result.cross( v0 ); var resultLengthSq = result.lengthSq(); if ( resultLengthSq > 0 ) { return result.multiplyScalar( 1 / Math.sqrt( resultLengthSq ) ); } return result.set( 0, 0, 0 ); }; }(), // static/instance method to calculate barycentric coordinates // based on: http://www.blackpawn.com/texts/pointinpoly/default.html barycoordFromPoint: function () { var v0 = new Vector3(); var v1 = new Vector3(); var v2 = new Vector3(); return function barycoordFromPoint( point, a, b, c, optionalTarget ) { v0.subVectors( c, a ); v1.subVectors( b, a ); v2.subVectors( point, a ); var dot00 = v0.dot( v0 ); var dot01 = v0.dot( v1 ); var dot02 = v0.dot( v2 ); var dot11 = v1.dot( v1 ); var dot12 = v1.dot( v2 ); var denom = ( dot00 * dot11 - dot01 * dot01 ); var result = optionalTarget || new Vector3(); // collinear or singular triangle if ( denom === 0 ) { // arbitrary location outside of triangle? // not sure if this is the best idea, maybe should be returning undefined return result.set( - 2, - 1, - 1 ); } var invDenom = 1 / denom; var u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom; var v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom; // barycentric coordinates must always sum to 1 return result.set( 1 - u - v, v, u ); }; }(), containsPoint: function () { var v1 = new Vector3(); return function containsPoint( point, a, b, c ) { var result = Triangle.barycoordFromPoint( point, a, b, c, v1 ); return ( result.x >= 0 ) && ( result.y >= 0 ) && ( ( result.x + result.y ) <= 1 ); }; }() } ); Object.assign( Triangle.prototype, { set: function ( a, b, c ) { this.a.copy( a ); this.b.copy( b ); this.c.copy( c ); return this; }, setFromPointsAndIndices: function ( points, i0, i1, i2 ) { this.a.copy( points[ i0 ] ); this.b.copy( points[ i1 ] ); this.c.copy( points[ i2 ] ); return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( triangle ) { this.a.copy( triangle.a ); this.b.copy( triangle.b ); this.c.copy( triangle.c ); return this; }, area: function () { var v0 = new Vector3(); var v1 = new Vector3(); return function area() { v0.subVectors( this.c, this.b ); v1.subVectors( this.a, this.b ); return v0.cross( v1 ).length() * 0.5; }; }(), midpoint: function ( optionalTarget ) { var result = optionalTarget || new Vector3(); return result.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 ); }, normal: function ( optionalTarget ) { return Triangle.normal( this.a, this.b, this.c, optionalTarget ); }, plane: function ( optionalTarget ) { var result = optionalTarget || new Plane(); return result.setFromCoplanarPoints( this.a, this.b, this.c ); }, barycoordFromPoint: function ( point, optionalTarget ) { return Triangle.barycoordFromPoint( point, this.a, this.b, this.c, optionalTarget ); }, containsPoint: function ( point ) { return Triangle.containsPoint( point, this.a, this.b, this.c ); }, closestPointToPoint: function () { var plane = new Plane(); var edgeList = [ new Line3(), new Line3(), new Line3() ]; var projectedPoint = new Vector3(); var closestPoint = new Vector3(); return function closestPointToPoint( point, optionalTarget ) { var result = optionalTarget || new Vector3(); var minDistance = Infinity; // project the point onto the plane of the triangle plane.setFromCoplanarPoints( this.a, this.b, this.c ); plane.projectPoint( point, projectedPoint ); // check if the projection lies within the triangle if( this.containsPoint( projectedPoint ) === true ) { // if so, this is the closest point result.copy( projectedPoint ); } else { // if not, the point falls outside the triangle. the result is the closest point to the triangle's edges or vertices edgeList[ 0 ].set( this.a, this.b ); edgeList[ 1 ].set( this.b, this.c ); edgeList[ 2 ].set( this.c, this.a ); for( var i = 0; i < edgeList.length; i ++ ) { edgeList[ i ].closestPointToPoint( projectedPoint, true, closestPoint ); var distance = projectedPoint.distanceToSquared( closestPoint ); if( distance < minDistance ) { minDistance = distance; result.copy( closestPoint ); } } } return result; }; }(), equals: function ( triangle ) { return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c ); } } ); /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author jonobr1 / http://jonobr1.com/ */ function Mesh( geometry, material ) { Object3D.call( this ); this.type = 'Mesh'; this.geometry = geometry !== undefined ? geometry : new BufferGeometry(); this.material = material !== undefined ? material : new MeshBasicMaterial( { color: Math.random() * 0xffffff } ); this.drawMode = TrianglesDrawMode; this.updateMorphTargets(); } Mesh.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Mesh, isMesh: true, setDrawMode: function ( value ) { this.drawMode = value; }, copy: function ( source ) { Object3D.prototype.copy.call( this, source ); this.drawMode = source.drawMode; return this; }, updateMorphTargets: function () { var geometry = this.geometry; var m, ml, name; if ( geometry.isBufferGeometry ) { var morphAttributes = geometry.morphAttributes; var keys = Object.keys( morphAttributes ); if ( keys.length > 0 ) { var morphAttribute = morphAttributes[ keys[ 0 ] ]; if ( morphAttribute !== undefined ) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( m = 0, ml = morphAttribute.length; m < ml; m ++ ) { name = morphAttribute[ m ].name || String( m ); this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ name ] = m; } } } } else { var morphTargets = geometry.morphTargets; if ( morphTargets !== undefined && morphTargets.length > 0 ) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( m = 0, ml = morphTargets.length; m < ml; m ++ ) { name = morphTargets[ m ].name || String( m ); this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ name ] = m; } } } }, raycast: ( function () { var inverseMatrix = new Matrix4(); var ray = new Ray(); var sphere = new Sphere(); var vA = new Vector3(); var vB = new Vector3(); var vC = new Vector3(); var tempA = new Vector3(); var tempB = new Vector3(); var tempC = new Vector3(); var uvA = new Vector2(); var uvB = new Vector2(); var uvC = new Vector2(); var barycoord = new Vector3(); var intersectionPoint = new Vector3(); var intersectionPointWorld = new Vector3(); function uvIntersection( point, p1, p2, p3, uv1, uv2, uv3 ) { Triangle.barycoordFromPoint( point, p1, p2, p3, barycoord ); uv1.multiplyScalar( barycoord.x ); uv2.multiplyScalar( barycoord.y ); uv3.multiplyScalar( barycoord.z ); uv1.add( uv2 ).add( uv3 ); return uv1.clone(); } function checkIntersection( object, raycaster, ray, pA, pB, pC, point ) { var intersect; var material = object.material; if ( material.side === BackSide ) { intersect = ray.intersectTriangle( pC, pB, pA, true, point ); } else { intersect = ray.intersectTriangle( pA, pB, pC, material.side !== DoubleSide, point ); } if ( intersect === null ) return null; intersectionPointWorld.copy( point ); intersectionPointWorld.applyMatrix4( object.matrixWorld ); var distance = raycaster.ray.origin.distanceTo( intersectionPointWorld ); if ( distance < raycaster.near || distance > raycaster.far ) return null; return { distance: distance, point: intersectionPointWorld.clone(), object: object }; } function checkBufferGeometryIntersection( object, raycaster, ray, position, uv, a, b, c ) { vA.fromBufferAttribute( position, a ); vB.fromBufferAttribute( position, b ); vC.fromBufferAttribute( position, c ); var intersection = checkIntersection( object, raycaster, ray, vA, vB, vC, intersectionPoint ); if ( intersection ) { if ( uv ) { uvA.fromBufferAttribute( uv, a ); uvB.fromBufferAttribute( uv, b ); uvC.fromBufferAttribute( uv, c ); intersection.uv = uvIntersection( intersectionPoint, vA, vB, vC, uvA, uvB, uvC ); } intersection.face = new Face3( a, b, c, Triangle.normal( vA, vB, vC ) ); intersection.faceIndex = a; } return intersection; } return function raycast( raycaster, intersects ) { var geometry = this.geometry; var material = this.material; var matrixWorld = this.matrixWorld; if ( material === undefined ) return; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( matrixWorld ); if ( raycaster.ray.intersectsSphere( sphere ) === false ) return; // inverseMatrix.getInverse( matrixWorld ); ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix ); // Check boundingBox before continuing if ( geometry.boundingBox !== null ) { if ( ray.intersectsBox( geometry.boundingBox ) === false ) return; } var intersection; if ( geometry.isBufferGeometry ) { var a, b, c; var index = geometry.index; var position = geometry.attributes.position; var uv = geometry.attributes.uv; var i, l; if ( index !== null ) { // indexed buffer geometry for ( i = 0, l = index.count; i < l; i += 3 ) { a = index.getX( i ); b = index.getX( i + 1 ); c = index.getX( i + 2 ); intersection = checkBufferGeometryIntersection( this, raycaster, ray, position, uv, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indices buffer semantics intersects.push( intersection ); } } } else { // non-indexed buffer geometry for ( i = 0, l = position.count; i < l; i += 3 ) { a = i; b = i + 1; c = i + 2; intersection = checkBufferGeometryIntersection( this, raycaster, ray, position, uv, a, b, c ); if ( intersection ) { intersection.index = a; // triangle number in positions buffer semantics intersects.push( intersection ); } } } } else if ( geometry.isGeometry ) { var fvA, fvB, fvC; var isMultiMaterial = Array.isArray( material ); var vertices = geometry.vertices; var faces = geometry.faces; var uvs; var faceVertexUvs = geometry.faceVertexUvs[ 0 ]; if ( faceVertexUvs.length > 0 ) uvs = faceVertexUvs; for ( var f = 0, fl = faces.length; f < fl; f ++ ) { var face = faces[ f ]; var faceMaterial = isMultiMaterial ? material[ face.materialIndex ] : material; if ( faceMaterial === undefined ) continue; fvA = vertices[ face.a ]; fvB = vertices[ face.b ]; fvC = vertices[ face.c ]; if ( faceMaterial.morphTargets === true ) { var morphTargets = geometry.morphTargets; var morphInfluences = this.morphTargetInfluences; vA.set( 0, 0, 0 ); vB.set( 0, 0, 0 ); vC.set( 0, 0, 0 ); for ( var t = 0, tl = morphTargets.length; t < tl; t ++ ) { var influence = morphInfluences[ t ]; if ( influence === 0 ) continue; var targets = morphTargets[ t ].vertices; vA.addScaledVector( tempA.subVectors( targets[ face.a ], fvA ), influence ); vB.addScaledVector( tempB.subVectors( targets[ face.b ], fvB ), influence ); vC.addScaledVector( tempC.subVectors( targets[ face.c ], fvC ), influence ); } vA.add( fvA ); vB.add( fvB ); vC.add( fvC ); fvA = vA; fvB = vB; fvC = vC; } intersection = checkIntersection( this, raycaster, ray, fvA, fvB, fvC, intersectionPoint ); if ( intersection ) { if ( uvs && uvs[ f ] ) { var uvs_f = uvs[ f ]; uvA.copy( uvs_f[ 0 ] ); uvB.copy( uvs_f[ 1 ] ); uvC.copy( uvs_f[ 2 ] ); intersection.uv = uvIntersection( intersectionPoint, fvA, fvB, fvC, uvA, uvB, uvC ); } intersection.face = face; intersection.faceIndex = f; intersects.push( intersection ); } } } }; }() ), clone: function () { return new this.constructor( this.geometry, this.material ).copy( this ); } } ); /** * @author mrdoob / http://mrdoob.com/ */ function WebGLBackground( renderer, state, objects, premultipliedAlpha ) { var clearColor = new Color( 0x000000 ); var clearAlpha = 0; var planeCamera, planeMesh; var boxCamera, boxMesh; function render( scene, camera, forceClear ) { var background = scene.background; if ( background === null ) { setClear( clearColor, clearAlpha ); } else if ( background && background.isColor ) { setClear( background, 1 ); forceClear = true; } if ( renderer.autoClear || forceClear ) { renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil ); } if ( background && background.isCubeTexture ) { if ( boxCamera === undefined ) { boxCamera = new PerspectiveCamera(); boxMesh = new Mesh( new BoxBufferGeometry( 5, 5, 5 ), new ShaderMaterial( { uniforms: ShaderLib.cube.uniforms, vertexShader: ShaderLib.cube.vertexShader, fragmentShader: ShaderLib.cube.fragmentShader, side: BackSide, depthTest: false, depthWrite: false, fog: false } ) ); } boxCamera.projectionMatrix.copy( camera.projectionMatrix ); boxCamera.matrixWorld.extractRotation( camera.matrixWorld ); boxCamera.matrixWorldInverse.getInverse( boxCamera.matrixWorld ); boxMesh.material.uniforms[ "tCube" ].value = background; boxMesh.modelViewMatrix.multiplyMatrices( boxCamera.matrixWorldInverse, boxMesh.matrixWorld ); objects.update( boxMesh ); renderer.renderBufferDirect( boxCamera, null, boxMesh.geometry, boxMesh.material, boxMesh, null ); } else if ( background && background.isTexture ) { if ( planeCamera === undefined ) { planeCamera = new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 ); planeMesh = new Mesh( new PlaneBufferGeometry( 2, 2 ), new MeshBasicMaterial( { depthTest: false, depthWrite: false, fog: false } ) ); } planeMesh.material.map = background; objects.update( planeMesh ); renderer.renderBufferDirect( planeCamera, null, planeMesh.geometry, planeMesh.material, planeMesh, null ); } } function setClear( color, alpha ) { state.buffers.color.setClear( color.r, color.g, color.b, alpha, premultipliedAlpha ); } return { getClearColor: function () { return clearColor; }, setClearColor: function ( color, alpha ) { clearColor.set( color ); clearAlpha = alpha !== undefined ? alpha : 1; setClear( clearColor, clearAlpha ); }, getClearAlpha: function () { return clearAlpha; }, setClearAlpha: function ( alpha ) { clearAlpha = alpha; setClear( clearColor, clearAlpha ); }, render: render }; } /** * @author mrdoob / http://mrdoob.com/ */ function painterSortStable( a, b ) { if ( a.renderOrder !== b.renderOrder ) { return a.renderOrder - b.renderOrder; } else if ( a.program && b.program && a.program !== b.program ) { return a.program.id - b.program.id; } else if ( a.material.id !== b.material.id ) { return a.material.id - b.material.id; } else if ( a.z !== b.z ) { return a.z - b.z; } else { return a.id - b.id; } } function reversePainterSortStable( a, b ) { if ( a.renderOrder !== b.renderOrder ) { return a.renderOrder - b.renderOrder; } if ( a.z !== b.z ) { return b.z - a.z; } else { return a.id - b.id; } } function WebGLRenderList() { var opaque = []; var opaqueLastIndex = - 1; var transparent = []; var transparentLastIndex = - 1; function init() { opaqueLastIndex = - 1; transparentLastIndex = - 1; } function push( object, geometry, material, z, group ) { var array, index; // allocate the next position in the appropriate array if ( material.transparent ) { array = transparent; index = ++ transparentLastIndex; } else { array = opaque; index = ++ opaqueLastIndex; } // recycle existing render item or grow the array var renderItem = array[ index ]; if ( renderItem ) { renderItem.id = object.id; renderItem.object = object; renderItem.geometry = geometry; renderItem.material = material; renderItem.program = material.program; renderItem.renderOrder = object.renderOrder; renderItem.z = z; renderItem.group = group; } else { renderItem = { id: object.id, object: object, geometry: geometry, material: material, program: material.program, renderOrder: object.renderOrder, z: z, group: group }; // assert( index === array.length ); array.push( renderItem ); } } function finish() { opaque.length = opaqueLastIndex + 1; transparent.length = transparentLastIndex + 1; } function sort() { opaque.sort( painterSortStable ); transparent.sort( reversePainterSortStable ); } return { opaque: opaque, transparent: transparent, init: init, push: push, finish: finish, sort: sort }; } function WebGLRenderLists() { var lists = {}; function get( scene, camera ) { var hash = scene.id + ',' + camera.id; var list = lists[ hash ]; if ( list === undefined ) { // console.log( 'THREE.WebGLRenderLists:', hash ); list = new WebGLRenderList(); lists[ hash ] = list; } return list; } function dispose() { lists = {}; } return { get: get, dispose: dispose }; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLIndexedBufferRenderer( gl, extensions, infoRender ) { var mode; function setMode( value ) { mode = value; } var type, bytesPerElement; function setIndex( value ) { type = value.type; bytesPerElement = value.bytesPerElement; } function render( start, count ) { gl.drawElements( mode, count, type, start * bytesPerElement ); infoRender.calls ++; infoRender.vertices += count; if ( mode === gl.TRIANGLES ) infoRender.faces += count / 3; } function renderInstances( geometry, start, count ) { var extension = extensions.get( 'ANGLE_instanced_arrays' ); if ( extension === null ) { console.error( 'THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } extension.drawElementsInstancedANGLE( mode, count, type, start * bytesPerElement, geometry.maxInstancedCount ); infoRender.calls ++; infoRender.vertices += count * geometry.maxInstancedCount; if ( mode === gl.TRIANGLES ) infoRender.faces += geometry.maxInstancedCount * count / 3; } // this.setMode = setMode; this.setIndex = setIndex; this.render = render; this.renderInstances = renderInstances; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLBufferRenderer( gl, extensions, infoRender ) { var mode; function setMode( value ) { mode = value; } function render( start, count ) { gl.drawArrays( mode, start, count ); infoRender.calls ++; infoRender.vertices += count; if ( mode === gl.TRIANGLES ) infoRender.faces += count / 3; } function renderInstances( geometry, start, count ) { var extension = extensions.get( 'ANGLE_instanced_arrays' ); if ( extension === null ) { console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } var position = geometry.attributes.position; if ( position.isInterleavedBufferAttribute ) { count = position.data.count; extension.drawArraysInstancedANGLE( mode, 0, count, geometry.maxInstancedCount ); } else { extension.drawArraysInstancedANGLE( mode, start, count, geometry.maxInstancedCount ); } infoRender.calls ++; infoRender.vertices += count * geometry.maxInstancedCount; if ( mode === gl.TRIANGLES ) infoRender.faces += geometry.maxInstancedCount * count / 3; } // this.setMode = setMode; this.render = render; this.renderInstances = renderInstances; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLGeometries( gl, attributes, infoMemory ) { var geometries = {}; var wireframeAttributes = {}; function onGeometryDispose( event ) { var geometry = event.target; var buffergeometry = geometries[ geometry.id ]; if ( buffergeometry.index !== null ) { attributes.remove( buffergeometry.index ); } for ( var name in buffergeometry.attributes ) { attributes.remove( buffergeometry.attributes[ name ] ); } geometry.removeEventListener( 'dispose', onGeometryDispose ); delete geometries[ geometry.id ]; // TODO Remove duplicate code var attribute = wireframeAttributes[ geometry.id ]; if ( attribute ) { attributes.remove( attribute ); delete wireframeAttributes[ geometry.id ]; } attribute = wireframeAttributes[ buffergeometry.id ]; if ( attribute ) { attributes.remove( attribute ); delete wireframeAttributes[ buffergeometry.id ]; } // infoMemory.geometries --; } function get( object, geometry ) { var buffergeometry = geometries[ geometry.id ]; if ( buffergeometry ) return buffergeometry; geometry.addEventListener( 'dispose', onGeometryDispose ); if ( geometry.isBufferGeometry ) { buffergeometry = geometry; } else if ( geometry.isGeometry ) { if ( geometry._bufferGeometry === undefined ) { geometry._bufferGeometry = new BufferGeometry().setFromObject( object ); } buffergeometry = geometry._bufferGeometry; } geometries[ geometry.id ] = buffergeometry; infoMemory.geometries ++; return buffergeometry; } function update( geometry ) { var index = geometry.index; var geometryAttributes = geometry.attributes; if ( index !== null ) { attributes.update( index, gl.ELEMENT_ARRAY_BUFFER ); } for ( var name in geometryAttributes ) { attributes.update( geometryAttributes[ name ], gl.ARRAY_BUFFER ); } // morph targets var morphAttributes = geometry.morphAttributes; for ( var name in morphAttributes ) { var array = morphAttributes[ name ]; for ( var i = 0, l = array.length; i < l; i ++ ) { attributes.update( array[ i ], gl.ARRAY_BUFFER ); } } } function getWireframeAttribute( geometry ) { var attribute = wireframeAttributes[ geometry.id ]; if ( attribute ) return attribute; var indices = []; var geometryIndex = geometry.index; var geometryAttributes = geometry.attributes; // console.time( 'wireframe' ); if ( geometryIndex !== null ) { var array = geometryIndex.array; for ( var i = 0, l = array.length; i < l; i += 3 ) { var a = array[ i + 0 ]; var b = array[ i + 1 ]; var c = array[ i + 2 ]; indices.push( a, b, b, c, c, a ); } } else { var array = geometryAttributes.position.array; for ( var i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) { var a = i + 0; var b = i + 1; var c = i + 2; indices.push( a, b, b, c, c, a ); } } // console.timeEnd( 'wireframe' ); attribute = new ( arrayMax( indices ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 ); attributes.update( attribute, gl.ELEMENT_ARRAY_BUFFER ); wireframeAttributes[ geometry.id ] = attribute; return attribute; } return { get: get, update: update, getWireframeAttribute: getWireframeAttribute }; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLLights() { var lights = {}; return { get: function ( light ) { if ( lights[ light.id ] !== undefined ) { return lights[ light.id ]; } var uniforms; switch ( light.type ) { case 'DirectionalLight': uniforms = { direction: new Vector3(), color: new Color(), shadow: false, shadowBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case 'SpotLight': uniforms = { position: new Vector3(), direction: new Vector3(), color: new Color(), distance: 0, coneCos: 0, penumbraCos: 0, decay: 0, shadow: false, shadowBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case 'PointLight': uniforms = { position: new Vector3(), color: new Color(), distance: 0, decay: 0, shadow: false, shadowBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case 'HemisphereLight': uniforms = { direction: new Vector3(), skyColor: new Color(), groundColor: new Color() }; break; case 'RectAreaLight': uniforms = { color: new Color(), position: new Vector3(), halfWidth: new Vector3(), halfHeight: new Vector3() // TODO (abelnation): set RectAreaLight shadow uniforms }; break; } lights[ light.id ] = uniforms; return uniforms; } }; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLObjects( gl, geometries, infoRender ) { var updateList = {}; function update( object ) { var frame = infoRender.frame; var geometry = object.geometry; var buffergeometry = geometries.get( object, geometry ); // Update once per frame if ( updateList[ buffergeometry.id ] !== frame ) { if ( geometry.isGeometry ) { buffergeometry.updateFromObject( object ); } geometries.update( buffergeometry ); updateList[ buffergeometry.id ] = frame; } return buffergeometry; } function clear() { updateList = {}; } return { update: update, clear: clear }; } /** * @author mrdoob / http://mrdoob.com/ */ function addLineNumbers( string ) { var lines = string.split( '\n' ); for ( var i = 0; i < lines.length; i ++ ) { lines[ i ] = ( i + 1 ) + ': ' + lines[ i ]; } return lines.join( '\n' ); } function WebGLShader( gl, type, string ) { var shader = gl.createShader( type ); gl.shaderSource( shader, string ); gl.compileShader( shader ); if ( gl.getShaderParameter( shader, gl.COMPILE_STATUS ) === false ) { console.error( 'THREE.WebGLShader: Shader couldn\'t compile.' ); } if ( gl.getShaderInfoLog( shader ) !== '' ) { console.warn( 'THREE.WebGLShader: gl.getShaderInfoLog()', type === gl.VERTEX_SHADER ? 'vertex' : 'fragment', gl.getShaderInfoLog( shader ), addLineNumbers( string ) ); } // --enable-privileged-webgl-extension // console.log( type, gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) ); return shader; } /** * @author mrdoob / http://mrdoob.com/ */ var programIdCount = 0; function getEncodingComponents( encoding ) { switch ( encoding ) { case LinearEncoding: return [ 'Linear','( value )' ]; case sRGBEncoding: return [ 'sRGB','( value )' ]; case RGBEEncoding: return [ 'RGBE','( value )' ]; case RGBM7Encoding: return [ 'RGBM','( value, 7.0 )' ]; case RGBM16Encoding: return [ 'RGBM','( value, 16.0 )' ]; case RGBDEncoding: return [ 'RGBD','( value, 256.0 )' ]; case GammaEncoding: return [ 'Gamma','( value, float( GAMMA_FACTOR ) )' ]; default: throw new Error( 'unsupported encoding: ' + encoding ); } } function getTexelDecodingFunction( functionName, encoding ) { var components = getEncodingComponents( encoding ); return "vec4 " + functionName + "( vec4 value ) { return " + components[ 0 ] + "ToLinear" + components[ 1 ] + "; }"; } function getTexelEncodingFunction( functionName, encoding ) { var components = getEncodingComponents( encoding ); return "vec4 " + functionName + "( vec4 value ) { return LinearTo" + components[ 0 ] + components[ 1 ] + "; }"; } function getToneMappingFunction( functionName, toneMapping ) { var toneMappingName; switch ( toneMapping ) { case LinearToneMapping: toneMappingName = "Linear"; break; case ReinhardToneMapping: toneMappingName = "Reinhard"; break; case Uncharted2ToneMapping: toneMappingName = "Uncharted2"; break; case CineonToneMapping: toneMappingName = "OptimizedCineon"; break; default: throw new Error( 'unsupported toneMapping: ' + toneMapping ); } return "vec3 " + functionName + "( vec3 color ) { return " + toneMappingName + "ToneMapping( color ); }"; } function generateExtensions( extensions, parameters, rendererExtensions ) { extensions = extensions || {}; var chunks = [ ( extensions.derivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.normalMap || parameters.flatShading ) ? '#extension GL_OES_standard_derivatives : enable' : '', ( extensions.fragDepth || parameters.logarithmicDepthBuffer ) && rendererExtensions.get( 'EXT_frag_depth' ) ? '#extension GL_EXT_frag_depth : enable' : '', ( extensions.drawBuffers ) && rendererExtensions.get( 'WEBGL_draw_buffers' ) ? '#extension GL_EXT_draw_buffers : require' : '', ( extensions.shaderTextureLOD || parameters.envMap ) && rendererExtensions.get( 'EXT_shader_texture_lod' ) ? '#extension GL_EXT_shader_texture_lod : enable' : '' ]; return chunks.filter( filterEmptyLine ).join( '\n' ); } function generateDefines( defines ) { var chunks = []; for ( var name in defines ) { var value = defines[ name ]; if ( value === false ) continue; chunks.push( '#define ' + name + ' ' + value ); } return chunks.join( '\n' ); } function fetchAttributeLocations( gl, program, identifiers ) { var attributes = {}; var n = gl.getProgramParameter( program, gl.ACTIVE_ATTRIBUTES ); for ( var i = 0; i < n; i ++ ) { var info = gl.getActiveAttrib( program, i ); var name = info.name; // console.log("THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:", name, i ); attributes[ name ] = gl.getAttribLocation( program, name ); } return attributes; } function filterEmptyLine( string ) { return string !== ''; } function replaceLightNums( string, parameters ) { return string .replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights ) .replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights ) .replace( /NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights ) .replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights ) .replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights ); } function parseIncludes( string ) { var pattern = /^[ \t]*#include +<([\w\d.]+)>/gm; function replace( match, include ) { var replace = ShaderChunk[ include ]; if ( replace === undefined ) { throw new Error( 'Can not resolve #include <' + include + '>' ); } return parseIncludes( replace ); } return string.replace( pattern, replace ); } function unrollLoops( string ) { var pattern = /for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g; function replace( match, start, end, snippet ) { var unroll = ''; for ( var i = parseInt( start ); i < parseInt( end ); i ++ ) { unroll += snippet.replace( /\[ i \]/g, '[ ' + i + ' ]' ); } return unroll; } return string.replace( pattern, replace ); } function WebGLProgram( renderer, code, material, shader, parameters ) { var gl = renderer.context; var extensions = material.extensions; var defines = material.defines; var vertexShader = shader.vertexShader; var fragmentShader = shader.fragmentShader; var shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC'; if ( parameters.shadowMapType === PCFShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF'; } else if ( parameters.shadowMapType === PCFSoftShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT'; } var envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; var envMapModeDefine = 'ENVMAP_MODE_REFLECTION'; var envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; if ( parameters.envMap ) { switch ( material.envMap.mapping ) { case CubeReflectionMapping: case CubeRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; break; case CubeUVReflectionMapping: case CubeUVRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV'; break; case EquirectangularReflectionMapping: case EquirectangularRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_EQUIREC'; break; case SphericalReflectionMapping: envMapTypeDefine = 'ENVMAP_TYPE_SPHERE'; break; } switch ( material.envMap.mapping ) { case CubeRefractionMapping: case EquirectangularRefractionMapping: envMapModeDefine = 'ENVMAP_MODE_REFRACTION'; break; } switch ( material.combine ) { case MultiplyOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; break; case MixOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MIX'; break; case AddOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_ADD'; break; } } var gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0; // console.log( 'building new program ' ); // var customExtensions = generateExtensions( extensions, parameters, renderer.extensions ); var customDefines = generateDefines( defines ); // var program = gl.createProgram(); var prefixVertex, prefixFragment; if ( material.isRawShaderMaterial ) { prefixVertex = [ customDefines, '\n' ].filter( filterEmptyLine ).join( '\n' ); prefixFragment = [ customExtensions, customDefines, '\n' ].filter( filterEmptyLine ).join( '\n' ); } else { prefixVertex = [ 'precision ' + parameters.precision + ' float;', 'precision ' + parameters.precision + ' int;', '#define SHADER_NAME ' + shader.name, customDefines, parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, '#define MAX_BONES ' + parameters.maxBones, ( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '', ( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.useVertexTexture ? '#define BONE_TEXTURE' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', '#define NUM_CLIPPING_PLANES ' + parameters.numClippingPlanes, parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_COLOR', ' attribute vec3 color;', '#endif', '#ifdef USE_MORPHTARGETS', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n' ].filter( filterEmptyLine ).join( '\n' ); prefixFragment = [ customExtensions, 'precision ' + parameters.precision + ' float;', 'precision ' + parameters.precision + ' int;', '#define SHADER_NAME ' + shader.name, customDefines, parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, ( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '', ( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', '#define NUM_CLIPPING_PLANES ' + parameters.numClippingPlanes, '#define UNION_CLIPPING_PLANES ' + (parameters.numClippingPlanes - parameters.numClipIntersection), parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? "#define PREMULTIPLIED_ALPHA" : '', parameters.physicallyCorrectLights ? "#define PHYSICALLY_CORRECT_LIGHTS" : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '', parameters.envMap && renderer.extensions.get( 'EXT_shader_texture_lod' ) ? '#define TEXTURE_LOD_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', ( parameters.toneMapping !== NoToneMapping ) ? "#define TONE_MAPPING" : '', ( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below ( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( "toneMapping", parameters.toneMapping ) : '', parameters.dithering ? '#define DITHERING' : '', ( parameters.outputEncoding || parameters.mapEncoding || parameters.envMapEncoding || parameters.emissiveMapEncoding ) ? ShaderChunk[ 'encodings_pars_fragment' ] : '', // this code is required here because it is used by the various encoding/decoding function defined below parameters.mapEncoding ? getTexelDecodingFunction( 'mapTexelToLinear', parameters.mapEncoding ) : '', parameters.envMapEncoding ? getTexelDecodingFunction( 'envMapTexelToLinear', parameters.envMapEncoding ) : '', parameters.emissiveMapEncoding ? getTexelDecodingFunction( 'emissiveMapTexelToLinear', parameters.emissiveMapEncoding ) : '', parameters.outputEncoding ? getTexelEncodingFunction( "linearToOutputTexel", parameters.outputEncoding ) : '', parameters.depthPacking ? "#define DEPTH_PACKING " + material.depthPacking : '', '\n' ].filter( filterEmptyLine ).join( '\n' ); } vertexShader = parseIncludes( vertexShader ); vertexShader = replaceLightNums( vertexShader, parameters ); fragmentShader = parseIncludes( fragmentShader ); fragmentShader = replaceLightNums( fragmentShader, parameters ); if ( ! material.isShaderMaterial ) { vertexShader = unrollLoops( vertexShader ); fragmentShader = unrollLoops( fragmentShader ); } var vertexGlsl = prefixVertex + vertexShader; var fragmentGlsl = prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl ); // console.log( '*FRAGMENT*', fragmentGlsl ); var glVertexShader = WebGLShader( gl, gl.VERTEX_SHADER, vertexGlsl ); var glFragmentShader = WebGLShader( gl, gl.FRAGMENT_SHADER, fragmentGlsl ); gl.attachShader( program, glVertexShader ); gl.attachShader( program, glFragmentShader ); // Force a particular attribute to index 0. if ( material.index0AttributeName !== undefined ) { gl.bindAttribLocation( program, 0, material.index0AttributeName ); } else if ( parameters.morphTargets === true ) { // programs with morphTargets displace position out of attribute 0 gl.bindAttribLocation( program, 0, 'position' ); } gl.linkProgram( program ); var programLog = gl.getProgramInfoLog( program ); var vertexLog = gl.getShaderInfoLog( glVertexShader ); var fragmentLog = gl.getShaderInfoLog( glFragmentShader ); var runnable = true; var haveDiagnostics = true; // console.log( '**VERTEX**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glVertexShader ) ); // console.log( '**FRAGMENT**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glFragmentShader ) ); if ( gl.getProgramParameter( program, gl.LINK_STATUS ) === false ) { runnable = false; console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), 'gl.VALIDATE_STATUS', gl.getProgramParameter( program, gl.VALIDATE_STATUS ), 'gl.getProgramInfoLog', programLog, vertexLog, fragmentLog ); } else if ( programLog !== '' ) { console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', programLog ); } else if ( vertexLog === '' || fragmentLog === '' ) { haveDiagnostics = false; } if ( haveDiagnostics ) { this.diagnostics = { runnable: runnable, material: material, programLog: programLog, vertexShader: { log: vertexLog, prefix: prefixVertex }, fragmentShader: { log: fragmentLog, prefix: prefixFragment } }; } // clean up gl.deleteShader( glVertexShader ); gl.deleteShader( glFragmentShader ); // set up caching for uniform locations var cachedUniforms; this.getUniforms = function() { if ( cachedUniforms === undefined ) { cachedUniforms = new WebGLUniforms( gl, program, renderer ); } return cachedUniforms; }; // set up caching for attribute locations var cachedAttributes; this.getAttributes = function() { if ( cachedAttributes === undefined ) { cachedAttributes = fetchAttributeLocations( gl, program ); } return cachedAttributes; }; // free resource this.destroy = function() { gl.deleteProgram( program ); this.program = undefined; }; // DEPRECATED Object.defineProperties( this, { uniforms: { get: function() { console.warn( 'THREE.WebGLProgram: .uniforms is now .getUniforms().' ); return this.getUniforms(); } }, attributes: { get: function() { console.warn( 'THREE.WebGLProgram: .attributes is now .getAttributes().' ); return this.getAttributes(); } } } ); // this.id = programIdCount ++; this.code = code; this.usedTimes = 1; this.program = program; this.vertexShader = glVertexShader; this.fragmentShader = glFragmentShader; return this; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLPrograms( renderer, capabilities ) { var programs = []; var shaderIDs = { MeshDepthMaterial: 'depth', MeshNormalMaterial: 'normal', MeshBasicMaterial: 'basic', MeshLambertMaterial: 'lambert', MeshPhongMaterial: 'phong', MeshToonMaterial: 'phong', MeshStandardMaterial: 'physical', MeshPhysicalMaterial: 'physical', LineBasicMaterial: 'basic', LineDashedMaterial: 'dashed', PointsMaterial: 'points' }; var parameterNames = [ "precision", "supportsVertexTextures", "map", "mapEncoding", "envMap", "envMapMode", "envMapEncoding", "lightMap", "aoMap", "emissiveMap", "emissiveMapEncoding", "bumpMap", "normalMap", "displacementMap", "specularMap", "roughnessMap", "metalnessMap", "gradientMap", "alphaMap", "combine", "vertexColors", "fog", "useFog", "fogExp", "flatShading", "sizeAttenuation", "logarithmicDepthBuffer", "skinning", "maxBones", "useVertexTexture", "morphTargets", "morphNormals", "maxMorphTargets", "maxMorphNormals", "premultipliedAlpha", "numDirLights", "numPointLights", "numSpotLights", "numHemiLights", "numRectAreaLights", "shadowMapEnabled", "shadowMapType", "toneMapping", 'physicallyCorrectLights', "alphaTest", "doubleSided", "flipSided", "numClippingPlanes", "numClipIntersection", "depthPacking", "dithering" ]; function allocateBones( object ) { var skeleton = object.skeleton; var bones = skeleton.bones; if ( capabilities.floatVertexTextures ) { return 1024; } else { // default for when object is not specified // ( for example when prebuilding shader to be used with multiple objects ) // // - leave some extra space for other uniforms // - limit here is ANGLE's 254 max uniform vectors // (up to 54 should be safe) var nVertexUniforms = capabilities.maxVertexUniforms; var nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 ); var maxBones = Math.min( nVertexMatrices, bones.length ); if ( maxBones < bones.length ) { console.warn( 'THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.' ); return 0; } return maxBones; } } function getTextureEncodingFromMap( map, gammaOverrideLinear ) { var encoding; if ( ! map ) { encoding = LinearEncoding; } else if ( map.isTexture ) { encoding = map.encoding; } else if ( map.isWebGLRenderTarget ) { console.warn( "THREE.WebGLPrograms.getTextureEncodingFromMap: don't use render targets as textures. Use their .texture property instead." ); encoding = map.texture.encoding; } // add backwards compatibility for WebGLRenderer.gammaInput/gammaOutput parameter, should probably be removed at some point. if ( encoding === LinearEncoding && gammaOverrideLinear ) { encoding = GammaEncoding; } return encoding; } this.getParameters = function ( material, lights, fog, nClipPlanes, nClipIntersection, object ) { var shaderID = shaderIDs[ material.type ]; // heuristics to create shader parameters according to lights in the scene // (not to blow over maxLights budget) var maxBones = object.isSkinnedMesh ? allocateBones( object ) : 0; var precision = renderer.getPrecision(); if ( material.precision !== null ) { precision = capabilities.getMaxPrecision( material.precision ); if ( precision !== material.precision ) { console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' ); } } var currentRenderTarget = renderer.getRenderTarget(); var parameters = { shaderID: shaderID, precision: precision, supportsVertexTextures: capabilities.vertexTextures, outputEncoding: getTextureEncodingFromMap( ( ! currentRenderTarget ) ? null : currentRenderTarget.texture, renderer.gammaOutput ), map: !! material.map, mapEncoding: getTextureEncodingFromMap( material.map, renderer.gammaInput ), envMap: !! material.envMap, envMapMode: material.envMap && material.envMap.mapping, envMapEncoding: getTextureEncodingFromMap( material.envMap, renderer.gammaInput ), envMapCubeUV: ( !! material.envMap ) && ( ( material.envMap.mapping === CubeUVReflectionMapping ) || ( material.envMap.mapping === CubeUVRefractionMapping ) ), lightMap: !! material.lightMap, aoMap: !! material.aoMap, emissiveMap: !! material.emissiveMap, emissiveMapEncoding: getTextureEncodingFromMap( material.emissiveMap, renderer.gammaInput ), bumpMap: !! material.bumpMap, normalMap: !! material.normalMap, displacementMap: !! material.displacementMap, roughnessMap: !! material.roughnessMap, metalnessMap: !! material.metalnessMap, specularMap: !! material.specularMap, alphaMap: !! material.alphaMap, gradientMap: !! material.gradientMap, combine: material.combine, vertexColors: material.vertexColors, fog: !! fog, useFog: material.fog, fogExp: ( fog && fog.isFogExp2 ), flatShading: material.shading === FlatShading, sizeAttenuation: material.sizeAttenuation, logarithmicDepthBuffer: capabilities.logarithmicDepthBuffer, skinning: material.skinning && maxBones > 0, maxBones: maxBones, useVertexTexture: capabilities.floatVertexTextures, morphTargets: material.morphTargets, morphNormals: material.morphNormals, maxMorphTargets: renderer.maxMorphTargets, maxMorphNormals: renderer.maxMorphNormals, numDirLights: lights.directional.length, numPointLights: lights.point.length, numSpotLights: lights.spot.length, numRectAreaLights: lights.rectArea.length, numHemiLights: lights.hemi.length, numClippingPlanes: nClipPlanes, numClipIntersection: nClipIntersection, dithering: material.dithering, shadowMapEnabled: renderer.shadowMap.enabled && object.receiveShadow && lights.shadows.length > 0, shadowMapType: renderer.shadowMap.type, toneMapping: renderer.toneMapping, physicallyCorrectLights: renderer.physicallyCorrectLights, premultipliedAlpha: material.premultipliedAlpha, alphaTest: material.alphaTest, doubleSided: material.side === DoubleSide, flipSided: material.side === BackSide, depthPacking: ( material.depthPacking !== undefined ) ? material.depthPacking : false }; return parameters; }; this.getProgramCode = function ( material, parameters ) { var array = []; if ( parameters.shaderID ) { array.push( parameters.shaderID ); } else { array.push( material.fragmentShader ); array.push( material.vertexShader ); } if ( material.defines !== undefined ) { for ( var name in material.defines ) { array.push( name ); array.push( material.defines[ name ] ); } } for ( var i = 0; i < parameterNames.length; i ++ ) { array.push( parameters[ parameterNames[ i ] ] ); } array.push( material.onBeforeCompile.toString() ); array.push( renderer.gammaOutput ); return array.join(); }; this.acquireProgram = function ( material, shader, parameters, code ) { var program; // Check if code has been already compiled for ( var p = 0, pl = programs.length; p < pl; p ++ ) { var programInfo = programs[ p ]; if ( programInfo.code === code ) { program = programInfo; ++ program.usedTimes; break; } } if ( program === undefined ) { program = new WebGLProgram( renderer, code, material, shader, parameters ); programs.push( program ); } return program; }; this.releaseProgram = function ( program ) { if ( -- program.usedTimes === 0 ) { // Remove from unordered set var i = programs.indexOf( program ); programs[ i ] = programs[ programs.length - 1 ]; programs.pop(); // Free WebGL resources program.destroy(); } }; // Exposed for resource monitoring & error feedback via renderer.info: this.programs = programs; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLTextures( _gl, extensions, state, properties, capabilities, paramThreeToGL, infoMemory ) { var _isWebGL2 = ( typeof WebGL2RenderingContext !== 'undefined' && _gl instanceof WebGL2RenderingContext ); // function clampToMaxSize( image, maxSize ) { if ( image.width > maxSize || image.height > maxSize ) { // Warning: Scaling through the canvas will only work with images that use // premultiplied alpha. var scale = maxSize / Math.max( image.width, image.height ); var canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); canvas.width = Math.floor( image.width * scale ); canvas.height = Math.floor( image.height * scale ); var context = canvas.getContext( '2d' ); context.drawImage( image, 0, 0, image.width, image.height, 0, 0, canvas.width, canvas.height ); console.warn( 'THREE.WebGLRenderer: image is too big (' + image.width + 'x' + image.height + '). Resized to ' + canvas.width + 'x' + canvas.height, image ); return canvas; } return image; } function isPowerOfTwo( image ) { return _Math.isPowerOfTwo( image.width ) && _Math.isPowerOfTwo( image.height ); } function makePowerOfTwo( image ) { if ( image instanceof HTMLImageElement || image instanceof HTMLCanvasElement ) { var canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); canvas.width = _Math.nearestPowerOfTwo( image.width ); canvas.height = _Math.nearestPowerOfTwo( image.height ); var context = canvas.getContext( '2d' ); context.drawImage( image, 0, 0, canvas.width, canvas.height ); console.warn( 'THREE.WebGLRenderer: image is not power of two (' + image.width + 'x' + image.height + '). Resized to ' + canvas.width + 'x' + canvas.height, image ); return canvas; } return image; } function textureNeedsPowerOfTwo( texture ) { return ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) || ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ); } function textureNeedsGenerateMipmaps( texture, isPowerOfTwo ) { return texture.generateMipmaps && isPowerOfTwo && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter; } // Fallback filters for non-power-of-2 textures function filterFallback( f ) { if ( f === NearestFilter || f === NearestMipMapNearestFilter || f === NearestMipMapLinearFilter ) { return _gl.NEAREST; } return _gl.LINEAR; } // function onTextureDispose( event ) { var texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); deallocateTexture( texture ); infoMemory.textures --; } function onRenderTargetDispose( event ) { var renderTarget = event.target; renderTarget.removeEventListener( 'dispose', onRenderTargetDispose ); deallocateRenderTarget( renderTarget ); infoMemory.textures --; } // function deallocateTexture( texture ) { var textureProperties = properties.get( texture ); if ( texture.image && textureProperties.__image__webglTextureCube ) { // cube texture _gl.deleteTexture( textureProperties.__image__webglTextureCube ); } else { // 2D texture if ( textureProperties.__webglInit === undefined ) return; _gl.deleteTexture( textureProperties.__webglTexture ); } // remove all webgl properties properties.remove( texture ); } function deallocateRenderTarget( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); var textureProperties = properties.get( renderTarget.texture ); if ( ! renderTarget ) return; if ( textureProperties.__webglTexture !== undefined ) { _gl.deleteTexture( textureProperties.__webglTexture ); } if ( renderTarget.depthTexture ) { renderTarget.depthTexture.dispose(); } if ( renderTarget.isWebGLRenderTargetCube ) { for ( var i = 0; i < 6; i ++ ) { _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] ); if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] ); } } else { _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer ); if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer ); } properties.remove( renderTarget.texture ); properties.remove( renderTarget ); } // function setTexture2D( texture, slot ) { var textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { var image = texture.image; if ( image === undefined ) { console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is undefined', texture ); } else if ( image.complete === false ) { console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete', texture ); } else { uploadTexture( textureProperties, texture, slot ); return; } } state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture ); } function setTextureCube( texture, slot ) { var textureProperties = properties.get( texture ); if ( texture.image.length === 6 ) { if ( texture.version > 0 && textureProperties.__version !== texture.version ) { if ( ! textureProperties.__image__webglTextureCube ) { texture.addEventListener( 'dispose', onTextureDispose ); textureProperties.__image__webglTextureCube = _gl.createTexture(); infoMemory.textures ++; } state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube ); _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); var isCompressed = ( texture && texture.isCompressedTexture ); var isDataTexture = ( texture.image[ 0 ] && texture.image[ 0 ].isDataTexture ); var cubeImage = []; for ( var i = 0; i < 6; i ++ ) { if ( ! isCompressed && ! isDataTexture ) { cubeImage[ i ] = clampToMaxSize( texture.image[ i ], capabilities.maxCubemapSize ); } else { cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ]; } } var image = cubeImage[ 0 ], isPowerOfTwoImage = isPowerOfTwo( image ), glFormat = paramThreeToGL( texture.format ), glType = paramThreeToGL( texture.type ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture, isPowerOfTwoImage ); for ( var i = 0; i < 6; i ++ ) { if ( ! isCompressed ) { if ( isDataTexture ) { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data ); } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, glFormat, glType, cubeImage[ i ] ); } } else { var mipmap, mipmaps = cubeImage[ i ].mipmaps; for ( var j = 0, jl = mipmaps.length; j < jl; j ++ ) { mipmap = mipmaps[ j ]; if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) { if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) { state.compressedTexImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } else { console.warn( "THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()" ); } } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } } } if ( textureNeedsGenerateMipmaps( texture, isPowerOfTwoImage ) ) { _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP ); } textureProperties.__version = texture.version; if ( texture.onUpdate ) texture.onUpdate( texture ); } else { state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube ); } } } function setTextureCubeDynamic( texture, slot ) { state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, properties.get( texture ).__webglTexture ); } function setTextureParameters( textureType, texture, isPowerOfTwoImage ) { var extension; if ( isPowerOfTwoImage ) { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, paramThreeToGL( texture.wrapS ) ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, paramThreeToGL( texture.wrapT ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, paramThreeToGL( texture.magFilter ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, paramThreeToGL( texture.minFilter ) ); } else { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE ); if ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) { console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.', texture ); } _gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, filterFallback( texture.magFilter ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, filterFallback( texture.minFilter ) ); if ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) { console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.', texture ); } } extension = extensions.get( 'EXT_texture_filter_anisotropic' ); if ( extension ) { if ( texture.type === FloatType && extensions.get( 'OES_texture_float_linear' ) === null ) return; if ( texture.type === HalfFloatType && extensions.get( 'OES_texture_half_float_linear' ) === null ) return; if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) { _gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, capabilities.getMaxAnisotropy() ) ); properties.get( texture ).__currentAnisotropy = texture.anisotropy; } } } function uploadTexture( textureProperties, texture, slot ) { if ( textureProperties.__webglInit === undefined ) { textureProperties.__webglInit = true; texture.addEventListener( 'dispose', onTextureDispose ); textureProperties.__webglTexture = _gl.createTexture(); infoMemory.textures ++; } state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture ); _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha ); _gl.pixelStorei( _gl.UNPACK_ALIGNMENT, texture.unpackAlignment ); var image = clampToMaxSize( texture.image, capabilities.maxTextureSize ); if ( textureNeedsPowerOfTwo( texture ) && isPowerOfTwo( image ) === false ) { image = makePowerOfTwo( image ); } var isPowerOfTwoImage = isPowerOfTwo( image ), glFormat = paramThreeToGL( texture.format ), glType = paramThreeToGL( texture.type ); setTextureParameters( _gl.TEXTURE_2D, texture, isPowerOfTwoImage ); var mipmap, mipmaps = texture.mipmaps; if ( texture.isDepthTexture ) { // populate depth texture with dummy data var internalFormat = _gl.DEPTH_COMPONENT; if ( texture.type === FloatType ) { if ( !_isWebGL2 ) throw new Error('Float Depth Texture only supported in WebGL2.0'); internalFormat = _gl.DEPTH_COMPONENT32F; } else if ( _isWebGL2 ) { // WebGL 2.0 requires signed internalformat for glTexImage2D internalFormat = _gl.DEPTH_COMPONENT16; } if ( texture.format === DepthFormat && internalFormat === _gl.DEPTH_COMPONENT ) { // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are // DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if ( texture.type !== UnsignedShortType && texture.type !== UnsignedIntType ) { console.warn( 'THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.' ); texture.type = UnsignedShortType; glType = paramThreeToGL( texture.type ); } } // Depth stencil textures need the DEPTH_STENCIL internal format // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if ( texture.format === DepthStencilFormat ) { internalFormat = _gl.DEPTH_STENCIL; // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are // DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL. // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if ( texture.type !== UnsignedInt248Type ) { console.warn( 'THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.' ); texture.type = UnsignedInt248Type; glType = paramThreeToGL( texture.type ); } } state.texImage2D( _gl.TEXTURE_2D, 0, internalFormat, image.width, image.height, 0, glFormat, glType, null ); } else if ( texture.isDataTexture ) { // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 && isPowerOfTwoImage ) { for ( var i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } texture.generateMipmaps = false; } else { state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, image.width, image.height, 0, glFormat, glType, image.data ); } } else if ( texture.isCompressedTexture ) { for ( var i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) { if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) { state.compressedTexImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } else { console.warn( "THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()" ); } } else { state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } } else { // regular Texture (image, video, canvas) // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 && isPowerOfTwoImage ) { for ( var i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; state.texImage2D( _gl.TEXTURE_2D, i, glFormat, glFormat, glType, mipmap ); } texture.generateMipmaps = false; } else { state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, glFormat, glType, image ); } } if ( textureNeedsGenerateMipmaps( texture, isPowerOfTwoImage ) ) _gl.generateMipmap( _gl.TEXTURE_2D ); textureProperties.__version = texture.version; if ( texture.onUpdate ) texture.onUpdate( texture ); } // Render targets // Setup storage for target texture and bind it to correct framebuffer function setupFrameBufferTexture( framebuffer, renderTarget, attachment, textureTarget ) { var glFormat = paramThreeToGL( renderTarget.texture.format ); var glType = paramThreeToGL( renderTarget.texture.type ); state.texImage2D( textureTarget, 0, glFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null ); _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); _gl.framebufferTexture2D( _gl.FRAMEBUFFER, attachment, textureTarget, properties.get( renderTarget.texture ).__webglTexture, 0 ); _gl.bindFramebuffer( _gl.FRAMEBUFFER, null ); } // Setup storage for internal depth/stencil buffers and bind to correct framebuffer function setupRenderBufferStorage( renderbuffer, renderTarget ) { _gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer ); if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_COMPONENT16, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); } else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); } else { // FIXME: We don't support !depth !stencil _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.RGBA4, renderTarget.width, renderTarget.height ); } _gl.bindRenderbuffer( _gl.RENDERBUFFER, null ); } // Setup resources for a Depth Texture for a FBO (needs an extension) function setupDepthTexture( framebuffer, renderTarget ) { var isCube = ( renderTarget && renderTarget.isWebGLRenderTargetCube ); if ( isCube ) throw new Error('Depth Texture with cube render targets is not supported!'); _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); if ( !( renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture ) ) { throw new Error('renderTarget.depthTexture must be an instance of THREE.DepthTexture'); } // upload an empty depth texture with framebuffer size if ( !properties.get( renderTarget.depthTexture ).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height ) { renderTarget.depthTexture.image.width = renderTarget.width; renderTarget.depthTexture.image.height = renderTarget.height; renderTarget.depthTexture.needsUpdate = true; } setTexture2D( renderTarget.depthTexture, 0 ); var webglDepthTexture = properties.get( renderTarget.depthTexture ).__webglTexture; if ( renderTarget.depthTexture.format === DepthFormat ) { _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 ); } else if ( renderTarget.depthTexture.format === DepthStencilFormat ) { _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 ); } else { throw new Error('Unknown depthTexture format') } } // Setup GL resources for a non-texture depth buffer function setupDepthRenderbuffer( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); var isCube = ( renderTarget.isWebGLRenderTargetCube === true ); if ( renderTarget.depthTexture ) { if ( isCube ) throw new Error('target.depthTexture not supported in Cube render targets'); setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget ); } else { if ( isCube ) { renderTargetProperties.__webglDepthbuffer = []; for ( var i = 0; i < 6; i ++ ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[ i ] ); renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget ); } } else { _gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer ); renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget ); } } _gl.bindFramebuffer( _gl.FRAMEBUFFER, null ); } // Set up GL resources for the render target function setupRenderTarget( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); var textureProperties = properties.get( renderTarget.texture ); renderTarget.addEventListener( 'dispose', onRenderTargetDispose ); textureProperties.__webglTexture = _gl.createTexture(); infoMemory.textures ++; var isCube = ( renderTarget.isWebGLRenderTargetCube === true ); var isTargetPowerOfTwo = isPowerOfTwo( renderTarget ); // Setup framebuffer if ( isCube ) { renderTargetProperties.__webglFramebuffer = []; for ( var i = 0; i < 6; i ++ ) { renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer(); } } else { renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer(); } // Setup color buffer if ( isCube ) { state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, renderTarget.texture, isTargetPowerOfTwo ); for ( var i = 0; i < 6; i ++ ) { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i ); } if ( textureNeedsGenerateMipmaps( renderTarget.texture, isTargetPowerOfTwo ) ) _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, null ); } else { state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture ); setTextureParameters( _gl.TEXTURE_2D, renderTarget.texture, isTargetPowerOfTwo ); setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D ); if ( textureNeedsGenerateMipmaps( renderTarget.texture, isTargetPowerOfTwo ) ) _gl.generateMipmap( _gl.TEXTURE_2D ); state.bindTexture( _gl.TEXTURE_2D, null ); } // Setup depth and stencil buffers if ( renderTarget.depthBuffer ) { setupDepthRenderbuffer( renderTarget ); } } function updateRenderTargetMipmap( renderTarget ) { var texture = renderTarget.texture; var isTargetPowerOfTwo = isPowerOfTwo( renderTarget ); if ( textureNeedsGenerateMipmaps( texture, isTargetPowerOfTwo ) ) { var target = renderTarget.isWebGLRenderTargetCube ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D; var webglTexture = properties.get( texture ).__webglTexture; state.bindTexture( target, webglTexture ); _gl.generateMipmap( target ); state.bindTexture( target, null ); } } this.setTexture2D = setTexture2D; this.setTextureCube = setTextureCube; this.setTextureCubeDynamic = setTextureCubeDynamic; this.setupRenderTarget = setupRenderTarget; this.updateRenderTargetMipmap = updateRenderTargetMipmap; } /** * @author fordacious / fordacious.github.io */ function WebGLProperties() { var properties = {}; function get( object ) { var uuid = object.uuid; var map = properties[ uuid ]; if ( map === undefined ) { map = {}; properties[ uuid ] = map; } return map; } function remove( object ) { delete properties[ object.uuid ]; } function clear() { properties = {}; } return { get: get, remove: remove, clear: clear }; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLState( gl, extensions, paramThreeToGL ) { function ColorBuffer() { var locked = false; var color = new Vector4(); var currentColorMask = null; var currentColorClear = new Vector4(); return { setMask: function ( colorMask ) { if ( currentColorMask !== colorMask && ! locked ) { gl.colorMask( colorMask, colorMask, colorMask, colorMask ); currentColorMask = colorMask; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( r, g, b, a, premultipliedAlpha ) { if ( premultipliedAlpha === true ) { r *= a; g *= a; b *= a; } color.set( r, g, b, a ); if ( currentColorClear.equals( color ) === false ) { gl.clearColor( r, g, b, a ); currentColorClear.copy( color ); } }, reset: function () { locked = false; currentColorMask = null; currentColorClear.set( 0, 0, 0, 1 ); } }; } function DepthBuffer() { var locked = false; var currentDepthMask = null; var currentDepthFunc = null; var currentDepthClear = null; return { setTest: function ( depthTest ) { if ( depthTest ) { enable( gl.DEPTH_TEST ); } else { disable( gl.DEPTH_TEST ); } }, setMask: function ( depthMask ) { if ( currentDepthMask !== depthMask && ! locked ) { gl.depthMask( depthMask ); currentDepthMask = depthMask; } }, setFunc: function ( depthFunc ) { if ( currentDepthFunc !== depthFunc ) { if ( depthFunc ) { switch ( depthFunc ) { case NeverDepth: gl.depthFunc( gl.NEVER ); break; case AlwaysDepth: gl.depthFunc( gl.ALWAYS ); break; case LessDepth: gl.depthFunc( gl.LESS ); break; case LessEqualDepth: gl.depthFunc( gl.LEQUAL ); break; case EqualDepth: gl.depthFunc( gl.EQUAL ); break; case GreaterEqualDepth: gl.depthFunc( gl.GEQUAL ); break; case GreaterDepth: gl.depthFunc( gl.GREATER ); break; case NotEqualDepth: gl.depthFunc( gl.NOTEQUAL ); break; default: gl.depthFunc( gl.LEQUAL ); } } else { gl.depthFunc( gl.LEQUAL ); } currentDepthFunc = depthFunc; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( depth ) { if ( currentDepthClear !== depth ) { gl.clearDepth( depth ); currentDepthClear = depth; } }, reset: function () { locked = false; currentDepthMask = null; currentDepthFunc = null; currentDepthClear = null; } }; } function StencilBuffer() { var locked = false; var currentStencilMask = null; var currentStencilFunc = null; var currentStencilRef = null; var currentStencilFuncMask = null; var currentStencilFail = null; var currentStencilZFail = null; var currentStencilZPass = null; var currentStencilClear = null; return { setTest: function ( stencilTest ) { if ( stencilTest ) { enable( gl.STENCIL_TEST ); } else { disable( gl.STENCIL_TEST ); } }, setMask: function ( stencilMask ) { if ( currentStencilMask !== stencilMask && ! locked ) { gl.stencilMask( stencilMask ); currentStencilMask = stencilMask; } }, setFunc: function ( stencilFunc, stencilRef, stencilMask ) { if ( currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask ) { gl.stencilFunc( stencilFunc, stencilRef, stencilMask ); currentStencilFunc = stencilFunc; currentStencilRef = stencilRef; currentStencilFuncMask = stencilMask; } }, setOp: function ( stencilFail, stencilZFail, stencilZPass ) { if ( currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass ) { gl.stencilOp( stencilFail, stencilZFail, stencilZPass ); currentStencilFail = stencilFail; currentStencilZFail = stencilZFail; currentStencilZPass = stencilZPass; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( stencil ) { if ( currentStencilClear !== stencil ) { gl.clearStencil( stencil ); currentStencilClear = stencil; } }, reset: function () { locked = false; currentStencilMask = null; currentStencilFunc = null; currentStencilRef = null; currentStencilFuncMask = null; currentStencilFail = null; currentStencilZFail = null; currentStencilZPass = null; currentStencilClear = null; } }; } // var colorBuffer = new ColorBuffer(); var depthBuffer = new DepthBuffer(); var stencilBuffer = new StencilBuffer(); var maxVertexAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS ); var newAttributes = new Uint8Array( maxVertexAttributes ); var enabledAttributes = new Uint8Array( maxVertexAttributes ); var attributeDivisors = new Uint8Array( maxVertexAttributes ); var capabilities = {}; var compressedTextureFormats = null; var currentBlending = null; var currentBlendEquation = null; var currentBlendSrc = null; var currentBlendDst = null; var currentBlendEquationAlpha = null; var currentBlendSrcAlpha = null; var currentBlendDstAlpha = null; var currentPremultipledAlpha = false; var currentFlipSided = null; var currentCullFace = null; var currentLineWidth = null; var currentPolygonOffsetFactor = null; var currentPolygonOffsetUnits = null; var currentScissorTest = null; var maxTextures = gl.getParameter( gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS ); var version = parseFloat( /^WebGL\ ([0-9])/.exec( gl.getParameter( gl.VERSION ) )[ 1 ] ); var lineWidthAvailable = parseFloat( version ) >= 1.0; var currentTextureSlot = null; var currentBoundTextures = {}; var currentScissor = new Vector4(); var currentViewport = new Vector4(); function createTexture( type, target, count ) { var data = new Uint8Array( 4 ); // 4 is required to match default unpack alignment of 4. var texture = gl.createTexture(); gl.bindTexture( type, texture ); gl.texParameteri( type, gl.TEXTURE_MIN_FILTER, gl.NEAREST ); gl.texParameteri( type, gl.TEXTURE_MAG_FILTER, gl.NEAREST ); for ( var i = 0; i < count; i ++ ) { gl.texImage2D( target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data ); } return texture; } var emptyTextures = {}; emptyTextures[ gl.TEXTURE_2D ] = createTexture( gl.TEXTURE_2D, gl.TEXTURE_2D, 1 ); emptyTextures[ gl.TEXTURE_CUBE_MAP ] = createTexture( gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6 ); // function init() { colorBuffer.setClear( 0, 0, 0, 1 ); depthBuffer.setClear( 1 ); stencilBuffer.setClear( 0 ); enable( gl.DEPTH_TEST ); depthBuffer.setFunc( LessEqualDepth ); setFlipSided( false ); setCullFace( CullFaceBack ); enable( gl.CULL_FACE ); enable( gl.BLEND ); setBlending( NormalBlending ); } function initAttributes() { for ( var i = 0, l = newAttributes.length; i < l; i ++ ) { newAttributes[ i ] = 0; } } function enableAttribute( attribute ) { newAttributes[ attribute ] = 1; if ( enabledAttributes[ attribute ] === 0 ) { gl.enableVertexAttribArray( attribute ); enabledAttributes[ attribute ] = 1; } if ( attributeDivisors[ attribute ] !== 0 ) { var extension = extensions.get( 'ANGLE_instanced_arrays' ); extension.vertexAttribDivisorANGLE( attribute, 0 ); attributeDivisors[ attribute ] = 0; } } function enableAttributeAndDivisor( attribute, meshPerAttribute ) { newAttributes[ attribute ] = 1; if ( enabledAttributes[ attribute ] === 0 ) { gl.enableVertexAttribArray( attribute ); enabledAttributes[ attribute ] = 1; } if ( attributeDivisors[ attribute ] !== meshPerAttribute ) { var extension = extensions.get( 'ANGLE_instanced_arrays' ); extension.vertexAttribDivisorANGLE( attribute, meshPerAttribute ); attributeDivisors[ attribute ] = meshPerAttribute; } } function disableUnusedAttributes() { for ( var i = 0, l = enabledAttributes.length; i !== l; ++ i ) { if ( enabledAttributes[ i ] !== newAttributes[ i ] ) { gl.disableVertexAttribArray( i ); enabledAttributes[ i ] = 0; } } } function enable( id ) { if ( capabilities[ id ] !== true ) { gl.enable( id ); capabilities[ id ] = true; } } function disable( id ) { if ( capabilities[ id ] !== false ) { gl.disable( id ); capabilities[ id ] = false; } } function getCompressedTextureFormats() { if ( compressedTextureFormats === null ) { compressedTextureFormats = []; if ( extensions.get( 'WEBGL_compressed_texture_pvrtc' ) || extensions.get( 'WEBGL_compressed_texture_s3tc' ) || extensions.get( 'WEBGL_compressed_texture_etc1' ) ) { var formats = gl.getParameter( gl.COMPRESSED_TEXTURE_FORMATS ); for ( var i = 0; i < formats.length; i ++ ) { compressedTextureFormats.push( formats[ i ] ); } } } return compressedTextureFormats; } function setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) { if ( blending !== NoBlending ) { enable( gl.BLEND ); } else { disable( gl.BLEND ); } if ( ( blending !== CustomBlending ) && ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) ) { if ( blending === AdditiveBlending ) { if ( premultipliedAlpha ) { gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD ); gl.blendFuncSeparate( gl.ONE, gl.ONE, gl.ONE, gl.ONE ); } else { gl.blendEquation( gl.FUNC_ADD ); gl.blendFunc( gl.SRC_ALPHA, gl.ONE ); } } else if ( blending === SubtractiveBlending ) { if ( premultipliedAlpha ) { gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD ); gl.blendFuncSeparate( gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA ); } else { gl.blendEquation( gl.FUNC_ADD ); gl.blendFunc( gl.ZERO, gl.ONE_MINUS_SRC_COLOR ); } } else if ( blending === MultiplyBlending ) { if ( premultipliedAlpha ) { gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD ); gl.blendFuncSeparate( gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA ); } else { gl.blendEquation( gl.FUNC_ADD ); gl.blendFunc( gl.ZERO, gl.SRC_COLOR ); } } else { if ( premultipliedAlpha ) { gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD ); gl.blendFuncSeparate( gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); } else { gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD ); gl.blendFuncSeparate( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); } } currentBlending = blending; currentPremultipledAlpha = premultipliedAlpha; } if ( blending === CustomBlending ) { blendEquationAlpha = blendEquationAlpha || blendEquation; blendSrcAlpha = blendSrcAlpha || blendSrc; blendDstAlpha = blendDstAlpha || blendDst; if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) { gl.blendEquationSeparate( paramThreeToGL( blendEquation ), paramThreeToGL( blendEquationAlpha ) ); currentBlendEquation = blendEquation; currentBlendEquationAlpha = blendEquationAlpha; } if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) { gl.blendFuncSeparate( paramThreeToGL( blendSrc ), paramThreeToGL( blendDst ), paramThreeToGL( blendSrcAlpha ), paramThreeToGL( blendDstAlpha ) ); currentBlendSrc = blendSrc; currentBlendDst = blendDst; currentBlendSrcAlpha = blendSrcAlpha; currentBlendDstAlpha = blendDstAlpha; } } else { currentBlendEquation = null; currentBlendSrc = null; currentBlendDst = null; currentBlendEquationAlpha = null; currentBlendSrcAlpha = null; currentBlendDstAlpha = null; } } function setMaterial( material ) { material.side === DoubleSide ? disable( gl.CULL_FACE ) : enable( gl.CULL_FACE ); setFlipSided( material.side === BackSide ); material.transparent === true ? setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha ) : setBlending( NoBlending ); depthBuffer.setFunc( material.depthFunc ); depthBuffer.setTest( material.depthTest ); depthBuffer.setMask( material.depthWrite ); colorBuffer.setMask( material.colorWrite ); setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); } // function setFlipSided( flipSided ) { if ( currentFlipSided !== flipSided ) { if ( flipSided ) { gl.frontFace( gl.CW ); } else { gl.frontFace( gl.CCW ); } currentFlipSided = flipSided; } } function setCullFace( cullFace ) { if ( cullFace !== CullFaceNone ) { enable( gl.CULL_FACE ); if ( cullFace !== currentCullFace ) { if ( cullFace === CullFaceBack ) { gl.cullFace( gl.BACK ); } else if ( cullFace === CullFaceFront ) { gl.cullFace( gl.FRONT ); } else { gl.cullFace( gl.FRONT_AND_BACK ); } } } else { disable( gl.CULL_FACE ); } currentCullFace = cullFace; } function setLineWidth( width ) { if ( width !== currentLineWidth ) { if ( lineWidthAvailable ) gl.lineWidth( width ); currentLineWidth = width; } } function setPolygonOffset( polygonOffset, factor, units ) { if ( polygonOffset ) { enable( gl.POLYGON_OFFSET_FILL ); if ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) { gl.polygonOffset( factor, units ); currentPolygonOffsetFactor = factor; currentPolygonOffsetUnits = units; } } else { disable( gl.POLYGON_OFFSET_FILL ); } } function getScissorTest() { return currentScissorTest; } function setScissorTest( scissorTest ) { currentScissorTest = scissorTest; if ( scissorTest ) { enable( gl.SCISSOR_TEST ); } else { disable( gl.SCISSOR_TEST ); } } // texture function activeTexture( webglSlot ) { if ( webglSlot === undefined ) webglSlot = gl.TEXTURE0 + maxTextures - 1; if ( currentTextureSlot !== webglSlot ) { gl.activeTexture( webglSlot ); currentTextureSlot = webglSlot; } } function bindTexture( webglType, webglTexture ) { if ( currentTextureSlot === null ) { activeTexture(); } var boundTexture = currentBoundTextures[ currentTextureSlot ]; if ( boundTexture === undefined ) { boundTexture = { type: undefined, texture: undefined }; currentBoundTextures[ currentTextureSlot ] = boundTexture; } if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) { gl.bindTexture( webglType, webglTexture || emptyTextures[ webglType ] ); boundTexture.type = webglType; boundTexture.texture = webglTexture; } } function compressedTexImage2D() { try { gl.compressedTexImage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texImage2D() { try { gl.texImage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } // function scissor( scissor ) { if ( currentScissor.equals( scissor ) === false ) { gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w ); currentScissor.copy( scissor ); } } function viewport( viewport ) { if ( currentViewport.equals( viewport ) === false ) { gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w ); currentViewport.copy( viewport ); } } // function reset() { for ( var i = 0; i < enabledAttributes.length; i ++ ) { if ( enabledAttributes[ i ] === 1 ) { gl.disableVertexAttribArray( i ); enabledAttributes[ i ] = 0; } } capabilities = {}; compressedTextureFormats = null; currentTextureSlot = null; currentBoundTextures = {}; currentBlending = null; currentFlipSided = null; currentCullFace = null; colorBuffer.reset(); depthBuffer.reset(); stencilBuffer.reset(); } return { buffers: { color: colorBuffer, depth: depthBuffer, stencil: stencilBuffer }, init: init, initAttributes: initAttributes, enableAttribute: enableAttribute, enableAttributeAndDivisor: enableAttributeAndDivisor, disableUnusedAttributes: disableUnusedAttributes, enable: enable, disable: disable, getCompressedTextureFormats: getCompressedTextureFormats, setBlending: setBlending, setMaterial: setMaterial, setFlipSided: setFlipSided, setCullFace: setCullFace, setLineWidth: setLineWidth, setPolygonOffset: setPolygonOffset, getScissorTest: getScissorTest, setScissorTest: setScissorTest, activeTexture: activeTexture, bindTexture: bindTexture, compressedTexImage2D: compressedTexImage2D, texImage2D: texImage2D, scissor: scissor, viewport: viewport, reset: reset }; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLCapabilities( gl, extensions, parameters ) { var maxAnisotropy; function getMaxAnisotropy() { if ( maxAnisotropy !== undefined ) return maxAnisotropy; var extension = extensions.get( 'EXT_texture_filter_anisotropic' ); if ( extension !== null ) { maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT ); } else { maxAnisotropy = 0; } return maxAnisotropy; } function getMaxPrecision( precision ) { if ( precision === 'highp' ) { if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.HIGH_FLOAT ).precision > 0 && gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.HIGH_FLOAT ).precision > 0 ) { return 'highp'; } precision = 'mediump'; } if ( precision === 'mediump' ) { if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.MEDIUM_FLOAT ).precision > 0 && gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT ).precision > 0 ) { return 'mediump'; } } return 'lowp'; } var precision = parameters.precision !== undefined ? parameters.precision : 'highp'; var maxPrecision = getMaxPrecision( precision ); if ( maxPrecision !== precision ) { console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' ); precision = maxPrecision; } var logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true && !! extensions.get( 'EXT_frag_depth' ); var maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS ); var maxVertexTextures = gl.getParameter( gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS ); var maxTextureSize = gl.getParameter( gl.MAX_TEXTURE_SIZE ); var maxCubemapSize = gl.getParameter( gl.MAX_CUBE_MAP_TEXTURE_SIZE ); var maxAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS ); var maxVertexUniforms = gl.getParameter( gl.MAX_VERTEX_UNIFORM_VECTORS ); var maxVaryings = gl.getParameter( gl.MAX_VARYING_VECTORS ); var maxFragmentUniforms = gl.getParameter( gl.MAX_FRAGMENT_UNIFORM_VECTORS ); var vertexTextures = maxVertexTextures > 0; var floatFragmentTextures = !! extensions.get( 'OES_texture_float' ); var floatVertexTextures = vertexTextures && floatFragmentTextures; return { getMaxAnisotropy: getMaxAnisotropy, getMaxPrecision: getMaxPrecision, precision: precision, logarithmicDepthBuffer: logarithmicDepthBuffer, maxTextures: maxTextures, maxVertexTextures: maxVertexTextures, maxTextureSize: maxTextureSize, maxCubemapSize: maxCubemapSize, maxAttributes: maxAttributes, maxVertexUniforms: maxVertexUniforms, maxVaryings: maxVaryings, maxFragmentUniforms: maxFragmentUniforms, vertexTextures: vertexTextures, floatFragmentTextures: floatFragmentTextures, floatVertexTextures: floatVertexTextures }; } /** * @author mrdoob / http://mrdoob.com/ */ function ArrayCamera( array ) { PerspectiveCamera.call( this ); this.cameras = array || []; } ArrayCamera.prototype = Object.assign( Object.create( PerspectiveCamera.prototype ), { constructor: ArrayCamera, isArrayCamera: true } ); /** * @author mrdoob / http://mrdoob.com/ */ function WebVRManager( renderer ) { var scope = this; var device = null; var frameData = null; if ( 'VRFrameData' in window ) { frameData = new window.VRFrameData(); } var matrixWorldInverse = new Matrix4(); var standingMatrix = new Matrix4(); var standingMatrixInverse = new Matrix4(); var cameraL = new PerspectiveCamera(); cameraL.bounds = new Vector4( 0.0, 0.0, 0.5, 1.0 ); cameraL.layers.enable( 1 ); var cameraR = new PerspectiveCamera(); cameraR.bounds = new Vector4( 0.5, 0.0, 0.5, 1.0 ); cameraR.layers.enable( 2 ); var cameraVR = new ArrayCamera( [ cameraL, cameraR ] ); cameraVR.layers.enable( 1 ); cameraVR.layers.enable( 2 ); // var currentSize, currentPixelRatio; function onVRDisplayPresentChange() { if ( device.isPresenting ) { var eyeParameters = device.getEyeParameters( 'left' ); var renderWidth = eyeParameters.renderWidth; var renderHeight = eyeParameters.renderHeight; currentPixelRatio = renderer.getPixelRatio(); currentSize = renderer.getSize(); renderer.setDrawingBufferSize( renderWidth * 2, renderHeight, 1 ); } else if ( scope.enabled ) { renderer.setDrawingBufferSize( currentSize.width, currentSize.height, currentPixelRatio ); } } window.addEventListener( 'vrdisplaypresentchange', onVRDisplayPresentChange, false ); // this.enabled = false; this.standing = false; this.getDevice = function () { return device; }; this.setDevice = function ( value ) { if ( value !== undefined ) device = value; }; this.getCamera = function ( camera ) { if ( device === null ) return camera; device.depthNear = camera.near; device.depthFar = camera.far; device.getFrameData( frameData ); // var pose = frameData.pose; if ( pose.position !== null ) { camera.position.fromArray( pose.position ); } else { camera.position.set( 0, 0, 0 ); } if ( pose.orientation !== null ) { camera.quaternion.fromArray( pose.orientation ); } camera.updateMatrixWorld(); var stageParameters = device.stageParameters; if ( this.standing && stageParameters ) { standingMatrix.fromArray( stageParameters.sittingToStandingTransform ); standingMatrixInverse.getInverse( standingMatrix ); camera.matrixWorld.multiply( standingMatrix ); camera.matrixWorldInverse.multiply( standingMatrixInverse ); } if ( device.isPresenting === false ) return camera; // cameraVR.matrixWorld.copy( camera.matrixWorld ); cameraVR.matrixWorldInverse.copy( camera.matrixWorldInverse ); cameraL.matrixWorldInverse.fromArray( frameData.leftViewMatrix ); cameraR.matrixWorldInverse.fromArray( frameData.rightViewMatrix ); if ( this.standing && stageParameters ) { cameraL.matrixWorldInverse.multiply( standingMatrixInverse ); cameraR.matrixWorldInverse.multiply( standingMatrixInverse ); } var parent = camera.parent; if ( parent !== null ) { matrixWorldInverse.getInverse( parent.matrixWorld ); cameraL.matrixWorldInverse.multiply( matrixWorldInverse ); cameraR.matrixWorldInverse.multiply( matrixWorldInverse ); } // envMap and Mirror needs camera.matrixWorld cameraL.matrixWorld.getInverse( cameraL.matrixWorldInverse ); cameraR.matrixWorld.getInverse( cameraR.matrixWorldInverse ); cameraL.projectionMatrix.fromArray( frameData.leftProjectionMatrix ); cameraR.projectionMatrix.fromArray( frameData.rightProjectionMatrix ); // HACK @mrdoob // https://github.com/w3c/webvr/issues/203 cameraVR.projectionMatrix.copy( cameraL.projectionMatrix ); // var layers = device.getLayers(); if ( layers.length ) { var layer = layers[ 0 ]; if ( layer.leftBounds !== null && layer.leftBounds.length === 4 ) { cameraL.bounds.fromArray( layer.leftBounds ); } if ( layer.rightBounds !== null && layer.rightBounds.length === 4 ) { cameraR.bounds.fromArray( layer.rightBounds ); } } return cameraVR; }; this.getStandingMatrix = function () { return standingMatrix; }; this.submitFrame = function () { if ( device && device.isPresenting ) device.submitFrame(); }; } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLExtensions( gl ) { var extensions = {}; return { get: function ( name ) { if ( extensions[ name ] !== undefined ) { return extensions[ name ]; } var extension; switch ( name ) { case 'WEBGL_depth_texture': extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' ); break; case 'EXT_texture_filter_anisotropic': extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' ); break; case 'WEBGL_compressed_texture_s3tc': extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' ); break; case 'WEBGL_compressed_texture_pvrtc': extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' ); break; case 'WEBGL_compressed_texture_etc1': extension = gl.getExtension( 'WEBGL_compressed_texture_etc1' ); break; default: extension = gl.getExtension( name ); } if ( extension === null ) { console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' ); } extensions[ name ] = extension; return extension; } }; } /** * @author tschw */ function WebGLClipping() { var scope = this, globalState = null, numGlobalPlanes = 0, localClippingEnabled = false, renderingShadows = false, plane = new Plane(), viewNormalMatrix = new Matrix3(), uniform = { value: null, needsUpdate: false }; this.uniform = uniform; this.numPlanes = 0; this.numIntersection = 0; this.init = function( planes, enableLocalClipping, camera ) { var enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to // run another frame in order to reset the state: numGlobalPlanes !== 0 || localClippingEnabled; localClippingEnabled = enableLocalClipping; globalState = projectPlanes( planes, camera, 0 ); numGlobalPlanes = planes.length; return enabled; }; this.beginShadows = function() { renderingShadows = true; projectPlanes( null ); }; this.endShadows = function() { renderingShadows = false; resetGlobalState(); }; this.setState = function( planes, clipIntersection, clipShadows, camera, cache, fromCache ) { if ( ! localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && ! clipShadows ) { // there's no local clipping if ( renderingShadows ) { // there's no global clipping projectPlanes( null ); } else { resetGlobalState(); } } else { var nGlobal = renderingShadows ? 0 : numGlobalPlanes, lGlobal = nGlobal * 4, dstArray = cache.clippingState || null; uniform.value = dstArray; // ensure unique state dstArray = projectPlanes( planes, camera, lGlobal, fromCache ); for ( var i = 0; i !== lGlobal; ++ i ) { dstArray[ i ] = globalState[ i ]; } cache.clippingState = dstArray; this.numIntersection = clipIntersection ? this.numPlanes : 0; this.numPlanes += nGlobal; } }; function resetGlobalState() { if ( uniform.value !== globalState ) { uniform.value = globalState; uniform.needsUpdate = numGlobalPlanes > 0; } scope.numPlanes = numGlobalPlanes; scope.numIntersection = 0; } function projectPlanes( planes, camera, dstOffset, skipTransform ) { var nPlanes = planes !== null ? planes.length : 0, dstArray = null; if ( nPlanes !== 0 ) { dstArray = uniform.value; if ( skipTransform !== true || dstArray === null ) { var flatSize = dstOffset + nPlanes * 4, viewMatrix = camera.matrixWorldInverse; viewNormalMatrix.getNormalMatrix( viewMatrix ); if ( dstArray === null || dstArray.length < flatSize ) { dstArray = new Float32Array( flatSize ); } for ( var i = 0, i4 = dstOffset; i !== nPlanes; ++ i, i4 += 4 ) { plane.copy( planes[ i ] ). applyMatrix4( viewMatrix, viewNormalMatrix ); plane.normal.toArray( dstArray, i4 ); dstArray[ i4 + 3 ] = plane.constant; } } uniform.value = dstArray; uniform.needsUpdate = true; } scope.numPlanes = nPlanes; return dstArray; } } // import { Sphere } from '../math/Sphere'; /** * @author supereggbert / http://www.paulbrunt.co.uk/ * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ * @author tschw */ function WebGLRenderer( parameters ) { console.log( 'THREE.WebGLRenderer', REVISION ); parameters = parameters || {}; var _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ), _context = parameters.context !== undefined ? parameters.context : null, _alpha = parameters.alpha !== undefined ? parameters.alpha : false, _depth = parameters.depth !== undefined ? parameters.depth : true, _stencil = parameters.stencil !== undefined ? parameters.stencil : true, _antialias = parameters.antialias !== undefined ? parameters.antialias : false, _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true, _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false; var lights = []; var currentRenderList = null; var morphInfluences = new Float32Array( 8 ); var sprites = []; var lensFlares = []; // public properties this.domElement = _canvas; this.context = null; // clearing this.autoClear = true; this.autoClearColor = true; this.autoClearDepth = true; this.autoClearStencil = true; // scene graph this.sortObjects = true; // user-defined clipping this.clippingPlanes = []; this.localClippingEnabled = false; // physically based shading this.gammaFactor = 2.0; // for backwards compatibility this.gammaInput = false; this.gammaOutput = false; // physical lights this.physicallyCorrectLights = false; // tone mapping this.toneMapping = LinearToneMapping; this.toneMappingExposure = 1.0; this.toneMappingWhitePoint = 1.0; // morphs this.maxMorphTargets = 8; this.maxMorphNormals = 4; // internal properties var _this = this, // internal state cache _currentProgram = null, _currentRenderTarget = null, _currentFramebuffer = null, _currentMaterialId = - 1, _currentGeometryProgram = '', _currentCamera = null, _currentArrayCamera = null, _currentScissor = new Vector4(), _currentScissorTest = null, _currentViewport = new Vector4(), // _usedTextureUnits = 0, // _width = _canvas.width, _height = _canvas.height, _pixelRatio = 1, _scissor = new Vector4( 0, 0, _width, _height ), _scissorTest = false, _viewport = new Vector4( 0, 0, _width, _height ), // frustum _frustum = new Frustum(), // clipping _clipping = new WebGLClipping(), _clippingEnabled = false, _localClippingEnabled = false, // camera matrices cache _projScreenMatrix = new Matrix4(), _vector3 = new Vector3(), _matrix4 = new Matrix4(), _matrix42 = new Matrix4(), // light arrays cache _lights = { hash: '', ambient: [ 0, 0, 0 ], directional: [], directionalShadowMap: [], directionalShadowMatrix: [], spot: [], spotShadowMap: [], spotShadowMatrix: [], rectArea: [], point: [], pointShadowMap: [], pointShadowMatrix: [], hemi: [], shadows: [] }, // info _infoMemory = { geometries: 0, textures: 0 }, _infoRender = { frame: 0, calls: 0, vertices: 0, faces: 0, points: 0 }; this.info = { render: _infoRender, memory: _infoMemory, programs: null }; // initialize var _gl; try { var contextAttributes = { alpha: _alpha, depth: _depth, stencil: _stencil, antialias: _antialias, premultipliedAlpha: _premultipliedAlpha, preserveDrawingBuffer: _preserveDrawingBuffer }; _gl = _context || _canvas.getContext( 'webgl', contextAttributes ) || _canvas.getContext( 'experimental-webgl', contextAttributes ); if ( _gl === null ) { if ( _canvas.getContext( 'webgl' ) !== null ) { throw 'Error creating WebGL context with your selected attributes.'; } else { throw 'Error creating WebGL context.'; } } // Some experimental-webgl implementations do not have getShaderPrecisionFormat if ( _gl.getShaderPrecisionFormat === undefined ) { _gl.getShaderPrecisionFormat = function () { return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 }; }; } _canvas.addEventListener( 'webglcontextlost', onContextLost, false ); } catch ( error ) { console.error( 'THREE.WebGLRenderer: ' + error ); } var extensions = new WebGLExtensions( _gl ); extensions.get( 'WEBGL_depth_texture' ); extensions.get( 'OES_texture_float' ); extensions.get( 'OES_texture_float_linear' ); extensions.get( 'OES_texture_half_float' ); extensions.get( 'OES_texture_half_float_linear' ); extensions.get( 'OES_standard_derivatives' ); extensions.get( 'ANGLE_instanced_arrays' ); if ( extensions.get( 'OES_element_index_uint' ) ) { BufferGeometry.MaxIndex = 4294967296; } var capabilities = new WebGLCapabilities( _gl, extensions, parameters ); var state = new WebGLState( _gl, extensions, paramThreeToGL ); var properties = new WebGLProperties(); var textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, paramThreeToGL, _infoMemory ); var attributes = new WebGLAttributes( _gl ); var geometries = new WebGLGeometries( _gl, attributes, _infoMemory ); var objects = new WebGLObjects( _gl, geometries, _infoRender ); var programCache = new WebGLPrograms( this, capabilities ); var lightCache = new WebGLLights(); var renderLists = new WebGLRenderLists(); var background = new WebGLBackground( this, state, objects, _premultipliedAlpha ); var vr = new WebVRManager( this ); this.info.programs = programCache.programs; var bufferRenderer = new WebGLBufferRenderer( _gl, extensions, _infoRender ); var indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, _infoRender ); // function getTargetPixelRatio() { return _currentRenderTarget === null ? _pixelRatio : 1; } function setDefaultGLState() { state.init(); state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ) ); state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ) ); } function resetGLState() { _currentProgram = null; _currentCamera = null; _currentGeometryProgram = ''; _currentMaterialId = - 1; state.reset(); } setDefaultGLState(); this.context = _gl; this.capabilities = capabilities; this.extensions = extensions; this.properties = properties; this.renderLists = renderLists; this.state = state; this.vr = vr; // shadow map var shadowMap = new WebGLShadowMap( this, _lights, objects, capabilities ); this.shadowMap = shadowMap; // Plugins var spritePlugin = new SpritePlugin( this, sprites ); var lensFlarePlugin = new LensFlarePlugin( this, lensFlares ); // API this.getContext = function () { return _gl; }; this.getContextAttributes = function () { return _gl.getContextAttributes(); }; this.forceContextLoss = function () { var extension = extensions.get( 'WEBGL_lose_context' ); if ( extension ) extension.loseContext(); }; this.getMaxAnisotropy = function () { return capabilities.getMaxAnisotropy(); }; this.getPrecision = function () { return capabilities.precision; }; this.getPixelRatio = function () { return _pixelRatio; }; this.setPixelRatio = function ( value ) { if ( value === undefined ) return; _pixelRatio = value; this.setSize( _width, _height, false ); }; this.getSize = function () { return { width: _width, height: _height }; }; this.setSize = function ( width, height, updateStyle ) { var device = vr.getDevice(); if ( device && device.isPresenting ) { console.warn( 'THREE.WebGLRenderer: Can\'t change size while VR device is presenting.' ); return; } _width = width; _height = height; _canvas.width = width * _pixelRatio; _canvas.height = height * _pixelRatio; if ( updateStyle !== false ) { _canvas.style.width = width + 'px'; _canvas.style.height = height + 'px'; } this.setViewport( 0, 0, width, height ); }; this.getDrawingBufferSize = function () { return { width: _width * _pixelRatio, height: _height * _pixelRatio }; }; this.setDrawingBufferSize = function ( width, height, pixelRatio ) { _width = width; _height = height; _pixelRatio = pixelRatio; _canvas.width = width * pixelRatio; _canvas.height = height * pixelRatio; this.setViewport( 0, 0, width, height ); }; this.setViewport = function ( x, y, width, height ) { _viewport.set( x, _height - y - height, width, height ); state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ) ); }; this.setScissor = function ( x, y, width, height ) { _scissor.set( x, _height - y - height, width, height ); state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ) ); }; this.setScissorTest = function ( boolean ) { state.setScissorTest( _scissorTest = boolean ); }; // Clearing this.getClearColor = background.getClearColor; this.setClearColor = background.setClearColor; this.getClearAlpha = background.getClearAlpha; this.setClearAlpha = background.setClearAlpha; this.clear = function ( color, depth, stencil ) { var bits = 0; if ( color === undefined || color ) bits |= _gl.COLOR_BUFFER_BIT; if ( depth === undefined || depth ) bits |= _gl.DEPTH_BUFFER_BIT; if ( stencil === undefined || stencil ) bits |= _gl.STENCIL_BUFFER_BIT; _gl.clear( bits ); }; this.clearColor = function () { this.clear( true, false, false ); }; this.clearDepth = function () { this.clear( false, true, false ); }; this.clearStencil = function () { this.clear( false, false, true ); }; this.clearTarget = function ( renderTarget, color, depth, stencil ) { this.setRenderTarget( renderTarget ); this.clear( color, depth, stencil ); }; // Reset this.resetGLState = resetGLState; this.dispose = function () { _canvas.removeEventListener( 'webglcontextlost', onContextLost, false ); renderLists.dispose(); }; // Events function onContextLost( event ) { event.preventDefault(); resetGLState(); setDefaultGLState(); properties.clear(); objects.clear(); } function onMaterialDispose( event ) { var material = event.target; material.removeEventListener( 'dispose', onMaterialDispose ); deallocateMaterial( material ); } // Buffer deallocation function deallocateMaterial( material ) { releaseMaterialProgramReference( material ); properties.remove( material ); } function releaseMaterialProgramReference( material ) { var programInfo = properties.get( material ).program; material.program = undefined; if ( programInfo !== undefined ) { programCache.releaseProgram( programInfo ); } } // Buffer rendering function renderObjectImmediate( object, program, material ) { object.render( function ( object ) { _this.renderBufferImmediate( object, program, material ); } ); } this.renderBufferImmediate = function ( object, program, material ) { state.initAttributes(); var buffers = properties.get( object ); if ( object.hasPositions && ! buffers.position ) buffers.position = _gl.createBuffer(); if ( object.hasNormals && ! buffers.normal ) buffers.normal = _gl.createBuffer(); if ( object.hasUvs && ! buffers.uv ) buffers.uv = _gl.createBuffer(); if ( object.hasColors && ! buffers.color ) buffers.color = _gl.createBuffer(); var programAttributes = program.getAttributes(); if ( object.hasPositions ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.position ); _gl.bufferData( _gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW ); state.enableAttribute( programAttributes.position ); _gl.vertexAttribPointer( programAttributes.position, 3, _gl.FLOAT, false, 0, 0 ); } if ( object.hasNormals ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.normal ); if ( ! material.isMeshPhongMaterial && ! material.isMeshStandardMaterial && ! material.isMeshNormalMaterial && material.shading === FlatShading ) { for ( var i = 0, l = object.count * 3; i < l; i += 9 ) { var array = object.normalArray; var nx = ( array[ i + 0 ] + array[ i + 3 ] + array[ i + 6 ] ) / 3; var ny = ( array[ i + 1 ] + array[ i + 4 ] + array[ i + 7 ] ) / 3; var nz = ( array[ i + 2 ] + array[ i + 5 ] + array[ i + 8 ] ) / 3; array[ i + 0 ] = nx; array[ i + 1 ] = ny; array[ i + 2 ] = nz; array[ i + 3 ] = nx; array[ i + 4 ] = ny; array[ i + 5 ] = nz; array[ i + 6 ] = nx; array[ i + 7 ] = ny; array[ i + 8 ] = nz; } } _gl.bufferData( _gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW ); state.enableAttribute( programAttributes.normal ); _gl.vertexAttribPointer( programAttributes.normal, 3, _gl.FLOAT, false, 0, 0 ); } if ( object.hasUvs && material.map ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.uv ); _gl.bufferData( _gl.ARRAY_BUFFER, object.uvArray, _gl.DYNAMIC_DRAW ); state.enableAttribute( programAttributes.uv ); _gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 0, 0 ); } if ( object.hasColors && material.vertexColors !== NoColors ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.color ); _gl.bufferData( _gl.ARRAY_BUFFER, object.colorArray, _gl.DYNAMIC_DRAW ); state.enableAttribute( programAttributes.color ); _gl.vertexAttribPointer( programAttributes.color, 3, _gl.FLOAT, false, 0, 0 ); } state.disableUnusedAttributes(); _gl.drawArrays( _gl.TRIANGLES, 0, object.count ); object.count = 0; }; function absNumericalSort( a, b ) { return Math.abs( b[ 0 ] ) - Math.abs( a[ 0 ] ); } this.renderBufferDirect = function ( camera, fog, geometry, material, object, group ) { state.setMaterial( material ); var program = setProgram( camera, fog, material, object ); var geometryProgram = geometry.id + '_' + program.id + '_' + ( material.wireframe === true ); var updateBuffers = false; if ( geometryProgram !== _currentGeometryProgram ) { _currentGeometryProgram = geometryProgram; updateBuffers = true; } // morph targets var morphTargetInfluences = object.morphTargetInfluences; if ( morphTargetInfluences !== undefined ) { // TODO Remove allocations var activeInfluences = []; for ( var i = 0, l = morphTargetInfluences.length; i < l; i ++ ) { var influence = morphTargetInfluences[ i ]; activeInfluences.push( [ influence, i ] ); } activeInfluences.sort( absNumericalSort ); if ( activeInfluences.length > 8 ) { activeInfluences.length = 8; } var morphAttributes = geometry.morphAttributes; for ( var i = 0, l = activeInfluences.length; i < l; i ++ ) { var influence = activeInfluences[ i ]; morphInfluences[ i ] = influence[ 0 ]; if ( influence[ 0 ] !== 0 ) { var index = influence[ 1 ]; if ( material.morphTargets === true && morphAttributes.position ) geometry.addAttribute( 'morphTarget' + i, morphAttributes.position[ index ] ); if ( material.morphNormals === true && morphAttributes.normal ) geometry.addAttribute( 'morphNormal' + i, morphAttributes.normal[ index ] ); } else { if ( material.morphTargets === true ) geometry.removeAttribute( 'morphTarget' + i ); if ( material.morphNormals === true ) geometry.removeAttribute( 'morphNormal' + i ); } } for ( var i = activeInfluences.length, il = morphInfluences.length; i < il; i ++ ) { morphInfluences[ i ] = 0.0; } program.getUniforms().setValue( _gl, 'morphTargetInfluences', morphInfluences ); updateBuffers = true; } // var index = geometry.index; var position = geometry.attributes.position; var rangeFactor = 1; if ( material.wireframe === true ) { index = geometries.getWireframeAttribute( geometry ); rangeFactor = 2; } var attribute; var renderer = bufferRenderer; if ( index !== null ) { attribute = attributes.get( index ); renderer = indexedBufferRenderer; renderer.setIndex( attribute ); } if ( updateBuffers ) { setupVertexAttributes( material, program, geometry ); if ( index !== null ) { _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, attribute.buffer ); } } // var dataCount = 0; if ( index !== null ) { dataCount = index.count; } else if ( position !== undefined ) { dataCount = position.count; } var rangeStart = geometry.drawRange.start * rangeFactor; var rangeCount = geometry.drawRange.count * rangeFactor; var groupStart = group !== null ? group.start * rangeFactor : 0; var groupCount = group !== null ? group.count * rangeFactor : Infinity; var drawStart = Math.max( rangeStart, groupStart ); var drawEnd = Math.min( dataCount, rangeStart + rangeCount, groupStart + groupCount ) - 1; var drawCount = Math.max( 0, drawEnd - drawStart + 1 ); if ( drawCount === 0 ) return; // if ( object.isMesh ) { if ( material.wireframe === true ) { state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() ); renderer.setMode( _gl.LINES ); } else { switch ( object.drawMode ) { case TrianglesDrawMode: renderer.setMode( _gl.TRIANGLES ); break; case TriangleStripDrawMode: renderer.setMode( _gl.TRIANGLE_STRIP ); break; case TriangleFanDrawMode: renderer.setMode( _gl.TRIANGLE_FAN ); break; } } } else if ( object.isLine ) { var lineWidth = material.linewidth; if ( lineWidth === undefined ) lineWidth = 1; // Not using Line*Material state.setLineWidth( lineWidth * getTargetPixelRatio() ); if ( object.isLineSegments ) { renderer.setMode( _gl.LINES ); } else if ( object.isLineLoop ) { renderer.setMode( _gl.LINE_LOOP ); } else { renderer.setMode( _gl.LINE_STRIP ); } } else if ( object.isPoints ) { renderer.setMode( _gl.POINTS ); } if ( geometry && geometry.isInstancedBufferGeometry ) { if ( geometry.maxInstancedCount > 0 ) { renderer.renderInstances( geometry, drawStart, drawCount ); } } else { renderer.render( drawStart, drawCount ); } }; function setupVertexAttributes( material, program, geometry, startIndex ) { if ( geometry && geometry.isInstancedBufferGeometry ) { if ( extensions.get( 'ANGLE_instanced_arrays' ) === null ) { console.error( 'THREE.WebGLRenderer.setupVertexAttributes: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } } if ( startIndex === undefined ) startIndex = 0; state.initAttributes(); var geometryAttributes = geometry.attributes; var programAttributes = program.getAttributes(); var materialDefaultAttributeValues = material.defaultAttributeValues; for ( var name in programAttributes ) { var programAttribute = programAttributes[ name ]; if ( programAttribute >= 0 ) { var geometryAttribute = geometryAttributes[ name ]; if ( geometryAttribute !== undefined ) { var normalized = geometryAttribute.normalized; var size = geometryAttribute.itemSize; var attribute = attributes.get( geometryAttribute ); var buffer = attribute.buffer; var type = attribute.type; var bytesPerElement = attribute.bytesPerElement; if ( geometryAttribute.isInterleavedBufferAttribute ) { var data = geometryAttribute.data; var stride = data.stride; var offset = geometryAttribute.offset; if ( data && data.isInstancedInterleavedBuffer ) { state.enableAttributeAndDivisor( programAttribute, data.meshPerAttribute ); if ( geometry.maxInstancedCount === undefined ) { geometry.maxInstancedCount = data.meshPerAttribute * data.count; } } else { state.enableAttribute( programAttribute ); } _gl.bindBuffer( _gl.ARRAY_BUFFER, buffer ); _gl.vertexAttribPointer( programAttribute, size, type, normalized, stride * bytesPerElement, ( startIndex * stride + offset ) * bytesPerElement ); } else { if ( geometryAttribute.isInstancedBufferAttribute ) { state.enableAttributeAndDivisor( programAttribute, geometryAttribute.meshPerAttribute ); if ( geometry.maxInstancedCount === undefined ) { geometry.maxInstancedCount = geometryAttribute.meshPerAttribute * geometryAttribute.count; } } else { state.enableAttribute( programAttribute ); } _gl.bindBuffer( _gl.ARRAY_BUFFER, buffer ); _gl.vertexAttribPointer( programAttribute, size, type, normalized, 0, startIndex * size * bytesPerElement ); } } else if ( materialDefaultAttributeValues !== undefined ) { var value = materialDefaultAttributeValues[ name ]; if ( value !== undefined ) { switch ( value.length ) { case 2: _gl.vertexAttrib2fv( programAttribute, value ); break; case 3: _gl.vertexAttrib3fv( programAttribute, value ); break; case 4: _gl.vertexAttrib4fv( programAttribute, value ); break; default: _gl.vertexAttrib1fv( programAttribute, value ); } } } } } state.disableUnusedAttributes(); } // Compile this.compile = function ( scene, camera ) { lights = []; scene.traverse( function ( object ) { if ( object.isLight ) { lights.push( object ); } } ); setupLights( lights, camera ); scene.traverse( function ( object ) { if ( object.material ) { if ( Array.isArray( object.material ) ) { for ( var i = 0; i < object.material.length; i ++ ) { initMaterial( object.material[ i ], scene.fog, object ); } } else { initMaterial( object.material, scene.fog, object ); } } } ); }; // Rendering this.animate = function ( callback ) { function onFrame() { callback(); ( vr.getDevice() || window ).requestAnimationFrame( onFrame ); } ( vr.getDevice() || window ).requestAnimationFrame( onFrame ); }; this.render = function ( scene, camera, renderTarget, forceClear ) { if ( ! ( camera && camera.isCamera ) ) { console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' ); return; } // reset caching for this frame _currentGeometryProgram = ''; _currentMaterialId = - 1; _currentCamera = null; // update scene graph if ( scene.autoUpdate === true ) scene.updateMatrixWorld(); // update camera matrices and frustum if ( camera.parent === null ) camera.updateMatrixWorld(); if ( vr.enabled ) { camera = vr.getCamera( camera ); } _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix ); lights.length = 0; sprites.length = 0; lensFlares.length = 0; _localClippingEnabled = this.localClippingEnabled; _clippingEnabled = _clipping.init( this.clippingPlanes, _localClippingEnabled, camera ); currentRenderList = renderLists.get( scene, camera ); currentRenderList.init(); projectObject( scene, camera, _this.sortObjects ); currentRenderList.finish(); if ( _this.sortObjects === true ) { currentRenderList.sort(); } // if ( _clippingEnabled ) _clipping.beginShadows(); setupShadows( lights ); shadowMap.render( scene, camera ); setupLights( lights, camera ); if ( _clippingEnabled ) _clipping.endShadows(); // _infoRender.frame ++; _infoRender.calls = 0; _infoRender.vertices = 0; _infoRender.faces = 0; _infoRender.points = 0; if ( renderTarget === undefined ) { renderTarget = null; } this.setRenderTarget( renderTarget ); // background.render( scene, camera, forceClear ); // render scene var opaqueObjects = currentRenderList.opaque; var transparentObjects = currentRenderList.transparent; if ( scene.overrideMaterial ) { var overrideMaterial = scene.overrideMaterial; if ( opaqueObjects.length ) renderObjects( opaqueObjects, scene, camera, overrideMaterial ); if ( transparentObjects.length ) renderObjects( transparentObjects, scene, camera, overrideMaterial ); } else { // opaque pass (front-to-back order) if ( opaqueObjects.length ) renderObjects( opaqueObjects, scene, camera ); // transparent pass (back-to-front order) if ( transparentObjects.length ) renderObjects( transparentObjects, scene, camera ); } // custom render plugins (post pass) spritePlugin.render( scene, camera ); lensFlarePlugin.render( scene, camera, _currentViewport ); // Generate mipmap if we're using any kind of mipmap filtering if ( renderTarget ) { textures.updateRenderTargetMipmap( renderTarget ); } // Ensure depth buffer writing is enabled so it can be cleared on next render state.buffers.depth.setTest( true ); state.buffers.depth.setMask( true ); state.buffers.color.setMask( true ); if ( camera.isArrayCamera ) { _this.setScissorTest( false ); } if ( vr.enabled ) { vr.submitFrame(); } // _gl.finish(); }; /* // TODO Duplicated code (Frustum) var _sphere = new Sphere(); function isObjectViewable( object ) { var geometry = object.geometry; if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _sphere.copy( geometry.boundingSphere ). applyMatrix4( object.matrixWorld ); return isSphereViewable( _sphere ); } function isSpriteViewable( sprite ) { _sphere.center.set( 0, 0, 0 ); _sphere.radius = 0.7071067811865476; _sphere.applyMatrix4( sprite.matrixWorld ); return isSphereViewable( _sphere ); } function isSphereViewable( sphere ) { if ( ! _frustum.intersectsSphere( sphere ) ) return false; var numPlanes = _clipping.numPlanes; if ( numPlanes === 0 ) return true; var planes = _this.clippingPlanes, center = sphere.center, negRad = - sphere.radius, i = 0; do { // out when deeper than radius in the negative halfspace if ( planes[ i ].distanceToPoint( center ) < negRad ) return false; } while ( ++ i !== numPlanes ); return true; } */ function projectObject( object, camera, sortObjects ) { if ( ! object.visible ) return; var visible = object.layers.test( camera.layers ); if ( visible ) { if ( object.isLight ) { lights.push( object ); } else if ( object.isSprite ) { if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) { sprites.push( object ); } } else if ( object.isLensFlare ) { lensFlares.push( object ); } else if ( object.isImmediateRenderObject ) { if ( sortObjects ) { _vector3.setFromMatrixPosition( object.matrixWorld ) .applyMatrix4( _projScreenMatrix ); } currentRenderList.push( object, null, object.material, _vector3.z, null ); } else if ( object.isMesh || object.isLine || object.isPoints ) { if ( object.isSkinnedMesh ) { object.skeleton.update(); } if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) { if ( sortObjects ) { _vector3.setFromMatrixPosition( object.matrixWorld ) .applyMatrix4( _projScreenMatrix ); } var geometry = objects.update( object ); var material = object.material; if ( Array.isArray( material ) ) { var groups = geometry.groups; for ( var i = 0, l = groups.length; i < l; i ++ ) { var group = groups[ i ]; var groupMaterial = material[ group.materialIndex ]; if ( groupMaterial && groupMaterial.visible ) { currentRenderList.push( object, geometry, groupMaterial, _vector3.z, group ); } } } else if ( material.visible ) { currentRenderList.push( object, geometry, material, _vector3.z, null ); } } } } var children = object.children; for ( var i = 0, l = children.length; i < l; i ++ ) { projectObject( children[ i ], camera, sortObjects ); } } function renderObjects( renderList, scene, camera, overrideMaterial ) { for ( var i = 0, l = renderList.length; i < l; i ++ ) { var renderItem = renderList[ i ]; var object = renderItem.object; var geometry = renderItem.geometry; var material = overrideMaterial === undefined ? renderItem.material : overrideMaterial; var group = renderItem.group; if ( camera.isArrayCamera ) { _currentArrayCamera = camera; var cameras = camera.cameras; for ( var j = 0, jl = cameras.length; j < jl; j ++ ) { var camera2 = cameras[ j ]; if ( object.layers.test( camera2.layers ) ) { var bounds = camera2.bounds; var x = bounds.x * _width; var y = bounds.y * _height; var width = bounds.z * _width; var height = bounds.w * _height; _this.setViewport( x, y, width, height ); _this.setScissor( x, y, width, height ); _this.setScissorTest( true ); renderObject( object, scene, camera2, geometry, material, group ); } } } else { _currentArrayCamera = null; renderObject( object, scene, camera, geometry, material, group ); } } } function renderObject( object, scene, camera, geometry, material, group ) { object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); object.normalMatrix.getNormalMatrix( object.modelViewMatrix ); object.onBeforeRender( _this, scene, camera, geometry, material, group ); if ( object.isImmediateRenderObject ) { state.setMaterial( material ); var program = setProgram( camera, scene.fog, material, object ); _currentGeometryProgram = ''; renderObjectImmediate( object, program, material ); } else { _this.renderBufferDirect( camera, scene.fog, geometry, material, object, group ); } object.onAfterRender( _this, scene, camera, geometry, material, group ); } function initMaterial( material, fog, object ) { var materialProperties = properties.get( material ); var parameters = programCache.getParameters( material, _lights, fog, _clipping.numPlanes, _clipping.numIntersection, object ); var code = programCache.getProgramCode( material, parameters ); var program = materialProperties.program; var programChange = true; if ( program === undefined ) { // new material material.addEventListener( 'dispose', onMaterialDispose ); } else if ( program.code !== code ) { // changed glsl or parameters releaseMaterialProgramReference( material ); } else if ( parameters.shaderID !== undefined ) { // same glsl and uniform list return; } else { // only rebuild uniform list programChange = false; } if ( programChange ) { if ( parameters.shaderID ) { var shader = ShaderLib[ parameters.shaderID ]; materialProperties.shader = { name: material.type, uniforms: UniformsUtils.clone( shader.uniforms ), vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader }; } else { materialProperties.shader = { name: material.type, uniforms: material.uniforms, vertexShader: material.vertexShader, fragmentShader: material.fragmentShader }; } material.onBeforeCompile( materialProperties.shader ); program = programCache.acquireProgram( material, materialProperties.shader, parameters, code ); materialProperties.program = program; material.program = program; } var programAttributes = program.getAttributes(); if ( material.morphTargets ) { material.numSupportedMorphTargets = 0; for ( var i = 0; i < _this.maxMorphTargets; i ++ ) { if ( programAttributes[ 'morphTarget' + i ] >= 0 ) { material.numSupportedMorphTargets ++; } } } if ( material.morphNormals ) { material.numSupportedMorphNormals = 0; for ( var i = 0; i < _this.maxMorphNormals; i ++ ) { if ( programAttributes[ 'morphNormal' + i ] >= 0 ) { material.numSupportedMorphNormals ++; } } } var uniforms = materialProperties.shader.uniforms; if ( ! material.isShaderMaterial && ! material.isRawShaderMaterial || material.clipping === true ) { materialProperties.numClippingPlanes = _clipping.numPlanes; materialProperties.numIntersection = _clipping.numIntersection; uniforms.clippingPlanes = _clipping.uniform; } materialProperties.fog = fog; // store the light setup it was created for materialProperties.lightsHash = _lights.hash; if ( material.lights ) { // wire up the material to this renderer's lighting state uniforms.ambientLightColor.value = _lights.ambient; uniforms.directionalLights.value = _lights.directional; uniforms.spotLights.value = _lights.spot; uniforms.rectAreaLights.value = _lights.rectArea; uniforms.pointLights.value = _lights.point; uniforms.hemisphereLights.value = _lights.hemi; uniforms.directionalShadowMap.value = _lights.directionalShadowMap; uniforms.directionalShadowMatrix.value = _lights.directionalShadowMatrix; uniforms.spotShadowMap.value = _lights.spotShadowMap; uniforms.spotShadowMatrix.value = _lights.spotShadowMatrix; uniforms.pointShadowMap.value = _lights.pointShadowMap; uniforms.pointShadowMatrix.value = _lights.pointShadowMatrix; // TODO (abelnation): add area lights shadow info to uniforms } var progUniforms = materialProperties.program.getUniforms(), uniformsList = WebGLUniforms.seqWithValue( progUniforms.seq, uniforms ); materialProperties.uniformsList = uniformsList; } function setProgram( camera, fog, material, object ) { _usedTextureUnits = 0; var materialProperties = properties.get( material ); if ( _clippingEnabled ) { if ( _localClippingEnabled || camera !== _currentCamera ) { var useCache = camera === _currentCamera && material.id === _currentMaterialId; // we might want to call this function with some ClippingGroup // object instead of the material, once it becomes feasible // (#8465, #8379) _clipping.setState( material.clippingPlanes, material.clipIntersection, material.clipShadows, camera, materialProperties, useCache ); } } if ( material.needsUpdate === false ) { if ( materialProperties.program === undefined ) { material.needsUpdate = true; } else if ( material.fog && materialProperties.fog !== fog ) { material.needsUpdate = true; } else if ( material.lights && materialProperties.lightsHash !== _lights.hash ) { material.needsUpdate = true; } else if ( materialProperties.numClippingPlanes !== undefined && ( materialProperties.numClippingPlanes !== _clipping.numPlanes || materialProperties.numIntersection !== _clipping.numIntersection ) ) { material.needsUpdate = true; } } if ( material.needsUpdate ) { initMaterial( material, fog, object ); material.needsUpdate = false; } var refreshProgram = false; var refreshMaterial = false; var refreshLights = false; var program = materialProperties.program, p_uniforms = program.getUniforms(), m_uniforms = materialProperties.shader.uniforms; if ( program.id !== _currentProgram ) { _gl.useProgram( program.program ); _currentProgram = program.id; refreshProgram = true; refreshMaterial = true; refreshLights = true; } if ( material.id !== _currentMaterialId ) { _currentMaterialId = material.id; refreshMaterial = true; } if ( refreshProgram || camera !== _currentCamera ) { p_uniforms.setValue( _gl, 'projectionMatrix', camera.projectionMatrix ); if ( capabilities.logarithmicDepthBuffer ) { p_uniforms.setValue( _gl, 'logDepthBufFC', 2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) ); } // Avoid unneeded uniform updates per ArrayCamera's sub-camera if ( _currentCamera !== ( _currentArrayCamera || camera ) ) { _currentCamera = ( _currentArrayCamera || camera ); // lighting uniforms depend on the camera so enforce an update // now, in case this material supports lights - or later, when // the next material that does gets activated: refreshMaterial = true; // set to true on material change refreshLights = true; // remains set until update done } // load material specific uniforms // (shader material also gets them for the sake of genericity) if ( material.isShaderMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.envMap ) { var uCamPos = p_uniforms.map.cameraPosition; if ( uCamPos !== undefined ) { uCamPos.setValue( _gl, _vector3.setFromMatrixPosition( camera.matrixWorld ) ); } } if ( material.isMeshPhongMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial || material.skinning ) { p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse ); } } // skinning uniforms must be set even if material didn't change // auto-setting of texture unit for bone texture must go before other textures // not sure why, but otherwise weird things happen if ( material.skinning ) { p_uniforms.setOptional( _gl, object, 'bindMatrix' ); p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' ); var skeleton = object.skeleton; if ( skeleton ) { var bones = skeleton.bones; if ( capabilities.floatVertexTextures ) { if ( skeleton.boneTexture === undefined ) { // layout (1 matrix = 4 pixels) // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8) // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16) // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32) // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64) var size = Math.sqrt( bones.length * 4 ); // 4 pixels needed for 1 matrix size = _Math.nextPowerOfTwo( Math.ceil( size ) ); size = Math.max( size, 4 ); var boneMatrices = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel boneMatrices.set( skeleton.boneMatrices ); // copy current values var boneTexture = new DataTexture( boneMatrices, size, size, RGBAFormat, FloatType ); skeleton.boneMatrices = boneMatrices; skeleton.boneTexture = boneTexture; skeleton.boneTextureSize = size; } p_uniforms.setValue( _gl, 'boneTexture', skeleton.boneTexture ); p_uniforms.setValue( _gl, 'boneTextureSize', skeleton.boneTextureSize ); } else { p_uniforms.setOptional( _gl, skeleton, 'boneMatrices' ); } } } if ( refreshMaterial ) { p_uniforms.setValue( _gl, 'toneMappingExposure', _this.toneMappingExposure ); p_uniforms.setValue( _gl, 'toneMappingWhitePoint', _this.toneMappingWhitePoint ); if ( material.lights ) { // the current material requires lighting info // note: all lighting uniforms are always set correctly // they simply reference the renderer's state for their // values // // use the current material's .needsUpdate flags to set // the GL state when required markUniformsLightsNeedsUpdate( m_uniforms, refreshLights ); } // refresh uniforms common to several materials if ( fog && material.fog ) { refreshUniformsFog( m_uniforms, fog ); } if ( material.isMeshBasicMaterial || material.isMeshLambertMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isMeshNormalMaterial || material.isMeshDepthMaterial ) { refreshUniformsCommon( m_uniforms, material ); } // refresh single material specific uniforms if ( material.isLineBasicMaterial ) { refreshUniformsLine( m_uniforms, material ); } else if ( material.isLineDashedMaterial ) { refreshUniformsLine( m_uniforms, material ); refreshUniformsDash( m_uniforms, material ); } else if ( material.isPointsMaterial ) { refreshUniformsPoints( m_uniforms, material ); } else if ( material.isMeshLambertMaterial ) { refreshUniformsLambert( m_uniforms, material ); } else if ( material.isMeshToonMaterial ) { refreshUniformsToon( m_uniforms, material ); } else if ( material.isMeshPhongMaterial ) { refreshUniformsPhong( m_uniforms, material ); } else if ( material.isMeshPhysicalMaterial ) { refreshUniformsPhysical( m_uniforms, material ); } else if ( material.isMeshStandardMaterial ) { refreshUniformsStandard( m_uniforms, material ); } else if ( material.isMeshDepthMaterial ) { if ( material.displacementMap ) { m_uniforms.displacementMap.value = material.displacementMap; m_uniforms.displacementScale.value = material.displacementScale; m_uniforms.displacementBias.value = material.displacementBias; } } else if ( material.isMeshNormalMaterial ) { refreshUniformsNormal( m_uniforms, material ); } // RectAreaLight Texture // TODO (mrdoob): Find a nicer implementation if ( m_uniforms.ltcMat !== undefined ) m_uniforms.ltcMat.value = UniformsLib.LTC_MAT_TEXTURE; if ( m_uniforms.ltcMag !== undefined ) m_uniforms.ltcMag.value = UniformsLib.LTC_MAG_TEXTURE; WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, _this ); } // common matrices p_uniforms.setValue( _gl, 'modelViewMatrix', object.modelViewMatrix ); p_uniforms.setValue( _gl, 'normalMatrix', object.normalMatrix ); p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld ); return program; } // Uniforms (refresh uniforms objects) function refreshUniformsCommon( uniforms, material ) { uniforms.opacity.value = material.opacity; uniforms.diffuse.value = material.color; if ( material.emissive ) { uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity ); } uniforms.map.value = material.map; uniforms.specularMap.value = material.specularMap; uniforms.alphaMap.value = material.alphaMap; if ( material.lightMap ) { uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; } if ( material.aoMap ) { uniforms.aoMap.value = material.aoMap; uniforms.aoMapIntensity.value = material.aoMapIntensity; } // uv repeat and offset setting priorities // 1. color map // 2. specular map // 3. normal map // 4. bump map // 5. alpha map // 6. emissive map var uvScaleMap; if ( material.map ) { uvScaleMap = material.map; } else if ( material.specularMap ) { uvScaleMap = material.specularMap; } else if ( material.displacementMap ) { uvScaleMap = material.displacementMap; } else if ( material.normalMap ) { uvScaleMap = material.normalMap; } else if ( material.bumpMap ) { uvScaleMap = material.bumpMap; } else if ( material.roughnessMap ) { uvScaleMap = material.roughnessMap; } else if ( material.metalnessMap ) { uvScaleMap = material.metalnessMap; } else if ( material.alphaMap ) { uvScaleMap = material.alphaMap; } else if ( material.emissiveMap ) { uvScaleMap = material.emissiveMap; } if ( uvScaleMap !== undefined ) { // backwards compatibility if ( uvScaleMap.isWebGLRenderTarget ) { uvScaleMap = uvScaleMap.texture; } var offset = uvScaleMap.offset; var repeat = uvScaleMap.repeat; uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y ); } uniforms.envMap.value = material.envMap; // don't flip CubeTexture envMaps, flip everything else: // WebGLRenderTargetCube will be flipped for backwards compatibility // WebGLRenderTargetCube.texture will be flipped because it's a Texture and NOT a CubeTexture // this check must be handled differently, or removed entirely, if WebGLRenderTargetCube uses a CubeTexture in the future uniforms.flipEnvMap.value = ( ! ( material.envMap && material.envMap.isCubeTexture ) ) ? 1 : - 1; uniforms.reflectivity.value = material.reflectivity; uniforms.refractionRatio.value = material.refractionRatio; } function refreshUniformsLine( uniforms, material ) { uniforms.diffuse.value = material.color; uniforms.opacity.value = material.opacity; } function refreshUniformsDash( uniforms, material ) { uniforms.dashSize.value = material.dashSize; uniforms.totalSize.value = material.dashSize + material.gapSize; uniforms.scale.value = material.scale; } function refreshUniformsPoints( uniforms, material ) { uniforms.diffuse.value = material.color; uniforms.opacity.value = material.opacity; uniforms.size.value = material.size * _pixelRatio; uniforms.scale.value = _height * 0.5; uniforms.map.value = material.map; if ( material.map !== null ) { var offset = material.map.offset; var repeat = material.map.repeat; uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y ); } } function refreshUniformsFog( uniforms, fog ) { uniforms.fogColor.value = fog.color; if ( fog.isFog ) { uniforms.fogNear.value = fog.near; uniforms.fogFar.value = fog.far; } else if ( fog.isFogExp2 ) { uniforms.fogDensity.value = fog.density; } } function refreshUniformsLambert( uniforms, material ) { if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } } function refreshUniformsPhong( uniforms, material ) { uniforms.specular.value = material.specular; uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 ) if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } function refreshUniformsToon( uniforms, material ) { refreshUniformsPhong( uniforms, material ); if ( material.gradientMap ) { uniforms.gradientMap.value = material.gradientMap; } } function refreshUniformsStandard( uniforms, material ) { uniforms.roughness.value = material.roughness; uniforms.metalness.value = material.metalness; if ( material.roughnessMap ) { uniforms.roughnessMap.value = material.roughnessMap; } if ( material.metalnessMap ) { uniforms.metalnessMap.value = material.metalnessMap; } if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } if ( material.envMap ) { //uniforms.envMap.value = material.envMap; // part of uniforms common uniforms.envMapIntensity.value = material.envMapIntensity; } } function refreshUniformsPhysical( uniforms, material ) { uniforms.clearCoat.value = material.clearCoat; uniforms.clearCoatRoughness.value = material.clearCoatRoughness; refreshUniformsStandard( uniforms, material ); } function refreshUniformsNormal( uniforms, material ) { if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } // If uniforms are marked as clean, they don't need to be loaded to the GPU. function markUniformsLightsNeedsUpdate( uniforms, value ) { uniforms.ambientLightColor.needsUpdate = value; uniforms.directionalLights.needsUpdate = value; uniforms.pointLights.needsUpdate = value; uniforms.spotLights.needsUpdate = value; uniforms.rectAreaLights.needsUpdate = value; uniforms.hemisphereLights.needsUpdate = value; } // Lighting function setupShadows( lights ) { var lightShadowsLength = 0; for ( var i = 0, l = lights.length; i < l; i ++ ) { var light = lights[ i ]; if ( light.castShadow ) { _lights.shadows[ lightShadowsLength ] = light; lightShadowsLength ++; } } _lights.shadows.length = lightShadowsLength; } function setupLights( lights, camera ) { var l, ll, light, shadow, r = 0, g = 0, b = 0, color, intensity, distance, shadowMap, viewMatrix = camera.matrixWorldInverse, directionalLength = 0, pointLength = 0, spotLength = 0, rectAreaLength = 0, hemiLength = 0; for ( l = 0, ll = lights.length; l < ll; l ++ ) { light = lights[ l ]; color = light.color; intensity = light.intensity; distance = light.distance; shadowMap = ( light.shadow && light.shadow.map ) ? light.shadow.map.texture : null; if ( light.isAmbientLight ) { r += color.r * intensity; g += color.g * intensity; b += color.b * intensity; } else if ( light.isDirectionalLight ) { var uniforms = lightCache.get( light ); uniforms.color.copy( light.color ).multiplyScalar( light.intensity ); uniforms.direction.setFromMatrixPosition( light.matrixWorld ); _vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( _vector3 ); uniforms.direction.transformDirection( viewMatrix ); uniforms.shadow = light.castShadow; if ( light.castShadow ) { shadow = light.shadow; uniforms.shadowBias = shadow.bias; uniforms.shadowRadius = shadow.radius; uniforms.shadowMapSize = shadow.mapSize; } _lights.directionalShadowMap[ directionalLength ] = shadowMap; _lights.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix; _lights.directional[ directionalLength ] = uniforms; directionalLength ++; } else if ( light.isSpotLight ) { var uniforms = lightCache.get( light ); uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); uniforms.color.copy( color ).multiplyScalar( intensity ); uniforms.distance = distance; uniforms.direction.setFromMatrixPosition( light.matrixWorld ); _vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( _vector3 ); uniforms.direction.transformDirection( viewMatrix ); uniforms.coneCos = Math.cos( light.angle ); uniforms.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) ); uniforms.decay = ( light.distance === 0 ) ? 0.0 : light.decay; uniforms.shadow = light.castShadow; if ( light.castShadow ) { shadow = light.shadow; uniforms.shadowBias = shadow.bias; uniforms.shadowRadius = shadow.radius; uniforms.shadowMapSize = shadow.mapSize; } _lights.spotShadowMap[ spotLength ] = shadowMap; _lights.spotShadowMatrix[ spotLength ] = light.shadow.matrix; _lights.spot[ spotLength ] = uniforms; spotLength ++; } else if ( light.isRectAreaLight ) { var uniforms = lightCache.get( light ); // (a) intensity controls irradiance of entire light uniforms.color .copy( color ) .multiplyScalar( intensity / ( light.width * light.height ) ); // (b) intensity controls the radiance per light area // uniforms.color.copy( color ).multiplyScalar( intensity ); uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); // extract local rotation of light to derive width/height half vectors _matrix42.identity(); _matrix4.copy( light.matrixWorld ); _matrix4.premultiply( viewMatrix ); _matrix42.extractRotation( _matrix4 ); uniforms.halfWidth.set( light.width * 0.5, 0.0, 0.0 ); uniforms.halfHeight.set( 0.0, light.height * 0.5, 0.0 ); uniforms.halfWidth.applyMatrix4( _matrix42 ); uniforms.halfHeight.applyMatrix4( _matrix42 ); // TODO (abelnation): RectAreaLight distance? // uniforms.distance = distance; _lights.rectArea[ rectAreaLength ] = uniforms; rectAreaLength ++; } else if ( light.isPointLight ) { var uniforms = lightCache.get( light ); uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); uniforms.color.copy( light.color ).multiplyScalar( light.intensity ); uniforms.distance = light.distance; uniforms.decay = ( light.distance === 0 ) ? 0.0 : light.decay; uniforms.shadow = light.castShadow; if ( light.castShadow ) { shadow = light.shadow; uniforms.shadowBias = shadow.bias; uniforms.shadowRadius = shadow.radius; uniforms.shadowMapSize = shadow.mapSize; } _lights.pointShadowMap[ pointLength ] = shadowMap; _lights.pointShadowMatrix[ pointLength ] = light.shadow.matrix; _lights.point[ pointLength ] = uniforms; pointLength ++; } else if ( light.isHemisphereLight ) { var uniforms = lightCache.get( light ); uniforms.direction.setFromMatrixPosition( light.matrixWorld ); uniforms.direction.transformDirection( viewMatrix ); uniforms.direction.normalize(); uniforms.skyColor.copy( light.color ).multiplyScalar( intensity ); uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity ); _lights.hemi[ hemiLength ] = uniforms; hemiLength ++; } } _lights.ambient[ 0 ] = r; _lights.ambient[ 1 ] = g; _lights.ambient[ 2 ] = b; _lights.directional.length = directionalLength; _lights.spot.length = spotLength; _lights.rectArea.length = rectAreaLength; _lights.point.length = pointLength; _lights.hemi.length = hemiLength; // TODO (sam-g-steel) why aren't we using join _lights.hash = directionalLength + ',' + pointLength + ',' + spotLength + ',' + rectAreaLength + ',' + hemiLength + ',' + _lights.shadows.length; } // GL state setting this.setFaceCulling = function ( cullFace, frontFaceDirection ) { state.setCullFace( cullFace ); state.setFlipSided( frontFaceDirection === FrontFaceDirectionCW ); }; // Textures function allocTextureUnit() { var textureUnit = _usedTextureUnits; if ( textureUnit >= capabilities.maxTextures ) { console.warn( 'THREE.WebGLRenderer: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + capabilities.maxTextures ); } _usedTextureUnits += 1; return textureUnit; } this.allocTextureUnit = allocTextureUnit; // this.setTexture2D = setTexture2D; this.setTexture2D = ( function () { var warned = false; // backwards compatibility: peel texture.texture return function setTexture2D( texture, slot ) { if ( texture && texture.isWebGLRenderTarget ) { if ( ! warned ) { console.warn( "THREE.WebGLRenderer.setTexture2D: don't use render targets as textures. Use their .texture property instead." ); warned = true; } texture = texture.texture; } textures.setTexture2D( texture, slot ); }; }() ); this.setTexture = ( function () { var warned = false; return function setTexture( texture, slot ) { if ( ! warned ) { console.warn( "THREE.WebGLRenderer: .setTexture is deprecated, use setTexture2D instead." ); warned = true; } textures.setTexture2D( texture, slot ); }; }() ); this.setTextureCube = ( function () { var warned = false; return function setTextureCube( texture, slot ) { // backwards compatibility: peel texture.texture if ( texture && texture.isWebGLRenderTargetCube ) { if ( ! warned ) { console.warn( "THREE.WebGLRenderer.setTextureCube: don't use cube render targets as textures. Use their .texture property instead." ); warned = true; } texture = texture.texture; } // currently relying on the fact that WebGLRenderTargetCube.texture is a Texture and NOT a CubeTexture // TODO: unify these code paths if ( ( texture && texture.isCubeTexture ) || ( Array.isArray( texture.image ) && texture.image.length === 6 ) ) { // CompressedTexture can have Array in image :/ // this function alone should take care of cube textures textures.setTextureCube( texture, slot ); } else { // assumed: texture property of THREE.WebGLRenderTargetCube textures.setTextureCubeDynamic( texture, slot ); } }; }() ); this.getRenderTarget = function () { return _currentRenderTarget; }; this.setRenderTarget = function ( renderTarget ) { _currentRenderTarget = renderTarget; if ( renderTarget && properties.get( renderTarget ).__webglFramebuffer === undefined ) { textures.setupRenderTarget( renderTarget ); } var isCube = ( renderTarget && renderTarget.isWebGLRenderTargetCube ); var framebuffer; if ( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); if ( isCube ) { framebuffer = renderTargetProperties.__webglFramebuffer[ renderTarget.activeCubeFace ]; } else { framebuffer = renderTargetProperties.__webglFramebuffer; } _currentScissor.copy( renderTarget.scissor ); _currentScissorTest = renderTarget.scissorTest; _currentViewport.copy( renderTarget.viewport ); } else { framebuffer = null; _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ); _currentScissorTest = _scissorTest; _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ); } if ( _currentFramebuffer !== framebuffer ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); _currentFramebuffer = framebuffer; } state.scissor( _currentScissor ); state.setScissorTest( _currentScissorTest ); state.viewport( _currentViewport ); if ( isCube ) { var textureProperties = properties.get( renderTarget.texture ); _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + renderTarget.activeCubeFace, textureProperties.__webglTexture, renderTarget.activeMipMapLevel ); } }; this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer ) { if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' ); return; } var framebuffer = properties.get( renderTarget ).__webglFramebuffer; if ( framebuffer ) { var restore = false; if ( framebuffer !== _currentFramebuffer ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); restore = true; } try { var texture = renderTarget.texture; var textureFormat = texture.format; var textureType = texture.type; if ( textureFormat !== RGBAFormat && paramThreeToGL( textureFormat ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_FORMAT ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' ); return; } if ( textureType !== UnsignedByteType && paramThreeToGL( textureType ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_TYPE ) && // IE11, Edge and Chrome Mac < 52 (#9513) ! ( textureType === FloatType && ( extensions.get( 'OES_texture_float' ) || extensions.get( 'WEBGL_color_buffer_float' ) ) ) && // Chrome Mac >= 52 and Firefox ! ( textureType === HalfFloatType && extensions.get( 'EXT_color_buffer_half_float' ) ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' ); return; } if ( _gl.checkFramebufferStatus( _gl.FRAMEBUFFER ) === _gl.FRAMEBUFFER_COMPLETE ) { // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604) if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) { _gl.readPixels( x, y, width, height, paramThreeToGL( textureFormat ), paramThreeToGL( textureType ), buffer ); } } else { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.' ); } } finally { if ( restore ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, _currentFramebuffer ); } } } }; // Map three.js constants to WebGL constants function paramThreeToGL( p ) { var extension; if ( p === RepeatWrapping ) return _gl.REPEAT; if ( p === ClampToEdgeWrapping ) return _gl.CLAMP_TO_EDGE; if ( p === MirroredRepeatWrapping ) return _gl.MIRRORED_REPEAT; if ( p === NearestFilter ) return _gl.NEAREST; if ( p === NearestMipMapNearestFilter ) return _gl.NEAREST_MIPMAP_NEAREST; if ( p === NearestMipMapLinearFilter ) return _gl.NEAREST_MIPMAP_LINEAR; if ( p === LinearFilter ) return _gl.LINEAR; if ( p === LinearMipMapNearestFilter ) return _gl.LINEAR_MIPMAP_NEAREST; if ( p === LinearMipMapLinearFilter ) return _gl.LINEAR_MIPMAP_LINEAR; if ( p === UnsignedByteType ) return _gl.UNSIGNED_BYTE; if ( p === UnsignedShort4444Type ) return _gl.UNSIGNED_SHORT_4_4_4_4; if ( p === UnsignedShort5551Type ) return _gl.UNSIGNED_SHORT_5_5_5_1; if ( p === UnsignedShort565Type ) return _gl.UNSIGNED_SHORT_5_6_5; if ( p === ByteType ) return _gl.BYTE; if ( p === ShortType ) return _gl.SHORT; if ( p === UnsignedShortType ) return _gl.UNSIGNED_SHORT; if ( p === IntType ) return _gl.INT; if ( p === UnsignedIntType ) return _gl.UNSIGNED_INT; if ( p === FloatType ) return _gl.FLOAT; if ( p === HalfFloatType ) { extension = extensions.get( 'OES_texture_half_float' ); if ( extension !== null ) return extension.HALF_FLOAT_OES; } if ( p === AlphaFormat ) return _gl.ALPHA; if ( p === RGBFormat ) return _gl.RGB; if ( p === RGBAFormat ) return _gl.RGBA; if ( p === LuminanceFormat ) return _gl.LUMINANCE; if ( p === LuminanceAlphaFormat ) return _gl.LUMINANCE_ALPHA; if ( p === DepthFormat ) return _gl.DEPTH_COMPONENT; if ( p === DepthStencilFormat ) return _gl.DEPTH_STENCIL; if ( p === AddEquation ) return _gl.FUNC_ADD; if ( p === SubtractEquation ) return _gl.FUNC_SUBTRACT; if ( p === ReverseSubtractEquation ) return _gl.FUNC_REVERSE_SUBTRACT; if ( p === ZeroFactor ) return _gl.ZERO; if ( p === OneFactor ) return _gl.ONE; if ( p === SrcColorFactor ) return _gl.SRC_COLOR; if ( p === OneMinusSrcColorFactor ) return _gl.ONE_MINUS_SRC_COLOR; if ( p === SrcAlphaFactor ) return _gl.SRC_ALPHA; if ( p === OneMinusSrcAlphaFactor ) return _gl.ONE_MINUS_SRC_ALPHA; if ( p === DstAlphaFactor ) return _gl.DST_ALPHA; if ( p === OneMinusDstAlphaFactor ) return _gl.ONE_MINUS_DST_ALPHA; if ( p === DstColorFactor ) return _gl.DST_COLOR; if ( p === OneMinusDstColorFactor ) return _gl.ONE_MINUS_DST_COLOR; if ( p === SrcAlphaSaturateFactor ) return _gl.SRC_ALPHA_SATURATE; if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_s3tc' ); if ( extension !== null ) { if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; } } if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' ); if ( extension !== null ) { if ( p === RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; if ( p === RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; if ( p === RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; if ( p === RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; } } if ( p === RGB_ETC1_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_etc1' ); if ( extension !== null ) return extension.COMPRESSED_RGB_ETC1_WEBGL; } if ( p === MinEquation || p === MaxEquation ) { extension = extensions.get( 'EXT_blend_minmax' ); if ( extension !== null ) { if ( p === MinEquation ) return extension.MIN_EXT; if ( p === MaxEquation ) return extension.MAX_EXT; } } if ( p === UnsignedInt248Type ) { extension = extensions.get( 'WEBGL_depth_texture' ); if ( extension !== null ) return extension.UNSIGNED_INT_24_8_WEBGL; } return 0; } } /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function FogExp2 ( color, density ) { this.name = ''; this.color = new Color( color ); this.density = ( density !== undefined ) ? density : 0.00025; } FogExp2.prototype.isFogExp2 = true; FogExp2.prototype.clone = function () { return new FogExp2( this.color.getHex(), this.density ); }; FogExp2.prototype.toJSON = function ( meta ) { return { type: 'FogExp2', color: this.color.getHex(), density: this.density }; }; /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function Fog ( color, near, far ) { this.name = ''; this.color = new Color( color ); this.near = ( near !== undefined ) ? near : 1; this.far = ( far !== undefined ) ? far : 1000; } Fog.prototype.isFog = true; Fog.prototype.clone = function () { return new Fog( this.color.getHex(), this.near, this.far ); }; Fog.prototype.toJSON = function ( meta ) { return { type: 'Fog', color: this.color.getHex(), near: this.near, far: this.far }; }; /** * @author mrdoob / http://mrdoob.com/ */ function Scene () { Object3D.call( this ); this.type = 'Scene'; this.background = null; this.fog = null; this.overrideMaterial = null; this.autoUpdate = true; // checked by the renderer } Scene.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Scene, copy: function ( source, recursive ) { Object3D.prototype.copy.call( this, source, recursive ); if ( source.background !== null ) this.background = source.background.clone(); if ( source.fog !== null ) this.fog = source.fog.clone(); if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone(); this.autoUpdate = source.autoUpdate; this.matrixAutoUpdate = source.matrixAutoUpdate; return this; }, toJSON: function ( meta ) { var data = Object3D.prototype.toJSON.call( this, meta ); if ( this.background !== null ) data.object.background = this.background.toJSON( meta ); if ( this.fog !== null ) data.object.fog = this.fog.toJSON(); return data; } } ); /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ function LensFlare( texture, size, distance, blending, color ) { Object3D.call( this ); this.lensFlares = []; this.positionScreen = new Vector3(); this.customUpdateCallback = undefined; if ( texture !== undefined ) { this.add( texture, size, distance, blending, color ); } } LensFlare.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: LensFlare, isLensFlare: true, copy: function ( source ) { Object3D.prototype.copy.call( this, source ); this.positionScreen.copy( source.positionScreen ); this.customUpdateCallback = source.customUpdateCallback; for ( var i = 0, l = source.lensFlares.length; i < l; i ++ ) { this.lensFlares.push( source.lensFlares[ i ] ); } return this; }, add: function ( texture, size, distance, blending, color, opacity ) { if ( size === undefined ) size = - 1; if ( distance === undefined ) distance = 0; if ( opacity === undefined ) opacity = 1; if ( color === undefined ) color = new Color( 0xffffff ); if ( blending === undefined ) blending = NormalBlending; distance = Math.min( distance, Math.max( 0, distance ) ); this.lensFlares.push( { texture: texture, // THREE.Texture size: size, // size in pixels (-1 = use texture.width) distance: distance, // distance (0-1) from light source (0=at light source) x: 0, y: 0, z: 0, // screen position (-1 => 1) z = 0 is in front z = 1 is back scale: 1, // scale rotation: 0, // rotation opacity: opacity, // opacity color: color, // color blending: blending // blending } ); }, /* * Update lens flares update positions on all flares based on the screen position * Set myLensFlare.customUpdateCallback to alter the flares in your project specific way. */ updateLensFlares: function () { var f, fl = this.lensFlares.length; var flare; var vecX = - this.positionScreen.x * 2; var vecY = - this.positionScreen.y * 2; for ( f = 0; f < fl; f ++ ) { flare = this.lensFlares[ f ]; flare.x = this.positionScreen.x + vecX * flare.distance; flare.y = this.positionScreen.y + vecY * flare.distance; flare.wantedRotation = flare.x * Math.PI * 0.25; flare.rotation += ( flare.wantedRotation - flare.rotation ) * 0.25; } } } ); /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * uvOffset: new THREE.Vector2(), * uvScale: new THREE.Vector2() * } */ function SpriteMaterial( parameters ) { Material.call( this ); this.type = 'SpriteMaterial'; this.color = new Color( 0xffffff ); this.map = null; this.rotation = 0; this.fog = false; this.lights = false; this.setValues( parameters ); } SpriteMaterial.prototype = Object.create( Material.prototype ); SpriteMaterial.prototype.constructor = SpriteMaterial; SpriteMaterial.prototype.isSpriteMaterial = true; SpriteMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.rotation = source.rotation; return this; }; /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ function Sprite( material ) { Object3D.call( this ); this.type = 'Sprite'; this.material = ( material !== undefined ) ? material : new SpriteMaterial(); } Sprite.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Sprite, isSprite: true, raycast: ( function () { var intersectPoint = new Vector3(); var worldPosition = new Vector3(); var worldScale = new Vector3(); return function raycast( raycaster, intersects ) { worldPosition.setFromMatrixPosition( this.matrixWorld ); raycaster.ray.closestPointToPoint( worldPosition, intersectPoint ); worldScale.setFromMatrixScale( this.matrixWorld ); var guessSizeSq = worldScale.x * worldScale.y / 4; if ( worldPosition.distanceToSquared( intersectPoint ) > guessSizeSq ) return; var distance = raycaster.ray.origin.distanceTo( intersectPoint ); if ( distance < raycaster.near || distance > raycaster.far ) return; intersects.push( { distance: distance, point: intersectPoint.clone(), face: null, object: this } ); }; }() ), clone: function () { return new this.constructor( this.material ).copy( this ); } } ); /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ function LOD() { Object3D.call( this ); this.type = 'LOD'; Object.defineProperties( this, { levels: { enumerable: true, value: [] } } ); } LOD.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: LOD, copy: function ( source ) { Object3D.prototype.copy.call( this, source, false ); var levels = source.levels; for ( var i = 0, l = levels.length; i < l; i ++ ) { var level = levels[ i ]; this.addLevel( level.object.clone(), level.distance ); } return this; }, addLevel: function ( object, distance ) { if ( distance === undefined ) distance = 0; distance = Math.abs( distance ); var levels = this.levels; for ( var l = 0; l < levels.length; l ++ ) { if ( distance < levels[ l ].distance ) { break; } } levels.splice( l, 0, { distance: distance, object: object } ); this.add( object ); }, getObjectForDistance: function ( distance ) { var levels = this.levels; for ( var i = 1, l = levels.length; i < l; i ++ ) { if ( distance < levels[ i ].distance ) { break; } } return levels[ i - 1 ].object; }, raycast: ( function () { var matrixPosition = new Vector3(); return function raycast( raycaster, intersects ) { matrixPosition.setFromMatrixPosition( this.matrixWorld ); var distance = raycaster.ray.origin.distanceTo( matrixPosition ); this.getObjectForDistance( distance ).raycast( raycaster, intersects ); }; }() ), update: function () { var v1 = new Vector3(); var v2 = new Vector3(); return function update( camera ) { var levels = this.levels; if ( levels.length > 1 ) { v1.setFromMatrixPosition( camera.matrixWorld ); v2.setFromMatrixPosition( this.matrixWorld ); var distance = v1.distanceTo( v2 ); levels[ 0 ].object.visible = true; for ( var i = 1, l = levels.length; i < l; i ++ ) { if ( distance >= levels[ i ].distance ) { levels[ i - 1 ].object.visible = false; levels[ i ].object.visible = true; } else { break; } } for ( ; i < l; i ++ ) { levels[ i ].object.visible = false; } } }; }(), toJSON: function ( meta ) { var data = Object3D.prototype.toJSON.call( this, meta ); data.object.levels = []; var levels = this.levels; for ( var i = 0, l = levels.length; i < l; i ++ ) { var level = levels[ i ]; data.object.levels.push( { object: level.object.uuid, distance: level.distance } ); } return data; } } ); /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author michael guerrero / http://realitymeltdown.com * @author ikerr / http://verold.com */ function Skeleton( bones, boneInverses ) { // copy the bone array bones = bones || []; this.bones = bones.slice( 0 ); this.boneMatrices = new Float32Array( this.bones.length * 16 ); // use the supplied bone inverses or calculate the inverses if ( boneInverses === undefined ) { this.calculateInverses(); } else { if ( this.bones.length === boneInverses.length ) { this.boneInverses = boneInverses.slice( 0 ); } else { console.warn( 'THREE.Skeleton boneInverses is the wrong length.' ); this.boneInverses = []; for ( var i = 0, il = this.bones.length; i < il; i ++ ) { this.boneInverses.push( new Matrix4() ); } } } } Object.assign( Skeleton.prototype, { calculateInverses: function () { this.boneInverses = []; for ( var i = 0, il = this.bones.length; i < il; i ++ ) { var inverse = new Matrix4(); if ( this.bones[ i ] ) { inverse.getInverse( this.bones[ i ].matrixWorld ); } this.boneInverses.push( inverse ); } }, pose: function () { var bone, i, il; // recover the bind-time world matrices for ( i = 0, il = this.bones.length; i < il; i ++ ) { bone = this.bones[ i ]; if ( bone ) { bone.matrixWorld.getInverse( this.boneInverses[ i ] ); } } // compute the local matrices, positions, rotations and scales for ( i = 0, il = this.bones.length; i < il; i ++ ) { bone = this.bones[ i ]; if ( bone ) { if ( bone.parent && bone.parent.isBone ) { bone.matrix.getInverse( bone.parent.matrixWorld ); bone.matrix.multiply( bone.matrixWorld ); } else { bone.matrix.copy( bone.matrixWorld ); } bone.matrix.decompose( bone.position, bone.quaternion, bone.scale ); } } }, update: ( function () { var offsetMatrix = new Matrix4(); var identityMatrix = new Matrix4(); return function update() { var bones = this.bones; var boneInverses = this.boneInverses; var boneMatrices = this.boneMatrices; var boneTexture = this.boneTexture; // flatten bone matrices to array for ( var i = 0, il = bones.length; i < il; i ++ ) { // compute the offset between the current and the original transform var matrix = bones[ i ] ? bones[ i ].matrixWorld : identityMatrix; offsetMatrix.multiplyMatrices( matrix, boneInverses[ i ] ); offsetMatrix.toArray( boneMatrices, i * 16 ); } if ( boneTexture !== undefined ) { boneTexture.needsUpdate = true; } }; } )(), clone: function () { return new Skeleton( this.bones, this.boneInverses ); } } ); /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author ikerr / http://verold.com */ function Bone() { Object3D.call( this ); this.type = 'Bone'; } Bone.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Bone, isBone: true } ); /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author ikerr / http://verold.com */ function SkinnedMesh( geometry, material ) { Mesh.call( this, geometry, material ); this.type = 'SkinnedMesh'; this.bindMode = 'attached'; this.bindMatrix = new Matrix4(); this.bindMatrixInverse = new Matrix4(); var bones = this.initBones(); var skeleton = new Skeleton( bones ); this.bind( skeleton, this.matrixWorld ); this.normalizeSkinWeights(); } SkinnedMesh.prototype = Object.assign( Object.create( Mesh.prototype ), { constructor: SkinnedMesh, isSkinnedMesh: true, initBones: function () { var bones = [], bone, gbone; var i, il; if ( this.geometry && this.geometry.bones !== undefined ) { // first, create array of 'Bone' objects from geometry data for ( i = 0, il = this.geometry.bones.length; i < il; i ++ ) { gbone = this.geometry.bones[ i ]; // create new 'Bone' object bone = new Bone(); bones.push( bone ); // apply values bone.name = gbone.name; bone.position.fromArray( gbone.pos ); bone.quaternion.fromArray( gbone.rotq ); if ( gbone.scl !== undefined ) bone.scale.fromArray( gbone.scl ); } // second, create bone hierarchy for ( i = 0, il = this.geometry.bones.length; i < il; i ++ ) { gbone = this.geometry.bones[ i ]; if ( ( gbone.parent !== - 1 ) && ( gbone.parent !== null ) && ( bones[ gbone.parent ] !== undefined ) ) { // subsequent bones in the hierarchy bones[ gbone.parent ].add( bones[ i ] ); } else { // topmost bone, immediate child of the skinned mesh this.add( bones[ i ] ); } } } // now the bones are part of the scene graph and children of the skinned mesh. // let's update the corresponding matrices this.updateMatrixWorld( true ); return bones; }, bind: function ( skeleton, bindMatrix ) { this.skeleton = skeleton; if ( bindMatrix === undefined ) { this.updateMatrixWorld( true ); this.skeleton.calculateInverses(); bindMatrix = this.matrixWorld; } this.bindMatrix.copy( bindMatrix ); this.bindMatrixInverse.getInverse( bindMatrix ); }, pose: function () { this.skeleton.pose(); }, normalizeSkinWeights: function () { var scale, i; if ( this.geometry && this.geometry.isGeometry ) { for ( i = 0; i < this.geometry.skinWeights.length; i ++ ) { var sw = this.geometry.skinWeights[ i ]; scale = 1.0 / sw.lengthManhattan(); if ( scale !== Infinity ) { sw.multiplyScalar( scale ); } else { sw.set( 1, 0, 0, 0 ); // do something reasonable } } } else if ( this.geometry && this.geometry.isBufferGeometry ) { var vec = new Vector4(); var skinWeight = this.geometry.attributes.skinWeight; for ( i = 0; i < skinWeight.count; i ++ ) { vec.x = skinWeight.getX( i ); vec.y = skinWeight.getY( i ); vec.z = skinWeight.getZ( i ); vec.w = skinWeight.getW( i ); scale = 1.0 / vec.lengthManhattan(); if ( scale !== Infinity ) { vec.multiplyScalar( scale ); } else { vec.set( 1, 0, 0, 0 ); // do something reasonable } skinWeight.setXYZW( i, vec.x, vec.y, vec.z, vec.w ); } } }, updateMatrixWorld: function ( force ) { Mesh.prototype.updateMatrixWorld.call( this, force ); if ( this.bindMode === 'attached' ) { this.bindMatrixInverse.getInverse( this.matrixWorld ); } else if ( this.bindMode === 'detached' ) { this.bindMatrixInverse.getInverse( this.bindMatrix ); } else { console.warn( 'THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode ); } }, clone: function () { return new this.constructor( this.geometry, this.material ).copy( this ); } } ); /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * linewidth: , * linecap: "round", * linejoin: "round" * } */ function LineBasicMaterial( parameters ) { Material.call( this ); this.type = 'LineBasicMaterial'; this.color = new Color( 0xffffff ); this.linewidth = 1; this.linecap = 'round'; this.linejoin = 'round'; this.lights = false; this.setValues( parameters ); } LineBasicMaterial.prototype = Object.create( Material.prototype ); LineBasicMaterial.prototype.constructor = LineBasicMaterial; LineBasicMaterial.prototype.isLineBasicMaterial = true; LineBasicMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.linewidth = source.linewidth; this.linecap = source.linecap; this.linejoin = source.linejoin; return this; }; /** * @author mrdoob / http://mrdoob.com/ */ function Line( geometry, material, mode ) { if ( mode === 1 ) { console.warn( 'THREE.Line: parameter THREE.LinePieces no longer supported. Created THREE.LineSegments instead.' ); return new LineSegments( geometry, material ); } Object3D.call( this ); this.type = 'Line'; this.geometry = geometry !== undefined ? geometry : new BufferGeometry(); this.material = material !== undefined ? material : new LineBasicMaterial( { color: Math.random() * 0xffffff } ); } Line.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Line, isLine: true, raycast: ( function () { var inverseMatrix = new Matrix4(); var ray = new Ray(); var sphere = new Sphere(); return function raycast( raycaster, intersects ) { var precision = raycaster.linePrecision; var precisionSq = precision * precision; var geometry = this.geometry; var matrixWorld = this.matrixWorld; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( matrixWorld ); if ( raycaster.ray.intersectsSphere( sphere ) === false ) return; // inverseMatrix.getInverse( matrixWorld ); ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix ); var vStart = new Vector3(); var vEnd = new Vector3(); var interSegment = new Vector3(); var interRay = new Vector3(); var step = (this && this.isLineSegments) ? 2 : 1; if ( geometry.isBufferGeometry ) { var index = geometry.index; var attributes = geometry.attributes; var positions = attributes.position.array; if ( index !== null ) { var indices = index.array; for ( var i = 0, l = indices.length - 1; i < l; i += step ) { var a = indices[ i ]; var b = indices[ i + 1 ]; vStart.fromArray( positions, a * 3 ); vEnd.fromArray( positions, b * 3 ); var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment ); if ( distSq > precisionSq ) continue; interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation var distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } else { for ( var i = 0, l = positions.length / 3 - 1; i < l; i += step ) { vStart.fromArray( positions, 3 * i ); vEnd.fromArray( positions, 3 * i + 3 ); var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment ); if ( distSq > precisionSq ) continue; interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation var distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } } else if ( geometry.isGeometry ) { var vertices = geometry.vertices; var nbVertices = vertices.length; for ( var i = 0; i < nbVertices - 1; i += step ) { var distSq = ray.distanceSqToSegment( vertices[ i ], vertices[ i + 1 ], interRay, interSegment ); if ( distSq > precisionSq ) continue; interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation var distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } }; }() ), clone: function () { return new this.constructor( this.geometry, this.material ).copy( this ); } } ); /** * @author mrdoob / http://mrdoob.com/ */ function LineSegments( geometry, material ) { Line.call( this, geometry, material ); this.type = 'LineSegments'; } LineSegments.prototype = Object.assign( Object.create( Line.prototype ), { constructor: LineSegments, isLineSegments: true } ); /** * @author mgreter / http://github.com/mgreter */ function LineLoop( geometry, material ) { Line.call( this, geometry, material ); this.type = 'LineLoop'; } LineLoop.prototype = Object.assign( Object.create( Line.prototype ), { constructor: LineLoop, isLineLoop: true, } ); /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * size: , * sizeAttenuation: * } */ function PointsMaterial( parameters ) { Material.call( this ); this.type = 'PointsMaterial'; this.color = new Color( 0xffffff ); this.map = null; this.size = 1; this.sizeAttenuation = true; this.lights = false; this.setValues( parameters ); } PointsMaterial.prototype = Object.create( Material.prototype ); PointsMaterial.prototype.constructor = PointsMaterial; PointsMaterial.prototype.isPointsMaterial = true; PointsMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.size = source.size; this.sizeAttenuation = source.sizeAttenuation; return this; }; /** * @author alteredq / http://alteredqualia.com/ */ function Points( geometry, material ) { Object3D.call( this ); this.type = 'Points'; this.geometry = geometry !== undefined ? geometry : new BufferGeometry(); this.material = material !== undefined ? material : new PointsMaterial( { color: Math.random() * 0xffffff } ); } Points.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Points, isPoints: true, raycast: ( function () { var inverseMatrix = new Matrix4(); var ray = new Ray(); var sphere = new Sphere(); return function raycast( raycaster, intersects ) { var object = this; var geometry = this.geometry; var matrixWorld = this.matrixWorld; var threshold = raycaster.params.Points.threshold; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( matrixWorld ); sphere.radius += threshold; if ( raycaster.ray.intersectsSphere( sphere ) === false ) return; // inverseMatrix.getInverse( matrixWorld ); ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix ); var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); var localThresholdSq = localThreshold * localThreshold; var position = new Vector3(); function testPoint( point, index ) { var rayPointDistanceSq = ray.distanceSqToPoint( point ); if ( rayPointDistanceSq < localThresholdSq ) { var intersectPoint = ray.closestPointToPoint( point ); intersectPoint.applyMatrix4( matrixWorld ); var distance = raycaster.ray.origin.distanceTo( intersectPoint ); if ( distance < raycaster.near || distance > raycaster.far ) return; intersects.push( { distance: distance, distanceToRay: Math.sqrt( rayPointDistanceSq ), point: intersectPoint.clone(), index: index, face: null, object: object } ); } } if ( geometry.isBufferGeometry ) { var index = geometry.index; var attributes = geometry.attributes; var positions = attributes.position.array; if ( index !== null ) { var indices = index.array; for ( var i = 0, il = indices.length; i < il; i ++ ) { var a = indices[ i ]; position.fromArray( positions, a * 3 ); testPoint( position, a ); } } else { for ( var i = 0, l = positions.length / 3; i < l; i ++ ) { position.fromArray( positions, i * 3 ); testPoint( position, i ); } } } else { var vertices = geometry.vertices; for ( var i = 0, l = vertices.length; i < l; i ++ ) { testPoint( vertices[ i ], i ); } } }; }() ), clone: function () { return new this.constructor( this.geometry, this.material ).copy( this ); } } ); /** * @author mrdoob / http://mrdoob.com/ */ function Group() { Object3D.call( this ); this.type = 'Group'; } Group.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Group } ); /** * @author alteredq / http://alteredqualia.com/ */ function CompressedTexture( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) { Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ); this.image = { width: width, height: height }; this.mipmaps = mipmaps; // no flipping for cube textures // (also flipping doesn't work for compressed textures ) this.flipY = false; // can't generate mipmaps for compressed textures // mips must be embedded in DDS files this.generateMipmaps = false; } CompressedTexture.prototype = Object.create( Texture.prototype ); CompressedTexture.prototype.constructor = CompressedTexture; CompressedTexture.prototype.isCompressedTexture = true; /** * @author mrdoob / http://mrdoob.com/ */ function CanvasTexture( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { Texture.call( this, canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.needsUpdate = true; } CanvasTexture.prototype = Object.create( Texture.prototype ); CanvasTexture.prototype.constructor = CanvasTexture; /** * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 */ function WireframeGeometry( geometry ) { BufferGeometry.call( this ); this.type = 'WireframeGeometry'; // buffer var vertices = []; // helper variables var i, j, l, o, ol; var edge = [ 0, 0 ], edges = {}, e, edge1, edge2; var key, keys = [ 'a', 'b', 'c' ]; var vertex; // different logic for Geometry and BufferGeometry if ( geometry && geometry.isGeometry ) { // create a data structure that contains all edges without duplicates var faces = geometry.faces; for ( i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( j = 0; j < 3; j ++ ) { edge1 = face[ keys[ j ] ]; edge2 = face[ keys[ ( j + 1 ) % 3 ] ]; edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates edge[ 1 ] = Math.max( edge1, edge2 ); key = edge[ 0 ] + ',' + edge[ 1 ]; if ( edges[ key ] === undefined ) { edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] }; } } } // generate vertices for ( key in edges ) { e = edges[ key ]; vertex = geometry.vertices[ e.index1 ]; vertices.push( vertex.x, vertex.y, vertex.z ); vertex = geometry.vertices[ e.index2 ]; vertices.push( vertex.x, vertex.y, vertex.z ); } } else if ( geometry && geometry.isBufferGeometry ) { var position, indices, groups; var group, start, count; var index1, index2; vertex = new Vector3(); if ( geometry.index !== null ) { // indexed BufferGeometry position = geometry.attributes.position; indices = geometry.index; groups = geometry.groups; if ( groups.length === 0 ) { groups = [ { start: 0, count: indices.count, materialIndex: 0 } ]; } // create a data structure that contains all eges without duplicates for ( o = 0, ol = groups.length; o < ol; ++ o ) { group = groups[ o ]; start = group.start; count = group.count; for ( i = start, l = ( start + count ); i < l; i += 3 ) { for ( j = 0; j < 3; j ++ ) { edge1 = indices.getX( i + j ); edge2 = indices.getX( i + ( j + 1 ) % 3 ); edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates edge[ 1 ] = Math.max( edge1, edge2 ); key = edge[ 0 ] + ',' + edge[ 1 ]; if ( edges[ key ] === undefined ) { edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] }; } } } } // generate vertices for ( key in edges ) { e = edges[ key ]; vertex.fromBufferAttribute( position, e.index1 ); vertices.push( vertex.x, vertex.y, vertex.z ); vertex.fromBufferAttribute( position, e.index2 ); vertices.push( vertex.x, vertex.y, vertex.z ); } } else { // non-indexed BufferGeometry position = geometry.attributes.position; for ( i = 0, l = ( position.count / 3 ); i < l; i ++ ) { for ( j = 0; j < 3; j ++ ) { // three edges per triangle, an edge is represented as (index1, index2) // e.g. the first triangle has the following edges: (0,1),(1,2),(2,0) index1 = 3 * i + j; vertex.fromBufferAttribute( position, index1 ); vertices.push( vertex.x, vertex.y, vertex.z ); index2 = 3 * i + ( ( j + 1 ) % 3 ); vertex.fromBufferAttribute( position, index2 ); vertices.push( vertex.x, vertex.y, vertex.z ); } } } } // build geometry this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); } WireframeGeometry.prototype = Object.create( BufferGeometry.prototype ); WireframeGeometry.prototype.constructor = WireframeGeometry; /** * @author zz85 / https://github.com/zz85 * @author Mugen87 / https://github.com/Mugen87 * * Parametric Surfaces Geometry * based on the brilliant article by @prideout http://prideout.net/blog/?p=44 */ // ParametricGeometry function ParametricGeometry( func, slices, stacks ) { Geometry.call( this ); this.type = 'ParametricGeometry'; this.parameters = { func: func, slices: slices, stacks: stacks }; this.fromBufferGeometry( new ParametricBufferGeometry( func, slices, stacks ) ); this.mergeVertices(); } ParametricGeometry.prototype = Object.create( Geometry.prototype ); ParametricGeometry.prototype.constructor = ParametricGeometry; // ParametricBufferGeometry function ParametricBufferGeometry( func, slices, stacks ) { BufferGeometry.call( this ); this.type = 'ParametricBufferGeometry'; this.parameters = { func: func, slices: slices, stacks: stacks }; // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; var EPS = 0.00001; var normal = new Vector3(); var p0 = new Vector3(), p1 = new Vector3(); var pu = new Vector3(), pv = new Vector3(); var i, j; // generate vertices, normals and uvs var sliceCount = slices + 1; for ( i = 0; i <= stacks; i ++ ) { var v = i / stacks; for ( j = 0; j <= slices; j ++ ) { var u = j / slices; // vertex p0 = func( u, v, p0 ); vertices.push( p0.x, p0.y, p0.z ); // normal // approximate tangent vectors via finite differences if ( u - EPS >= 0 ) { p1 = func( u - EPS, v, p1 ); pu.subVectors( p0, p1 ); } else { p1 = func( u + EPS, v, p1 ); pu.subVectors( p1, p0 ); } if ( v - EPS >= 0 ) { p1 = func( u, v - EPS, p1 ); pv.subVectors( p0, p1 ); } else { p1 = func( u, v + EPS, p1 ); pv.subVectors( p1, p0 ); } // cross product of tangent vectors returns surface normal normal.crossVectors( pu, pv ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( u, v ); } } // generate indices for ( i = 0; i < stacks; i ++ ) { for ( j = 0; j < slices; j ++ ) { var a = i * sliceCount + j; var b = i * sliceCount + j + 1; var c = ( i + 1 ) * sliceCount + j + 1; var d = ( i + 1 ) * sliceCount + j; // faces one and two indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } ParametricBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); ParametricBufferGeometry.prototype.constructor = ParametricBufferGeometry; /** * @author clockworkgeek / https://github.com/clockworkgeek * @author timothypratley / https://github.com/timothypratley * @author WestLangley / http://github.com/WestLangley * @author Mugen87 / https://github.com/Mugen87 */ // PolyhedronGeometry function PolyhedronGeometry( vertices, indices, radius, detail ) { Geometry.call( this ); this.type = 'PolyhedronGeometry'; this.parameters = { vertices: vertices, indices: indices, radius: radius, detail: detail }; this.fromBufferGeometry( new PolyhedronBufferGeometry( vertices, indices, radius, detail ) ); this.mergeVertices(); } PolyhedronGeometry.prototype = Object.create( Geometry.prototype ); PolyhedronGeometry.prototype.constructor = PolyhedronGeometry; // PolyhedronBufferGeometry function PolyhedronBufferGeometry( vertices, indices, radius, detail ) { BufferGeometry.call( this ); this.type = 'PolyhedronBufferGeometry'; this.parameters = { vertices: vertices, indices: indices, radius: radius, detail: detail }; radius = radius || 1; detail = detail || 0; // default buffer data var vertexBuffer = []; var uvBuffer = []; // the subdivision creates the vertex buffer data subdivide( detail ); // all vertices should lie on a conceptual sphere with a given radius appplyRadius( radius ); // finally, create the uv data generateUVs(); // build non-indexed geometry this.addAttribute( 'position', new Float32BufferAttribute( vertexBuffer, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( vertexBuffer.slice(), 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvBuffer, 2 ) ); if ( detail === 0 ) { this.computeVertexNormals(); // flat normals } else { this.normalizeNormals(); // smooth normals } // helper functions function subdivide( detail ) { var a = new Vector3(); var b = new Vector3(); var c = new Vector3(); // iterate over all faces and apply a subdivison with the given detail value for ( var i = 0; i < indices.length; i += 3 ) { // get the vertices of the face getVertexByIndex( indices[ i + 0 ], a ); getVertexByIndex( indices[ i + 1 ], b ); getVertexByIndex( indices[ i + 2 ], c ); // perform subdivision subdivideFace( a, b, c, detail ); } } function subdivideFace( a, b, c, detail ) { var cols = Math.pow( 2, detail ); // we use this multidimensional array as a data structure for creating the subdivision var v = []; var i, j; // construct all of the vertices for this subdivision for ( i = 0; i <= cols; i ++ ) { v[ i ] = []; var aj = a.clone().lerp( c, i / cols ); var bj = b.clone().lerp( c, i / cols ); var rows = cols - i; for ( j = 0; j <= rows; j ++ ) { if ( j === 0 && i === cols ) { v[ i ][ j ] = aj; } else { v[ i ][ j ] = aj.clone().lerp( bj, j / rows ); } } } // construct all of the faces for ( i = 0; i < cols; i ++ ) { for ( j = 0; j < 2 * ( cols - i ) - 1; j ++ ) { var k = Math.floor( j / 2 ); if ( j % 2 === 0 ) { pushVertex( v[ i ][ k + 1 ] ); pushVertex( v[ i + 1 ][ k ] ); pushVertex( v[ i ][ k ] ); } else { pushVertex( v[ i ][ k + 1 ] ); pushVertex( v[ i + 1 ][ k + 1 ] ); pushVertex( v[ i + 1 ][ k ] ); } } } } function appplyRadius( radius ) { var vertex = new Vector3(); // iterate over the entire buffer and apply the radius to each vertex for ( var i = 0; i < vertexBuffer.length; i += 3 ) { vertex.x = vertexBuffer[ i + 0 ]; vertex.y = vertexBuffer[ i + 1 ]; vertex.z = vertexBuffer[ i + 2 ]; vertex.normalize().multiplyScalar( radius ); vertexBuffer[ i + 0 ] = vertex.x; vertexBuffer[ i + 1 ] = vertex.y; vertexBuffer[ i + 2 ] = vertex.z; } } function generateUVs() { var vertex = new Vector3(); for ( var i = 0; i < vertexBuffer.length; i += 3 ) { vertex.x = vertexBuffer[ i + 0 ]; vertex.y = vertexBuffer[ i + 1 ]; vertex.z = vertexBuffer[ i + 2 ]; var u = azimuth( vertex ) / 2 / Math.PI + 0.5; var v = inclination( vertex ) / Math.PI + 0.5; uvBuffer.push( u, 1 - v ); } correctUVs(); correctSeam(); } function correctSeam() { // handle case when face straddles the seam, see #3269 for ( var i = 0; i < uvBuffer.length; i += 6 ) { // uv data of a single face var x0 = uvBuffer[ i + 0 ]; var x1 = uvBuffer[ i + 2 ]; var x2 = uvBuffer[ i + 4 ]; var max = Math.max( x0, x1, x2 ); var min = Math.min( x0, x1, x2 ); // 0.9 is somewhat arbitrary if ( max > 0.9 && min < 0.1 ) { if ( x0 < 0.2 ) uvBuffer[ i + 0 ] += 1; if ( x1 < 0.2 ) uvBuffer[ i + 2 ] += 1; if ( x2 < 0.2 ) uvBuffer[ i + 4 ] += 1; } } } function pushVertex( vertex ) { vertexBuffer.push( vertex.x, vertex.y, vertex.z ); } function getVertexByIndex( index, vertex ) { var stride = index * 3; vertex.x = vertices[ stride + 0 ]; vertex.y = vertices[ stride + 1 ]; vertex.z = vertices[ stride + 2 ]; } function correctUVs() { var a = new Vector3(); var b = new Vector3(); var c = new Vector3(); var centroid = new Vector3(); var uvA = new Vector2(); var uvB = new Vector2(); var uvC = new Vector2(); for ( var i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6 ) { a.set( vertexBuffer[ i + 0 ], vertexBuffer[ i + 1 ], vertexBuffer[ i + 2 ] ); b.set( vertexBuffer[ i + 3 ], vertexBuffer[ i + 4 ], vertexBuffer[ i + 5 ] ); c.set( vertexBuffer[ i + 6 ], vertexBuffer[ i + 7 ], vertexBuffer[ i + 8 ] ); uvA.set( uvBuffer[ j + 0 ], uvBuffer[ j + 1 ] ); uvB.set( uvBuffer[ j + 2 ], uvBuffer[ j + 3 ] ); uvC.set( uvBuffer[ j + 4 ], uvBuffer[ j + 5 ] ); centroid.copy( a ).add( b ).add( c ).divideScalar( 3 ); var azi = azimuth( centroid ); correctUV( uvA, j + 0, a, azi ); correctUV( uvB, j + 2, b, azi ); correctUV( uvC, j + 4, c, azi ); } } function correctUV( uv, stride, vector, azimuth ) { if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) { uvBuffer[ stride ] = uv.x - 1; } if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) { uvBuffer[ stride ] = azimuth / 2 / Math.PI + 0.5; } } // Angle around the Y axis, counter-clockwise when looking from above. function azimuth( vector ) { return Math.atan2( vector.z, - vector.x ); } // Angle above the XZ plane. function inclination( vector ) { return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) ); } } PolyhedronBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); PolyhedronBufferGeometry.prototype.constructor = PolyhedronBufferGeometry; /** * @author timothypratley / https://github.com/timothypratley * @author Mugen87 / https://github.com/Mugen87 */ // TetrahedronGeometry function TetrahedronGeometry( radius, detail ) { Geometry.call( this ); this.type = 'TetrahedronGeometry'; this.parameters = { radius: radius, detail: detail }; this.fromBufferGeometry( new TetrahedronBufferGeometry( radius, detail ) ); this.mergeVertices(); } TetrahedronGeometry.prototype = Object.create( Geometry.prototype ); TetrahedronGeometry.prototype.constructor = TetrahedronGeometry; // TetrahedronBufferGeometry function TetrahedronBufferGeometry( radius, detail ) { var vertices = [ 1, 1, 1, - 1, - 1, 1, - 1, 1, - 1, 1, - 1, - 1 ]; var indices = [ 2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1 ]; PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail ); this.type = 'TetrahedronBufferGeometry'; this.parameters = { radius: radius, detail: detail }; } TetrahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); TetrahedronBufferGeometry.prototype.constructor = TetrahedronBufferGeometry; /** * @author timothypratley / https://github.com/timothypratley * @author Mugen87 / https://github.com/Mugen87 */ // OctahedronGeometry function OctahedronGeometry( radius, detail ) { Geometry.call( this ); this.type = 'OctahedronGeometry'; this.parameters = { radius: radius, detail: detail }; this.fromBufferGeometry( new OctahedronBufferGeometry( radius, detail ) ); this.mergeVertices(); } OctahedronGeometry.prototype = Object.create( Geometry.prototype ); OctahedronGeometry.prototype.constructor = OctahedronGeometry; // OctahedronBufferGeometry function OctahedronBufferGeometry( radius, detail ) { var vertices = [ 1, 0, 0, - 1, 0, 0, 0, 1, 0, 0, - 1, 0, 0, 0, 1, 0, 0, - 1 ]; var indices = [ 0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2 ]; PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail ); this.type = 'OctahedronBufferGeometry'; this.parameters = { radius: radius, detail: detail }; } OctahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); OctahedronBufferGeometry.prototype.constructor = OctahedronBufferGeometry; /** * @author timothypratley / https://github.com/timothypratley * @author Mugen87 / https://github.com/Mugen87 */ // IcosahedronGeometry function IcosahedronGeometry( radius, detail ) { Geometry.call( this ); this.type = 'IcosahedronGeometry'; this.parameters = { radius: radius, detail: detail }; this.fromBufferGeometry( new IcosahedronBufferGeometry( radius, detail ) ); this.mergeVertices(); } IcosahedronGeometry.prototype = Object.create( Geometry.prototype ); IcosahedronGeometry.prototype.constructor = IcosahedronGeometry; // IcosahedronBufferGeometry function IcosahedronBufferGeometry( radius, detail ) { var t = ( 1 + Math.sqrt( 5 ) ) / 2; var vertices = [ - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, 0, 0, - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, t, 0, - 1, t, 0, 1, - t, 0, - 1, - t, 0, 1 ]; var indices = [ 0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1 ]; PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail ); this.type = 'IcosahedronBufferGeometry'; this.parameters = { radius: radius, detail: detail }; } IcosahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); IcosahedronBufferGeometry.prototype.constructor = IcosahedronBufferGeometry; /** * @author Abe Pazos / https://hamoid.com * @author Mugen87 / https://github.com/Mugen87 */ // DodecahedronGeometry function DodecahedronGeometry( radius, detail ) { Geometry.call( this ); this.type = 'DodecahedronGeometry'; this.parameters = { radius: radius, detail: detail }; this.fromBufferGeometry( new DodecahedronBufferGeometry( radius, detail ) ); this.mergeVertices(); } DodecahedronGeometry.prototype = Object.create( Geometry.prototype ); DodecahedronGeometry.prototype.constructor = DodecahedronGeometry; // DodecahedronBufferGeometry function DodecahedronBufferGeometry( radius, detail ) { var t = ( 1 + Math.sqrt( 5 ) ) / 2; var r = 1 / t; var vertices = [ // (±1, ±1, ±1) - 1, - 1, - 1, - 1, - 1, 1, - 1, 1, - 1, - 1, 1, 1, 1, - 1, - 1, 1, - 1, 1, 1, 1, - 1, 1, 1, 1, // (0, ±1/φ, ±φ) 0, - r, - t, 0, - r, t, 0, r, - t, 0, r, t, // (±1/φ, ±φ, 0) - r, - t, 0, - r, t, 0, r, - t, 0, r, t, 0, // (±φ, 0, ±1/φ) - t, 0, - r, t, 0, - r, - t, 0, r, t, 0, r ]; var indices = [ 3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9 ]; PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail ); this.type = 'DodecahedronBufferGeometry'; this.parameters = { radius: radius, detail: detail }; } DodecahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); DodecahedronBufferGeometry.prototype.constructor = DodecahedronBufferGeometry; /** * @author oosmoxiecode / https://github.com/oosmoxiecode * @author WestLangley / https://github.com/WestLangley * @author zz85 / https://github.com/zz85 * @author miningold / https://github.com/miningold * @author jonobr1 / https://github.com/jonobr1 * @author Mugen87 / https://github.com/Mugen87 * */ // TubeGeometry function TubeGeometry( path, tubularSegments, radius, radialSegments, closed, taper ) { Geometry.call( this ); this.type = 'TubeGeometry'; this.parameters = { path: path, tubularSegments: tubularSegments, radius: radius, radialSegments: radialSegments, closed: closed }; if ( taper !== undefined ) console.warn( 'THREE.TubeGeometry: taper has been removed.' ); var bufferGeometry = new TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed ); // expose internals this.tangents = bufferGeometry.tangents; this.normals = bufferGeometry.normals; this.binormals = bufferGeometry.binormals; // create geometry this.fromBufferGeometry( bufferGeometry ); this.mergeVertices(); } TubeGeometry.prototype = Object.create( Geometry.prototype ); TubeGeometry.prototype.constructor = TubeGeometry; // TubeBufferGeometry function TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed ) { BufferGeometry.call( this ); this.type = 'TubeBufferGeometry'; this.parameters = { path: path, tubularSegments: tubularSegments, radius: radius, radialSegments: radialSegments, closed: closed }; tubularSegments = tubularSegments || 64; radius = radius || 1; radialSegments = radialSegments || 8; closed = closed || false; var frames = path.computeFrenetFrames( tubularSegments, closed ); // expose internals this.tangents = frames.tangents; this.normals = frames.normals; this.binormals = frames.binormals; // helper variables var vertex = new Vector3(); var normal = new Vector3(); var uv = new Vector2(); var i, j; // buffer var vertices = []; var normals = []; var uvs = []; var indices = []; // create buffer data generateBufferData(); // build geometry this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); // functions function generateBufferData() { for ( i = 0; i < tubularSegments; i ++ ) { generateSegment( i ); } // if the geometry is not closed, generate the last row of vertices and normals // at the regular position on the given path // // if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ) generateSegment( ( closed === false ) ? tubularSegments : 0 ); // uvs are generated in a separate function. // this makes it easy compute correct values for closed geometries generateUVs(); // finally create faces generateIndices(); } function generateSegment( i ) { // we use getPointAt to sample evenly distributed points from the given path var P = path.getPointAt( i / tubularSegments ); // retrieve corresponding normal and binormal var N = frames.normals[ i ]; var B = frames.binormals[ i ]; // generate normals and vertices for the current segment for ( j = 0; j <= radialSegments; j ++ ) { var v = j / radialSegments * Math.PI * 2; var sin = Math.sin( v ); var cos = - Math.cos( v ); // normal normal.x = ( cos * N.x + sin * B.x ); normal.y = ( cos * N.y + sin * B.y ); normal.z = ( cos * N.z + sin * B.z ); normal.normalize(); normals.push( normal.x, normal.y, normal.z ); // vertex vertex.x = P.x + radius * normal.x; vertex.y = P.y + radius * normal.y; vertex.z = P.z + radius * normal.z; vertices.push( vertex.x, vertex.y, vertex.z ); } } function generateIndices() { for ( j = 1; j <= tubularSegments; j ++ ) { for ( i = 1; i <= radialSegments; i ++ ) { var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 ); var b = ( radialSegments + 1 ) * j + ( i - 1 ); var c = ( radialSegments + 1 ) * j + i; var d = ( radialSegments + 1 ) * ( j - 1 ) + i; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } } function generateUVs() { for ( i = 0; i <= tubularSegments; i ++ ) { for ( j = 0; j <= radialSegments; j ++ ) { uv.x = i / tubularSegments; uv.y = j / radialSegments; uvs.push( uv.x, uv.y ); } } } } TubeBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); TubeBufferGeometry.prototype.constructor = TubeBufferGeometry; /** * @author oosmoxiecode * @author Mugen87 / https://github.com/Mugen87 * * based on http://www.blackpawn.com/texts/pqtorus/ */ // TorusKnotGeometry function TorusKnotGeometry( radius, tube, tubularSegments, radialSegments, p, q, heightScale ) { Geometry.call( this ); this.type = 'TorusKnotGeometry'; this.parameters = { radius: radius, tube: tube, tubularSegments: tubularSegments, radialSegments: radialSegments, p: p, q: q }; if ( heightScale !== undefined ) console.warn( 'THREE.TorusKnotGeometry: heightScale has been deprecated. Use .scale( x, y, z ) instead.' ); this.fromBufferGeometry( new TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) ); this.mergeVertices(); } TorusKnotGeometry.prototype = Object.create( Geometry.prototype ); TorusKnotGeometry.prototype.constructor = TorusKnotGeometry; // TorusKnotBufferGeometry function TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) { BufferGeometry.call( this ); this.type = 'TorusKnotBufferGeometry'; this.parameters = { radius: radius, tube: tube, tubularSegments: tubularSegments, radialSegments: radialSegments, p: p, q: q }; radius = radius || 100; tube = tube || 40; tubularSegments = Math.floor( tubularSegments ) || 64; radialSegments = Math.floor( radialSegments ) || 8; p = p || 2; q = q || 3; // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; // helper variables var i, j; var vertex = new Vector3(); var normal = new Vector3(); var P1 = new Vector3(); var P2 = new Vector3(); var B = new Vector3(); var T = new Vector3(); var N = new Vector3(); // generate vertices, normals and uvs for ( i = 0; i <= tubularSegments; ++ i ) { // the radian "u" is used to calculate the position on the torus curve of the current tubular segement var u = i / tubularSegments * p * Math.PI * 2; // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead. // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions calculatePositionOnCurve( u, p, q, radius, P1 ); calculatePositionOnCurve( u + 0.01, p, q, radius, P2 ); // calculate orthonormal basis T.subVectors( P2, P1 ); N.addVectors( P2, P1 ); B.crossVectors( T, N ); N.crossVectors( B, T ); // normalize B, N. T can be ignored, we don't use it B.normalize(); N.normalize(); for ( j = 0; j <= radialSegments; ++ j ) { // now calculate the vertices. they are nothing more than an extrusion of the torus curve. // because we extrude a shape in the xy-plane, there is no need to calculate a z-value. var v = j / radialSegments * Math.PI * 2; var cx = - tube * Math.cos( v ); var cy = tube * Math.sin( v ); // now calculate the final vertex position. // first we orient the extrusion with our basis vectos, then we add it to the current position on the curve vertex.x = P1.x + ( cx * N.x + cy * B.x ); vertex.y = P1.y + ( cx * N.y + cy * B.y ); vertex.z = P1.z + ( cx * N.z + cy * B.z ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal) normal.subVectors( vertex, P1 ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( i / tubularSegments ); uvs.push( j / radialSegments ); } } // generate indices for ( j = 1; j <= tubularSegments; j ++ ) { for ( i = 1; i <= radialSegments; i ++ ) { // indices var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 ); var b = ( radialSegments + 1 ) * j + ( i - 1 ); var c = ( radialSegments + 1 ) * j + i; var d = ( radialSegments + 1 ) * ( j - 1 ) + i; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); // this function calculates the current position on the torus curve function calculatePositionOnCurve( u, p, q, radius, position ) { var cu = Math.cos( u ); var su = Math.sin( u ); var quOverP = q / p * u; var cs = Math.cos( quOverP ); position.x = radius * ( 2 + cs ) * 0.5 * cu; position.y = radius * ( 2 + cs ) * su * 0.5; position.z = radius * Math.sin( quOverP ) * 0.5; } } TorusKnotBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); TorusKnotBufferGeometry.prototype.constructor = TorusKnotBufferGeometry; /** * @author oosmoxiecode * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 */ // TorusGeometry function TorusGeometry( radius, tube, radialSegments, tubularSegments, arc ) { Geometry.call( this ); this.type = 'TorusGeometry'; this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, arc: arc }; this.fromBufferGeometry( new TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) ); this.mergeVertices(); } TorusGeometry.prototype = Object.create( Geometry.prototype ); TorusGeometry.prototype.constructor = TorusGeometry; // TorusBufferGeometry function TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) { BufferGeometry.call( this ); this.type = 'TorusBufferGeometry'; this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, arc: arc }; radius = radius || 100; tube = tube || 40; radialSegments = Math.floor( radialSegments ) || 8; tubularSegments = Math.floor( tubularSegments ) || 6; arc = arc || Math.PI * 2; // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; // helper variables var center = new Vector3(); var vertex = new Vector3(); var normal = new Vector3(); var j, i; // generate vertices, normals and uvs for ( j = 0; j <= radialSegments; j ++ ) { for ( i = 0; i <= tubularSegments; i ++ ) { var u = i / tubularSegments * arc; var v = j / radialSegments * Math.PI * 2; // vertex vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u ); vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u ); vertex.z = tube * Math.sin( v ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal center.x = radius * Math.cos( u ); center.y = radius * Math.sin( u ); normal.subVectors( vertex, center ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( i / tubularSegments ); uvs.push( j / radialSegments ); } } // generate indices for ( j = 1; j <= radialSegments; j ++ ) { for ( i = 1; i <= tubularSegments; i ++ ) { // indices var a = ( tubularSegments + 1 ) * j + i - 1; var b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1; var c = ( tubularSegments + 1 ) * ( j - 1 ) + i; var d = ( tubularSegments + 1 ) * j + i; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } TorusBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); TorusBufferGeometry.prototype.constructor = TorusBufferGeometry; /** * @author zz85 / http://www.lab4games.net/zz85/blog */ var ShapeUtils = { // calculate area of the contour polygon area: function ( contour ) { var n = contour.length; var a = 0.0; for ( var p = n - 1, q = 0; q < n; p = q ++ ) { a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y; } return a * 0.5; }, triangulate: ( function () { /** * This code is a quick port of code written in C++ which was submitted to * flipcode.com by John W. Ratcliff // July 22, 2000 * See original code and more information here: * http://www.flipcode.com/archives/Efficient_Polygon_Triangulation.shtml * * ported to actionscript by Zevan Rosser * www.actionsnippet.com * * ported to javascript by Joshua Koo * http://www.lab4games.net/zz85/blog * */ function snip( contour, u, v, w, n, verts ) { var p; var ax, ay, bx, by; var cx, cy, px, py; ax = contour[ verts[ u ] ].x; ay = contour[ verts[ u ] ].y; bx = contour[ verts[ v ] ].x; by = contour[ verts[ v ] ].y; cx = contour[ verts[ w ] ].x; cy = contour[ verts[ w ] ].y; if ( ( bx - ax ) * ( cy - ay ) - ( by - ay ) * ( cx - ax ) <= 0 ) return false; var aX, aY, bX, bY, cX, cY; var apx, apy, bpx, bpy, cpx, cpy; var cCROSSap, bCROSScp, aCROSSbp; aX = cx - bx; aY = cy - by; bX = ax - cx; bY = ay - cy; cX = bx - ax; cY = by - ay; for ( p = 0; p < n; p ++ ) { px = contour[ verts[ p ] ].x; py = contour[ verts[ p ] ].y; if ( ( ( px === ax ) && ( py === ay ) ) || ( ( px === bx ) && ( py === by ) ) || ( ( px === cx ) && ( py === cy ) ) ) continue; apx = px - ax; apy = py - ay; bpx = px - bx; bpy = py - by; cpx = px - cx; cpy = py - cy; // see if p is inside triangle abc aCROSSbp = aX * bpy - aY * bpx; cCROSSap = cX * apy - cY * apx; bCROSScp = bX * cpy - bY * cpx; if ( ( aCROSSbp >= - Number.EPSILON ) && ( bCROSScp >= - Number.EPSILON ) && ( cCROSSap >= - Number.EPSILON ) ) return false; } return true; } // takes in an contour array and returns return function triangulate( contour, indices ) { var n = contour.length; if ( n < 3 ) return null; var result = [], verts = [], vertIndices = []; /* we want a counter-clockwise polygon in verts */ var u, v, w; if ( ShapeUtils.area( contour ) > 0.0 ) { for ( v = 0; v < n; v ++ ) verts[ v ] = v; } else { for ( v = 0; v < n; v ++ ) verts[ v ] = ( n - 1 ) - v; } var nv = n; /* remove nv - 2 vertices, creating 1 triangle every time */ var count = 2 * nv; /* error detection */ for ( v = nv - 1; nv > 2; ) { /* if we loop, it is probably a non-simple polygon */ if ( ( count -- ) <= 0 ) { //** Triangulate: ERROR - probable bad polygon! //throw ( "Warning, unable to triangulate polygon!" ); //return null; // Sometimes warning is fine, especially polygons are triangulated in reverse. console.warn( 'THREE.ShapeUtils: Unable to triangulate polygon! in triangulate()' ); if ( indices ) return vertIndices; return result; } /* three consecutive vertices in current polygon, */ u = v; if ( nv <= u ) u = 0; /* previous */ v = u + 1; if ( nv <= v ) v = 0; /* new v */ w = v + 1; if ( nv <= w ) w = 0; /* next */ if ( snip( contour, u, v, w, nv, verts ) ) { var a, b, c, s, t; /* true names of the vertices */ a = verts[ u ]; b = verts[ v ]; c = verts[ w ]; /* output Triangle */ result.push( [ contour[ a ], contour[ b ], contour[ c ] ] ); vertIndices.push( [ verts[ u ], verts[ v ], verts[ w ] ] ); /* remove v from the remaining polygon */ for ( s = v, t = v + 1; t < nv; s ++, t ++ ) { verts[ s ] = verts[ t ]; } nv --; /* reset error detection counter */ count = 2 * nv; } } if ( indices ) return vertIndices; return result; } } )(), triangulateShape: function ( contour, holes ) { function removeDupEndPts(points) { var l = points.length; if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) { points.pop(); } } removeDupEndPts( contour ); holes.forEach( removeDupEndPts ); function point_in_segment_2D_colin( inSegPt1, inSegPt2, inOtherPt ) { // inOtherPt needs to be collinear to the inSegment if ( inSegPt1.x !== inSegPt2.x ) { if ( inSegPt1.x < inSegPt2.x ) { return ( ( inSegPt1.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt2.x ) ); } else { return ( ( inSegPt2.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt1.x ) ); } } else { if ( inSegPt1.y < inSegPt2.y ) { return ( ( inSegPt1.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt2.y ) ); } else { return ( ( inSegPt2.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt1.y ) ); } } } function intersect_segments_2D( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1, inSeg2Pt2, inExcludeAdjacentSegs ) { var seg1dx = inSeg1Pt2.x - inSeg1Pt1.x, seg1dy = inSeg1Pt2.y - inSeg1Pt1.y; var seg2dx = inSeg2Pt2.x - inSeg2Pt1.x, seg2dy = inSeg2Pt2.y - inSeg2Pt1.y; var seg1seg2dx = inSeg1Pt1.x - inSeg2Pt1.x; var seg1seg2dy = inSeg1Pt1.y - inSeg2Pt1.y; var limit = seg1dy * seg2dx - seg1dx * seg2dy; var perpSeg1 = seg1dy * seg1seg2dx - seg1dx * seg1seg2dy; if ( Math.abs( limit ) > Number.EPSILON ) { // not parallel var perpSeg2; if ( limit > 0 ) { if ( ( perpSeg1 < 0 ) || ( perpSeg1 > limit ) ) return []; perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy; if ( ( perpSeg2 < 0 ) || ( perpSeg2 > limit ) ) return []; } else { if ( ( perpSeg1 > 0 ) || ( perpSeg1 < limit ) ) return []; perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy; if ( ( perpSeg2 > 0 ) || ( perpSeg2 < limit ) ) return []; } // i.e. to reduce rounding errors // intersection at endpoint of segment#1? if ( perpSeg2 === 0 ) { if ( ( inExcludeAdjacentSegs ) && ( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) ) return []; return [ inSeg1Pt1 ]; } if ( perpSeg2 === limit ) { if ( ( inExcludeAdjacentSegs ) && ( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) ) return []; return [ inSeg1Pt2 ]; } // intersection at endpoint of segment#2? if ( perpSeg1 === 0 ) return [ inSeg2Pt1 ]; if ( perpSeg1 === limit ) return [ inSeg2Pt2 ]; // return real intersection point var factorSeg1 = perpSeg2 / limit; return [ { x: inSeg1Pt1.x + factorSeg1 * seg1dx, y: inSeg1Pt1.y + factorSeg1 * seg1dy } ]; } else { // parallel or collinear if ( ( perpSeg1 !== 0 ) || ( seg2dy * seg1seg2dx !== seg2dx * seg1seg2dy ) ) return []; // they are collinear or degenerate var seg1Pt = ( ( seg1dx === 0 ) && ( seg1dy === 0 ) ); // segment1 is just a point? var seg2Pt = ( ( seg2dx === 0 ) && ( seg2dy === 0 ) ); // segment2 is just a point? // both segments are points if ( seg1Pt && seg2Pt ) { if ( ( inSeg1Pt1.x !== inSeg2Pt1.x ) || ( inSeg1Pt1.y !== inSeg2Pt1.y ) ) return []; // they are distinct points return [ inSeg1Pt1 ]; // they are the same point } // segment#1 is a single point if ( seg1Pt ) { if ( ! point_in_segment_2D_colin( inSeg2Pt1, inSeg2Pt2, inSeg1Pt1 ) ) return []; // but not in segment#2 return [ inSeg1Pt1 ]; } // segment#2 is a single point if ( seg2Pt ) { if ( ! point_in_segment_2D_colin( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1 ) ) return []; // but not in segment#1 return [ inSeg2Pt1 ]; } // they are collinear segments, which might overlap var seg1min, seg1max, seg1minVal, seg1maxVal; var seg2min, seg2max, seg2minVal, seg2maxVal; if ( seg1dx !== 0 ) { // the segments are NOT on a vertical line if ( inSeg1Pt1.x < inSeg1Pt2.x ) { seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.x; seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.x; } else { seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.x; seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.x; } if ( inSeg2Pt1.x < inSeg2Pt2.x ) { seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.x; seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.x; } else { seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.x; seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.x; } } else { // the segments are on a vertical line if ( inSeg1Pt1.y < inSeg1Pt2.y ) { seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.y; seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.y; } else { seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.y; seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.y; } if ( inSeg2Pt1.y < inSeg2Pt2.y ) { seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.y; seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.y; } else { seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.y; seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.y; } } if ( seg1minVal <= seg2minVal ) { if ( seg1maxVal < seg2minVal ) return []; if ( seg1maxVal === seg2minVal ) { if ( inExcludeAdjacentSegs ) return []; return [ seg2min ]; } if ( seg1maxVal <= seg2maxVal ) return [ seg2min, seg1max ]; return [ seg2min, seg2max ]; } else { if ( seg1minVal > seg2maxVal ) return []; if ( seg1minVal === seg2maxVal ) { if ( inExcludeAdjacentSegs ) return []; return [ seg1min ]; } if ( seg1maxVal <= seg2maxVal ) return [ seg1min, seg1max ]; return [ seg1min, seg2max ]; } } } function isPointInsideAngle( inVertex, inLegFromPt, inLegToPt, inOtherPt ) { // The order of legs is important // translation of all points, so that Vertex is at (0,0) var legFromPtX = inLegFromPt.x - inVertex.x, legFromPtY = inLegFromPt.y - inVertex.y; var legToPtX = inLegToPt.x - inVertex.x, legToPtY = inLegToPt.y - inVertex.y; var otherPtX = inOtherPt.x - inVertex.x, otherPtY = inOtherPt.y - inVertex.y; // main angle >0: < 180 deg.; 0: 180 deg.; <0: > 180 deg. var from2toAngle = legFromPtX * legToPtY - legFromPtY * legToPtX; var from2otherAngle = legFromPtX * otherPtY - legFromPtY * otherPtX; if ( Math.abs( from2toAngle ) > Number.EPSILON ) { // angle != 180 deg. var other2toAngle = otherPtX * legToPtY - otherPtY * legToPtX; // console.log( "from2to: " + from2toAngle + ", from2other: " + from2otherAngle + ", other2to: " + other2toAngle ); if ( from2toAngle > 0 ) { // main angle < 180 deg. return ( ( from2otherAngle >= 0 ) && ( other2toAngle >= 0 ) ); } else { // main angle > 180 deg. return ( ( from2otherAngle >= 0 ) || ( other2toAngle >= 0 ) ); } } else { // angle == 180 deg. // console.log( "from2to: 180 deg., from2other: " + from2otherAngle ); return ( from2otherAngle > 0 ); } } function removeHoles( contour, holes ) { var shape = contour.concat(); // work on this shape var hole; function isCutLineInsideAngles( inShapeIdx, inHoleIdx ) { // Check if hole point lies within angle around shape point var lastShapeIdx = shape.length - 1; var prevShapeIdx = inShapeIdx - 1; if ( prevShapeIdx < 0 ) prevShapeIdx = lastShapeIdx; var nextShapeIdx = inShapeIdx + 1; if ( nextShapeIdx > lastShapeIdx ) nextShapeIdx = 0; var insideAngle = isPointInsideAngle( shape[ inShapeIdx ], shape[ prevShapeIdx ], shape[ nextShapeIdx ], hole[ inHoleIdx ] ); if ( ! insideAngle ) { // console.log( "Vertex (Shape): " + inShapeIdx + ", Point: " + hole[inHoleIdx].x + "/" + hole[inHoleIdx].y ); return false; } // Check if shape point lies within angle around hole point var lastHoleIdx = hole.length - 1; var prevHoleIdx = inHoleIdx - 1; if ( prevHoleIdx < 0 ) prevHoleIdx = lastHoleIdx; var nextHoleIdx = inHoleIdx + 1; if ( nextHoleIdx > lastHoleIdx ) nextHoleIdx = 0; insideAngle = isPointInsideAngle( hole[ inHoleIdx ], hole[ prevHoleIdx ], hole[ nextHoleIdx ], shape[ inShapeIdx ] ); if ( ! insideAngle ) { // console.log( "Vertex (Hole): " + inHoleIdx + ", Point: " + shape[inShapeIdx].x + "/" + shape[inShapeIdx].y ); return false; } return true; } function intersectsShapeEdge( inShapePt, inHolePt ) { // checks for intersections with shape edges var sIdx, nextIdx, intersection; for ( sIdx = 0; sIdx < shape.length; sIdx ++ ) { nextIdx = sIdx + 1; nextIdx %= shape.length; intersection = intersect_segments_2D( inShapePt, inHolePt, shape[ sIdx ], shape[ nextIdx ], true ); if ( intersection.length > 0 ) return true; } return false; } var indepHoles = []; function intersectsHoleEdge( inShapePt, inHolePt ) { // checks for intersections with hole edges var ihIdx, chkHole, hIdx, nextIdx, intersection; for ( ihIdx = 0; ihIdx < indepHoles.length; ihIdx ++ ) { chkHole = holes[ indepHoles[ ihIdx ]]; for ( hIdx = 0; hIdx < chkHole.length; hIdx ++ ) { nextIdx = hIdx + 1; nextIdx %= chkHole.length; intersection = intersect_segments_2D( inShapePt, inHolePt, chkHole[ hIdx ], chkHole[ nextIdx ], true ); if ( intersection.length > 0 ) return true; } } return false; } var holeIndex, shapeIndex, shapePt, holePt, holeIdx, cutKey, failedCuts = [], tmpShape1, tmpShape2, tmpHole1, tmpHole2; for ( var h = 0, hl = holes.length; h < hl; h ++ ) { indepHoles.push( h ); } var minShapeIndex = 0; var counter = indepHoles.length * 2; while ( indepHoles.length > 0 ) { counter --; if ( counter < 0 ) { console.log( "Infinite Loop! Holes left:" + indepHoles.length + ", Probably Hole outside Shape!" ); break; } // search for shape-vertex and hole-vertex, // which can be connected without intersections for ( shapeIndex = minShapeIndex; shapeIndex < shape.length; shapeIndex ++ ) { shapePt = shape[ shapeIndex ]; holeIndex = - 1; // search for hole which can be reached without intersections for ( var h = 0; h < indepHoles.length; h ++ ) { holeIdx = indepHoles[ h ]; // prevent multiple checks cutKey = shapePt.x + ":" + shapePt.y + ":" + holeIdx; if ( failedCuts[ cutKey ] !== undefined ) continue; hole = holes[ holeIdx ]; for ( var h2 = 0; h2 < hole.length; h2 ++ ) { holePt = hole[ h2 ]; if ( ! isCutLineInsideAngles( shapeIndex, h2 ) ) continue; if ( intersectsShapeEdge( shapePt, holePt ) ) continue; if ( intersectsHoleEdge( shapePt, holePt ) ) continue; holeIndex = h2; indepHoles.splice( h, 1 ); tmpShape1 = shape.slice( 0, shapeIndex + 1 ); tmpShape2 = shape.slice( shapeIndex ); tmpHole1 = hole.slice( holeIndex ); tmpHole2 = hole.slice( 0, holeIndex + 1 ); shape = tmpShape1.concat( tmpHole1 ).concat( tmpHole2 ).concat( tmpShape2 ); minShapeIndex = shapeIndex; // Debug only, to show the selected cuts // glob_CutLines.push( [ shapePt, holePt ] ); break; } if ( holeIndex >= 0 ) break; // hole-vertex found failedCuts[ cutKey ] = true; // remember failure } if ( holeIndex >= 0 ) break; // hole-vertex found } } return shape; /* shape with no holes */ } var i, il, f, face, key, index, allPointsMap = {}; // To maintain reference to old shape, one must match coordinates, or offset the indices from original arrays. It's probably easier to do the first. var allpoints = contour.concat(); for ( var h = 0, hl = holes.length; h < hl; h ++ ) { Array.prototype.push.apply( allpoints, holes[ h ] ); } //console.log( "allpoints",allpoints, allpoints.length ); // prepare all points map for ( i = 0, il = allpoints.length; i < il; i ++ ) { key = allpoints[ i ].x + ":" + allpoints[ i ].y; if ( allPointsMap[ key ] !== undefined ) { console.warn( "THREE.ShapeUtils: Duplicate point", key, i ); } allPointsMap[ key ] = i; } // remove holes by cutting paths to holes and adding them to the shape var shapeWithoutHoles = removeHoles( contour, holes ); var triangles = ShapeUtils.triangulate( shapeWithoutHoles, false ); // True returns indices for points of spooled shape //console.log( "triangles",triangles, triangles.length ); // check all face vertices against all points map for ( i = 0, il = triangles.length; i < il; i ++ ) { face = triangles[ i ]; for ( f = 0; f < 3; f ++ ) { key = face[ f ].x + ":" + face[ f ].y; index = allPointsMap[ key ]; if ( index !== undefined ) { face[ f ] = index; } } } return triangles.concat(); }, isClockWise: function ( pts ) { return ShapeUtils.area( pts ) < 0; } }; /** * @author zz85 / http://www.lab4games.net/zz85/blog * * Creates extruded geometry from a path shape. * * parameters = { * * curveSegments: , // number of points on the curves * steps: , // number of points for z-side extrusions / used for subdividing segments of extrude spline too * amount: , // Depth to extrude the shape * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into the original shape bevel goes * bevelSize: , // how far from shape outline is bevel * bevelSegments: , // number of bevel layers * * extrudePath: // curve to extrude shape along * frames: // containing arrays of tangents, normals, binormals * * UVGenerator: // object that provides UV generator functions * * } */ // ExtrudeGeometry function ExtrudeGeometry( shapes, options ) { Geometry.call( this ); this.type = 'ExtrudeGeometry'; this.parameters = { shapes: shapes, options: options }; this.fromBufferGeometry( new ExtrudeBufferGeometry( shapes, options ) ); this.mergeVertices(); } ExtrudeGeometry.prototype = Object.create( Geometry.prototype ); ExtrudeGeometry.prototype.constructor = ExtrudeGeometry; // ExtrudeBufferGeometry function ExtrudeBufferGeometry( shapes, options ) { if ( typeof ( shapes ) === "undefined" ) { return; } BufferGeometry.call( this ); this.type = 'ExtrudeBufferGeometry'; shapes = Array.isArray( shapes ) ? shapes : [ shapes ]; this.addShapeList( shapes, options ); this.computeVertexNormals(); // can't really use automatic vertex normals // as then front and back sides get smoothed too // should do separate smoothing just for sides //this.computeVertexNormals(); //console.log( "took", ( Date.now() - startTime ) ); } ExtrudeBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); ExtrudeBufferGeometry.prototype.constructor = ExtrudeBufferGeometry; ExtrudeBufferGeometry.prototype.getArrays = function () { var positionAttribute = this.getAttribute( "position" ); var verticesArray = positionAttribute ? Array.prototype.slice.call( positionAttribute.array ) : []; var uvAttribute = this.getAttribute( "uv" ); var uvArray = uvAttribute ? Array.prototype.slice.call( uvAttribute.array ) : []; var IndexAttribute = this.index; var indicesArray = IndexAttribute ? Array.prototype.slice.call( IndexAttribute.array ) : []; return { position: verticesArray, uv: uvArray, index: indicesArray }; }; ExtrudeBufferGeometry.prototype.addShapeList = function ( shapes, options ) { var sl = shapes.length; options.arrays = this.getArrays(); for ( var s = 0; s < sl; s ++ ) { var shape = shapes[ s ]; this.addShape( shape, options ); } this.setIndex( options.arrays.index ); this.addAttribute( 'position', new Float32BufferAttribute( options.arrays.position, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( options.arrays.uv, 2 ) ); }; ExtrudeBufferGeometry.prototype.addShape = function ( shape, options ) { var arrays = options.arrays ? options.arrays : this.getArrays(); var verticesArray = arrays.position; var indicesArray = arrays.index; var uvArray = arrays.uv; var placeholder = []; var amount = options.amount !== undefined ? options.amount : 100; var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6; // 10 var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2; // 8 var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3; var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; // false var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; var steps = options.steps !== undefined ? options.steps : 1; var extrudePath = options.extrudePath; var extrudePts, extrudeByPath = false; // Use default WorldUVGenerator if no UV generators are specified. var uvgen = options.UVGenerator !== undefined ? options.UVGenerator : ExtrudeGeometry.WorldUVGenerator; var splineTube, binormal, normal, position2; if ( extrudePath ) { extrudePts = extrudePath.getSpacedPoints( steps ); extrudeByPath = true; bevelEnabled = false; // bevels not supported for path extrusion // SETUP TNB variables // TODO1 - have a .isClosed in spline? splineTube = options.frames !== undefined ? options.frames : extrudePath.computeFrenetFrames( steps, false ); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length); binormal = new Vector3(); normal = new Vector3(); position2 = new Vector3(); } // Safeguards if bevels are not enabled if ( ! bevelEnabled ) { bevelSegments = 0; bevelThickness = 0; bevelSize = 0; } // Variables initialization var ahole, h, hl; // looping of holes var scope = this; var shapePoints = shape.extractPoints( curveSegments ); var vertices = shapePoints.shape; var holes = shapePoints.holes; var reverse = ! ShapeUtils.isClockWise( vertices ); if ( reverse ) { vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ... for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; if ( ShapeUtils.isClockWise( ahole ) ) { holes[ h ] = ahole.reverse(); } } } var faces = ShapeUtils.triangulateShape( vertices, holes ); /* Vertices */ var contour = vertices; // vertices has all points but contour has only points of circumference for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; vertices = vertices.concat( ahole ); } function scalePt2( pt, vec, size ) { if ( ! vec ) console.error( "THREE.ExtrudeGeometry: vec does not exist" ); return vec.clone().multiplyScalar( size ).add( pt ); } var b, bs, t, z, vert, vlen = vertices.length, face, flen = faces.length; // Find directions for point movement function getBevelVec( inPt, inPrev, inNext ) { // computes for inPt the corresponding point inPt' on a new contour // shifted by 1 unit (length of normalized vector) to the left // if we walk along contour clockwise, this new contour is outside the old one // // inPt' is the intersection of the two lines parallel to the two // adjacent edges of inPt at a distance of 1 unit on the left side. var v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt // good reading for geometry algorithms (here: line-line intersection) // http://geomalgorithms.com/a05-_intersect-1.html var v_prev_x = inPt.x - inPrev.x, v_prev_y = inPt.y - inPrev.y; var v_next_x = inNext.x - inPt.x, v_next_y = inNext.y - inPt.y; var v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y ); // check for collinear edges var collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x ); if ( Math.abs( collinear0 ) > Number.EPSILON ) { // not collinear // length of vectors for normalizing var v_prev_len = Math.sqrt( v_prev_lensq ); var v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y ); // shift adjacent points by unit vectors to the left var ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len ); var ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len ); var ptNextShift_x = ( inNext.x - v_next_y / v_next_len ); var ptNextShift_y = ( inNext.y + v_next_x / v_next_len ); // scaling factor for v_prev to intersection point var sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y - ( ptNextShift_y - ptPrevShift_y ) * v_next_x ) / ( v_prev_x * v_next_y - v_prev_y * v_next_x ); // vector from inPt to intersection point v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x ); v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y ); // Don't normalize!, otherwise sharp corners become ugly // but prevent crazy spikes var v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y ); if ( v_trans_lensq <= 2 ) { return new Vector2( v_trans_x, v_trans_y ); } else { shrink_by = Math.sqrt( v_trans_lensq / 2 ); } } else { // handle special case of collinear edges var direction_eq = false; // assumes: opposite if ( v_prev_x > Number.EPSILON ) { if ( v_next_x > Number.EPSILON ) { direction_eq = true; } } else { if ( v_prev_x < - Number.EPSILON ) { if ( v_next_x < - Number.EPSILON ) { direction_eq = true; } } else { if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) { direction_eq = true; } } } if ( direction_eq ) { // console.log("Warning: lines are a straight sequence"); v_trans_x = - v_prev_y; v_trans_y = v_prev_x; shrink_by = Math.sqrt( v_prev_lensq ); } else { // console.log("Warning: lines are a straight spike"); v_trans_x = v_prev_x; v_trans_y = v_prev_y; shrink_by = Math.sqrt( v_prev_lensq / 2 ); } } return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by ); } var contourMovements = []; for ( var i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) // console.log('i,j,k', i, j , k) contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] ); } var holesMovements = [], oneHoleMovements, verticesMovements = contourMovements.concat(); for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; oneHoleMovements = []; for ( i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] ); } holesMovements.push( oneHoleMovements ); verticesMovements = verticesMovements.concat( oneHoleMovements ); } // Loop bevelSegments, 1 for the front, 1 for the back for ( b = 0; b < bevelSegments; b ++ ) { //for ( b = bevelSegments; b > 0; b -- ) { t = b / bevelSegments; z = bevelThickness * Math.cos( t * Math.PI / 2 ); bs = bevelSize * Math.sin( t * Math.PI / 2 ); // contract shape for ( i = 0, il = contour.length; i < il; i ++ ) { vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, - z ); } // expand holes for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( i = 0, il = ahole.length; i < il; i ++ ) { vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); v( vert.x, vert.y, - z ); } } } bs = bevelSize; // Back facing vertices for ( i = 0; i < vlen; i ++ ) { vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, 0 ); } else { // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x ); normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y ); position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } // Add stepped vertices... // Including front facing vertices var s; for ( s = 1; s <= steps; s ++ ) { for ( i = 0; i < vlen; i ++ ) { vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, amount / steps * s ); } else { // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x ); normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y ); position2.copy( extrudePts[ s ] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } } // Add bevel segments planes //for ( b = 1; b <= bevelSegments; b ++ ) { for ( b = bevelSegments - 1; b >= 0; b -- ) { t = b / bevelSegments; z = bevelThickness * Math.cos( t * Math.PI / 2 ); bs = bevelSize * Math.sin( t * Math.PI / 2 ); // contract shape for ( i = 0, il = contour.length; i < il; i ++ ) { vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, amount + z ); } // expand holes for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( i = 0, il = ahole.length; i < il; i ++ ) { vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); if ( ! extrudeByPath ) { v( vert.x, vert.y, amount + z ); } else { v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z ); } } } } /* Faces */ // Top and bottom faces buildLidFaces(); // Sides faces buildSideFaces(); ///// Internal functions function buildLidFaces() { var start = verticesArray.length/3; if ( bevelEnabled ) { var layer = 0; // steps + 1 var offset = vlen * layer; // Bottom faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset ); } layer = steps + bevelSegments * 2; offset = vlen * layer; // Top faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset ); } } else { // Bottom faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 2 ], face[ 1 ], face[ 0 ] ); } // Top faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps ); } } scope.addGroup( start, verticesArray.length/3 -start, options.material !== undefined ? options.material : 0); } // Create faces for the z-sides of the shape function buildSideFaces() { var start = verticesArray.length/3; var layeroffset = 0; sidewalls( contour, layeroffset ); layeroffset += contour.length; for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; sidewalls( ahole, layeroffset ); //, true layeroffset += ahole.length; } scope.addGroup( start, verticesArray.length/3 -start, options.extrudeMaterial !== undefined ? options.extrudeMaterial : 1); } function sidewalls( contour, layeroffset ) { var j, k; i = contour.length; while ( -- i >= 0 ) { j = i; k = i - 1; if ( k < 0 ) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length); var s = 0, sl = steps + bevelSegments * 2; for ( s = 0; s < sl; s ++ ) { var slen1 = vlen * s; var slen2 = vlen * ( s + 1 ); var a = layeroffset + j + slen1, b = layeroffset + k + slen1, c = layeroffset + k + slen2, d = layeroffset + j + slen2; f4( a, b, c, d, contour, s, sl, j, k ); } } } function v( x, y, z ) { placeholder.push( x ); placeholder.push( y ); placeholder.push( z ); } function f3( a, b, c ) { addVertex( a ); addVertex( b ); addVertex( c ); var nextIndex = verticesArray.length / 3; var uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 ); addUV( uvs[ 0 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 2 ] ); } function f4( a, b, c, d, wallContour, stepIndex, stepsLength, contourIndex1, contourIndex2 ) { addVertex( a ); addVertex( b ); addVertex( d ); addVertex( b ); addVertex( c ); addVertex( d ); var nextIndex = verticesArray.length / 3; var uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 ); addUV( uvs[ 0 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 3 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 2 ] ); addUV( uvs[ 3 ] ); } function addVertex( index ) { indicesArray.push( verticesArray.length / 3 ); verticesArray.push( placeholder[ index * 3 + 0 ] ); verticesArray.push( placeholder[ index * 3 + 1 ] ); verticesArray.push( placeholder[ index * 3 + 2 ] ); } function addUV( vector2 ) { uvArray.push( vector2.x ); uvArray.push( vector2.y ); } if ( ! options.arrays ) { this.setIndex( indicesArray ); this.addAttribute( 'position', new Float32BufferAttribute( verticesArray, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( options.arrays.uv, 2 ) ); } }; ExtrudeGeometry.WorldUVGenerator = { generateTopUV: function ( geometry, vertices, indexA, indexB, indexC ) { var a_x = vertices[ indexA * 3 ]; var a_y = vertices[ indexA * 3 + 1 ]; var b_x = vertices[ indexB * 3 ]; var b_y = vertices[ indexB * 3 + 1 ]; var c_x = vertices[ indexC * 3 ]; var c_y = vertices[ indexC * 3 + 1 ]; return [ new Vector2( a_x, a_y ), new Vector2( b_x, b_y ), new Vector2( c_x, c_y ) ]; }, generateSideWallUV: function ( geometry, vertices, indexA, indexB, indexC, indexD ) { var a_x = vertices[ indexA * 3 ]; var a_y = vertices[ indexA * 3 + 1 ]; var a_z = vertices[ indexA * 3 + 2 ]; var b_x = vertices[ indexB * 3 ]; var b_y = vertices[ indexB * 3 + 1 ]; var b_z = vertices[ indexB * 3 + 2 ]; var c_x = vertices[ indexC * 3 ]; var c_y = vertices[ indexC * 3 + 1 ]; var c_z = vertices[ indexC * 3 + 2 ]; var d_x = vertices[ indexD * 3 ]; var d_y = vertices[ indexD * 3 + 1 ]; var d_z = vertices[ indexD * 3 + 2 ]; if ( Math.abs( a_y - b_y ) < 0.01 ) { return [ new Vector2( a_x, 1 - a_z ), new Vector2( b_x, 1 - b_z ), new Vector2( c_x, 1 - c_z ), new Vector2( d_x, 1 - d_z ) ]; } else { return [ new Vector2( a_y, 1 - a_z ), new Vector2( b_y, 1 - b_z ), new Vector2( c_y, 1 - c_z ), new Vector2( d_y, 1 - d_z ) ]; } } }; /** * @author zz85 / http://www.lab4games.net/zz85/blog * @author alteredq / http://alteredqualia.com/ * * Text = 3D Text * * parameters = { * font: , // font * * size: , // size of the text * height: , // thickness to extrude text * curveSegments: , // number of points on the curves * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into text bevel goes * bevelSize: // how far from text outline is bevel * } */ // TextGeometry function TextGeometry( text, parameters ) { Geometry.call( this ); this.type = 'TextGeometry'; this.parameters = { text: text, parameters: parameters }; this.fromBufferGeometry( new TextBufferGeometry( text, parameters ) ); this.mergeVertices(); } TextGeometry.prototype = Object.create( Geometry.prototype ); TextGeometry.prototype.constructor = TextGeometry; // TextBufferGeometry function TextBufferGeometry( text, parameters ) { parameters = parameters || {}; var font = parameters.font; if ( ! ( font && font.isFont ) ) { console.error( 'THREE.TextGeometry: font parameter is not an instance of THREE.Font.' ); return new Geometry(); } var shapes = font.generateShapes( text, parameters.size, parameters.curveSegments ); // translate parameters to ExtrudeGeometry API parameters.amount = parameters.height !== undefined ? parameters.height : 50; // defaults if ( parameters.bevelThickness === undefined ) parameters.bevelThickness = 10; if ( parameters.bevelSize === undefined ) parameters.bevelSize = 8; if ( parameters.bevelEnabled === undefined ) parameters.bevelEnabled = false; ExtrudeBufferGeometry.call( this, shapes, parameters ); this.type = 'TextBufferGeometry'; } TextBufferGeometry.prototype = Object.create( ExtrudeBufferGeometry.prototype ); TextBufferGeometry.prototype.constructor = TextBufferGeometry; /** * @author mrdoob / http://mrdoob.com/ * @author benaadams / https://twitter.com/ben_a_adams * @author Mugen87 / https://github.com/Mugen87 */ // SphereGeometry function SphereGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) { Geometry.call( this ); this.type = 'SphereGeometry'; this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength }; this.fromBufferGeometry( new SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) ); this.mergeVertices(); } SphereGeometry.prototype = Object.create( Geometry.prototype ); SphereGeometry.prototype.constructor = SphereGeometry; // SphereBufferGeometry function SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) { BufferGeometry.call( this ); this.type = 'SphereBufferGeometry'; this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength }; radius = radius || 50; widthSegments = Math.max( 3, Math.floor( widthSegments ) || 8 ); heightSegments = Math.max( 2, Math.floor( heightSegments ) || 6 ); phiStart = phiStart !== undefined ? phiStart : 0; phiLength = phiLength !== undefined ? phiLength : Math.PI * 2; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI; var thetaEnd = thetaStart + thetaLength; var ix, iy; var index = 0; var grid = []; var vertex = new Vector3(); var normal = new Vector3(); // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; // generate vertices, normals and uvs for ( iy = 0; iy <= heightSegments; iy ++ ) { var verticesRow = []; var v = iy / heightSegments; for ( ix = 0; ix <= widthSegments; ix ++ ) { var u = ix / widthSegments; // vertex vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); vertex.y = radius * Math.cos( thetaStart + v * thetaLength ); vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal normal.set( vertex.x, vertex.y, vertex.z ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( u, 1 - v ); verticesRow.push( index ++ ); } grid.push( verticesRow ); } // indices for ( iy = 0; iy < heightSegments; iy ++ ) { for ( ix = 0; ix < widthSegments; ix ++ ) { var a = grid[ iy ][ ix + 1 ]; var b = grid[ iy ][ ix ]; var c = grid[ iy + 1 ][ ix ]; var d = grid[ iy + 1 ][ ix + 1 ]; if ( iy !== 0 || thetaStart > 0 ) indices.push( a, b, d ); if ( iy !== heightSegments - 1 || thetaEnd < Math.PI ) indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } SphereBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); SphereBufferGeometry.prototype.constructor = SphereBufferGeometry; /** * @author Kaleb Murphy * @author Mugen87 / https://github.com/Mugen87 */ // RingGeometry function RingGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) { Geometry.call( this ); this.type = 'RingGeometry'; this.parameters = { innerRadius: innerRadius, outerRadius: outerRadius, thetaSegments: thetaSegments, phiSegments: phiSegments, thetaStart: thetaStart, thetaLength: thetaLength }; this.fromBufferGeometry( new RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) ); this.mergeVertices(); } RingGeometry.prototype = Object.create( Geometry.prototype ); RingGeometry.prototype.constructor = RingGeometry; // RingBufferGeometry function RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) { BufferGeometry.call( this ); this.type = 'RingBufferGeometry'; this.parameters = { innerRadius: innerRadius, outerRadius: outerRadius, thetaSegments: thetaSegments, phiSegments: phiSegments, thetaStart: thetaStart, thetaLength: thetaLength }; innerRadius = innerRadius || 20; outerRadius = outerRadius || 50; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2; thetaSegments = thetaSegments !== undefined ? Math.max( 3, thetaSegments ) : 8; phiSegments = phiSegments !== undefined ? Math.max( 1, phiSegments ) : 1; // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; // some helper variables var segment; var radius = innerRadius; var radiusStep = ( ( outerRadius - innerRadius ) / phiSegments ); var vertex = new Vector3(); var uv = new Vector2(); var j, i; // generate vertices, normals and uvs for ( j = 0; j <= phiSegments; j ++ ) { for ( i = 0; i <= thetaSegments; i ++ ) { // values are generate from the inside of the ring to the outside segment = thetaStart + i / thetaSegments * thetaLength; // vertex vertex.x = radius * Math.cos( segment ); vertex.y = radius * Math.sin( segment ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal normals.push( 0, 0, 1 ); // uv uv.x = ( vertex.x / outerRadius + 1 ) / 2; uv.y = ( vertex.y / outerRadius + 1 ) / 2; uvs.push( uv.x, uv.y ); } // increase the radius for next row of vertices radius += radiusStep; } // indices for ( j = 0; j < phiSegments; j ++ ) { var thetaSegmentLevel = j * ( thetaSegments + 1 ); for ( i = 0; i < thetaSegments; i ++ ) { segment = i + thetaSegmentLevel; var a = segment; var b = segment + thetaSegments + 1; var c = segment + thetaSegments + 2; var d = segment + 1; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } RingBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); RingBufferGeometry.prototype.constructor = RingBufferGeometry; /** * @author astrodud / http://astrodud.isgreat.org/ * @author zz85 / https://github.com/zz85 * @author bhouston / http://clara.io * @author Mugen87 / https://github.com/Mugen87 */ // LatheGeometry function LatheGeometry( points, segments, phiStart, phiLength ) { Geometry.call( this ); this.type = 'LatheGeometry'; this.parameters = { points: points, segments: segments, phiStart: phiStart, phiLength: phiLength }; this.fromBufferGeometry( new LatheBufferGeometry( points, segments, phiStart, phiLength ) ); this.mergeVertices(); } LatheGeometry.prototype = Object.create( Geometry.prototype ); LatheGeometry.prototype.constructor = LatheGeometry; // LatheBufferGeometry function LatheBufferGeometry( points, segments, phiStart, phiLength ) { BufferGeometry.call( this ); this.type = 'LatheBufferGeometry'; this.parameters = { points: points, segments: segments, phiStart: phiStart, phiLength: phiLength }; segments = Math.floor( segments ) || 12; phiStart = phiStart || 0; phiLength = phiLength || Math.PI * 2; // clamp phiLength so it's in range of [ 0, 2PI ] phiLength = _Math.clamp( phiLength, 0, Math.PI * 2 ); // buffers var indices = []; var vertices = []; var uvs = []; // helper variables var base; var inverseSegments = 1.0 / segments; var vertex = new Vector3(); var uv = new Vector2(); var i, j; // generate vertices and uvs for ( i = 0; i <= segments; i ++ ) { var phi = phiStart + i * inverseSegments * phiLength; var sin = Math.sin( phi ); var cos = Math.cos( phi ); for ( j = 0; j <= ( points.length - 1 ); j ++ ) { // vertex vertex.x = points[ j ].x * sin; vertex.y = points[ j ].y; vertex.z = points[ j ].x * cos; vertices.push( vertex.x, vertex.y, vertex.z ); // uv uv.x = i / segments; uv.y = j / ( points.length - 1 ); uvs.push( uv.x, uv.y ); } } // indices for ( i = 0; i < segments; i ++ ) { for ( j = 0; j < ( points.length - 1 ); j ++ ) { base = j + i * points.length; var a = base; var b = base + points.length; var c = base + points.length + 1; var d = base + 1; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); // generate normals this.computeVertexNormals(); // if the geometry is closed, we need to average the normals along the seam. // because the corresponding vertices are identical (but still have different UVs). if ( phiLength === Math.PI * 2 ) { var normals = this.attributes.normal.array; var n1 = new Vector3(); var n2 = new Vector3(); var n = new Vector3(); // this is the buffer offset for the last line of vertices base = segments * points.length * 3; for ( i = 0, j = 0; i < points.length; i ++, j += 3 ) { // select the normal of the vertex in the first line n1.x = normals[ j + 0 ]; n1.y = normals[ j + 1 ]; n1.z = normals[ j + 2 ]; // select the normal of the vertex in the last line n2.x = normals[ base + j + 0 ]; n2.y = normals[ base + j + 1 ]; n2.z = normals[ base + j + 2 ]; // average normals n.addVectors( n1, n2 ).normalize(); // assign the new values to both normals normals[ j + 0 ] = normals[ base + j + 0 ] = n.x; normals[ j + 1 ] = normals[ base + j + 1 ] = n.y; normals[ j + 2 ] = normals[ base + j + 2 ] = n.z; } } } LatheBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); LatheBufferGeometry.prototype.constructor = LatheBufferGeometry; /** * @author jonobr1 / http://jonobr1.com * @author Mugen87 / https://github.com/Mugen87 */ // ShapeGeometry function ShapeGeometry( shapes, curveSegments ) { Geometry.call( this ); this.type = 'ShapeGeometry'; if ( typeof curveSegments === 'object' ) { console.warn( 'THREE.ShapeGeometry: Options parameter has been removed.' ); curveSegments = curveSegments.curveSegments; } this.parameters = { shapes: shapes, curveSegments: curveSegments }; this.fromBufferGeometry( new ShapeBufferGeometry( shapes, curveSegments ) ); this.mergeVertices(); } ShapeGeometry.prototype = Object.create( Geometry.prototype ); ShapeGeometry.prototype.constructor = ShapeGeometry; // ShapeBufferGeometry function ShapeBufferGeometry( shapes, curveSegments ) { BufferGeometry.call( this ); this.type = 'ShapeBufferGeometry'; this.parameters = { shapes: shapes, curveSegments: curveSegments }; curveSegments = curveSegments || 12; // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; // helper variables var groupStart = 0; var groupCount = 0; // allow single and array values for "shapes" parameter if ( Array.isArray( shapes ) === false ) { addShape( shapes ); } else { for ( var i = 0; i < shapes.length; i ++ ) { addShape( shapes[ i ] ); this.addGroup( groupStart, groupCount, i ); // enables MultiMaterial support groupStart += groupCount; groupCount = 0; } } // build geometry this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); // helper functions function addShape( shape ) { var i, l, shapeHole; var indexOffset = vertices.length / 3; var points = shape.extractPoints( curveSegments ); var shapeVertices = points.shape; var shapeHoles = points.holes; // check direction of vertices if ( ShapeUtils.isClockWise( shapeVertices ) === false ) { shapeVertices = shapeVertices.reverse(); // also check if holes are in the opposite direction for ( i = 0, l = shapeHoles.length; i < l; i ++ ) { shapeHole = shapeHoles[ i ]; if ( ShapeUtils.isClockWise( shapeHole ) === true ) { shapeHoles[ i ] = shapeHole.reverse(); } } } var faces = ShapeUtils.triangulateShape( shapeVertices, shapeHoles ); // join vertices of inner and outer paths to a single array for ( i = 0, l = shapeHoles.length; i < l; i ++ ) { shapeHole = shapeHoles[ i ]; shapeVertices = shapeVertices.concat( shapeHole ); } // vertices, normals, uvs for ( i = 0, l = shapeVertices.length; i < l; i ++ ) { var vertex = shapeVertices[ i ]; vertices.push( vertex.x, vertex.y, 0 ); normals.push( 0, 0, 1 ); uvs.push( vertex.x, vertex.y ); // world uvs } // incides for ( i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; var a = face[ 0 ] + indexOffset; var b = face[ 1 ] + indexOffset; var c = face[ 2 ] + indexOffset; indices.push( a, b, c ); groupCount += 3; } } } ShapeBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); ShapeBufferGeometry.prototype.constructor = ShapeBufferGeometry; /** * @author WestLangley / http://github.com/WestLangley * @author Mugen87 / https://github.com/Mugen87 */ function EdgesGeometry( geometry, thresholdAngle ) { BufferGeometry.call( this ); this.type = 'EdgesGeometry'; this.parameters = { thresholdAngle: thresholdAngle }; thresholdAngle = ( thresholdAngle !== undefined ) ? thresholdAngle : 1; // buffer var vertices = []; // helper variables var thresholdDot = Math.cos( _Math.DEG2RAD * thresholdAngle ); var edge = [ 0, 0 ], edges = {}, edge1, edge2; var key, keys = [ 'a', 'b', 'c' ]; // prepare source geometry var geometry2; if ( geometry.isBufferGeometry ) { geometry2 = new Geometry(); geometry2.fromBufferGeometry( geometry ); } else { geometry2 = geometry.clone(); } geometry2.mergeVertices(); geometry2.computeFaceNormals(); var sourceVertices = geometry2.vertices; var faces = geometry2.faces; // now create a data structure where each entry represents an edge with its adjoining faces for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0; j < 3; j ++ ) { edge1 = face[ keys[ j ] ]; edge2 = face[ keys[ ( j + 1 ) % 3 ] ]; edge[ 0 ] = Math.min( edge1, edge2 ); edge[ 1 ] = Math.max( edge1, edge2 ); key = edge[ 0 ] + ',' + edge[ 1 ]; if ( edges[ key ] === undefined ) { edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ], face1: i, face2: undefined }; } else { edges[ key ].face2 = i; } } } // generate vertices for ( key in edges ) { var e = edges[ key ]; // an edge is only rendered if the angle (in degrees) between the face normals of the adjoining faces exceeds this value. default = 1 degree. if ( e.face2 === undefined || faces[ e.face1 ].normal.dot( faces[ e.face2 ].normal ) <= thresholdDot ) { var vertex = sourceVertices[ e.index1 ]; vertices.push( vertex.x, vertex.y, vertex.z ); vertex = sourceVertices[ e.index2 ]; vertices.push( vertex.x, vertex.y, vertex.z ); } } // build geometry this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); } EdgesGeometry.prototype = Object.create( BufferGeometry.prototype ); EdgesGeometry.prototype.constructor = EdgesGeometry; /** * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 */ // CylinderGeometry function CylinderGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { Geometry.call( this ); this.type = 'CylinderGeometry'; this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; this.fromBufferGeometry( new CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) ); this.mergeVertices(); } CylinderGeometry.prototype = Object.create( Geometry.prototype ); CylinderGeometry.prototype.constructor = CylinderGeometry; // CylinderBufferGeometry function CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { BufferGeometry.call( this ); this.type = 'CylinderBufferGeometry'; this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; var scope = this; radiusTop = radiusTop !== undefined ? radiusTop : 20; radiusBottom = radiusBottom !== undefined ? radiusBottom : 20; height = height !== undefined ? height : 100; radialSegments = Math.floor( radialSegments ) || 8; heightSegments = Math.floor( heightSegments ) || 1; openEnded = openEnded !== undefined ? openEnded : false; thetaStart = thetaStart !== undefined ? thetaStart : 0.0; thetaLength = thetaLength !== undefined ? thetaLength : 2.0 * Math.PI; // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; // helper variables var index = 0; var indexArray = []; var halfHeight = height / 2; var groupStart = 0; // generate geometry generateTorso(); if ( openEnded === false ) { if ( radiusTop > 0 ) generateCap( true ); if ( radiusBottom > 0 ) generateCap( false ); } // build geometry this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); function generateTorso() { var x, y; var normal = new Vector3(); var vertex = new Vector3(); var groupCount = 0; // this will be used to calculate the normal var slope = ( radiusBottom - radiusTop ) / height; // generate vertices, normals and uvs for ( y = 0; y <= heightSegments; y ++ ) { var indexRow = []; var v = y / heightSegments; // calculate the radius of the current row var radius = v * ( radiusBottom - radiusTop ) + radiusTop; for ( x = 0; x <= radialSegments; x ++ ) { var u = x / radialSegments; var theta = u * thetaLength + thetaStart; var sinTheta = Math.sin( theta ); var cosTheta = Math.cos( theta ); // vertex vertex.x = radius * sinTheta; vertex.y = - v * height + halfHeight; vertex.z = radius * cosTheta; vertices.push( vertex.x, vertex.y, vertex.z ); // normal normal.set( sinTheta, slope, cosTheta ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( u, 1 - v ); // save index of vertex in respective row indexRow.push( index ++ ); } // now save vertices of the row in our index array indexArray.push( indexRow ); } // generate indices for ( x = 0; x < radialSegments; x ++ ) { for ( y = 0; y < heightSegments; y ++ ) { // we use the index array to access the correct indices var a = indexArray[ y ][ x ]; var b = indexArray[ y + 1 ][ x ]; var c = indexArray[ y + 1 ][ x + 1 ]; var d = indexArray[ y ][ x + 1 ]; // faces indices.push( a, b, d ); indices.push( b, c, d ); // update group counter groupCount += 6; } } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, 0 ); // calculate new start value for groups groupStart += groupCount; } function generateCap( top ) { var x, centerIndexStart, centerIndexEnd; var uv = new Vector2(); var vertex = new Vector3(); var groupCount = 0; var radius = ( top === true ) ? radiusTop : radiusBottom; var sign = ( top === true ) ? 1 : - 1; // save the index of the first center vertex centerIndexStart = index; // first we generate the center vertex data of the cap. // because the geometry needs one set of uvs per face, // we must generate a center vertex per face/segment for ( x = 1; x <= radialSegments; x ++ ) { // vertex vertices.push( 0, halfHeight * sign, 0 ); // normal normals.push( 0, sign, 0 ); // uv uvs.push( 0.5, 0.5 ); // increase index index ++; } // save the index of the last center vertex centerIndexEnd = index; // now we generate the surrounding vertices, normals and uvs for ( x = 0; x <= radialSegments; x ++ ) { var u = x / radialSegments; var theta = u * thetaLength + thetaStart; var cosTheta = Math.cos( theta ); var sinTheta = Math.sin( theta ); // vertex vertex.x = radius * sinTheta; vertex.y = halfHeight * sign; vertex.z = radius * cosTheta; vertices.push( vertex.x, vertex.y, vertex.z ); // normal normals.push( 0, sign, 0 ); // uv uv.x = ( cosTheta * 0.5 ) + 0.5; uv.y = ( sinTheta * 0.5 * sign ) + 0.5; uvs.push( uv.x, uv.y ); // increase index index ++; } // generate indices for ( x = 0; x < radialSegments; x ++ ) { var c = centerIndexStart + x; var i = centerIndexEnd + x; if ( top === true ) { // face top indices.push( i, i + 1, c ); } else { // face bottom indices.push( i + 1, i, c ); } groupCount += 3; } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 ); // calculate new start value for groups groupStart += groupCount; } } CylinderBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); CylinderBufferGeometry.prototype.constructor = CylinderBufferGeometry; /** * @author abelnation / http://github.com/abelnation */ // ConeGeometry function ConeGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { CylinderGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ); this.type = 'ConeGeometry'; this.parameters = { radius: radius, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; } ConeGeometry.prototype = Object.create( CylinderGeometry.prototype ); ConeGeometry.prototype.constructor = ConeGeometry; // ConeBufferGeometry function ConeBufferGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { CylinderBufferGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ); this.type = 'ConeBufferGeometry'; this.parameters = { radius: radius, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; } ConeBufferGeometry.prototype = Object.create( CylinderBufferGeometry.prototype ); ConeBufferGeometry.prototype.constructor = ConeBufferGeometry; /** * @author benaadams / https://twitter.com/ben_a_adams * @author Mugen87 / https://github.com/Mugen87 * @author hughes */ // CircleGeometry function CircleGeometry( radius, segments, thetaStart, thetaLength ) { Geometry.call( this ); this.type = 'CircleGeometry'; this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength }; this.fromBufferGeometry( new CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) ); this.mergeVertices(); } CircleGeometry.prototype = Object.create( Geometry.prototype ); CircleGeometry.prototype.constructor = CircleGeometry; // CircleBufferGeometry function CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) { BufferGeometry.call( this ); this.type = 'CircleBufferGeometry'; this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength }; radius = radius || 50; segments = segments !== undefined ? Math.max( 3, segments ) : 8; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2; // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; // helper variables var i, s; var vertex = new Vector3(); var uv = new Vector2(); // center point vertices.push( 0, 0, 0 ); normals.push( 0, 0, 1 ); uvs.push( 0.5, 0.5 ); for ( s = 0, i = 3; s <= segments; s ++, i += 3 ) { var segment = thetaStart + s / segments * thetaLength; // vertex vertex.x = radius * Math.cos( segment ); vertex.y = radius * Math.sin( segment ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal normals.push( 0, 0, 1 ); // uvs uv.x = ( vertices[ i ] / radius + 1 ) / 2; uv.y = ( vertices[ i + 1 ] / radius + 1 ) / 2; uvs.push( uv.x, uv.y ); } // indices for ( i = 1; i <= segments; i ++ ) { indices.push( i, i + 1, 0 ); } // build geometry this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } CircleBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); CircleBufferGeometry.prototype.constructor = CircleBufferGeometry; var Geometries = Object.freeze({ WireframeGeometry: WireframeGeometry, ParametricGeometry: ParametricGeometry, ParametricBufferGeometry: ParametricBufferGeometry, TetrahedronGeometry: TetrahedronGeometry, TetrahedronBufferGeometry: TetrahedronBufferGeometry, OctahedronGeometry: OctahedronGeometry, OctahedronBufferGeometry: OctahedronBufferGeometry, IcosahedronGeometry: IcosahedronGeometry, IcosahedronBufferGeometry: IcosahedronBufferGeometry, DodecahedronGeometry: DodecahedronGeometry, DodecahedronBufferGeometry: DodecahedronBufferGeometry, PolyhedronGeometry: PolyhedronGeometry, PolyhedronBufferGeometry: PolyhedronBufferGeometry, TubeGeometry: TubeGeometry, TubeBufferGeometry: TubeBufferGeometry, TorusKnotGeometry: TorusKnotGeometry, TorusKnotBufferGeometry: TorusKnotBufferGeometry, TorusGeometry: TorusGeometry, TorusBufferGeometry: TorusBufferGeometry, TextGeometry: TextGeometry, TextBufferGeometry: TextBufferGeometry, SphereGeometry: SphereGeometry, SphereBufferGeometry: SphereBufferGeometry, RingGeometry: RingGeometry, RingBufferGeometry: RingBufferGeometry, PlaneGeometry: PlaneGeometry, PlaneBufferGeometry: PlaneBufferGeometry, LatheGeometry: LatheGeometry, LatheBufferGeometry: LatheBufferGeometry, ShapeGeometry: ShapeGeometry, ShapeBufferGeometry: ShapeBufferGeometry, ExtrudeGeometry: ExtrudeGeometry, ExtrudeBufferGeometry: ExtrudeBufferGeometry, EdgesGeometry: EdgesGeometry, ConeGeometry: ConeGeometry, ConeBufferGeometry: ConeBufferGeometry, CylinderGeometry: CylinderGeometry, CylinderBufferGeometry: CylinderBufferGeometry, CircleGeometry: CircleGeometry, CircleBufferGeometry: CircleBufferGeometry, BoxGeometry: BoxGeometry, BoxBufferGeometry: BoxBufferGeometry }); /** * @author mrdoob / http://mrdoob.com/ * * parameters = { * opacity: * } */ function ShadowMaterial( parameters ) { ShaderMaterial.call( this, { uniforms: UniformsUtils.merge( [ UniformsLib.lights, { opacity: { value: 1.0 } } ] ), vertexShader: ShaderChunk[ 'shadow_vert' ], fragmentShader: ShaderChunk[ 'shadow_frag' ] } ); this.lights = true; this.transparent = true; Object.defineProperties( this, { opacity: { enumerable: true, get: function () { return this.uniforms.opacity.value; }, set: function ( value ) { this.uniforms.opacity.value = value; } } } ); this.setValues( parameters ); } ShadowMaterial.prototype = Object.create( ShaderMaterial.prototype ); ShadowMaterial.prototype.constructor = ShadowMaterial; ShadowMaterial.prototype.isShadowMaterial = true; /** * @author mrdoob / http://mrdoob.com/ */ function RawShaderMaterial( parameters ) { ShaderMaterial.call( this, parameters ); this.type = 'RawShaderMaterial'; } RawShaderMaterial.prototype = Object.create( ShaderMaterial.prototype ); RawShaderMaterial.prototype.constructor = RawShaderMaterial; RawShaderMaterial.prototype.isRawShaderMaterial = true; /** * @author WestLangley / http://github.com/WestLangley * * parameters = { * color: , * roughness: , * metalness: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * roughnessMap: new THREE.Texture( ), * * metalnessMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * envMapIntensity: * * refractionRatio: , * * wireframe: , * wireframeLinewidth: , * * skinning: , * morphTargets: , * morphNormals: * } */ function MeshStandardMaterial( parameters ) { Material.call( this ); this.defines = { 'STANDARD': '' }; this.type = 'MeshStandardMaterial'; this.color = new Color( 0xffffff ); // diffuse this.roughness = 0.5; this.metalness = 0.5; this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.roughnessMap = null; this.metalnessMap = null; this.alphaMap = null; this.envMap = null; this.envMapIntensity = 1.0; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); } MeshStandardMaterial.prototype = Object.create( Material.prototype ); MeshStandardMaterial.prototype.constructor = MeshStandardMaterial; MeshStandardMaterial.prototype.isMeshStandardMaterial = true; MeshStandardMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.defines = { 'STANDARD': '' }; this.color.copy( source.color ); this.roughness = source.roughness; this.metalness = source.metalness; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.roughnessMap = source.roughnessMap; this.metalnessMap = source.metalnessMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.envMapIntensity = source.envMapIntensity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; }; /** * @author WestLangley / http://github.com/WestLangley * * parameters = { * reflectivity: * } */ function MeshPhysicalMaterial( parameters ) { MeshStandardMaterial.call( this ); this.defines = { 'PHYSICAL': '' }; this.type = 'MeshPhysicalMaterial'; this.reflectivity = 0.5; // maps to F0 = 0.04 this.clearCoat = 0.0; this.clearCoatRoughness = 0.0; this.setValues( parameters ); } MeshPhysicalMaterial.prototype = Object.create( MeshStandardMaterial.prototype ); MeshPhysicalMaterial.prototype.constructor = MeshPhysicalMaterial; MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true; MeshPhysicalMaterial.prototype.copy = function ( source ) { MeshStandardMaterial.prototype.copy.call( this, source ); this.defines = { 'PHYSICAL': '' }; this.reflectivity = source.reflectivity; this.clearCoat = source.clearCoat; this.clearCoatRoughness = source.clearCoatRoughness; return this; }; /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * specular: , * shininess: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * wireframe: , * wireframeLinewidth: , * * skinning: , * morphTargets: , * morphNormals: * } */ function MeshPhongMaterial( parameters ) { Material.call( this ); this.type = 'MeshPhongMaterial'; this.color = new Color( 0xffffff ); // diffuse this.specular = new Color( 0x111111 ); this.shininess = 30; this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); } MeshPhongMaterial.prototype = Object.create( Material.prototype ); MeshPhongMaterial.prototype.constructor = MeshPhongMaterial; MeshPhongMaterial.prototype.isMeshPhongMaterial = true; MeshPhongMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.specular.copy( source.specular ); this.shininess = source.shininess; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; }; /** * @author takahirox / http://github.com/takahirox * * parameters = { * gradientMap: new THREE.Texture( ) * } */ function MeshToonMaterial( parameters ) { MeshPhongMaterial.call( this ); this.defines = { 'TOON': '' }; this.type = 'MeshToonMaterial'; this.gradientMap = null; this.setValues( parameters ); } MeshToonMaterial.prototype = Object.create( MeshPhongMaterial.prototype ); MeshToonMaterial.prototype.constructor = MeshToonMaterial; MeshToonMaterial.prototype.isMeshToonMaterial = true; MeshToonMaterial.prototype.copy = function ( source ) { MeshPhongMaterial.prototype.copy.call( this, source ); this.gradientMap = source.gradientMap; return this; }; /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley * * parameters = { * opacity: , * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * wireframe: , * wireframeLinewidth: * * skinning: , * morphTargets: , * morphNormals: * } */ function MeshNormalMaterial( parameters ) { Material.call( this ); this.type = 'MeshNormalMaterial'; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; this.lights = false; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); } MeshNormalMaterial.prototype = Object.create( Material.prototype ); MeshNormalMaterial.prototype.constructor = MeshNormalMaterial; MeshNormalMaterial.prototype.isMeshNormalMaterial = true; MeshNormalMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; }; /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * wireframe: , * wireframeLinewidth: , * * skinning: , * morphTargets: , * morphNormals: * } */ function MeshLambertMaterial( parameters ) { Material.call( this ); this.type = 'MeshLambertMaterial'; this.color = new Color( 0xffffff ); // diffuse this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); } MeshLambertMaterial.prototype = Object.create( Material.prototype ); MeshLambertMaterial.prototype.constructor = MeshLambertMaterial; MeshLambertMaterial.prototype.isMeshLambertMaterial = true; MeshLambertMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; }; /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * linewidth: , * * scale: , * dashSize: , * gapSize: * } */ function LineDashedMaterial( parameters ) { Material.call( this ); this.type = 'LineDashedMaterial'; this.color = new Color( 0xffffff ); this.linewidth = 1; this.scale = 1; this.dashSize = 3; this.gapSize = 1; this.lights = false; this.setValues( parameters ); } LineDashedMaterial.prototype = Object.create( Material.prototype ); LineDashedMaterial.prototype.constructor = LineDashedMaterial; LineDashedMaterial.prototype.isLineDashedMaterial = true; LineDashedMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.linewidth = source.linewidth; this.scale = source.scale; this.dashSize = source.dashSize; this.gapSize = source.gapSize; return this; }; var Materials = Object.freeze({ ShadowMaterial: ShadowMaterial, SpriteMaterial: SpriteMaterial, RawShaderMaterial: RawShaderMaterial, ShaderMaterial: ShaderMaterial, PointsMaterial: PointsMaterial, MeshPhysicalMaterial: MeshPhysicalMaterial, MeshStandardMaterial: MeshStandardMaterial, MeshPhongMaterial: MeshPhongMaterial, MeshToonMaterial: MeshToonMaterial, MeshNormalMaterial: MeshNormalMaterial, MeshLambertMaterial: MeshLambertMaterial, MeshDepthMaterial: MeshDepthMaterial, MeshBasicMaterial: MeshBasicMaterial, LineDashedMaterial: LineDashedMaterial, LineBasicMaterial: LineBasicMaterial, Material: Material }); /** * @author mrdoob / http://mrdoob.com/ */ var Cache = { enabled: false, files: {}, add: function ( key, file ) { if ( this.enabled === false ) return; // console.log( 'THREE.Cache', 'Adding key:', key ); this.files[ key ] = file; }, get: function ( key ) { if ( this.enabled === false ) return; // console.log( 'THREE.Cache', 'Checking key:', key ); return this.files[ key ]; }, remove: function ( key ) { delete this.files[ key ]; }, clear: function () { this.files = {}; } }; /** * @author mrdoob / http://mrdoob.com/ */ function LoadingManager( onLoad, onProgress, onError ) { var scope = this; var isLoading = false, itemsLoaded = 0, itemsTotal = 0; this.onStart = undefined; this.onLoad = onLoad; this.onProgress = onProgress; this.onError = onError; this.itemStart = function ( url ) { itemsTotal ++; if ( isLoading === false ) { if ( scope.onStart !== undefined ) { scope.onStart( url, itemsLoaded, itemsTotal ); } } isLoading = true; }; this.itemEnd = function ( url ) { itemsLoaded ++; if ( scope.onProgress !== undefined ) { scope.onProgress( url, itemsLoaded, itemsTotal ); } if ( itemsLoaded === itemsTotal ) { isLoading = false; if ( scope.onLoad !== undefined ) { scope.onLoad(); } } }; this.itemError = function ( url ) { if ( scope.onError !== undefined ) { scope.onError( url ); } }; } var DefaultLoadingManager = new LoadingManager(); /** * @author mrdoob / http://mrdoob.com/ */ function FileLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; } Object.assign( FileLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { if ( url === undefined ) url = ''; if ( this.path !== undefined ) url = this.path + url; var scope = this; var cached = Cache.get( url ); if ( cached !== undefined ) { scope.manager.itemStart( url ); setTimeout( function () { if ( onLoad ) onLoad( cached ); scope.manager.itemEnd( url ); }, 0 ); return cached; } // Check for data: URI var dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/; var dataUriRegexResult = url.match( dataUriRegex ); // Safari can not handle Data URIs through XMLHttpRequest so process manually if ( dataUriRegexResult ) { var mimeType = dataUriRegexResult[ 1 ]; var isBase64 = !! dataUriRegexResult[ 2 ]; var data = dataUriRegexResult[ 3 ]; data = window.decodeURIComponent( data ); if ( isBase64 ) data = window.atob( data ); try { var response; var responseType = ( this.responseType || '' ).toLowerCase(); switch ( responseType ) { case 'arraybuffer': case 'blob': response = new ArrayBuffer( data.length ); var view = new Uint8Array( response ); for ( var i = 0; i < data.length; i ++ ) { view[ i ] = data.charCodeAt( i ); } if ( responseType === 'blob' ) { response = new Blob( [ response ], { type: mimeType } ); } break; case 'document': var parser = new DOMParser(); response = parser.parseFromString( data, mimeType ); break; case 'json': response = JSON.parse( data ); break; default: // 'text' or other response = data; break; } // Wait for next browser tick window.setTimeout( function () { if ( onLoad ) onLoad( response ); scope.manager.itemEnd( url ); }, 0 ); } catch ( error ) { // Wait for next browser tick window.setTimeout( function () { if ( onError ) onError( error ); scope.manager.itemEnd( url ); scope.manager.itemError( url ); }, 0 ); } } else { var request = new XMLHttpRequest(); request.open( 'GET', url, true ); request.addEventListener( 'load', function ( event ) { var response = event.target.response; Cache.add( url, response ); if ( this.status === 200 ) { if ( onLoad ) onLoad( response ); scope.manager.itemEnd( url ); } else if ( this.status === 0 ) { // Some browsers return HTTP Status 0 when using non-http protocol // e.g. 'file://' or 'data://'. Handle as success. console.warn( 'THREE.FileLoader: HTTP Status 0 received.' ); if ( onLoad ) onLoad( response ); scope.manager.itemEnd( url ); } else { if ( onError ) onError( event ); scope.manager.itemEnd( url ); scope.manager.itemError( url ); } }, false ); if ( onProgress !== undefined ) { request.addEventListener( 'progress', function ( event ) { onProgress( event ); }, false ); } request.addEventListener( 'error', function ( event ) { if ( onError ) onError( event ); scope.manager.itemEnd( url ); scope.manager.itemError( url ); }, false ); if ( this.responseType !== undefined ) request.responseType = this.responseType; if ( this.withCredentials !== undefined ) request.withCredentials = this.withCredentials; if ( request.overrideMimeType ) request.overrideMimeType( this.mimeType !== undefined ? this.mimeType : 'text/plain' ); for ( var header in this.requestHeader ) { request.setRequestHeader( header, this.requestHeader[ header ] ); } request.send( null ); } scope.manager.itemStart( url ); return request; }, setPath: function ( value ) { this.path = value; return this; }, setResponseType: function ( value ) { this.responseType = value; return this; }, setWithCredentials: function ( value ) { this.withCredentials = value; return this; }, setMimeType: function ( value ) { this.mimeType = value; return this; }, setRequestHeader: function ( value ) { this.requestHeader = value; return this; } } ); /** * @author mrdoob / http://mrdoob.com/ * * Abstract Base class to block based textures loader (dds, pvr, ...) */ function CompressedTextureLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; // override in sub classes this._parser = null; } Object.assign( CompressedTextureLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { var scope = this; var images = []; var texture = new CompressedTexture(); texture.image = images; var loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.setResponseType( 'arraybuffer' ); function loadTexture( i ) { loader.load( url[ i ], function ( buffer ) { var texDatas = scope._parser( buffer, true ); images[ i ] = { width: texDatas.width, height: texDatas.height, format: texDatas.format, mipmaps: texDatas.mipmaps }; loaded += 1; if ( loaded === 6 ) { if ( texDatas.mipmapCount === 1 ) texture.minFilter = LinearFilter; texture.format = texDatas.format; texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); } }, onProgress, onError ); } if ( Array.isArray( url ) ) { var loaded = 0; for ( var i = 0, il = url.length; i < il; ++ i ) { loadTexture( i ); } } else { // compressed cubemap texture stored in a single DDS file loader.load( url, function ( buffer ) { var texDatas = scope._parser( buffer, true ); if ( texDatas.isCubemap ) { var faces = texDatas.mipmaps.length / texDatas.mipmapCount; for ( var f = 0; f < faces; f ++ ) { images[ f ] = { mipmaps : [] }; for ( var i = 0; i < texDatas.mipmapCount; i ++ ) { images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] ); images[ f ].format = texDatas.format; images[ f ].width = texDatas.width; images[ f ].height = texDatas.height; } } } else { texture.image.width = texDatas.width; texture.image.height = texDatas.height; texture.mipmaps = texDatas.mipmaps; } if ( texDatas.mipmapCount === 1 ) { texture.minFilter = LinearFilter; } texture.format = texDatas.format; texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); }, onProgress, onError ); } return texture; }, setPath: function ( value ) { this.path = value; return this; } } ); /** * @author Nikos M. / https://github.com/foo123/ * * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...) */ function DataTextureLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; // override in sub classes this._parser = null; } Object.assign( DataTextureLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { var scope = this; var texture = new DataTexture(); var loader = new FileLoader( this.manager ); loader.setResponseType( 'arraybuffer' ); loader.load( url, function ( buffer ) { var texData = scope._parser( buffer ); if ( ! texData ) return; if ( undefined !== texData.image ) { texture.image = texData.image; } else if ( undefined !== texData.data ) { texture.image.width = texData.width; texture.image.height = texData.height; texture.image.data = texData.data; } texture.wrapS = undefined !== texData.wrapS ? texData.wrapS : ClampToEdgeWrapping; texture.wrapT = undefined !== texData.wrapT ? texData.wrapT : ClampToEdgeWrapping; texture.magFilter = undefined !== texData.magFilter ? texData.magFilter : LinearFilter; texture.minFilter = undefined !== texData.minFilter ? texData.minFilter : LinearMipMapLinearFilter; texture.anisotropy = undefined !== texData.anisotropy ? texData.anisotropy : 1; if ( undefined !== texData.format ) { texture.format = texData.format; } if ( undefined !== texData.type ) { texture.type = texData.type; } if ( undefined !== texData.mipmaps ) { texture.mipmaps = texData.mipmaps; } if ( 1 === texData.mipmapCount ) { texture.minFilter = LinearFilter; } texture.needsUpdate = true; if ( onLoad ) onLoad( texture, texData ); }, onProgress, onError ); return texture; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function ImageLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; } Object.assign( ImageLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { if ( url === undefined ) url = ''; if ( this.path !== undefined ) url = this.path + url; var scope = this; var cached = Cache.get( url ); if ( cached !== undefined ) { scope.manager.itemStart( url ); setTimeout( function () { if ( onLoad ) onLoad( cached ); scope.manager.itemEnd( url ); }, 0 ); return cached; } var image = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'img' ); image.addEventListener( 'load', function () { Cache.add( url, this ); if ( onLoad ) onLoad( this ); scope.manager.itemEnd( url ); }, false ); /* image.addEventListener( 'progress', function ( event ) { if ( onProgress ) onProgress( event ); }, false ); */ image.addEventListener( 'error', function ( event ) { if ( onError ) onError( event ); scope.manager.itemEnd( url ); scope.manager.itemError( url ); }, false ); if ( url.substr( 0, 5 ) !== 'data:' ) { if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin; } scope.manager.itemStart( url ); image.src = url; return image; }, setCrossOrigin: function ( value ) { this.crossOrigin = value; return this; }, setPath: function ( value ) { this.path = value; return this; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function CubeTextureLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; } Object.assign( CubeTextureLoader.prototype, { load: function ( urls, onLoad, onProgress, onError ) { var texture = new CubeTexture(); var loader = new ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setPath( this.path ); var loaded = 0; function loadTexture( i ) { loader.load( urls[ i ], function ( image ) { texture.images[ i ] = image; loaded ++; if ( loaded === 6 ) { texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); } }, undefined, onError ); } for ( var i = 0; i < urls.length; ++ i ) { loadTexture( i ); } return texture; }, setCrossOrigin: function ( value ) { this.crossOrigin = value; return this; }, setPath: function ( value ) { this.path = value; return this; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function TextureLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; } Object.assign( TextureLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { var loader = new ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setPath( this.path ); var texture = new Texture(); texture.image = loader.load( url, function () { // JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB. var isJPEG = url.search( /\.(jpg|jpeg)$/ ) > 0 || url.search( /^data\:image\/jpeg/ ) === 0; texture.format = isJPEG ? RGBFormat : RGBAFormat; texture.needsUpdate = true; if ( onLoad !== undefined ) { onLoad( texture ); } }, onProgress, onError ); return texture; }, setCrossOrigin: function ( value ) { this.crossOrigin = value; return this; }, setPath: function ( value ) { this.path = value; return this; } } ); /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function Light( color, intensity ) { Object3D.call( this ); this.type = 'Light'; this.color = new Color( color ); this.intensity = intensity !== undefined ? intensity : 1; this.receiveShadow = undefined; } Light.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Light, isLight: true, copy: function ( source ) { Object3D.prototype.copy.call( this, source ); this.color.copy( source.color ); this.intensity = source.intensity; return this; }, toJSON: function ( meta ) { var data = Object3D.prototype.toJSON.call( this, meta ); data.object.color = this.color.getHex(); data.object.intensity = this.intensity; if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex(); if ( this.distance !== undefined ) data.object.distance = this.distance; if ( this.angle !== undefined ) data.object.angle = this.angle; if ( this.decay !== undefined ) data.object.decay = this.decay; if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra; if ( this.shadow !== undefined ) data.object.shadow = this.shadow.toJSON(); return data; } } ); /** * @author alteredq / http://alteredqualia.com/ */ function HemisphereLight( skyColor, groundColor, intensity ) { Light.call( this, skyColor, intensity ); this.type = 'HemisphereLight'; this.castShadow = undefined; this.position.copy( Object3D.DefaultUp ); this.updateMatrix(); this.groundColor = new Color( groundColor ); } HemisphereLight.prototype = Object.assign( Object.create( Light.prototype ), { constructor: HemisphereLight, isHemisphereLight: true, copy: function ( source ) { Light.prototype.copy.call( this, source ); this.groundColor.copy( source.groundColor ); return this; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function LightShadow( camera ) { this.camera = camera; this.bias = 0; this.radius = 1; this.mapSize = new Vector2( 512, 512 ); this.map = null; this.matrix = new Matrix4(); } Object.assign( LightShadow.prototype, { copy: function ( source ) { this.camera = source.camera.clone(); this.bias = source.bias; this.radius = source.radius; this.mapSize.copy( source.mapSize ); return this; }, clone: function () { return new this.constructor().copy( this ); }, toJSON: function () { var object = {}; if ( this.bias !== 0 ) object.bias = this.bias; if ( this.radius !== 1 ) object.radius = this.radius; if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) object.mapSize = this.mapSize.toArray(); object.camera = this.camera.toJSON( false ).object; delete object.camera.matrix; return object; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function SpotLightShadow() { LightShadow.call( this, new PerspectiveCamera( 50, 1, 0.5, 500 ) ); } SpotLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), { constructor: SpotLightShadow, isSpotLightShadow: true, update: function ( light ) { var camera = this.camera; var fov = _Math.RAD2DEG * 2 * light.angle; var aspect = this.mapSize.width / this.mapSize.height; var far = light.distance || camera.far; if ( fov !== camera.fov || aspect !== camera.aspect || far !== camera.far ) { camera.fov = fov; camera.aspect = aspect; camera.far = far; camera.updateProjectionMatrix(); } } } ); /** * @author alteredq / http://alteredqualia.com/ */ function SpotLight( color, intensity, distance, angle, penumbra, decay ) { Light.call( this, color, intensity ); this.type = 'SpotLight'; this.position.copy( Object3D.DefaultUp ); this.updateMatrix(); this.target = new Object3D(); Object.defineProperty( this, 'power', { get: function () { // intensity = power per solid angle. // ref: equation (17) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf return this.intensity * Math.PI; }, set: function ( power ) { // intensity = power per solid angle. // ref: equation (17) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf this.intensity = power / Math.PI; } } ); this.distance = ( distance !== undefined ) ? distance : 0; this.angle = ( angle !== undefined ) ? angle : Math.PI / 3; this.penumbra = ( penumbra !== undefined ) ? penumbra : 0; this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2. this.shadow = new SpotLightShadow(); } SpotLight.prototype = Object.assign( Object.create( Light.prototype ), { constructor: SpotLight, isSpotLight: true, copy: function ( source ) { Light.prototype.copy.call( this, source ); this.distance = source.distance; this.angle = source.angle; this.penumbra = source.penumbra; this.decay = source.decay; this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function PointLight( color, intensity, distance, decay ) { Light.call( this, color, intensity ); this.type = 'PointLight'; Object.defineProperty( this, 'power', { get: function () { // intensity = power per solid angle. // ref: equation (15) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf return this.intensity * 4 * Math.PI; }, set: function ( power ) { // intensity = power per solid angle. // ref: equation (15) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf this.intensity = power / ( 4 * Math.PI ); } } ); this.distance = ( distance !== undefined ) ? distance : 0; this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2. this.shadow = new LightShadow( new PerspectiveCamera( 90, 1, 0.5, 500 ) ); } PointLight.prototype = Object.assign( Object.create( Light.prototype ), { constructor: PointLight, isPointLight: true, copy: function ( source ) { Light.prototype.copy.call( this, source ); this.distance = source.distance; this.decay = source.decay; this.shadow = source.shadow.clone(); return this; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function DirectionalLightShadow( ) { LightShadow.call( this, new OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) ); } DirectionalLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), { constructor: DirectionalLightShadow } ); /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function DirectionalLight( color, intensity ) { Light.call( this, color, intensity ); this.type = 'DirectionalLight'; this.position.copy( Object3D.DefaultUp ); this.updateMatrix(); this.target = new Object3D(); this.shadow = new DirectionalLightShadow(); } DirectionalLight.prototype = Object.assign( Object.create( Light.prototype ), { constructor: DirectionalLight, isDirectionalLight: true, copy: function ( source ) { Light.prototype.copy.call( this, source ); this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function AmbientLight( color, intensity ) { Light.call( this, color, intensity ); this.type = 'AmbientLight'; this.castShadow = undefined; } AmbientLight.prototype = Object.assign( Object.create( Light.prototype ), { constructor: AmbientLight, isAmbientLight: true } ); /** * @author abelnation / http://github.com/abelnation */ function RectAreaLight( color, intensity, width, height ) { Light.call( this, color, intensity ); this.type = 'RectAreaLight'; this.position.set( 0, 1, 0 ); this.updateMatrix(); this.width = ( width !== undefined ) ? width : 10; this.height = ( height !== undefined ) ? height : 10; // TODO (abelnation): distance/decay // TODO (abelnation): update method for RectAreaLight to update transform to lookat target // TODO (abelnation): shadows } // TODO (abelnation): RectAreaLight update when light shape is changed RectAreaLight.prototype = Object.assign( Object.create( Light.prototype ), { constructor: RectAreaLight, isRectAreaLight: true, copy: function ( source ) { Light.prototype.copy.call( this, source ); this.width = source.width; this.height = source.height; return this; }, toJSON: function ( meta ) { var data = Light.prototype.toJSON.call( this, meta ); data.object.width = this.width; data.object.height = this.height; return data; } } ); /** * @author tschw * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ */ var AnimationUtils = { // same as Array.prototype.slice, but also works on typed arrays arraySlice: function ( array, from, to ) { if ( AnimationUtils.isTypedArray( array ) ) { // in ios9 array.subarray(from, undefined) will return empty array // but array.subarray(from) or array.subarray(from, len) is correct return new array.constructor( array.subarray( from, to !== undefined ? to : array.length ) ); } return array.slice( from, to ); }, // converts an array to a specific type convertArray: function ( array, type, forceClone ) { if ( ! array || // let 'undefined' and 'null' pass ! forceClone && array.constructor === type ) return array; if ( typeof type.BYTES_PER_ELEMENT === 'number' ) { return new type( array ); // create typed array } return Array.prototype.slice.call( array ); // create Array }, isTypedArray: function ( object ) { return ArrayBuffer.isView( object ) && ! ( object instanceof DataView ); }, // returns an array by which times and values can be sorted getKeyframeOrder: function ( times ) { function compareTime( i, j ) { return times[ i ] - times[ j ]; } var n = times.length; var result = new Array( n ); for ( var i = 0; i !== n; ++ i ) result[ i ] = i; result.sort( compareTime ); return result; }, // uses the array previously returned by 'getKeyframeOrder' to sort data sortedArray: function ( values, stride, order ) { var nValues = values.length; var result = new values.constructor( nValues ); for ( var i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) { var srcOffset = order[ i ] * stride; for ( var j = 0; j !== stride; ++ j ) { result[ dstOffset ++ ] = values[ srcOffset + j ]; } } return result; }, // function for parsing AOS keyframe formats flattenJSON: function ( jsonKeys, times, values, valuePropertyName ) { var i = 1, key = jsonKeys[ 0 ]; while ( key !== undefined && key[ valuePropertyName ] === undefined ) { key = jsonKeys[ i ++ ]; } if ( key === undefined ) return; // no data var value = key[ valuePropertyName ]; if ( value === undefined ) return; // no data if ( Array.isArray( value ) ) { do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); values.push.apply( values, value ); // push all elements } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } else if ( value.toArray !== undefined ) { // ...assume THREE.Math-ish do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); value.toArray( values, values.length ); } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } else { // otherwise push as-is do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); values.push( value ); } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } } }; /** * Abstract base class of interpolants over parametric samples. * * The parameter domain is one dimensional, typically the time or a path * along a curve defined by the data. * * The sample values can have any dimensionality and derived classes may * apply special interpretations to the data. * * This class provides the interval seek in a Template Method, deferring * the actual interpolation to derived classes. * * Time complexity is O(1) for linear access crossing at most two points * and O(log N) for random access, where N is the number of positions. * * References: * * http://www.oodesign.com/template-method-pattern.html * * @author tschw */ function Interpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { this.parameterPositions = parameterPositions; this._cachedIndex = 0; this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor( sampleSize ); this.sampleValues = sampleValues; this.valueSize = sampleSize; } Object.assign( Interpolant.prototype, { evaluate: function( t ) { var pp = this.parameterPositions, i1 = this._cachedIndex, t1 = pp[ i1 ], t0 = pp[ i1 - 1 ]; validate_interval: { seek: { var right; linear_scan: { //- See http://jsperf.com/comparison-to-undefined/3 //- slower code: //- //- if ( t >= t1 || t1 === undefined ) { forward_scan: if ( ! ( t < t1 ) ) { for ( var giveUpAt = i1 + 2; ;) { if ( t1 === undefined ) { if ( t < t0 ) break forward_scan; // after end i1 = pp.length; this._cachedIndex = i1; return this.afterEnd_( i1 - 1, t, t0 ); } if ( i1 === giveUpAt ) break; // this loop t0 = t1; t1 = pp[ ++ i1 ]; if ( t < t1 ) { // we have arrived at the sought interval break seek; } } // prepare binary search on the right side of the index right = pp.length; break linear_scan; } //- slower code: //- if ( t < t0 || t0 === undefined ) { if ( ! ( t >= t0 ) ) { // looping? var t1global = pp[ 1 ]; if ( t < t1global ) { i1 = 2; // + 1, using the scan for the details t0 = t1global; } // linear reverse scan for ( var giveUpAt = i1 - 2; ;) { if ( t0 === undefined ) { // before start this._cachedIndex = 0; return this.beforeStart_( 0, t, t1 ); } if ( i1 === giveUpAt ) break; // this loop t1 = t0; t0 = pp[ -- i1 - 1 ]; if ( t >= t0 ) { // we have arrived at the sought interval break seek; } } // prepare binary search on the left side of the index right = i1; i1 = 0; break linear_scan; } // the interval is valid break validate_interval; } // linear scan // binary search while ( i1 < right ) { var mid = ( i1 + right ) >>> 1; if ( t < pp[ mid ] ) { right = mid; } else { i1 = mid + 1; } } t1 = pp[ i1 ]; t0 = pp[ i1 - 1 ]; // check boundary cases, again if ( t0 === undefined ) { this._cachedIndex = 0; return this.beforeStart_( 0, t, t1 ); } if ( t1 === undefined ) { i1 = pp.length; this._cachedIndex = i1; return this.afterEnd_( i1 - 1, t0, t ); } } // seek this._cachedIndex = i1; this.intervalChanged_( i1, t0, t1 ); } // validate_interval return this.interpolate_( i1, t0, t, t1 ); }, settings: null, // optional, subclass-specific settings structure // Note: The indirection allows central control of many interpolants. // --- Protected interface DefaultSettings_: {}, getSettings_: function() { return this.settings || this.DefaultSettings_; }, copySampleValue_: function( index ) { // copies a sample value to the result buffer var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset = index * stride; for ( var i = 0; i !== stride; ++ i ) { result[ i ] = values[ offset + i ]; } return result; }, // Template methods for derived classes: interpolate_: function( i1, t0, t, t1 ) { throw new Error( "call to abstract method" ); // implementations shall return this.resultBuffer }, intervalChanged_: function( i1, t0, t1 ) { // empty } } ); //!\ DECLARE ALIAS AFTER assign prototype ! Object.assign( Interpolant.prototype, { //( 0, t, t0 ), returns this.resultBuffer beforeStart_: Interpolant.prototype.copySampleValue_, //( N-1, tN-1, t ), returns this.resultBuffer afterEnd_: Interpolant.prototype.copySampleValue_, } ); /** * Fast and simple cubic spline interpolant. * * It was derived from a Hermitian construction setting the first derivative * at each sample position to the linear slope between neighboring positions * over their parameter interval. * * @author tschw */ function CubicInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); this._weightPrev = -0; this._offsetPrev = -0; this._weightNext = -0; this._offsetNext = -0; } CubicInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), { constructor: CubicInterpolant, DefaultSettings_: { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding }, intervalChanged_: function( i1, t0, t1 ) { var pp = this.parameterPositions, iPrev = i1 - 2, iNext = i1 + 1, tPrev = pp[ iPrev ], tNext = pp[ iNext ]; if ( tPrev === undefined ) { switch ( this.getSettings_().endingStart ) { case ZeroSlopeEnding: // f'(t0) = 0 iPrev = i1; tPrev = 2 * t0 - t1; break; case WrapAroundEnding: // use the other end of the curve iPrev = pp.length - 2; tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ]; break; default: // ZeroCurvatureEnding // f''(t0) = 0 a.k.a. Natural Spline iPrev = i1; tPrev = t1; } } if ( tNext === undefined ) { switch ( this.getSettings_().endingEnd ) { case ZeroSlopeEnding: // f'(tN) = 0 iNext = i1; tNext = 2 * t1 - t0; break; case WrapAroundEnding: // use the other end of the curve iNext = 1; tNext = t1 + pp[ 1 ] - pp[ 0 ]; break; default: // ZeroCurvatureEnding // f''(tN) = 0, a.k.a. Natural Spline iNext = i1 - 1; tNext = t0; } } var halfDt = ( t1 - t0 ) * 0.5, stride = this.valueSize; this._weightPrev = halfDt / ( t0 - tPrev ); this._weightNext = halfDt / ( tNext - t1 ); this._offsetPrev = iPrev * stride; this._offsetNext = iNext * stride; }, interpolate_: function( i1, t0, t, t1 ) { var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, o1 = i1 * stride, o0 = o1 - stride, oP = this._offsetPrev, oN = this._offsetNext, wP = this._weightPrev, wN = this._weightNext, p = ( t - t0 ) / ( t1 - t0 ), pp = p * p, ppp = pp * p; // evaluate polynomials var sP = - wP * ppp + 2 * wP * pp - wP * p; var s0 = ( 1 + wP ) * ppp + (-1.5 - 2 * wP ) * pp + ( -0.5 + wP ) * p + 1; var s1 = (-1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p; var sN = wN * ppp - wN * pp; // combine data linearly for ( var i = 0; i !== stride; ++ i ) { result[ i ] = sP * values[ oP + i ] + s0 * values[ o0 + i ] + s1 * values[ o1 + i ] + sN * values[ oN + i ]; } return result; } } ); /** * @author tschw */ function LinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); } LinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), { constructor: LinearInterpolant, interpolate_: function( i1, t0, t, t1 ) { var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset1 = i1 * stride, offset0 = offset1 - stride, weight1 = ( t - t0 ) / ( t1 - t0 ), weight0 = 1 - weight1; for ( var i = 0; i !== stride; ++ i ) { result[ i ] = values[ offset0 + i ] * weight0 + values[ offset1 + i ] * weight1; } return result; } } ); /** * * Interpolant that evaluates to the sample value at the position preceeding * the parameter. * * @author tschw */ function DiscreteInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); } DiscreteInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), { constructor: DiscreteInterpolant, interpolate_: function( i1, t0, t, t1 ) { return this.copySampleValue_( i1 - 1 ); } } ); var KeyframeTrackPrototype; KeyframeTrackPrototype = { TimeBufferType: Float32Array, ValueBufferType: Float32Array, DefaultInterpolation: InterpolateLinear, InterpolantFactoryMethodDiscrete: function ( result ) { return new DiscreteInterpolant( this.times, this.values, this.getValueSize(), result ); }, InterpolantFactoryMethodLinear: function ( result ) { return new LinearInterpolant( this.times, this.values, this.getValueSize(), result ); }, InterpolantFactoryMethodSmooth: function ( result ) { return new CubicInterpolant( this.times, this.values, this.getValueSize(), result ); }, setInterpolation: function ( interpolation ) { var factoryMethod; switch ( interpolation ) { case InterpolateDiscrete: factoryMethod = this.InterpolantFactoryMethodDiscrete; break; case InterpolateLinear: factoryMethod = this.InterpolantFactoryMethodLinear; break; case InterpolateSmooth: factoryMethod = this.InterpolantFactoryMethodSmooth; break; } if ( factoryMethod === undefined ) { var message = "unsupported interpolation for " + this.ValueTypeName + " keyframe track named " + this.name; if ( this.createInterpolant === undefined ) { // fall back to default, unless the default itself is messed up if ( interpolation !== this.DefaultInterpolation ) { this.setInterpolation( this.DefaultInterpolation ); } else { throw new Error( message ); // fatal, in this case } } console.warn( 'THREE.KeyframeTrackPrototype:', message ); return; } this.createInterpolant = factoryMethod; }, getInterpolation: function () { switch ( this.createInterpolant ) { case this.InterpolantFactoryMethodDiscrete: return InterpolateDiscrete; case this.InterpolantFactoryMethodLinear: return InterpolateLinear; case this.InterpolantFactoryMethodSmooth: return InterpolateSmooth; } }, getValueSize: function () { return this.values.length / this.times.length; }, // move all keyframes either forwards or backwards in time shift: function ( timeOffset ) { if ( timeOffset !== 0.0 ) { var times = this.times; for ( var i = 0, n = times.length; i !== n; ++ i ) { times[ i ] += timeOffset; } } return this; }, // scale all keyframe times by a factor (useful for frame <-> seconds conversions) scale: function ( timeScale ) { if ( timeScale !== 1.0 ) { var times = this.times; for ( var i = 0, n = times.length; i !== n; ++ i ) { times[ i ] *= timeScale; } } return this; }, // removes keyframes before and after animation without changing any values within the range [startTime, endTime]. // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values trim: function ( startTime, endTime ) { var times = this.times, nKeys = times.length, from = 0, to = nKeys - 1; while ( from !== nKeys && times[ from ] < startTime ) ++ from; while ( to !== - 1 && times[ to ] > endTime ) -- to; ++ to; // inclusive -> exclusive bound if ( from !== 0 || to !== nKeys ) { // empty tracks are forbidden, so keep at least one keyframe if ( from >= to ) to = Math.max( to, 1 ), from = to - 1; var stride = this.getValueSize(); this.times = AnimationUtils.arraySlice( times, from, to ); this.values = AnimationUtils. arraySlice( this.values, from * stride, to * stride ); } return this; }, // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable validate: function () { var valid = true; var valueSize = this.getValueSize(); if ( valueSize - Math.floor( valueSize ) !== 0 ) { console.error( 'THREE.KeyframeTrackPrototype: Invalid value size in track.', this ); valid = false; } var times = this.times, values = this.values, nKeys = times.length; if ( nKeys === 0 ) { console.error( 'THREE.KeyframeTrackPrototype: Track is empty.', this ); valid = false; } var prevTime = null; for ( var i = 0; i !== nKeys; i ++ ) { var currTime = times[ i ]; if ( typeof currTime === 'number' && isNaN( currTime ) ) { console.error( 'THREE.KeyframeTrackPrototype: Time is not a valid number.', this, i, currTime ); valid = false; break; } if ( prevTime !== null && prevTime > currTime ) { console.error( 'THREE.KeyframeTrackPrototype: Out of order keys.', this, i, currTime, prevTime ); valid = false; break; } prevTime = currTime; } if ( values !== undefined ) { if ( AnimationUtils.isTypedArray( values ) ) { for ( var i = 0, n = values.length; i !== n; ++ i ) { var value = values[ i ]; if ( isNaN( value ) ) { console.error( 'THREE.KeyframeTrackPrototype: Value is not a valid number.', this, i, value ); valid = false; break; } } } } return valid; }, // removes equivalent sequential keys as common in morph target sequences // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0) optimize: function () { var times = this.times, values = this.values, stride = this.getValueSize(), smoothInterpolation = this.getInterpolation() === InterpolateSmooth, writeIndex = 1, lastIndex = times.length - 1; for ( var i = 1; i < lastIndex; ++ i ) { var keep = false; var time = times[ i ]; var timeNext = times[ i + 1 ]; // remove adjacent keyframes scheduled at the same time if ( time !== timeNext && ( i !== 1 || time !== time[ 0 ] ) ) { if ( ! smoothInterpolation ) { // remove unnecessary keyframes same as their neighbors var offset = i * stride, offsetP = offset - stride, offsetN = offset + stride; for ( var j = 0; j !== stride; ++ j ) { var value = values[ offset + j ]; if ( value !== values[ offsetP + j ] || value !== values[ offsetN + j ] ) { keep = true; break; } } } else keep = true; } // in-place compaction if ( keep ) { if ( i !== writeIndex ) { times[ writeIndex ] = times[ i ]; var readOffset = i * stride, writeOffset = writeIndex * stride; for ( var j = 0; j !== stride; ++ j ) values[ writeOffset + j ] = values[ readOffset + j ]; } ++ writeIndex; } } // flush last keyframe (compaction looks ahead) if ( lastIndex > 0 ) { times[ writeIndex ] = times[ lastIndex ]; for ( var readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++ j ) values[ writeOffset + j ] = values[ readOffset + j ]; ++ writeIndex; } if ( writeIndex !== times.length ) { this.times = AnimationUtils.arraySlice( times, 0, writeIndex ); this.values = AnimationUtils.arraySlice( values, 0, writeIndex * stride ); } return this; } }; function KeyframeTrackConstructor( name, times, values, interpolation ) { if ( name === undefined ) throw new Error( "track name is undefined" ); if ( times === undefined || times.length === 0 ) { throw new Error( "no keyframes in track named " + name ); } this.name = name; this.times = AnimationUtils.convertArray( times, this.TimeBufferType ); this.values = AnimationUtils.convertArray( values, this.ValueBufferType ); this.setInterpolation( interpolation || this.DefaultInterpolation ); this.validate(); this.optimize(); } /** * * A Track of vectored keyframe values. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function VectorKeyframeTrack( name, times, values, interpolation ) { KeyframeTrackConstructor.call( this, name, times, values, interpolation ); } VectorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrackPrototype ), { constructor: VectorKeyframeTrack, ValueTypeName: 'vector' // ValueBufferType is inherited // DefaultInterpolation is inherited } ); /** * Spherical linear unit quaternion interpolant. * * @author tschw */ function QuaternionLinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); } QuaternionLinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), { constructor: QuaternionLinearInterpolant, interpolate_: function( i1, t0, t, t1 ) { var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset = i1 * stride, alpha = ( t - t0 ) / ( t1 - t0 ); for ( var end = offset + stride; offset !== end; offset += 4 ) { Quaternion.slerpFlat( result, 0, values, offset - stride, values, offset, alpha ); } return result; } } ); /** * * A Track of quaternion keyframe values. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function QuaternionKeyframeTrack( name, times, values, interpolation ) { KeyframeTrackConstructor.call( this, name, times, values, interpolation ); } QuaternionKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrackPrototype ), { constructor: QuaternionKeyframeTrack, ValueTypeName: 'quaternion', // ValueBufferType is inherited DefaultInterpolation: InterpolateLinear, InterpolantFactoryMethodLinear: function( result ) { return new QuaternionLinearInterpolant( this.times, this.values, this.getValueSize(), result ); }, InterpolantFactoryMethodSmooth: undefined // not yet implemented } ); /** * * A Track of numeric keyframe values. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function NumberKeyframeTrack( name, times, values, interpolation ) { KeyframeTrackConstructor.call( this, name, times, values, interpolation ); } NumberKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrackPrototype ), { constructor: NumberKeyframeTrack, ValueTypeName: 'number' // ValueBufferType is inherited // DefaultInterpolation is inherited } ); /** * * A Track that interpolates Strings * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function StringKeyframeTrack( name, times, values, interpolation ) { KeyframeTrackConstructor.call( this, name, times, values, interpolation ); } StringKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrackPrototype ), { constructor: StringKeyframeTrack, ValueTypeName: 'string', ValueBufferType: Array, DefaultInterpolation: InterpolateDiscrete, InterpolantFactoryMethodLinear: undefined, InterpolantFactoryMethodSmooth: undefined } ); /** * * A Track of Boolean keyframe values. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function BooleanKeyframeTrack( name, times, values ) { KeyframeTrackConstructor.call( this, name, times, values ); } BooleanKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrackPrototype ), { constructor: BooleanKeyframeTrack, ValueTypeName: 'bool', ValueBufferType: Array, DefaultInterpolation: InterpolateDiscrete, InterpolantFactoryMethodLinear: undefined, InterpolantFactoryMethodSmooth: undefined // Note: Actually this track could have a optimized / compressed // representation of a single value and a custom interpolant that // computes "firstValue ^ isOdd( index )". } ); /** * * A Track of keyframe values that represent color. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function ColorKeyframeTrack( name, times, values, interpolation ) { KeyframeTrackConstructor.call( this, name, times, values, interpolation ); } ColorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrackPrototype ), { constructor: ColorKeyframeTrack, ValueTypeName: 'color' // ValueBufferType is inherited // DefaultInterpolation is inherited // Note: Very basic implementation and nothing special yet. // However, this is the place for color space parameterization. } ); /** * * A timed sequence of keyframes for a specific property. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function KeyframeTrack( name, times, values, interpolation ) { KeyframeTrackConstructor.apply( this, arguments ); } KeyframeTrack.prototype = KeyframeTrackPrototype; KeyframeTrackPrototype.constructor = KeyframeTrack; // Static methods: Object.assign( KeyframeTrack, { // Serialization (in static context, because of constructor invocation // and automatic invocation of .toJSON): parse: function( json ) { if( json.type === undefined ) { throw new Error( "track type undefined, can not parse" ); } var trackType = KeyframeTrack._getTrackTypeForValueTypeName( json.type ); if ( json.times === undefined ) { var times = [], values = []; AnimationUtils.flattenJSON( json.keys, times, values, 'value' ); json.times = times; json.values = values; } // derived classes can define a static parse method if ( trackType.parse !== undefined ) { return trackType.parse( json ); } else { // by default, we asssume a constructor compatible with the base return new trackType( json.name, json.times, json.values, json.interpolation ); } }, toJSON: function( track ) { var trackType = track.constructor; var json; // derived classes can define a static toJSON method if ( trackType.toJSON !== undefined ) { json = trackType.toJSON( track ); } else { // by default, we assume the data can be serialized as-is json = { 'name': track.name, 'times': AnimationUtils.convertArray( track.times, Array ), 'values': AnimationUtils.convertArray( track.values, Array ) }; var interpolation = track.getInterpolation(); if ( interpolation !== track.DefaultInterpolation ) { json.interpolation = interpolation; } } json.type = track.ValueTypeName; // mandatory return json; }, _getTrackTypeForValueTypeName: function( typeName ) { switch( typeName.toLowerCase() ) { case "scalar": case "double": case "float": case "number": case "integer": return NumberKeyframeTrack; case "vector": case "vector2": case "vector3": case "vector4": return VectorKeyframeTrack; case "color": return ColorKeyframeTrack; case "quaternion": return QuaternionKeyframeTrack; case "bool": case "boolean": return BooleanKeyframeTrack; case "string": return StringKeyframeTrack; } throw new Error( "Unsupported typeName: " + typeName ); } } ); /** * * Reusable set of Tracks that represent an animation. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ */ function AnimationClip( name, duration, tracks ) { this.name = name; this.tracks = tracks; this.duration = ( duration !== undefined ) ? duration : - 1; this.uuid = _Math.generateUUID(); // this means it should figure out its duration by scanning the tracks if ( this.duration < 0 ) { this.resetDuration(); } this.optimize(); } Object.assign( AnimationClip, { parse: function ( json ) { var tracks = [], jsonTracks = json.tracks, frameTime = 1.0 / ( json.fps || 1.0 ); for ( var i = 0, n = jsonTracks.length; i !== n; ++ i ) { tracks.push( KeyframeTrack.parse( jsonTracks[ i ] ).scale( frameTime ) ); } return new AnimationClip( json.name, json.duration, tracks ); }, toJSON: function ( clip ) { var tracks = [], clipTracks = clip.tracks; var json = { 'name': clip.name, 'duration': clip.duration, 'tracks': tracks }; for ( var i = 0, n = clipTracks.length; i !== n; ++ i ) { tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) ); } return json; }, CreateFromMorphTargetSequence: function ( name, morphTargetSequence, fps, noLoop ) { var numMorphTargets = morphTargetSequence.length; var tracks = []; for ( var i = 0; i < numMorphTargets; i ++ ) { var times = []; var values = []; times.push( ( i + numMorphTargets - 1 ) % numMorphTargets, i, ( i + 1 ) % numMorphTargets ); values.push( 0, 1, 0 ); var order = AnimationUtils.getKeyframeOrder( times ); times = AnimationUtils.sortedArray( times, 1, order ); values = AnimationUtils.sortedArray( values, 1, order ); // if there is a key at the first frame, duplicate it as the // last frame as well for perfect loop. if ( ! noLoop && times[ 0 ] === 0 ) { times.push( numMorphTargets ); values.push( values[ 0 ] ); } tracks.push( new NumberKeyframeTrack( '.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']', times, values ).scale( 1.0 / fps ) ); } return new AnimationClip( name, - 1, tracks ); }, findByName: function ( objectOrClipArray, name ) { var clipArray = objectOrClipArray; if ( ! Array.isArray( objectOrClipArray ) ) { var o = objectOrClipArray; clipArray = o.geometry && o.geometry.animations || o.animations; } for ( var i = 0; i < clipArray.length; i ++ ) { if ( clipArray[ i ].name === name ) { return clipArray[ i ]; } } return null; }, CreateClipsFromMorphTargetSequences: function ( morphTargets, fps, noLoop ) { var animationToMorphTargets = {}; // tested with https://regex101.com/ on trick sequences // such flamingo_flyA_003, flamingo_run1_003, crdeath0059 var pattern = /^([\w-]*?)([\d]+)$/; // sort morph target names into animation groups based // patterns like Walk_001, Walk_002, Run_001, Run_002 for ( var i = 0, il = morphTargets.length; i < il; i ++ ) { var morphTarget = morphTargets[ i ]; var parts = morphTarget.name.match( pattern ); if ( parts && parts.length > 1 ) { var name = parts[ 1 ]; var animationMorphTargets = animationToMorphTargets[ name ]; if ( ! animationMorphTargets ) { animationToMorphTargets[ name ] = animationMorphTargets = []; } animationMorphTargets.push( morphTarget ); } } var clips = []; for ( var name in animationToMorphTargets ) { clips.push( AnimationClip.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) ); } return clips; }, // parse the animation.hierarchy format parseAnimation: function ( animation, bones ) { if ( ! animation ) { console.error( 'THREE.AnimationClip: No animation in JSONLoader data.' ); return null; } var addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) { // only return track if there are actually keys. if ( animationKeys.length !== 0 ) { var times = []; var values = []; AnimationUtils.flattenJSON( animationKeys, times, values, propertyName ); // empty keys are filtered out, so check again if ( times.length !== 0 ) { destTracks.push( new trackType( trackName, times, values ) ); } } }; var tracks = []; var clipName = animation.name || 'default'; // automatic length determination in AnimationClip. var duration = animation.length || - 1; var fps = animation.fps || 30; var hierarchyTracks = animation.hierarchy || []; for ( var h = 0; h < hierarchyTracks.length; h ++ ) { var animationKeys = hierarchyTracks[ h ].keys; // skip empty tracks if ( ! animationKeys || animationKeys.length === 0 ) continue; // process morph targets if ( animationKeys[ 0 ].morphTargets ) { // figure out all morph targets used in this track var morphTargetNames = {}; for ( var k = 0; k < animationKeys.length; k ++ ) { if ( animationKeys[ k ].morphTargets ) { for ( var m = 0; m < animationKeys[ k ].morphTargets.length; m ++ ) { morphTargetNames[ animationKeys[ k ].morphTargets[ m ] ] = - 1; } } } // create a track for each morph target with all zero // morphTargetInfluences except for the keys in which // the morphTarget is named. for ( var morphTargetName in morphTargetNames ) { var times = []; var values = []; for ( var m = 0; m !== animationKeys[ k ].morphTargets.length; ++ m ) { var animationKey = animationKeys[ k ]; times.push( animationKey.time ); values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 ); } tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) ); } duration = morphTargetNames.length * ( fps || 1.0 ); } else { // ...assume skeletal animation var boneName = '.bones[' + bones[ h ].name + ']'; addNonemptyTrack( VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks ); addNonemptyTrack( QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks ); addNonemptyTrack( VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks ); } } if ( tracks.length === 0 ) { return null; } var clip = new AnimationClip( clipName, duration, tracks ); return clip; } } ); Object.assign( AnimationClip.prototype, { resetDuration: function () { var tracks = this.tracks, duration = 0; for ( var i = 0, n = tracks.length; i !== n; ++ i ) { var track = this.tracks[ i ]; duration = Math.max( duration, track.times[ track.times.length - 1 ] ); } this.duration = duration; }, trim: function () { for ( var i = 0; i < this.tracks.length; i ++ ) { this.tracks[ i ].trim( 0, this.duration ); } return this; }, optimize: function () { for ( var i = 0; i < this.tracks.length; i ++ ) { this.tracks[ i ].optimize(); } return this; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function MaterialLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; this.textures = {}; } Object.assign( MaterialLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new FileLoader( scope.manager ); loader.load( url, function ( text ) { onLoad( scope.parse( JSON.parse( text ) ) ); }, onProgress, onError ); }, setTextures: function ( value ) { this.textures = value; }, parse: function ( json ) { var textures = this.textures; function getTexture( name ) { if ( textures[ name ] === undefined ) { console.warn( 'THREE.MaterialLoader: Undefined texture', name ); } return textures[ name ]; } var material = new Materials[ json.type ](); if ( json.uuid !== undefined ) material.uuid = json.uuid; if ( json.name !== undefined ) material.name = json.name; if ( json.color !== undefined ) material.color.setHex( json.color ); if ( json.roughness !== undefined ) material.roughness = json.roughness; if ( json.metalness !== undefined ) material.metalness = json.metalness; if ( json.emissive !== undefined ) material.emissive.setHex( json.emissive ); if ( json.specular !== undefined ) material.specular.setHex( json.specular ); if ( json.shininess !== undefined ) material.shininess = json.shininess; if ( json.clearCoat !== undefined ) material.clearCoat = json.clearCoat; if ( json.clearCoatRoughness !== undefined ) material.clearCoatRoughness = json.clearCoatRoughness; if ( json.uniforms !== undefined ) material.uniforms = json.uniforms; if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader; if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader; if ( json.vertexColors !== undefined ) material.vertexColors = json.vertexColors; if ( json.fog !== undefined ) material.fog = json.fog; if ( json.shading !== undefined ) material.shading = json.shading; if ( json.blending !== undefined ) material.blending = json.blending; if ( json.side !== undefined ) material.side = json.side; if ( json.opacity !== undefined ) material.opacity = json.opacity; if ( json.transparent !== undefined ) material.transparent = json.transparent; if ( json.alphaTest !== undefined ) material.alphaTest = json.alphaTest; if ( json.depthTest !== undefined ) material.depthTest = json.depthTest; if ( json.depthWrite !== undefined ) material.depthWrite = json.depthWrite; if ( json.colorWrite !== undefined ) material.colorWrite = json.colorWrite; if ( json.wireframe !== undefined ) material.wireframe = json.wireframe; if ( json.wireframeLinewidth !== undefined ) material.wireframeLinewidth = json.wireframeLinewidth; if ( json.wireframeLinecap !== undefined ) material.wireframeLinecap = json.wireframeLinecap; if ( json.wireframeLinejoin !== undefined ) material.wireframeLinejoin = json.wireframeLinejoin; if ( json.skinning !== undefined ) material.skinning = json.skinning; if ( json.morphTargets !== undefined ) material.morphTargets = json.morphTargets; // for PointsMaterial if ( json.size !== undefined ) material.size = json.size; if ( json.sizeAttenuation !== undefined ) material.sizeAttenuation = json.sizeAttenuation; // maps if ( json.map !== undefined ) material.map = getTexture( json.map ); if ( json.alphaMap !== undefined ) { material.alphaMap = getTexture( json.alphaMap ); material.transparent = true; } if ( json.bumpMap !== undefined ) material.bumpMap = getTexture( json.bumpMap ); if ( json.bumpScale !== undefined ) material.bumpScale = json.bumpScale; if ( json.normalMap !== undefined ) material.normalMap = getTexture( json.normalMap ); if ( json.normalScale !== undefined ) { var normalScale = json.normalScale; if ( Array.isArray( normalScale ) === false ) { // Blender exporter used to export a scalar. See #7459 normalScale = [ normalScale, normalScale ]; } material.normalScale = new Vector2().fromArray( normalScale ); } if ( json.displacementMap !== undefined ) material.displacementMap = getTexture( json.displacementMap ); if ( json.displacementScale !== undefined ) material.displacementScale = json.displacementScale; if ( json.displacementBias !== undefined ) material.displacementBias = json.displacementBias; if ( json.roughnessMap !== undefined ) material.roughnessMap = getTexture( json.roughnessMap ); if ( json.metalnessMap !== undefined ) material.metalnessMap = getTexture( json.metalnessMap ); if ( json.emissiveMap !== undefined ) material.emissiveMap = getTexture( json.emissiveMap ); if ( json.emissiveIntensity !== undefined ) material.emissiveIntensity = json.emissiveIntensity; if ( json.specularMap !== undefined ) material.specularMap = getTexture( json.specularMap ); if ( json.envMap !== undefined ) material.envMap = getTexture( json.envMap ); if ( json.reflectivity !== undefined ) material.reflectivity = json.reflectivity; if ( json.lightMap !== undefined ) material.lightMap = getTexture( json.lightMap ); if ( json.lightMapIntensity !== undefined ) material.lightMapIntensity = json.lightMapIntensity; if ( json.aoMap !== undefined ) material.aoMap = getTexture( json.aoMap ); if ( json.aoMapIntensity !== undefined ) material.aoMapIntensity = json.aoMapIntensity; if ( json.gradientMap !== undefined ) material.gradientMap = getTexture( json.gradientMap ); return material; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function BufferGeometryLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; } Object.assign( BufferGeometryLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new FileLoader( scope.manager ); loader.load( url, function ( text ) { onLoad( scope.parse( JSON.parse( text ) ) ); }, onProgress, onError ); }, parse: function ( json ) { var geometry = new BufferGeometry(); var index = json.data.index; if ( index !== undefined ) { var typedArray = new TYPED_ARRAYS[ index.type ]( index.array ); geometry.setIndex( new BufferAttribute( typedArray, 1 ) ); } var attributes = json.data.attributes; for ( var key in attributes ) { var attribute = attributes[ key ]; var typedArray = new TYPED_ARRAYS[ attribute.type ]( attribute.array ); geometry.addAttribute( key, new BufferAttribute( typedArray, attribute.itemSize, attribute.normalized ) ); } var groups = json.data.groups || json.data.drawcalls || json.data.offsets; if ( groups !== undefined ) { for ( var i = 0, n = groups.length; i !== n; ++ i ) { var group = groups[ i ]; geometry.addGroup( group.start, group.count, group.materialIndex ); } } var boundingSphere = json.data.boundingSphere; if ( boundingSphere !== undefined ) { var center = new Vector3(); if ( boundingSphere.center !== undefined ) { center.fromArray( boundingSphere.center ); } geometry.boundingSphere = new Sphere( center, boundingSphere.radius ); } return geometry; } } ); var TYPED_ARRAYS = { Int8Array: Int8Array, Uint8Array: Uint8Array, // Workaround for IE11 pre KB2929437. See #11440 Uint8ClampedArray: typeof Uint8ClampedArray !== 'undefined' ? Uint8ClampedArray : Uint8Array, Int16Array: Int16Array, Uint16Array: Uint16Array, Int32Array: Int32Array, Uint32Array: Uint32Array, Float32Array: Float32Array, Float64Array: Float64Array }; /** * @author alteredq / http://alteredqualia.com/ */ function Loader() { this.onLoadStart = function () {}; this.onLoadProgress = function () {}; this.onLoadComplete = function () {}; } Loader.Handlers = { handlers: [], add: function ( regex, loader ) { this.handlers.push( regex, loader ); }, get: function ( file ) { var handlers = this.handlers; for ( var i = 0, l = handlers.length; i < l; i += 2 ) { var regex = handlers[ i ]; var loader = handlers[ i + 1 ]; if ( regex.test( file ) ) { return loader; } } return null; } }; Object.assign( Loader.prototype, { crossOrigin: undefined, extractUrlBase: function ( url ) { var parts = url.split( '/' ); if ( parts.length === 1 ) return './'; parts.pop(); return parts.join( '/' ) + '/'; }, initMaterials: function ( materials, texturePath, crossOrigin ) { var array = []; for ( var i = 0; i < materials.length; ++ i ) { array[ i ] = this.createMaterial( materials[ i ], texturePath, crossOrigin ); } return array; }, createMaterial: ( function () { var BlendingMode = { NoBlending: NoBlending, NormalBlending: NormalBlending, AdditiveBlending: AdditiveBlending, SubtractiveBlending: SubtractiveBlending, MultiplyBlending: MultiplyBlending, CustomBlending: CustomBlending }; var color = new Color(); var textureLoader = new TextureLoader(); var materialLoader = new MaterialLoader(); return function createMaterial( m, texturePath, crossOrigin ) { // convert from old material format var textures = {}; function loadTexture( path, repeat, offset, wrap, anisotropy ) { var fullPath = texturePath + path; var loader = Loader.Handlers.get( fullPath ); var texture; if ( loader !== null ) { texture = loader.load( fullPath ); } else { textureLoader.setCrossOrigin( crossOrigin ); texture = textureLoader.load( fullPath ); } if ( repeat !== undefined ) { texture.repeat.fromArray( repeat ); if ( repeat[ 0 ] !== 1 ) texture.wrapS = RepeatWrapping; if ( repeat[ 1 ] !== 1 ) texture.wrapT = RepeatWrapping; } if ( offset !== undefined ) { texture.offset.fromArray( offset ); } if ( wrap !== undefined ) { if ( wrap[ 0 ] === 'repeat' ) texture.wrapS = RepeatWrapping; if ( wrap[ 0 ] === 'mirror' ) texture.wrapS = MirroredRepeatWrapping; if ( wrap[ 1 ] === 'repeat' ) texture.wrapT = RepeatWrapping; if ( wrap[ 1 ] === 'mirror' ) texture.wrapT = MirroredRepeatWrapping; } if ( anisotropy !== undefined ) { texture.anisotropy = anisotropy; } var uuid = _Math.generateUUID(); textures[ uuid ] = texture; return uuid; } // var json = { uuid: _Math.generateUUID(), type: 'MeshLambertMaterial' }; for ( var name in m ) { var value = m[ name ]; switch ( name ) { case 'DbgColor': case 'DbgIndex': case 'opticalDensity': case 'illumination': break; case 'DbgName': json.name = value; break; case 'blending': json.blending = BlendingMode[ value ]; break; case 'colorAmbient': case 'mapAmbient': console.warn( 'THREE.Loader.createMaterial:', name, 'is no longer supported.' ); break; case 'colorDiffuse': json.color = color.fromArray( value ).getHex(); break; case 'colorSpecular': json.specular = color.fromArray( value ).getHex(); break; case 'colorEmissive': json.emissive = color.fromArray( value ).getHex(); break; case 'specularCoef': json.shininess = value; break; case 'shading': if ( value.toLowerCase() === 'basic' ) json.type = 'MeshBasicMaterial'; if ( value.toLowerCase() === 'phong' ) json.type = 'MeshPhongMaterial'; if ( value.toLowerCase() === 'standard' ) json.type = 'MeshStandardMaterial'; break; case 'mapDiffuse': json.map = loadTexture( value, m.mapDiffuseRepeat, m.mapDiffuseOffset, m.mapDiffuseWrap, m.mapDiffuseAnisotropy ); break; case 'mapDiffuseRepeat': case 'mapDiffuseOffset': case 'mapDiffuseWrap': case 'mapDiffuseAnisotropy': break; case 'mapEmissive': json.emissiveMap = loadTexture( value, m.mapEmissiveRepeat, m.mapEmissiveOffset, m.mapEmissiveWrap, m.mapEmissiveAnisotropy ); break; case 'mapEmissiveRepeat': case 'mapEmissiveOffset': case 'mapEmissiveWrap': case 'mapEmissiveAnisotropy': break; case 'mapLight': json.lightMap = loadTexture( value, m.mapLightRepeat, m.mapLightOffset, m.mapLightWrap, m.mapLightAnisotropy ); break; case 'mapLightRepeat': case 'mapLightOffset': case 'mapLightWrap': case 'mapLightAnisotropy': break; case 'mapAO': json.aoMap = loadTexture( value, m.mapAORepeat, m.mapAOOffset, m.mapAOWrap, m.mapAOAnisotropy ); break; case 'mapAORepeat': case 'mapAOOffset': case 'mapAOWrap': case 'mapAOAnisotropy': break; case 'mapBump': json.bumpMap = loadTexture( value, m.mapBumpRepeat, m.mapBumpOffset, m.mapBumpWrap, m.mapBumpAnisotropy ); break; case 'mapBumpScale': json.bumpScale = value; break; case 'mapBumpRepeat': case 'mapBumpOffset': case 'mapBumpWrap': case 'mapBumpAnisotropy': break; case 'mapNormal': json.normalMap = loadTexture( value, m.mapNormalRepeat, m.mapNormalOffset, m.mapNormalWrap, m.mapNormalAnisotropy ); break; case 'mapNormalFactor': json.normalScale = [ value, value ]; break; case 'mapNormalRepeat': case 'mapNormalOffset': case 'mapNormalWrap': case 'mapNormalAnisotropy': break; case 'mapSpecular': json.specularMap = loadTexture( value, m.mapSpecularRepeat, m.mapSpecularOffset, m.mapSpecularWrap, m.mapSpecularAnisotropy ); break; case 'mapSpecularRepeat': case 'mapSpecularOffset': case 'mapSpecularWrap': case 'mapSpecularAnisotropy': break; case 'mapMetalness': json.metalnessMap = loadTexture( value, m.mapMetalnessRepeat, m.mapMetalnessOffset, m.mapMetalnessWrap, m.mapMetalnessAnisotropy ); break; case 'mapMetalnessRepeat': case 'mapMetalnessOffset': case 'mapMetalnessWrap': case 'mapMetalnessAnisotropy': break; case 'mapRoughness': json.roughnessMap = loadTexture( value, m.mapRoughnessRepeat, m.mapRoughnessOffset, m.mapRoughnessWrap, m.mapRoughnessAnisotropy ); break; case 'mapRoughnessRepeat': case 'mapRoughnessOffset': case 'mapRoughnessWrap': case 'mapRoughnessAnisotropy': break; case 'mapAlpha': json.alphaMap = loadTexture( value, m.mapAlphaRepeat, m.mapAlphaOffset, m.mapAlphaWrap, m.mapAlphaAnisotropy ); break; case 'mapAlphaRepeat': case 'mapAlphaOffset': case 'mapAlphaWrap': case 'mapAlphaAnisotropy': break; case 'flipSided': json.side = BackSide; break; case 'doubleSided': json.side = DoubleSide; break; case 'transparency': console.warn( 'THREE.Loader.createMaterial: transparency has been renamed to opacity' ); json.opacity = value; break; case 'depthTest': case 'depthWrite': case 'colorWrite': case 'opacity': case 'reflectivity': case 'transparent': case 'visible': case 'wireframe': json[ name ] = value; break; case 'vertexColors': if ( value === true ) json.vertexColors = VertexColors; if ( value === 'face' ) json.vertexColors = FaceColors; break; default: console.error( 'THREE.Loader.createMaterial: Unsupported', name, value ); break; } } if ( json.type === 'MeshBasicMaterial' ) delete json.emissive; if ( json.type !== 'MeshPhongMaterial' ) delete json.specular; if ( json.opacity < 1 ) json.transparent = true; materialLoader.setTextures( textures ); return materialLoader.parse( json ); }; } )() } ); /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function JSONLoader( manager ) { if ( typeof manager === 'boolean' ) { console.warn( 'THREE.JSONLoader: showStatus parameter has been removed from constructor.' ); manager = undefined; } this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; this.withCredentials = false; } Object.assign( JSONLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { var scope = this; var texturePath = this.texturePath && ( typeof this.texturePath === "string" ) ? this.texturePath : Loader.prototype.extractUrlBase( url ); var loader = new FileLoader( this.manager ); loader.setWithCredentials( this.withCredentials ); loader.load( url, function ( text ) { var json = JSON.parse( text ); var metadata = json.metadata; if ( metadata !== undefined ) { var type = metadata.type; if ( type !== undefined ) { if ( type.toLowerCase() === 'object' ) { console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.ObjectLoader instead.' ); return; } if ( type.toLowerCase() === 'scene' ) { console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.SceneLoader instead.' ); return; } } } var object = scope.parse( json, texturePath ); onLoad( object.geometry, object.materials ); }, onProgress, onError ); }, setTexturePath: function ( value ) { this.texturePath = value; }, parse: ( function () { function parseModel( json, geometry ) { function isBitSet( value, position ) { return value & ( 1 << position ); } var i, j, fi, offset, zLength, colorIndex, normalIndex, uvIndex, materialIndex, type, isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor, vertex, face, faceA, faceB, hex, normal, uvLayer, uv, u, v, faces = json.faces, vertices = json.vertices, normals = json.normals, colors = json.colors, scale = json.scale, nUvLayers = 0; if ( json.uvs !== undefined ) { // disregard empty arrays for ( i = 0; i < json.uvs.length; i ++ ) { if ( json.uvs[ i ].length ) nUvLayers ++; } for ( i = 0; i < nUvLayers; i ++ ) { geometry.faceVertexUvs[ i ] = []; } } offset = 0; zLength = vertices.length; while ( offset < zLength ) { vertex = new Vector3(); vertex.x = vertices[ offset ++ ] * scale; vertex.y = vertices[ offset ++ ] * scale; vertex.z = vertices[ offset ++ ] * scale; geometry.vertices.push( vertex ); } offset = 0; zLength = faces.length; while ( offset < zLength ) { type = faces[ offset ++ ]; isQuad = isBitSet( type, 0 ); hasMaterial = isBitSet( type, 1 ); hasFaceVertexUv = isBitSet( type, 3 ); hasFaceNormal = isBitSet( type, 4 ); hasFaceVertexNormal = isBitSet( type, 5 ); hasFaceColor = isBitSet( type, 6 ); hasFaceVertexColor = isBitSet( type, 7 ); // console.log("type", type, "bits", isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor); if ( isQuad ) { faceA = new Face3(); faceA.a = faces[ offset ]; faceA.b = faces[ offset + 1 ]; faceA.c = faces[ offset + 3 ]; faceB = new Face3(); faceB.a = faces[ offset + 1 ]; faceB.b = faces[ offset + 2 ]; faceB.c = faces[ offset + 3 ]; offset += 4; if ( hasMaterial ) { materialIndex = faces[ offset ++ ]; faceA.materialIndex = materialIndex; faceB.materialIndex = materialIndex; } // to get face <=> uv index correspondence fi = geometry.faces.length; if ( hasFaceVertexUv ) { for ( i = 0; i < nUvLayers; i ++ ) { uvLayer = json.uvs[ i ]; geometry.faceVertexUvs[ i ][ fi ] = []; geometry.faceVertexUvs[ i ][ fi + 1 ] = []; for ( j = 0; j < 4; j ++ ) { uvIndex = faces[ offset ++ ]; u = uvLayer[ uvIndex * 2 ]; v = uvLayer[ uvIndex * 2 + 1 ]; uv = new Vector2( u, v ); if ( j !== 2 ) geometry.faceVertexUvs[ i ][ fi ].push( uv ); if ( j !== 0 ) geometry.faceVertexUvs[ i ][ fi + 1 ].push( uv ); } } } if ( hasFaceNormal ) { normalIndex = faces[ offset ++ ] * 3; faceA.normal.set( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); faceB.normal.copy( faceA.normal ); } if ( hasFaceVertexNormal ) { for ( i = 0; i < 4; i ++ ) { normalIndex = faces[ offset ++ ] * 3; normal = new Vector3( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); if ( i !== 2 ) faceA.vertexNormals.push( normal ); if ( i !== 0 ) faceB.vertexNormals.push( normal ); } } if ( hasFaceColor ) { colorIndex = faces[ offset ++ ]; hex = colors[ colorIndex ]; faceA.color.setHex( hex ); faceB.color.setHex( hex ); } if ( hasFaceVertexColor ) { for ( i = 0; i < 4; i ++ ) { colorIndex = faces[ offset ++ ]; hex = colors[ colorIndex ]; if ( i !== 2 ) faceA.vertexColors.push( new Color( hex ) ); if ( i !== 0 ) faceB.vertexColors.push( new Color( hex ) ); } } geometry.faces.push( faceA ); geometry.faces.push( faceB ); } else { face = new Face3(); face.a = faces[ offset ++ ]; face.b = faces[ offset ++ ]; face.c = faces[ offset ++ ]; if ( hasMaterial ) { materialIndex = faces[ offset ++ ]; face.materialIndex = materialIndex; } // to get face <=> uv index correspondence fi = geometry.faces.length; if ( hasFaceVertexUv ) { for ( i = 0; i < nUvLayers; i ++ ) { uvLayer = json.uvs[ i ]; geometry.faceVertexUvs[ i ][ fi ] = []; for ( j = 0; j < 3; j ++ ) { uvIndex = faces[ offset ++ ]; u = uvLayer[ uvIndex * 2 ]; v = uvLayer[ uvIndex * 2 + 1 ]; uv = new Vector2( u, v ); geometry.faceVertexUvs[ i ][ fi ].push( uv ); } } } if ( hasFaceNormal ) { normalIndex = faces[ offset ++ ] * 3; face.normal.set( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); } if ( hasFaceVertexNormal ) { for ( i = 0; i < 3; i ++ ) { normalIndex = faces[ offset ++ ] * 3; normal = new Vector3( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); face.vertexNormals.push( normal ); } } if ( hasFaceColor ) { colorIndex = faces[ offset ++ ]; face.color.setHex( colors[ colorIndex ] ); } if ( hasFaceVertexColor ) { for ( i = 0; i < 3; i ++ ) { colorIndex = faces[ offset ++ ]; face.vertexColors.push( new Color( colors[ colorIndex ] ) ); } } geometry.faces.push( face ); } } } function parseSkin( json, geometry ) { var influencesPerVertex = ( json.influencesPerVertex !== undefined ) ? json.influencesPerVertex : 2; if ( json.skinWeights ) { for ( var i = 0, l = json.skinWeights.length; i < l; i += influencesPerVertex ) { var x = json.skinWeights[ i ]; var y = ( influencesPerVertex > 1 ) ? json.skinWeights[ i + 1 ] : 0; var z = ( influencesPerVertex > 2 ) ? json.skinWeights[ i + 2 ] : 0; var w = ( influencesPerVertex > 3 ) ? json.skinWeights[ i + 3 ] : 0; geometry.skinWeights.push( new Vector4( x, y, z, w ) ); } } if ( json.skinIndices ) { for ( var i = 0, l = json.skinIndices.length; i < l; i += influencesPerVertex ) { var a = json.skinIndices[ i ]; var b = ( influencesPerVertex > 1 ) ? json.skinIndices[ i + 1 ] : 0; var c = ( influencesPerVertex > 2 ) ? json.skinIndices[ i + 2 ] : 0; var d = ( influencesPerVertex > 3 ) ? json.skinIndices[ i + 3 ] : 0; geometry.skinIndices.push( new Vector4( a, b, c, d ) ); } } geometry.bones = json.bones; if ( geometry.bones && geometry.bones.length > 0 && ( geometry.skinWeights.length !== geometry.skinIndices.length || geometry.skinIndices.length !== geometry.vertices.length ) ) { console.warn( 'When skinning, number of vertices (' + geometry.vertices.length + '), skinIndices (' + geometry.skinIndices.length + '), and skinWeights (' + geometry.skinWeights.length + ') should match.' ); } } function parseMorphing( json, geometry ) { var scale = json.scale; if ( json.morphTargets !== undefined ) { for ( var i = 0, l = json.morphTargets.length; i < l; i ++ ) { geometry.morphTargets[ i ] = {}; geometry.morphTargets[ i ].name = json.morphTargets[ i ].name; geometry.morphTargets[ i ].vertices = []; var dstVertices = geometry.morphTargets[ i ].vertices; var srcVertices = json.morphTargets[ i ].vertices; for ( var v = 0, vl = srcVertices.length; v < vl; v += 3 ) { var vertex = new Vector3(); vertex.x = srcVertices[ v ] * scale; vertex.y = srcVertices[ v + 1 ] * scale; vertex.z = srcVertices[ v + 2 ] * scale; dstVertices.push( vertex ); } } } if ( json.morphColors !== undefined && json.morphColors.length > 0 ) { console.warn( 'THREE.JSONLoader: "morphColors" no longer supported. Using them as face colors.' ); var faces = geometry.faces; var morphColors = json.morphColors[ 0 ].colors; for ( var i = 0, l = faces.length; i < l; i ++ ) { faces[ i ].color.fromArray( morphColors, i * 3 ); } } } function parseAnimations( json, geometry ) { var outputAnimations = []; // parse old style Bone/Hierarchy animations var animations = []; if ( json.animation !== undefined ) { animations.push( json.animation ); } if ( json.animations !== undefined ) { if ( json.animations.length ) { animations = animations.concat( json.animations ); } else { animations.push( json.animations ); } } for ( var i = 0; i < animations.length; i ++ ) { var clip = AnimationClip.parseAnimation( animations[ i ], geometry.bones ); if ( clip ) outputAnimations.push( clip ); } // parse implicit morph animations if ( geometry.morphTargets ) { // TODO: Figure out what an appropraite FPS is for morph target animations -- defaulting to 10, but really it is completely arbitrary. var morphAnimationClips = AnimationClip.CreateClipsFromMorphTargetSequences( geometry.morphTargets, 10 ); outputAnimations = outputAnimations.concat( morphAnimationClips ); } if ( outputAnimations.length > 0 ) geometry.animations = outputAnimations; } return function ( json, texturePath ) { if ( json.data !== undefined ) { // Geometry 4.0 spec json = json.data; } if ( json.scale !== undefined ) { json.scale = 1.0 / json.scale; } else { json.scale = 1.0; } var geometry = new Geometry(); parseModel( json, geometry ); parseSkin( json, geometry ); parseMorphing( json, geometry ); parseAnimations( json, geometry ); geometry.computeFaceNormals(); geometry.computeBoundingSphere(); if ( json.materials === undefined || json.materials.length === 0 ) { return { geometry: geometry }; } else { var materials = Loader.prototype.initMaterials( json.materials, texturePath, this.crossOrigin ); return { geometry: geometry, materials: materials }; } }; } )() } ); /** * @author mrdoob / http://mrdoob.com/ */ function ObjectLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; this.texturePath = ''; } Object.assign( ObjectLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { if ( this.texturePath === '' ) { this.texturePath = url.substring( 0, url.lastIndexOf( '/' ) + 1 ); } var scope = this; var loader = new FileLoader( scope.manager ); loader.load( url, function ( text ) { var json = null; try { json = JSON.parse( text ); } catch ( error ) { if ( onError !== undefined ) onError( error ); console.error( 'THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message ); return; } var metadata = json.metadata; if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) { console.error( 'THREE.ObjectLoader: Can\'t load ' + url + '. Use THREE.JSONLoader instead.' ); return; } scope.parse( json, onLoad ); }, onProgress, onError ); }, setTexturePath: function ( value ) { this.texturePath = value; }, setCrossOrigin: function ( value ) { this.crossOrigin = value; }, parse: function ( json, onLoad ) { var geometries = this.parseGeometries( json.geometries ); var images = this.parseImages( json.images, function () { if ( onLoad !== undefined ) onLoad( object ); } ); var textures = this.parseTextures( json.textures, images ); var materials = this.parseMaterials( json.materials, textures ); var object = this.parseObject( json.object, geometries, materials ); if ( json.animations ) { object.animations = this.parseAnimations( json.animations ); } if ( json.images === undefined || json.images.length === 0 ) { if ( onLoad !== undefined ) onLoad( object ); } return object; }, parseGeometries: function ( json ) { var geometries = {}; if ( json !== undefined ) { var geometryLoader = new JSONLoader(); var bufferGeometryLoader = new BufferGeometryLoader(); for ( var i = 0, l = json.length; i < l; i ++ ) { var geometry; var data = json[ i ]; switch ( data.type ) { case 'PlaneGeometry': case 'PlaneBufferGeometry': geometry = new Geometries[ data.type ]( data.width, data.height, data.widthSegments, data.heightSegments ); break; case 'BoxGeometry': case 'BoxBufferGeometry': case 'CubeGeometry': // backwards compatible geometry = new Geometries[ data.type ]( data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments ); break; case 'CircleGeometry': case 'CircleBufferGeometry': geometry = new Geometries[ data.type ]( data.radius, data.segments, data.thetaStart, data.thetaLength ); break; case 'CylinderGeometry': case 'CylinderBufferGeometry': geometry = new Geometries[ data.type ]( data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength ); break; case 'ConeGeometry': case 'ConeBufferGeometry': geometry = new Geometries[ data.type ]( data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength ); break; case 'SphereGeometry': case 'SphereBufferGeometry': geometry = new Geometries[ data.type ]( data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength ); break; case 'DodecahedronGeometry': case 'IcosahedronGeometry': case 'OctahedronGeometry': case 'TetrahedronGeometry': geometry = new Geometries[ data.type ]( data.radius, data.detail ); break; case 'RingGeometry': case 'RingBufferGeometry': geometry = new Geometries[ data.type ]( data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength ); break; case 'TorusGeometry': case 'TorusBufferGeometry': geometry = new Geometries[ data.type ]( data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc ); break; case 'TorusKnotGeometry': case 'TorusKnotBufferGeometry': geometry = new Geometries[ data.type ]( data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q ); break; case 'LatheGeometry': case 'LatheBufferGeometry': geometry = new Geometries[ data.type ]( data.points, data.segments, data.phiStart, data.phiLength ); break; case 'BufferGeometry': geometry = bufferGeometryLoader.parse( data ); break; case 'Geometry': geometry = geometryLoader.parse( data, this.texturePath ).geometry; break; default: console.warn( 'THREE.ObjectLoader: Unsupported geometry type "' + data.type + '"' ); continue; } geometry.uuid = data.uuid; if ( data.name !== undefined ) geometry.name = data.name; geometries[ data.uuid ] = geometry; } } return geometries; }, parseMaterials: function ( json, textures ) { var materials = {}; if ( json !== undefined ) { var loader = new MaterialLoader(); loader.setTextures( textures ); for ( var i = 0, l = json.length; i < l; i ++ ) { var data = json[ i ]; if ( data.type === 'MultiMaterial' ) { // Deprecated var array = []; for ( var j = 0; j < data.materials.length; j ++ ) { array.push( loader.parse( data.materials[ j ] ) ); } materials[ data.uuid ] = array; } else { materials[ data.uuid ] = loader.parse( data ); } } } return materials; }, parseAnimations: function ( json ) { var animations = []; for ( var i = 0; i < json.length; i ++ ) { var clip = AnimationClip.parse( json[ i ] ); animations.push( clip ); } return animations; }, parseImages: function ( json, onLoad ) { var scope = this; var images = {}; function loadImage( url ) { scope.manager.itemStart( url ); return loader.load( url, function () { scope.manager.itemEnd( url ); }, undefined, function () { scope.manager.itemEnd( url ); scope.manager.itemError( url ); } ); } if ( json !== undefined && json.length > 0 ) { var manager = new LoadingManager( onLoad ); var loader = new ImageLoader( manager ); loader.setCrossOrigin( this.crossOrigin ); for ( var i = 0, l = json.length; i < l; i ++ ) { var image = json[ i ]; var path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( image.url ) ? image.url : scope.texturePath + image.url; images[ image.uuid ] = loadImage( path ); } } return images; }, parseTextures: function ( json, images ) { function parseConstant( value, type ) { if ( typeof( value ) === 'number' ) return value; console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value ); return type[ value ]; } var textures = {}; if ( json !== undefined ) { for ( var i = 0, l = json.length; i < l; i ++ ) { var data = json[ i ]; if ( data.image === undefined ) { console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid ); } if ( images[ data.image ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined image', data.image ); } var texture = new Texture( images[ data.image ] ); texture.needsUpdate = true; texture.uuid = data.uuid; if ( data.name !== undefined ) texture.name = data.name; if ( data.mapping !== undefined ) texture.mapping = parseConstant( data.mapping, TEXTURE_MAPPING ); if ( data.offset !== undefined ) texture.offset.fromArray( data.offset ); if ( data.repeat !== undefined ) texture.repeat.fromArray( data.repeat ); if ( data.wrap !== undefined ) { texture.wrapS = parseConstant( data.wrap[ 0 ], TEXTURE_WRAPPING ); texture.wrapT = parseConstant( data.wrap[ 1 ], TEXTURE_WRAPPING ); } if ( data.minFilter !== undefined ) texture.minFilter = parseConstant( data.minFilter, TEXTURE_FILTER ); if ( data.magFilter !== undefined ) texture.magFilter = parseConstant( data.magFilter, TEXTURE_FILTER ); if ( data.anisotropy !== undefined ) texture.anisotropy = data.anisotropy; if ( data.flipY !== undefined ) texture.flipY = data.flipY; textures[ data.uuid ] = texture; } } return textures; }, parseObject: function () { var matrix = new Matrix4(); return function parseObject( data, geometries, materials ) { var object; function getGeometry( name ) { if ( geometries[ name ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined geometry', name ); } return geometries[ name ]; } function getMaterial( name ) { if ( name === undefined ) return undefined; if ( Array.isArray( name ) ) { var array = []; for ( var i = 0, l = name.length; i < l; i ++ ) { var uuid = name[ i ]; if ( materials[ uuid ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined material', uuid ); } array.push( materials[ uuid ] ); } return array; } if ( materials[ name ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined material', name ); } return materials[ name ]; } switch ( data.type ) { case 'Scene': object = new Scene(); if ( data.background !== undefined ) { if ( Number.isInteger( data.background ) ) { object.background = new Color( data.background ); } } if ( data.fog !== undefined ) { if ( data.fog.type === 'Fog' ) { object.fog = new Fog( data.fog.color, data.fog.near, data.fog.far ); } else if ( data.fog.type === 'FogExp2' ) { object.fog = new FogExp2( data.fog.color, data.fog.density ); } } break; case 'PerspectiveCamera': object = new PerspectiveCamera( data.fov, data.aspect, data.near, data.far ); if ( data.focus !== undefined ) object.focus = data.focus; if ( data.zoom !== undefined ) object.zoom = data.zoom; if ( data.filmGauge !== undefined ) object.filmGauge = data.filmGauge; if ( data.filmOffset !== undefined ) object.filmOffset = data.filmOffset; if ( data.view !== undefined ) object.view = Object.assign( {}, data.view ); break; case 'OrthographicCamera': object = new OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far ); break; case 'AmbientLight': object = new AmbientLight( data.color, data.intensity ); break; case 'DirectionalLight': object = new DirectionalLight( data.color, data.intensity ); break; case 'PointLight': object = new PointLight( data.color, data.intensity, data.distance, data.decay ); break; case 'RectAreaLight': object = new RectAreaLight( data.color, data.intensity, data.width, data.height ); break; case 'SpotLight': object = new SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay ); break; case 'HemisphereLight': object = new HemisphereLight( data.color, data.groundColor, data.intensity ); break; case 'SkinnedMesh': console.warn( 'THREE.ObjectLoader.parseObject() does not support SkinnedMesh yet.' ); case 'Mesh': var geometry = getGeometry( data.geometry ); var material = getMaterial( data.material ); if ( geometry.bones && geometry.bones.length > 0 ) { object = new SkinnedMesh( geometry, material ); } else { object = new Mesh( geometry, material ); } break; case 'LOD': object = new LOD(); break; case 'Line': object = new Line( getGeometry( data.geometry ), getMaterial( data.material ), data.mode ); break; case 'LineLoop': object = new LineLoop( getGeometry( data.geometry ), getMaterial( data.material ) ); break; case 'LineSegments': object = new LineSegments( getGeometry( data.geometry ), getMaterial( data.material ) ); break; case 'PointCloud': case 'Points': object = new Points( getGeometry( data.geometry ), getMaterial( data.material ) ); break; case 'Sprite': object = new Sprite( getMaterial( data.material ) ); break; case 'Group': object = new Group(); break; default: object = new Object3D(); } object.uuid = data.uuid; if ( data.name !== undefined ) object.name = data.name; if ( data.matrix !== undefined ) { matrix.fromArray( data.matrix ); matrix.decompose( object.position, object.quaternion, object.scale ); } else { if ( data.position !== undefined ) object.position.fromArray( data.position ); if ( data.rotation !== undefined ) object.rotation.fromArray( data.rotation ); if ( data.quaternion !== undefined ) object.quaternion.fromArray( data.quaternion ); if ( data.scale !== undefined ) object.scale.fromArray( data.scale ); } if ( data.castShadow !== undefined ) object.castShadow = data.castShadow; if ( data.receiveShadow !== undefined ) object.receiveShadow = data.receiveShadow; if ( data.shadow ) { if ( data.shadow.bias !== undefined ) object.shadow.bias = data.shadow.bias; if ( data.shadow.radius !== undefined ) object.shadow.radius = data.shadow.radius; if ( data.shadow.mapSize !== undefined ) object.shadow.mapSize.fromArray( data.shadow.mapSize ); if ( data.shadow.camera !== undefined ) object.shadow.camera = this.parseObject( data.shadow.camera ); } if ( data.visible !== undefined ) object.visible = data.visible; if ( data.userData !== undefined ) object.userData = data.userData; if ( data.children !== undefined ) { for ( var child in data.children ) { object.add( this.parseObject( data.children[ child ], geometries, materials ) ); } } if ( data.type === 'LOD' ) { var levels = data.levels; for ( var l = 0; l < levels.length; l ++ ) { var level = levels[ l ]; var child = object.getObjectByProperty( 'uuid', level.object ); if ( child !== undefined ) { object.addLevel( child, level.distance ); } } } return object; }; }() } ); var TEXTURE_MAPPING = { UVMapping: UVMapping, CubeReflectionMapping: CubeReflectionMapping, CubeRefractionMapping: CubeRefractionMapping, EquirectangularReflectionMapping: EquirectangularReflectionMapping, EquirectangularRefractionMapping: EquirectangularRefractionMapping, SphericalReflectionMapping: SphericalReflectionMapping, CubeUVReflectionMapping: CubeUVReflectionMapping, CubeUVRefractionMapping: CubeUVRefractionMapping }; var TEXTURE_WRAPPING = { RepeatWrapping: RepeatWrapping, ClampToEdgeWrapping: ClampToEdgeWrapping, MirroredRepeatWrapping: MirroredRepeatWrapping }; var TEXTURE_FILTER = { NearestFilter: NearestFilter, NearestMipMapNearestFilter: NearestMipMapNearestFilter, NearestMipMapLinearFilter: NearestMipMapLinearFilter, LinearFilter: LinearFilter, LinearMipMapNearestFilter: LinearMipMapNearestFilter, LinearMipMapLinearFilter: LinearMipMapLinearFilter }; /** * @author zz85 / http://www.lab4games.net/zz85/blog * * Bezier Curves formulas obtained from * http://en.wikipedia.org/wiki/Bézier_curve */ function CatmullRom( t, p0, p1, p2, p3 ) { var v0 = ( p2 - p0 ) * 0.5; var v1 = ( p3 - p1 ) * 0.5; var t2 = t * t; var t3 = t * t2; return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1; } // function QuadraticBezierP0( t, p ) { var k = 1 - t; return k * k * p; } function QuadraticBezierP1( t, p ) { return 2 * ( 1 - t ) * t * p; } function QuadraticBezierP2( t, p ) { return t * t * p; } function QuadraticBezier( t, p0, p1, p2 ) { return QuadraticBezierP0( t, p0 ) + QuadraticBezierP1( t, p1 ) + QuadraticBezierP2( t, p2 ); } // function CubicBezierP0( t, p ) { var k = 1 - t; return k * k * k * p; } function CubicBezierP1( t, p ) { var k = 1 - t; return 3 * k * k * t * p; } function CubicBezierP2( t, p ) { return 3 * ( 1 - t ) * t * t * p; } function CubicBezierP3( t, p ) { return t * t * t * p; } function CubicBezier( t, p0, p1, p2, p3 ) { return CubicBezierP0( t, p0 ) + CubicBezierP1( t, p1 ) + CubicBezierP2( t, p2 ) + CubicBezierP3( t, p3 ); } /** * @author zz85 / http://www.lab4games.net/zz85/blog * Extensible curve object * * Some common of curve methods: * .getPoint(t), getTangent(t) * .getPointAt(u), getTangentAt(u) * .getPoints(), .getSpacedPoints() * .getLength() * .updateArcLengths() * * This following curves inherit from THREE.Curve: * * -- 2D curves -- * THREE.ArcCurve * THREE.CubicBezierCurve * THREE.EllipseCurve * THREE.LineCurve * THREE.QuadraticBezierCurve * THREE.SplineCurve * * -- 3D curves -- * THREE.CatmullRomCurve3 * THREE.CubicBezierCurve3 * THREE.LineCurve3 * THREE.QuadraticBezierCurve3 * * A series of curves can be represented as a THREE.CurvePath. * **/ /************************************************************** * Abstract Curve base class **************************************************************/ function Curve() { this.arcLengthDivisions = 200; } Object.assign( Curve.prototype, { // Virtual base class method to overwrite and implement in subclasses // - t [0 .. 1] getPoint: function () { console.warn( 'THREE.Curve: .getPoint() not implemented.' ); return null; }, // Get point at relative position in curve according to arc length // - u [0 .. 1] getPointAt: function ( u ) { var t = this.getUtoTmapping( u ); return this.getPoint( t ); }, // Get sequence of points using getPoint( t ) getPoints: function ( divisions ) { if ( divisions === undefined ) divisions = 5; var points = []; for ( var d = 0; d <= divisions; d ++ ) { points.push( this.getPoint( d / divisions ) ); } return points; }, // Get sequence of points using getPointAt( u ) getSpacedPoints: function ( divisions ) { if ( divisions === undefined ) divisions = 5; var points = []; for ( var d = 0; d <= divisions; d ++ ) { points.push( this.getPointAt( d / divisions ) ); } return points; }, // Get total curve arc length getLength: function () { var lengths = this.getLengths(); return lengths[ lengths.length - 1 ]; }, // Get list of cumulative segment lengths getLengths: function ( divisions ) { if ( divisions === undefined ) divisions = this.arcLengthDivisions; if ( this.cacheArcLengths && ( this.cacheArcLengths.length === divisions + 1 ) && ! this.needsUpdate ) { return this.cacheArcLengths; } this.needsUpdate = false; var cache = []; var current, last = this.getPoint( 0 ); var p, sum = 0; cache.push( 0 ); for ( p = 1; p <= divisions; p ++ ) { current = this.getPoint( p / divisions ); sum += current.distanceTo( last ); cache.push( sum ); last = current; } this.cacheArcLengths = cache; return cache; // { sums: cache, sum: sum }; Sum is in the last element. }, updateArcLengths: function () { this.needsUpdate = true; this.getLengths(); }, // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant getUtoTmapping: function ( u, distance ) { var arcLengths = this.getLengths(); var i = 0, il = arcLengths.length; var targetArcLength; // The targeted u distance value to get if ( distance ) { targetArcLength = distance; } else { targetArcLength = u * arcLengths[ il - 1 ]; } // binary search for the index with largest value smaller than target u distance var low = 0, high = il - 1, comparison; while ( low <= high ) { i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats comparison = arcLengths[ i ] - targetArcLength; if ( comparison < 0 ) { low = i + 1; } else if ( comparison > 0 ) { high = i - 1; } else { high = i; break; // DONE } } i = high; if ( arcLengths[ i ] === targetArcLength ) { return i / ( il - 1 ); } // we could get finer grain at lengths, or use simple interpolation between two points var lengthBefore = arcLengths[ i ]; var lengthAfter = arcLengths[ i + 1 ]; var segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength; // add that fractional amount to t var t = ( i + segmentFraction ) / ( il - 1 ); return t; }, // Returns a unit vector tangent at t // In case any sub curve does not implement its tangent derivation, // 2 points a small delta apart will be used to find its gradient // which seems to give a reasonable approximation getTangent: function ( t ) { var delta = 0.0001; var t1 = t - delta; var t2 = t + delta; // Capping in case of danger if ( t1 < 0 ) t1 = 0; if ( t2 > 1 ) t2 = 1; var pt1 = this.getPoint( t1 ); var pt2 = this.getPoint( t2 ); var vec = pt2.clone().sub( pt1 ); return vec.normalize(); }, getTangentAt: function ( u ) { var t = this.getUtoTmapping( u ); return this.getTangent( t ); }, computeFrenetFrames: function ( segments, closed ) { // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf var normal = new Vector3(); var tangents = []; var normals = []; var binormals = []; var vec = new Vector3(); var mat = new Matrix4(); var i, u, theta; // compute the tangent vectors for each segment on the curve for ( i = 0; i <= segments; i ++ ) { u = i / segments; tangents[ i ] = this.getTangentAt( u ); tangents[ i ].normalize(); } // select an initial normal vector perpendicular to the first tangent vector, // and in the direction of the minimum tangent xyz component normals[ 0 ] = new Vector3(); binormals[ 0 ] = new Vector3(); var min = Number.MAX_VALUE; var tx = Math.abs( tangents[ 0 ].x ); var ty = Math.abs( tangents[ 0 ].y ); var tz = Math.abs( tangents[ 0 ].z ); if ( tx <= min ) { min = tx; normal.set( 1, 0, 0 ); } if ( ty <= min ) { min = ty; normal.set( 0, 1, 0 ); } if ( tz <= min ) { normal.set( 0, 0, 1 ); } vec.crossVectors( tangents[ 0 ], normal ).normalize(); normals[ 0 ].crossVectors( tangents[ 0 ], vec ); binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ); // compute the slowly-varying normal and binormal vectors for each segment on the curve for ( i = 1; i <= segments; i ++ ) { normals[ i ] = normals[ i - 1 ].clone(); binormals[ i ] = binormals[ i - 1 ].clone(); vec.crossVectors( tangents[ i - 1 ], tangents[ i ] ); if ( vec.length() > Number.EPSILON ) { vec.normalize(); theta = Math.acos( _Math.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) ); } binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same if ( closed === true ) { theta = Math.acos( _Math.clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) ); theta /= segments; if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) { theta = - theta; } for ( i = 1; i <= segments; i ++ ) { // twist a little... normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) ); binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } } return { tangents: tangents, normals: normals, binormals: binormals }; } } ); function LineCurve( v1, v2 ) { Curve.call( this ); this.v1 = v1; this.v2 = v2; } LineCurve.prototype = Object.create( Curve.prototype ); LineCurve.prototype.constructor = LineCurve; LineCurve.prototype.isLineCurve = true; LineCurve.prototype.getPoint = function ( t ) { if ( t === 1 ) { return this.v2.clone(); } var point = this.v2.clone().sub( this.v1 ); point.multiplyScalar( t ).add( this.v1 ); return point; }; // Line curve is linear, so we can overwrite default getPointAt LineCurve.prototype.getPointAt = function ( u ) { return this.getPoint( u ); }; LineCurve.prototype.getTangent = function ( t ) { var tangent = this.v2.clone().sub( this.v1 ); return tangent.normalize(); }; /** * @author zz85 / http://www.lab4games.net/zz85/blog * **/ /************************************************************** * Curved Path - a curve path is simply a array of connected * curves, but retains the api of a curve **************************************************************/ function CurvePath() { Curve.call( this ); this.curves = []; this.autoClose = false; // Automatically closes the path } CurvePath.prototype = Object.assign( Object.create( Curve.prototype ), { constructor: CurvePath, add: function ( curve ) { this.curves.push( curve ); }, closePath: function () { // Add a line curve if start and end of lines are not connected var startPoint = this.curves[ 0 ].getPoint( 0 ); var endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 ); if ( ! startPoint.equals( endPoint ) ) { this.curves.push( new LineCurve( endPoint, startPoint ) ); } }, // To get accurate point with reference to // entire path distance at time t, // following has to be done: // 1. Length of each sub path have to be known // 2. Locate and identify type of curve // 3. Get t for the curve // 4. Return curve.getPointAt(t') getPoint: function ( t ) { var d = t * this.getLength(); var curveLengths = this.getCurveLengths(); var i = 0; // To think about boundaries points. while ( i < curveLengths.length ) { if ( curveLengths[ i ] >= d ) { var diff = curveLengths[ i ] - d; var curve = this.curves[ i ]; var segmentLength = curve.getLength(); var u = segmentLength === 0 ? 0 : 1 - diff / segmentLength; return curve.getPointAt( u ); } i ++; } return null; // loop where sum != 0, sum > d , sum+1 1 && !points[ points.length - 1 ].equals( points[ 0 ] ) ) { points.push( points[ 0 ] ); } return points; }, /************************************************************** * Create Geometries Helpers **************************************************************/ /// Generate geometry from path points (for Line or Points objects) createPointsGeometry: function ( divisions ) { var pts = this.getPoints( divisions ); return this.createGeometry( pts ); }, // Generate geometry from equidistant sampling along the path createSpacedPointsGeometry: function ( divisions ) { var pts = this.getSpacedPoints( divisions ); return this.createGeometry( pts ); }, createGeometry: function ( points ) { var geometry = new Geometry(); for ( var i = 0, l = points.length; i < l; i ++ ) { var point = points[ i ]; geometry.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) ); } return geometry; } } ); function EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { Curve.call( this ); this.aX = aX; this.aY = aY; this.xRadius = xRadius; this.yRadius = yRadius; this.aStartAngle = aStartAngle; this.aEndAngle = aEndAngle; this.aClockwise = aClockwise; this.aRotation = aRotation || 0; } EllipseCurve.prototype = Object.create( Curve.prototype ); EllipseCurve.prototype.constructor = EllipseCurve; EllipseCurve.prototype.isEllipseCurve = true; EllipseCurve.prototype.getPoint = function ( t ) { var twoPi = Math.PI * 2; var deltaAngle = this.aEndAngle - this.aStartAngle; var samePoints = Math.abs( deltaAngle ) < Number.EPSILON; // ensures that deltaAngle is 0 .. 2 PI while ( deltaAngle < 0 ) deltaAngle += twoPi; while ( deltaAngle > twoPi ) deltaAngle -= twoPi; if ( deltaAngle < Number.EPSILON ) { if ( samePoints ) { deltaAngle = 0; } else { deltaAngle = twoPi; } } if ( this.aClockwise === true && ! samePoints ) { if ( deltaAngle === twoPi ) { deltaAngle = - twoPi; } else { deltaAngle = deltaAngle - twoPi; } } var angle = this.aStartAngle + t * deltaAngle; var x = this.aX + this.xRadius * Math.cos( angle ); var y = this.aY + this.yRadius * Math.sin( angle ); if ( this.aRotation !== 0 ) { var cos = Math.cos( this.aRotation ); var sin = Math.sin( this.aRotation ); var tx = x - this.aX; var ty = y - this.aY; // Rotate the point about the center of the ellipse. x = tx * cos - ty * sin + this.aX; y = tx * sin + ty * cos + this.aY; } return new Vector2( x, y ); }; function SplineCurve( points /* array of Vector2 */ ) { Curve.call( this ); this.points = ( points === undefined ) ? [] : points; } SplineCurve.prototype = Object.create( Curve.prototype ); SplineCurve.prototype.constructor = SplineCurve; SplineCurve.prototype.isSplineCurve = true; SplineCurve.prototype.getPoint = function ( t ) { var points = this.points; var point = ( points.length - 1 ) * t; var intPoint = Math.floor( point ); var weight = point - intPoint; var point0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ]; var point1 = points[ intPoint ]; var point2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ]; var point3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ]; return new Vector2( CatmullRom( weight, point0.x, point1.x, point2.x, point3.x ), CatmullRom( weight, point0.y, point1.y, point2.y, point3.y ) ); }; function CubicBezierCurve( v0, v1, v2, v3 ) { Curve.call( this ); this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; } CubicBezierCurve.prototype = Object.create( Curve.prototype ); CubicBezierCurve.prototype.constructor = CubicBezierCurve; CubicBezierCurve.prototype.getPoint = function ( t ) { var v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; return new Vector2( CubicBezier( t, v0.x, v1.x, v2.x, v3.x ), CubicBezier( t, v0.y, v1.y, v2.y, v3.y ) ); }; function QuadraticBezierCurve( v0, v1, v2 ) { Curve.call( this ); this.v0 = v0; this.v1 = v1; this.v2 = v2; } QuadraticBezierCurve.prototype = Object.create( Curve.prototype ); QuadraticBezierCurve.prototype.constructor = QuadraticBezierCurve; QuadraticBezierCurve.prototype.getPoint = function ( t ) { var v0 = this.v0, v1 = this.v1, v2 = this.v2; return new Vector2( QuadraticBezier( t, v0.x, v1.x, v2.x ), QuadraticBezier( t, v0.y, v1.y, v2.y ) ); }; var PathPrototype = Object.assign( Object.create( CurvePath.prototype ), { fromPoints: function ( vectors ) { this.moveTo( vectors[ 0 ].x, vectors[ 0 ].y ); for ( var i = 1, l = vectors.length; i < l; i ++ ) { this.lineTo( vectors[ i ].x, vectors[ i ].y ); } }, moveTo: function ( x, y ) { this.currentPoint.set( x, y ); // TODO consider referencing vectors instead of copying? }, lineTo: function ( x, y ) { var curve = new LineCurve( this.currentPoint.clone(), new Vector2( x, y ) ); this.curves.push( curve ); this.currentPoint.set( x, y ); }, quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) { var curve = new QuadraticBezierCurve( this.currentPoint.clone(), new Vector2( aCPx, aCPy ), new Vector2( aX, aY ) ); this.curves.push( curve ); this.currentPoint.set( aX, aY ); }, bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) { var curve = new CubicBezierCurve( this.currentPoint.clone(), new Vector2( aCP1x, aCP1y ), new Vector2( aCP2x, aCP2y ), new Vector2( aX, aY ) ); this.curves.push( curve ); this.currentPoint.set( aX, aY ); }, splineThru: function ( pts /*Array of Vector*/ ) { var npts = [ this.currentPoint.clone() ].concat( pts ); var curve = new SplineCurve( npts ); this.curves.push( curve ); this.currentPoint.copy( pts[ pts.length - 1 ] ); }, arc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { var x0 = this.currentPoint.x; var y0 = this.currentPoint.y; this.absarc( aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise ); }, absarc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { this.absellipse( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); }, ellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { var x0 = this.currentPoint.x; var y0 = this.currentPoint.y; this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ); }, absellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { var curve = new EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ); if ( this.curves.length > 0 ) { // if a previous curve is present, attempt to join var firstPoint = curve.getPoint( 0 ); if ( ! firstPoint.equals( this.currentPoint ) ) { this.lineTo( firstPoint.x, firstPoint.y ); } } this.curves.push( curve ); var lastPoint = curve.getPoint( 1 ); this.currentPoint.copy( lastPoint ); } } ); /** * @author zz85 / http://www.lab4games.net/zz85/blog * Creates free form 2d path using series of points, lines or curves. **/ function Path( points ) { CurvePath.call( this ); this.currentPoint = new Vector2(); if ( points ) { this.fromPoints( points ); } } Path.prototype = PathPrototype; PathPrototype.constructor = Path; /** * @author zz85 / http://www.lab4games.net/zz85/blog * Defines a 2d shape plane using paths. **/ // STEP 1 Create a path. // STEP 2 Turn path into shape. // STEP 3 ExtrudeGeometry takes in Shape/Shapes // STEP 3a - Extract points from each shape, turn to vertices // STEP 3b - Triangulate each shape, add faces. function Shape() { Path.apply( this, arguments ); this.holes = []; } Shape.prototype = Object.assign( Object.create( PathPrototype ), { constructor: Shape, getPointsHoles: function ( divisions ) { var holesPts = []; for ( var i = 0, l = this.holes.length; i < l; i ++ ) { holesPts[ i ] = this.holes[ i ].getPoints( divisions ); } return holesPts; }, // Get points of shape and holes (keypoints based on segments parameter) extractAllPoints: function ( divisions ) { return { shape: this.getPoints( divisions ), holes: this.getPointsHoles( divisions ) }; }, extractPoints: function ( divisions ) { return this.extractAllPoints( divisions ); } } ); /** * @author zz85 / http://www.lab4games.net/zz85/blog * minimal class for proxing functions to Path. Replaces old "extractSubpaths()" **/ function ShapePath() { this.subPaths = []; this.currentPath = null; } Object.assign( ShapePath.prototype, { moveTo: function ( x, y ) { this.currentPath = new Path(); this.subPaths.push( this.currentPath ); this.currentPath.moveTo( x, y ); }, lineTo: function ( x, y ) { this.currentPath.lineTo( x, y ); }, quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) { this.currentPath.quadraticCurveTo( aCPx, aCPy, aX, aY ); }, bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) { this.currentPath.bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ); }, splineThru: function ( pts ) { this.currentPath.splineThru( pts ); }, toShapes: function ( isCCW, noHoles ) { function toShapesNoHoles( inSubpaths ) { var shapes = []; for ( var i = 0, l = inSubpaths.length; i < l; i ++ ) { var tmpPath = inSubpaths[ i ]; var tmpShape = new Shape(); tmpShape.curves = tmpPath.curves; shapes.push( tmpShape ); } return shapes; } function isPointInsidePolygon( inPt, inPolygon ) { var polyLen = inPolygon.length; // inPt on polygon contour => immediate success or // toggling of inside/outside at every single! intersection point of an edge // with the horizontal line through inPt, left of inPt // not counting lowerY endpoints of edges and whole edges on that line var inside = false; for ( var p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) { var edgeLowPt = inPolygon[ p ]; var edgeHighPt = inPolygon[ q ]; var edgeDx = edgeHighPt.x - edgeLowPt.x; var edgeDy = edgeHighPt.y - edgeLowPt.y; if ( Math.abs( edgeDy ) > Number.EPSILON ) { // not parallel if ( edgeDy < 0 ) { edgeLowPt = inPolygon[ q ]; edgeDx = - edgeDx; edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy; } if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) continue; if ( inPt.y === edgeLowPt.y ) { if ( inPt.x === edgeLowPt.x ) return true; // inPt is on contour ? // continue; // no intersection or edgeLowPt => doesn't count !!! } else { var perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y ); if ( perpEdge === 0 ) return true; // inPt is on contour ? if ( perpEdge < 0 ) continue; inside = ! inside; // true intersection left of inPt } } else { // parallel or collinear if ( inPt.y !== edgeLowPt.y ) continue; // parallel // edge lies on the same horizontal line as inPt if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) || ( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) ) return true; // inPt: Point on contour ! // continue; } } return inside; } var isClockWise = ShapeUtils.isClockWise; var subPaths = this.subPaths; if ( subPaths.length === 0 ) return []; if ( noHoles === true ) return toShapesNoHoles( subPaths ); var solid, tmpPath, tmpShape, shapes = []; if ( subPaths.length === 1 ) { tmpPath = subPaths[ 0 ]; tmpShape = new Shape(); tmpShape.curves = tmpPath.curves; shapes.push( tmpShape ); return shapes; } var holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() ); holesFirst = isCCW ? ! holesFirst : holesFirst; // console.log("Holes first", holesFirst); var betterShapeHoles = []; var newShapes = []; var newShapeHoles = []; var mainIdx = 0; var tmpPoints; newShapes[ mainIdx ] = undefined; newShapeHoles[ mainIdx ] = []; for ( var i = 0, l = subPaths.length; i < l; i ++ ) { tmpPath = subPaths[ i ]; tmpPoints = tmpPath.getPoints(); solid = isClockWise( tmpPoints ); solid = isCCW ? ! solid : solid; if ( solid ) { if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) ) mainIdx ++; newShapes[ mainIdx ] = { s: new Shape(), p: tmpPoints }; newShapes[ mainIdx ].s.curves = tmpPath.curves; if ( holesFirst ) mainIdx ++; newShapeHoles[ mainIdx ] = []; //console.log('cw', i); } else { newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } ); //console.log('ccw', i); } } // only Holes? -> probably all Shapes with wrong orientation if ( ! newShapes[ 0 ] ) return toShapesNoHoles( subPaths ); if ( newShapes.length > 1 ) { var ambiguous = false; var toChange = []; for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) { betterShapeHoles[ sIdx ] = []; } for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) { var sho = newShapeHoles[ sIdx ]; for ( var hIdx = 0; hIdx < sho.length; hIdx ++ ) { var ho = sho[ hIdx ]; var hole_unassigned = true; for ( var s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) { if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) { if ( sIdx !== s2Idx ) toChange.push( { froms: sIdx, tos: s2Idx, hole: hIdx } ); if ( hole_unassigned ) { hole_unassigned = false; betterShapeHoles[ s2Idx ].push( ho ); } else { ambiguous = true; } } } if ( hole_unassigned ) { betterShapeHoles[ sIdx ].push( ho ); } } } // console.log("ambiguous: ", ambiguous); if ( toChange.length > 0 ) { // console.log("to change: ", toChange); if ( ! ambiguous ) newShapeHoles = betterShapeHoles; } } var tmpHoles; for ( var i = 0, il = newShapes.length; i < il; i ++ ) { tmpShape = newShapes[ i ].s; shapes.push( tmpShape ); tmpHoles = newShapeHoles[ i ]; for ( var j = 0, jl = tmpHoles.length; j < jl; j ++ ) { tmpShape.holes.push( tmpHoles[ j ].h ); } } //console.log("shape", shapes); return shapes; } } ); /** * @author zz85 / http://www.lab4games.net/zz85/blog * @author mrdoob / http://mrdoob.com/ */ function Font( data ) { this.data = data; } Object.assign( Font.prototype, { isFont: true, generateShapes: function ( text, size, divisions ) { function createPaths( text ) { var chars = String( text ).split( '' ); var scale = size / data.resolution; var line_height = ( data.boundingBox.yMax - data.boundingBox.yMin + data.underlineThickness ) * scale; var offsetX = 0, offsetY = 0; var paths = []; for ( var i = 0; i < chars.length; i ++ ) { var char = chars[ i ]; if ( char === '\n' ) { offsetX = 0; offsetY -= line_height; } else { var ret = createPath( char, scale, offsetX, offsetY ); offsetX += ret.offsetX; paths.push( ret.path ); } } return paths; } function createPath( c, scale, offsetX, offsetY ) { var glyph = data.glyphs[ c ] || data.glyphs[ '?' ]; if ( ! glyph ) return; var path = new ShapePath(); var pts = []; var x, y, cpx, cpy, cpx0, cpy0, cpx1, cpy1, cpx2, cpy2, laste; if ( glyph.o ) { var outline = glyph._cachedOutline || ( glyph._cachedOutline = glyph.o.split( ' ' ) ); for ( var i = 0, l = outline.length; i < l; ) { var action = outline[ i ++ ]; switch ( action ) { case 'm': // moveTo x = outline[ i ++ ] * scale + offsetX; y = outline[ i ++ ] * scale + offsetY; path.moveTo( x, y ); break; case 'l': // lineTo x = outline[ i ++ ] * scale + offsetX; y = outline[ i ++ ] * scale + offsetY; path.lineTo( x, y ); break; case 'q': // quadraticCurveTo cpx = outline[ i ++ ] * scale + offsetX; cpy = outline[ i ++ ] * scale + offsetY; cpx1 = outline[ i ++ ] * scale + offsetX; cpy1 = outline[ i ++ ] * scale + offsetY; path.quadraticCurveTo( cpx1, cpy1, cpx, cpy ); laste = pts[ pts.length - 1 ]; if ( laste ) { cpx0 = laste.x; cpy0 = laste.y; for ( var i2 = 1; i2 <= divisions; i2 ++ ) { var t = i2 / divisions; QuadraticBezier( t, cpx0, cpx1, cpx ); QuadraticBezier( t, cpy0, cpy1, cpy ); } } break; case 'b': // bezierCurveTo cpx = outline[ i ++ ] * scale + offsetX; cpy = outline[ i ++ ] * scale + offsetY; cpx1 = outline[ i ++ ] * scale + offsetX; cpy1 = outline[ i ++ ] * scale + offsetY; cpx2 = outline[ i ++ ] * scale + offsetX; cpy2 = outline[ i ++ ] * scale + offsetY; path.bezierCurveTo( cpx1, cpy1, cpx2, cpy2, cpx, cpy ); laste = pts[ pts.length - 1 ]; if ( laste ) { cpx0 = laste.x; cpy0 = laste.y; for ( var i2 = 1; i2 <= divisions; i2 ++ ) { var t = i2 / divisions; CubicBezier( t, cpx0, cpx1, cpx2, cpx ); CubicBezier( t, cpy0, cpy1, cpy2, cpy ); } } break; } } } return { offsetX: glyph.ha * scale, path: path }; } // if ( size === undefined ) size = 100; if ( divisions === undefined ) divisions = 4; var data = this.data; var paths = createPaths( text ); var shapes = []; for ( var p = 0, pl = paths.length; p < pl; p ++ ) { Array.prototype.push.apply( shapes, paths[ p ].toShapes() ); } return shapes; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function FontLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; } Object.assign( FontLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new FileLoader( this.manager ); loader.load( url, function ( text ) { var json; try { json = JSON.parse( text ); } catch ( e ) { console.warn( 'THREE.FontLoader: typeface.js support is being deprecated. Use typeface.json instead.' ); json = JSON.parse( text.substring( 65, text.length - 2 ) ); } var font = scope.parse( json ); if ( onLoad ) onLoad( font ); }, onProgress, onError ); }, parse: function ( json ) { return new Font( json ); } } ); var context; var AudioContext = { getContext: function () { if ( context === undefined ) { context = new ( window.AudioContext || window.webkitAudioContext )(); } return context; }, setContext: function ( value ) { context = value; } }; /** * @author Reece Aaron Lecrivain / http://reecenotes.com/ */ function AudioLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; } Object.assign( AudioLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { var loader = new FileLoader( this.manager ); loader.setResponseType( 'arraybuffer' ); loader.load( url, function ( buffer ) { var context = AudioContext.getContext(); context.decodeAudioData( buffer, function ( audioBuffer ) { onLoad( audioBuffer ); } ); }, onProgress, onError ); } } ); /** * @author mrdoob / http://mrdoob.com/ */ function StereoCamera() { this.type = 'StereoCamera'; this.aspect = 1; this.eyeSep = 0.064; this.cameraL = new PerspectiveCamera(); this.cameraL.layers.enable( 1 ); this.cameraL.matrixAutoUpdate = false; this.cameraR = new PerspectiveCamera(); this.cameraR.layers.enable( 2 ); this.cameraR.matrixAutoUpdate = false; } Object.assign( StereoCamera.prototype, { update: ( function () { var instance, focus, fov, aspect, near, far, zoom, eyeSep; var eyeRight = new Matrix4(); var eyeLeft = new Matrix4(); return function update( camera ) { var needsUpdate = instance !== this || focus !== camera.focus || fov !== camera.fov || aspect !== camera.aspect * this.aspect || near !== camera.near || far !== camera.far || zoom !== camera.zoom || eyeSep !== this.eyeSep; if ( needsUpdate ) { instance = this; focus = camera.focus; fov = camera.fov; aspect = camera.aspect * this.aspect; near = camera.near; far = camera.far; zoom = camera.zoom; // Off-axis stereoscopic effect based on // http://paulbourke.net/stereographics/stereorender/ var projectionMatrix = camera.projectionMatrix.clone(); eyeSep = this.eyeSep / 2; var eyeSepOnProjection = eyeSep * near / focus; var ymax = ( near * Math.tan( _Math.DEG2RAD * fov * 0.5 ) ) / zoom; var xmin, xmax; // translate xOffset eyeLeft.elements[ 12 ] = - eyeSep; eyeRight.elements[ 12 ] = eyeSep; // for left eye xmin = - ymax * aspect + eyeSepOnProjection; xmax = ymax * aspect + eyeSepOnProjection; projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin ); projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin ); this.cameraL.projectionMatrix.copy( projectionMatrix ); // for right eye xmin = - ymax * aspect - eyeSepOnProjection; xmax = ymax * aspect - eyeSepOnProjection; projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin ); projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin ); this.cameraR.projectionMatrix.copy( projectionMatrix ); } this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( eyeLeft ); this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( eyeRight ); }; } )() } ); /** * @author mrdoob / http://mrdoob.com/ */ function AudioListener() { Object3D.call( this ); this.type = 'AudioListener'; this.context = AudioContext.getContext(); this.gain = this.context.createGain(); this.gain.connect( this.context.destination ); this.filter = null; } AudioListener.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: AudioListener, getInput: function () { return this.gain; }, removeFilter: function ( ) { if ( this.filter !== null ) { this.gain.disconnect( this.filter ); this.filter.disconnect( this.context.destination ); this.gain.connect( this.context.destination ); this.filter = null; } }, getFilter: function () { return this.filter; }, setFilter: function ( value ) { if ( this.filter !== null ) { this.gain.disconnect( this.filter ); this.filter.disconnect( this.context.destination ); } else { this.gain.disconnect( this.context.destination ); } this.filter = value; this.gain.connect( this.filter ); this.filter.connect( this.context.destination ); }, getMasterVolume: function () { return this.gain.gain.value; }, setMasterVolume: function ( value ) { this.gain.gain.value = value; }, updateMatrixWorld: ( function () { var position = new Vector3(); var quaternion = new Quaternion(); var scale = new Vector3(); var orientation = new Vector3(); return function updateMatrixWorld( force ) { Object3D.prototype.updateMatrixWorld.call( this, force ); var listener = this.context.listener; var up = this.up; this.matrixWorld.decompose( position, quaternion, scale ); orientation.set( 0, 0, - 1 ).applyQuaternion( quaternion ); if ( listener.positionX ) { listener.positionX.setValueAtTime( position.x, this.context.currentTime ); listener.positionY.setValueAtTime( position.y, this.context.currentTime ); listener.positionZ.setValueAtTime( position.z, this.context.currentTime ); listener.forwardX.setValueAtTime( orientation.x, this.context.currentTime ); listener.forwardY.setValueAtTime( orientation.y, this.context.currentTime ); listener.forwardZ.setValueAtTime( orientation.z, this.context.currentTime ); listener.upX.setValueAtTime( up.x, this.context.currentTime ); listener.upY.setValueAtTime( up.y, this.context.currentTime ); listener.upZ.setValueAtTime( up.z, this.context.currentTime ); } else { listener.setPosition( position.x, position.y, position.z ); listener.setOrientation( orientation.x, orientation.y, orientation.z, up.x, up.y, up.z ); } }; } )() } ); /** * @author mrdoob / http://mrdoob.com/ * @author Reece Aaron Lecrivain / http://reecenotes.com/ */ function Audio( listener ) { Object3D.call( this ); this.type = 'Audio'; this.context = listener.context; this.gain = this.context.createGain(); this.gain.connect( listener.getInput() ); this.autoplay = false; this.buffer = null; this.loop = false; this.startTime = 0; this.playbackRate = 1; this.isPlaying = false; this.hasPlaybackControl = true; this.sourceType = 'empty'; this.filters = []; } Audio.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Audio, getOutput: function () { return this.gain; }, setNodeSource: function ( audioNode ) { this.hasPlaybackControl = false; this.sourceType = 'audioNode'; this.source = audioNode; this.connect(); return this; }, setBuffer: function ( audioBuffer ) { this.buffer = audioBuffer; this.sourceType = 'buffer'; if ( this.autoplay ) this.play(); return this; }, play: function () { if ( this.isPlaying === true ) { console.warn( 'THREE.Audio: Audio is already playing.' ); return; } if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } var source = this.context.createBufferSource(); source.buffer = this.buffer; source.loop = this.loop; source.onended = this.onEnded.bind( this ); source.playbackRate.setValueAtTime( this.playbackRate, this.startTime ); source.start( 0, this.startTime ); this.isPlaying = true; this.source = source; return this.connect(); }, pause: function () { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.source.stop(); this.startTime = this.context.currentTime; this.isPlaying = false; return this; }, stop: function () { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.source.stop(); this.startTime = 0; this.isPlaying = false; return this; }, connect: function () { if ( this.filters.length > 0 ) { this.source.connect( this.filters[ 0 ] ); for ( var i = 1, l = this.filters.length; i < l; i ++ ) { this.filters[ i - 1 ].connect( this.filters[ i ] ); } this.filters[ this.filters.length - 1 ].connect( this.getOutput() ); } else { this.source.connect( this.getOutput() ); } return this; }, disconnect: function () { if ( this.filters.length > 0 ) { this.source.disconnect( this.filters[ 0 ] ); for ( var i = 1, l = this.filters.length; i < l; i ++ ) { this.filters[ i - 1 ].disconnect( this.filters[ i ] ); } this.filters[ this.filters.length - 1 ].disconnect( this.getOutput() ); } else { this.source.disconnect( this.getOutput() ); } return this; }, getFilters: function () { return this.filters; }, setFilters: function ( value ) { if ( ! value ) value = []; if ( this.isPlaying === true ) { this.disconnect(); this.filters = value; this.connect(); } else { this.filters = value; } return this; }, getFilter: function () { return this.getFilters()[ 0 ]; }, setFilter: function ( filter ) { return this.setFilters( filter ? [ filter ] : [] ); }, setPlaybackRate: function ( value ) { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.playbackRate = value; if ( this.isPlaying === true ) { this.source.playbackRate.setValueAtTime( this.playbackRate, this.context.currentTime ); } return this; }, getPlaybackRate: function () { return this.playbackRate; }, onEnded: function () { this.isPlaying = false; }, getLoop: function () { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return false; } return this.loop; }, setLoop: function ( value ) { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.loop = value; if ( this.isPlaying === true ) { this.source.loop = this.loop; } return this; }, getVolume: function () { return this.gain.gain.value; }, setVolume: function ( value ) { this.gain.gain.value = value; return this; } } ); /** * @author mrdoob / http://mrdoob.com/ */ function PositionalAudio( listener ) { Audio.call( this, listener ); this.panner = this.context.createPanner(); this.panner.connect( this.gain ); } PositionalAudio.prototype = Object.assign( Object.create( Audio.prototype ), { constructor: PositionalAudio, getOutput: function () { return this.panner; }, getRefDistance: function () { return this.panner.refDistance; }, setRefDistance: function ( value ) { this.panner.refDistance = value; }, getRolloffFactor: function () { return this.panner.rolloffFactor; }, setRolloffFactor: function ( value ) { this.panner.rolloffFactor = value; }, getDistanceModel: function () { return this.panner.distanceModel; }, setDistanceModel: function ( value ) { this.panner.distanceModel = value; }, getMaxDistance: function () { return this.panner.maxDistance; }, setMaxDistance: function ( value ) { this.panner.maxDistance = value; }, updateMatrixWorld: ( function () { var position = new Vector3(); return function updateMatrixWorld( force ) { Object3D.prototype.updateMatrixWorld.call( this, force ); position.setFromMatrixPosition( this.matrixWorld ); this.panner.setPosition( position.x, position.y, position.z ); }; } )() } ); /** * @author mrdoob / http://mrdoob.com/ */ function AudioAnalyser( audio, fftSize ) { this.analyser = audio.context.createAnalyser(); this.analyser.fftSize = fftSize !== undefined ? fftSize : 2048; this.data = new Uint8Array( this.analyser.frequencyBinCount ); audio.getOutput().connect( this.analyser ); } Object.assign( AudioAnalyser.prototype, { getFrequencyData: function () { this.analyser.getByteFrequencyData( this.data ); return this.data; }, getAverageFrequency: function () { var value = 0, data = this.getFrequencyData(); for ( var i = 0; i < data.length; i ++ ) { value += data[ i ]; } return value / data.length; } } ); /** * * Buffered scene graph property that allows weighted accumulation. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function PropertyMixer( binding, typeName, valueSize ) { this.binding = binding; this.valueSize = valueSize; var bufferType = Float64Array, mixFunction; switch ( typeName ) { case 'quaternion': mixFunction = this._slerp; break; case 'string': case 'bool': bufferType = Array; mixFunction = this._select; break; default: mixFunction = this._lerp; } this.buffer = new bufferType( valueSize * 4 ); // layout: [ incoming | accu0 | accu1 | orig ] // // interpolators can use .buffer as their .result // the data then goes to 'incoming' // // 'accu0' and 'accu1' are used frame-interleaved for // the cumulative result and are compared to detect // changes // // 'orig' stores the original state of the property this._mixBufferRegion = mixFunction; this.cumulativeWeight = 0; this.useCount = 0; this.referenceCount = 0; } Object.assign( PropertyMixer.prototype, { // accumulate data in the 'incoming' region into 'accu' accumulate: function ( accuIndex, weight ) { // note: happily accumulating nothing when weight = 0, the caller knows // the weight and shouldn't have made the call in the first place var buffer = this.buffer, stride = this.valueSize, offset = accuIndex * stride + stride, currentWeight = this.cumulativeWeight; if ( currentWeight === 0 ) { // accuN := incoming * weight for ( var i = 0; i !== stride; ++ i ) { buffer[ offset + i ] = buffer[ i ]; } currentWeight = weight; } else { // accuN := accuN + incoming * weight currentWeight += weight; var mix = weight / currentWeight; this._mixBufferRegion( buffer, offset, 0, mix, stride ); } this.cumulativeWeight = currentWeight; }, // apply the state of 'accu' to the binding when accus differ apply: function ( accuIndex ) { var stride = this.valueSize, buffer = this.buffer, offset = accuIndex * stride + stride, weight = this.cumulativeWeight, binding = this.binding; this.cumulativeWeight = 0; if ( weight < 1 ) { // accuN := accuN + original * ( 1 - cumulativeWeight ) var originalValueOffset = stride * 3; this._mixBufferRegion( buffer, offset, originalValueOffset, 1 - weight, stride ); } for ( var i = stride, e = stride + stride; i !== e; ++ i ) { if ( buffer[ i ] !== buffer[ i + stride ] ) { // value has changed -> update scene graph binding.setValue( buffer, offset ); break; } } }, // remember the state of the bound property and copy it to both accus saveOriginalState: function () { var binding = this.binding; var buffer = this.buffer, stride = this.valueSize, originalValueOffset = stride * 3; binding.getValue( buffer, originalValueOffset ); // accu[0..1] := orig -- initially detect changes against the original for ( var i = stride, e = originalValueOffset; i !== e; ++ i ) { buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ]; } this.cumulativeWeight = 0; }, // apply the state previously taken via 'saveOriginalState' to the binding restoreOriginalState: function () { var originalValueOffset = this.valueSize * 3; this.binding.setValue( this.buffer, originalValueOffset ); }, // mix functions _select: function ( buffer, dstOffset, srcOffset, t, stride ) { if ( t >= 0.5 ) { for ( var i = 0; i !== stride; ++ i ) { buffer[ dstOffset + i ] = buffer[ srcOffset + i ]; } } }, _slerp: function ( buffer, dstOffset, srcOffset, t ) { Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t ); }, _lerp: function ( buffer, dstOffset, srcOffset, t, stride ) { var s = 1 - t; for ( var i = 0; i !== stride; ++ i ) { var j = dstOffset + i; buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t; } } } ); /** * * A reference to a real property in the scene graph. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function Composite( targetGroup, path, optionalParsedPath ) { var parsedPath = optionalParsedPath || PropertyBinding.parseTrackName( path ); this._targetGroup = targetGroup; this._bindings = targetGroup.subscribe_( path, parsedPath ); } Object.assign( Composite.prototype, { getValue: function ( array, offset ) { this.bind(); // bind all binding var firstValidIndex = this._targetGroup.nCachedObjects_, binding = this._bindings[ firstValidIndex ]; // and only call .getValue on the first if ( binding !== undefined ) binding.getValue( array, offset ); }, setValue: function ( array, offset ) { var bindings = this._bindings; for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].setValue( array, offset ); } }, bind: function () { var bindings = this._bindings; for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].bind(); } }, unbind: function () { var bindings = this._bindings; for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].unbind(); } } } ); function PropertyBinding( rootNode, path, parsedPath ) { this.path = path; this.parsedPath = parsedPath || PropertyBinding.parseTrackName( path ); this.node = PropertyBinding.findNode( rootNode, this.parsedPath.nodeName ) || rootNode; this.rootNode = rootNode; } Object.assign( PropertyBinding, { Composite: Composite, create: function ( root, path, parsedPath ) { if ( ! ( root && root.isAnimationObjectGroup ) ) { return new PropertyBinding( root, path, parsedPath ); } else { return new PropertyBinding.Composite( root, path, parsedPath ); } }, /** * Replaces spaces with underscores and removes unsupported characters from * node names, to ensure compatibility with parseTrackName(). * * @param {string} name Node name to be sanitized. * @return {string} */ sanitizeNodeName: function ( name ) { return name.replace( /\s/g, '_' ).replace( /[^\w-]/g, '' ); }, parseTrackName: function () { // Parent directories, delimited by '/' or ':'. Currently unused, but must // be matched to parse the rest of the track name. var directoryRe = /((?:[\w-]+[\/:])*)/; // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'. var nodeRe = /([\w-\.]+)?/; // Object on target node, and accessor. Name may contain only word // characters. Accessor may contain any character except closing bracket. var objectRe = /(?:\.([\w-]+)(?:\[(.+)\])?)?/; // Property and accessor. May contain only word characters. Accessor may // contain any non-bracket characters. var propertyRe = /\.([\w-]+)(?:\[(.+)\])?/; var trackRe = new RegExp('' + '^' + directoryRe.source + nodeRe.source + objectRe.source + propertyRe.source + '$' ); var supportedObjectNames = [ 'material', 'materials', 'bones' ]; return function ( trackName ) { var matches = trackRe.exec( trackName ); if ( ! matches ) { throw new Error( 'PropertyBinding: Cannot parse trackName: ' + trackName ); } var results = { // directoryName: matches[ 1 ], // (tschw) currently unused nodeName: matches[ 2 ], objectName: matches[ 3 ], objectIndex: matches[ 4 ], propertyName: matches[ 5 ], // required propertyIndex: matches[ 6 ] }; var lastDot = results.nodeName && results.nodeName.lastIndexOf( '.' ); if ( lastDot !== undefined && lastDot !== -1 ) { var objectName = results.nodeName.substring( lastDot + 1 ); // Object names must be checked against a whitelist. Otherwise, there // is no way to parse 'foo.bar.baz': 'baz' must be a property, but // 'bar' could be the objectName, or part of a nodeName (which can // include '.' characters). if ( supportedObjectNames.indexOf( objectName ) !== -1 ) { results.nodeName = results.nodeName.substring( 0, lastDot ); results.objectName = objectName; } } if ( results.propertyName === null || results.propertyName.length === 0 ) { throw new Error( 'PropertyBinding: can not parse propertyName from trackName: ' + trackName ); } return results; }; }(), findNode: function ( root, nodeName ) { if ( ! nodeName || nodeName === "" || nodeName === "root" || nodeName === "." || nodeName === - 1 || nodeName === root.name || nodeName === root.uuid ) { return root; } // search into skeleton bones. if ( root.skeleton ) { var searchSkeleton = function ( skeleton ) { for ( var i = 0; i < skeleton.bones.length; i ++ ) { var bone = skeleton.bones[ i ]; if ( bone.name === nodeName ) { return bone; } } return null; }; var bone = searchSkeleton( root.skeleton ); if ( bone ) { return bone; } } // search into node subtree. if ( root.children ) { var searchNodeSubtree = function ( children ) { for ( var i = 0; i < children.length; i ++ ) { var childNode = children[ i ]; if ( childNode.name === nodeName || childNode.uuid === nodeName ) { return childNode; } var result = searchNodeSubtree( childNode.children ); if ( result ) return result; } return null; }; var subTreeNode = searchNodeSubtree( root.children ); if ( subTreeNode ) { return subTreeNode; } } return null; } } ); Object.assign( PropertyBinding.prototype, { // prototype, continued // these are used to "bind" a nonexistent property _getValue_unavailable: function () {}, _setValue_unavailable: function () {}, BindingType: { Direct: 0, EntireArray: 1, ArrayElement: 2, HasFromToArray: 3 }, Versioning: { None: 0, NeedsUpdate: 1, MatrixWorldNeedsUpdate: 2 }, GetterByBindingType: [ function getValue_direct( buffer, offset ) { buffer[ offset ] = this.node[ this.propertyName ]; }, function getValue_array( buffer, offset ) { var source = this.resolvedProperty; for ( var i = 0, n = source.length; i !== n; ++ i ) { buffer[ offset ++ ] = source[ i ]; } }, function getValue_arrayElement( buffer, offset ) { buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ]; }, function getValue_toArray( buffer, offset ) { this.resolvedProperty.toArray( buffer, offset ); } ], SetterByBindingTypeAndVersioning: [ [ // Direct function setValue_direct( buffer, offset ) { this.node[ this.propertyName ] = buffer[ offset ]; }, function setValue_direct_setNeedsUpdate( buffer, offset ) { this.node[ this.propertyName ] = buffer[ offset ]; this.targetObject.needsUpdate = true; }, function setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) { this.node[ this.propertyName ] = buffer[ offset ]; this.targetObject.matrixWorldNeedsUpdate = true; } ], [ // EntireArray function setValue_array( buffer, offset ) { var dest = this.resolvedProperty; for ( var i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } }, function setValue_array_setNeedsUpdate( buffer, offset ) { var dest = this.resolvedProperty; for ( var i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } this.targetObject.needsUpdate = true; }, function setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) { var dest = this.resolvedProperty; for ( var i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } this.targetObject.matrixWorldNeedsUpdate = true; } ], [ // ArrayElement function setValue_arrayElement( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; }, function setValue_arrayElement_setNeedsUpdate( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; this.targetObject.needsUpdate = true; }, function setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; this.targetObject.matrixWorldNeedsUpdate = true; } ], [ // HasToFromArray function setValue_fromArray( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); }, function setValue_fromArray_setNeedsUpdate( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); this.targetObject.needsUpdate = true; }, function setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); this.targetObject.matrixWorldNeedsUpdate = true; } ] ], getValue: function getValue_unbound( targetArray, offset ) { this.bind(); this.getValue( targetArray, offset ); // Note: This class uses a State pattern on a per-method basis: // 'bind' sets 'this.getValue' / 'setValue' and shadows the // prototype version of these methods with one that represents // the bound state. When the property is not found, the methods // become no-ops. }, setValue: function getValue_unbound( sourceArray, offset ) { this.bind(); this.setValue( sourceArray, offset ); }, // create getter / setter pair for a property in the scene graph bind: function () { var targetObject = this.node, parsedPath = this.parsedPath, objectName = parsedPath.objectName, propertyName = parsedPath.propertyName, propertyIndex = parsedPath.propertyIndex; if ( ! targetObject ) { targetObject = PropertyBinding.findNode( this.rootNode, parsedPath.nodeName ) || this.rootNode; this.node = targetObject; } // set fail state so we can just 'return' on error this.getValue = this._getValue_unavailable; this.setValue = this._setValue_unavailable; // ensure there is a value node if ( ! targetObject ) { console.error( 'THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.' ); return; } if ( objectName ) { var objectIndex = parsedPath.objectIndex; // special cases were we need to reach deeper into the hierarchy to get the face materials.... switch ( objectName ) { case 'materials': if ( ! targetObject.material ) { console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this ); return; } if ( ! targetObject.material.materials ) { console.error( 'THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this ); return; } targetObject = targetObject.material.materials; break; case 'bones': if ( ! targetObject.skeleton ) { console.error( 'THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this ); return; } // potential future optimization: skip this if propertyIndex is already an integer // and convert the integer string to a true integer. targetObject = targetObject.skeleton.bones; // support resolving morphTarget names into indices. for ( var i = 0; i < targetObject.length; i ++ ) { if ( targetObject[ i ].name === objectIndex ) { objectIndex = i; break; } } break; default: if ( targetObject[ objectName ] === undefined ) { console.error( 'THREE.PropertyBinding: Can not bind to objectName of node undefined.', this ); return; } targetObject = targetObject[ objectName ]; } if ( objectIndex !== undefined ) { if ( targetObject[ objectIndex ] === undefined ) { console.error( 'THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject ); return; } targetObject = targetObject[ objectIndex ]; } } // resolve property var nodeProperty = targetObject[ propertyName ]; if ( nodeProperty === undefined ) { var nodeName = parsedPath.nodeName; console.error( 'THREE.PropertyBinding: Trying to update property for track: ' + nodeName + '.' + propertyName + ' but it wasn\'t found.', targetObject ); return; } // determine versioning scheme var versioning = this.Versioning.None; if ( targetObject.needsUpdate !== undefined ) { // material versioning = this.Versioning.NeedsUpdate; this.targetObject = targetObject; } else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform versioning = this.Versioning.MatrixWorldNeedsUpdate; this.targetObject = targetObject; } // determine how the property gets bound var bindingType = this.BindingType.Direct; if ( propertyIndex !== undefined ) { // access a sub element of the property array (only primitives are supported right now) if ( propertyName === "morphTargetInfluences" ) { // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer. // support resolving morphTarget names into indices. if ( ! targetObject.geometry ) { console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this ); return; } if ( targetObject.geometry.isBufferGeometry ) { if ( ! targetObject.geometry.morphAttributes ) { console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this ); return; } for ( var i = 0; i < this.node.geometry.morphAttributes.position.length; i ++ ) { if ( targetObject.geometry.morphAttributes.position[ i ].name === propertyIndex ) { propertyIndex = i; break; } } } else { if ( ! targetObject.geometry.morphTargets ) { console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphTargets.', this ); return; } for ( var i = 0; i < this.node.geometry.morphTargets.length; i ++ ) { if ( targetObject.geometry.morphTargets[ i ].name === propertyIndex ) { propertyIndex = i; break; } } } } bindingType = this.BindingType.ArrayElement; this.resolvedProperty = nodeProperty; this.propertyIndex = propertyIndex; } else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) { // must use copy for Object3D.Euler/Quaternion bindingType = this.BindingType.HasFromToArray; this.resolvedProperty = nodeProperty; } else if ( Array.isArray( nodeProperty ) ) { bindingType = this.BindingType.EntireArray; this.resolvedProperty = nodeProperty; } else { this.propertyName = propertyName; } // select getter / setter this.getValue = this.GetterByBindingType[ bindingType ]; this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ]; }, unbind: function () { this.node = null; // back to the prototype version of getValue / setValue // note: avoiding to mutate the shape of 'this' via 'delete' this.getValue = this._getValue_unbound; this.setValue = this._setValue_unbound; } } ); //!\ DECLARE ALIAS AFTER assign prototype ! Object.assign( PropertyBinding.prototype, { // initial state of these methods that calls 'bind' _getValue_unbound: PropertyBinding.prototype.getValue, _setValue_unbound: PropertyBinding.prototype.setValue, } ); /** * * A group of objects that receives a shared animation state. * * Usage: * * - Add objects you would otherwise pass as 'root' to the * constructor or the .clipAction method of AnimationMixer. * * - Instead pass this object as 'root'. * * - You can also add and remove objects later when the mixer * is running. * * Note: * * Objects of this class appear as one object to the mixer, * so cache control of the individual objects must be done * on the group. * * Limitation: * * - The animated properties must be compatible among the * all objects in the group. * * - A single property can either be controlled through a * target group or directly, but not both. * * @author tschw */ function AnimationObjectGroup( var_args ) { this.uuid = _Math.generateUUID(); // cached objects followed by the active ones this._objects = Array.prototype.slice.call( arguments ); this.nCachedObjects_ = 0; // threshold // note: read by PropertyBinding.Composite var indices = {}; this._indicesByUUID = indices; // for bookkeeping for ( var i = 0, n = arguments.length; i !== n; ++ i ) { indices[ arguments[ i ].uuid ] = i; } this._paths = []; // inside: string this._parsedPaths = []; // inside: { we don't care, here } this._bindings = []; // inside: Array< PropertyBinding > this._bindingsIndicesByPath = {}; // inside: indices in these arrays var scope = this; this.stats = { objects: { get total() { return scope._objects.length; }, get inUse() { return this.total - scope.nCachedObjects_; } }, get bindingsPerObject() { return scope._bindings.length; } }; } Object.assign( AnimationObjectGroup.prototype, { isAnimationObjectGroup: true, add: function( var_args ) { var objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, indicesByUUID = this._indicesByUUID, paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, nBindings = bindings.length; for ( var i = 0, n = arguments.length; i !== n; ++ i ) { var object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ], knownObject = undefined; if ( index === undefined ) { // unknown object -> add it to the ACTIVE region index = nObjects ++; indicesByUUID[ uuid ] = index; objects.push( object ); // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { bindings[ j ].push( new PropertyBinding( object, paths[ j ], parsedPaths[ j ] ) ); } } else if ( index < nCachedObjects ) { knownObject = objects[ index ]; // move existing object to the ACTIVE region var firstActiveIndex = -- nCachedObjects, lastCachedObject = objects[ firstActiveIndex ]; indicesByUUID[ lastCachedObject.uuid ] = index; objects[ index ] = lastCachedObject; indicesByUUID[ uuid ] = firstActiveIndex; objects[ firstActiveIndex ] = object; // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { var bindingsForPath = bindings[ j ], lastCached = bindingsForPath[ firstActiveIndex ], binding = bindingsForPath[ index ]; bindingsForPath[ index ] = lastCached; if ( binding === undefined ) { // since we do not bother to create new bindings // for objects that are cached, the binding may // or may not exist binding = new PropertyBinding( object, paths[ j ], parsedPaths[ j ] ); } bindingsForPath[ firstActiveIndex ] = binding; } } else if ( objects[ index ] !== knownObject ) { console.error( 'THREE.AnimationObjectGroup: Different objects with the same UUID ' + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.' ); } // else the object is already where we want it to be } // for arguments this.nCachedObjects_ = nCachedObjects; }, remove: function( var_args ) { var objects = this._objects, nCachedObjects = this.nCachedObjects_, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length; for ( var i = 0, n = arguments.length; i !== n; ++ i ) { var object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ]; if ( index !== undefined && index >= nCachedObjects ) { // move existing object into the CACHED region var lastCachedIndex = nCachedObjects ++, firstActiveObject = objects[ lastCachedIndex ]; indicesByUUID[ firstActiveObject.uuid ] = index; objects[ index ] = firstActiveObject; indicesByUUID[ uuid ] = lastCachedIndex; objects[ lastCachedIndex ] = object; // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { var bindingsForPath = bindings[ j ], firstActive = bindingsForPath[ lastCachedIndex ], binding = bindingsForPath[ index ]; bindingsForPath[ index ] = firstActive; bindingsForPath[ lastCachedIndex ] = binding; } } } // for arguments this.nCachedObjects_ = nCachedObjects; }, // remove & forget uncache: function( var_args ) { var objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length; for ( var i = 0, n = arguments.length; i !== n; ++ i ) { var object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ]; if ( index !== undefined ) { delete indicesByUUID[ uuid ]; if ( index < nCachedObjects ) { // object is cached, shrink the CACHED region var firstActiveIndex = -- nCachedObjects, lastCachedObject = objects[ firstActiveIndex ], lastIndex = -- nObjects, lastObject = objects[ lastIndex ]; // last cached object takes this object's place indicesByUUID[ lastCachedObject.uuid ] = index; objects[ index ] = lastCachedObject; // last object goes to the activated slot and pop indicesByUUID[ lastObject.uuid ] = firstActiveIndex; objects[ firstActiveIndex ] = lastObject; objects.pop(); // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { var bindingsForPath = bindings[ j ], lastCached = bindingsForPath[ firstActiveIndex ], last = bindingsForPath[ lastIndex ]; bindingsForPath[ index ] = lastCached; bindingsForPath[ firstActiveIndex ] = last; bindingsForPath.pop(); } } else { // object is active, just swap with the last and pop var lastIndex = -- nObjects, lastObject = objects[ lastIndex ]; indicesByUUID[ lastObject.uuid ] = index; objects[ index ] = lastObject; objects.pop(); // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { var bindingsForPath = bindings[ j ]; bindingsForPath[ index ] = bindingsForPath[ lastIndex ]; bindingsForPath.pop(); } } // cached or active } // if object is known } // for arguments this.nCachedObjects_ = nCachedObjects; }, // Internal interface used by befriended PropertyBinding.Composite: subscribe_: function ( path, parsedPath ) { // returns an array of bindings for the given path that is changed // according to the contained objects in the group var indicesByPath = this._bindingsIndicesByPath, index = indicesByPath[ path ], bindings = this._bindings; if ( index !== undefined ) return bindings[ index ]; var paths = this._paths, parsedPaths = this._parsedPaths, objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, bindingsForPath = new Array( nObjects ); index = bindings.length; indicesByPath[ path ] = index; paths.push( path ); parsedPaths.push( parsedPath ); bindings.push( bindingsForPath ); for ( var i = nCachedObjects, n = objects.length; i !== n; ++ i ) { var object = objects[ i ]; bindingsForPath[ i ] = new PropertyBinding( object, path, parsedPath ); } return bindingsForPath; }, unsubscribe_: function ( path ) { // tells the group to forget about a property path and no longer // update the array previously obtained with 'subscribe_' var indicesByPath = this._bindingsIndicesByPath, index = indicesByPath[ path ]; if ( index !== undefined ) { var paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, lastBindingsIndex = bindings.length - 1, lastBindings = bindings[ lastBindingsIndex ], lastBindingsPath = path[ lastBindingsIndex ]; indicesByPath[ lastBindingsPath ] = index; bindings[ index ] = lastBindings; bindings.pop(); parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ]; parsedPaths.pop(); paths[ index ] = paths[ lastBindingsIndex ]; paths.pop(); } } } ); /** * * Action provided by AnimationMixer for scheduling clip playback on specific * objects. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw * */ function AnimationAction( mixer, clip, localRoot ) { this._mixer = mixer; this._clip = clip; this._localRoot = localRoot || null; var tracks = clip.tracks, nTracks = tracks.length, interpolants = new Array( nTracks ); var interpolantSettings = { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding }; for ( var i = 0; i !== nTracks; ++ i ) { var interpolant = tracks[ i ].createInterpolant( null ); interpolants[ i ] = interpolant; interpolant.settings = interpolantSettings; } this._interpolantSettings = interpolantSettings; this._interpolants = interpolants; // bound by the mixer // inside: PropertyMixer (managed by the mixer) this._propertyBindings = new Array( nTracks ); this._cacheIndex = null; // for the memory manager this._byClipCacheIndex = null; // for the memory manager this._timeScaleInterpolant = null; this._weightInterpolant = null; this.loop = LoopRepeat; this._loopCount = -1; // global mixer time when the action is to be started // it's set back to 'null' upon start of the action this._startTime = null; // scaled local time of the action // gets clamped or wrapped to 0..clip.duration according to loop this.time = 0; this.timeScale = 1; this._effectiveTimeScale = 1; this.weight = 1; this._effectiveWeight = 1; this.repetitions = Infinity; // no. of repetitions when looping this.paused = false; // true -> zero effective time scale this.enabled = true; // false -> zero effective weight this.clampWhenFinished = false; // keep feeding the last frame? this.zeroSlopeAtStart = true; // for smooth interpolation w/o separate this.zeroSlopeAtEnd = true; // clips for start, loop and end } Object.assign( AnimationAction.prototype, { // State & Scheduling play: function() { this._mixer._activateAction( this ); return this; }, stop: function() { this._mixer._deactivateAction( this ); return this.reset(); }, reset: function() { this.paused = false; this.enabled = true; this.time = 0; // restart clip this._loopCount = -1; // forget previous loops this._startTime = null; // forget scheduling return this.stopFading().stopWarping(); }, isRunning: function() { return this.enabled && ! this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction( this ); }, // return true when play has been called isScheduled: function() { return this._mixer._isActiveAction( this ); }, startAt: function( time ) { this._startTime = time; return this; }, setLoop: function( mode, repetitions ) { this.loop = mode; this.repetitions = repetitions; return this; }, // Weight // set the weight stopping any scheduled fading // although .enabled = false yields an effective weight of zero, this // method does *not* change .enabled, because it would be confusing setEffectiveWeight: function( weight ) { this.weight = weight; // note: same logic as when updated at runtime this._effectiveWeight = this.enabled ? weight : 0; return this.stopFading(); }, // return the weight considering fading and .enabled getEffectiveWeight: function() { return this._effectiveWeight; }, fadeIn: function( duration ) { return this._scheduleFading( duration, 0, 1 ); }, fadeOut: function( duration ) { return this._scheduleFading( duration, 1, 0 ); }, crossFadeFrom: function( fadeOutAction, duration, warp ) { fadeOutAction.fadeOut( duration ); this.fadeIn( duration ); if( warp ) { var fadeInDuration = this._clip.duration, fadeOutDuration = fadeOutAction._clip.duration, startEndRatio = fadeOutDuration / fadeInDuration, endStartRatio = fadeInDuration / fadeOutDuration; fadeOutAction.warp( 1.0, startEndRatio, duration ); this.warp( endStartRatio, 1.0, duration ); } return this; }, crossFadeTo: function( fadeInAction, duration, warp ) { return fadeInAction.crossFadeFrom( this, duration, warp ); }, stopFading: function() { var weightInterpolant = this._weightInterpolant; if ( weightInterpolant !== null ) { this._weightInterpolant = null; this._mixer._takeBackControlInterpolant( weightInterpolant ); } return this; }, // Time Scale Control // set the time scale stopping any scheduled warping // although .paused = true yields an effective time scale of zero, this // method does *not* change .paused, because it would be confusing setEffectiveTimeScale: function( timeScale ) { this.timeScale = timeScale; this._effectiveTimeScale = this.paused ? 0 :timeScale; return this.stopWarping(); }, // return the time scale considering warping and .paused getEffectiveTimeScale: function() { return this._effectiveTimeScale; }, setDuration: function( duration ) { this.timeScale = this._clip.duration / duration; return this.stopWarping(); }, syncWith: function( action ) { this.time = action.time; this.timeScale = action.timeScale; return this.stopWarping(); }, halt: function( duration ) { return this.warp( this._effectiveTimeScale, 0, duration ); }, warp: function( startTimeScale, endTimeScale, duration ) { var mixer = this._mixer, now = mixer.time, interpolant = this._timeScaleInterpolant, timeScale = this.timeScale; if ( interpolant === null ) { interpolant = mixer._lendControlInterpolant(); this._timeScaleInterpolant = interpolant; } var times = interpolant.parameterPositions, values = interpolant.sampleValues; times[ 0 ] = now; times[ 1 ] = now + duration; values[ 0 ] = startTimeScale / timeScale; values[ 1 ] = endTimeScale / timeScale; return this; }, stopWarping: function() { var timeScaleInterpolant = this._timeScaleInterpolant; if ( timeScaleInterpolant !== null ) { this._timeScaleInterpolant = null; this._mixer._takeBackControlInterpolant( timeScaleInterpolant ); } return this; }, // Object Accessors getMixer: function() { return this._mixer; }, getClip: function() { return this._clip; }, getRoot: function() { return this._localRoot || this._mixer._root; }, // Interna _update: function( time, deltaTime, timeDirection, accuIndex ) { // called by the mixer if ( ! this.enabled ) { // call ._updateWeight() to update ._effectiveWeight this._updateWeight( time ); return; } var startTime = this._startTime; if ( startTime !== null ) { // check for scheduled start of action var timeRunning = ( time - startTime ) * timeDirection; if ( timeRunning < 0 || timeDirection === 0 ) { return; // yet to come / don't decide when delta = 0 } // start this._startTime = null; // unschedule deltaTime = timeDirection * timeRunning; } // apply time scale and advance time deltaTime *= this._updateTimeScale( time ); var clipTime = this._updateTime( deltaTime ); // note: _updateTime may disable the action resulting in // an effective weight of 0 var weight = this._updateWeight( time ); if ( weight > 0 ) { var interpolants = this._interpolants; var propertyMixers = this._propertyBindings; for ( var j = 0, m = interpolants.length; j !== m; ++ j ) { interpolants[ j ].evaluate( clipTime ); propertyMixers[ j ].accumulate( accuIndex, weight ); } } }, _updateWeight: function( time ) { var weight = 0; if ( this.enabled ) { weight = this.weight; var interpolant = this._weightInterpolant; if ( interpolant !== null ) { var interpolantValue = interpolant.evaluate( time )[ 0 ]; weight *= interpolantValue; if ( time > interpolant.parameterPositions[ 1 ] ) { this.stopFading(); if ( interpolantValue === 0 ) { // faded out, disable this.enabled = false; } } } } this._effectiveWeight = weight; return weight; }, _updateTimeScale: function( time ) { var timeScale = 0; if ( ! this.paused ) { timeScale = this.timeScale; var interpolant = this._timeScaleInterpolant; if ( interpolant !== null ) { var interpolantValue = interpolant.evaluate( time )[ 0 ]; timeScale *= interpolantValue; if ( time > interpolant.parameterPositions[ 1 ] ) { this.stopWarping(); if ( timeScale === 0 ) { // motion has halted, pause this.paused = true; } else { // warp done - apply final time scale this.timeScale = timeScale; } } } } this._effectiveTimeScale = timeScale; return timeScale; }, _updateTime: function( deltaTime ) { var time = this.time + deltaTime; if ( deltaTime === 0 ) return time; var duration = this._clip.duration, loop = this.loop, loopCount = this._loopCount; if ( loop === LoopOnce ) { if ( loopCount === -1 ) { // just started this._loopCount = 0; this._setEndings( true, true, false ); } handle_stop: { if ( time >= duration ) { time = duration; } else if ( time < 0 ) { time = 0; } else break handle_stop; if ( this.clampWhenFinished ) this.paused = true; else this.enabled = false; this._mixer.dispatchEvent( { type: 'finished', action: this, direction: deltaTime < 0 ? -1 : 1 } ); } } else { // repetitive Repeat or PingPong var pingPong = ( loop === LoopPingPong ); if ( loopCount === -1 ) { // just started if ( deltaTime >= 0 ) { loopCount = 0; this._setEndings( true, this.repetitions === 0, pingPong ); } else { // when looping in reverse direction, the initial // transition through zero counts as a repetition, // so leave loopCount at -1 this._setEndings( this.repetitions === 0, true, pingPong ); } } if ( time >= duration || time < 0 ) { // wrap around var loopDelta = Math.floor( time / duration ); // signed time -= duration * loopDelta; loopCount += Math.abs( loopDelta ); var pending = this.repetitions - loopCount; if ( pending < 0 ) { // have to stop (switch state, clamp time, fire event) if ( this.clampWhenFinished ) this.paused = true; else this.enabled = false; time = deltaTime > 0 ? duration : 0; this._mixer.dispatchEvent( { type: 'finished', action: this, direction: deltaTime > 0 ? 1 : -1 } ); } else { // keep running if ( pending === 0 ) { // entering the last round var atStart = deltaTime < 0; this._setEndings( atStart, ! atStart, pingPong ); } else { this._setEndings( false, false, pingPong ); } this._loopCount = loopCount; this._mixer.dispatchEvent( { type: 'loop', action: this, loopDelta: loopDelta } ); } } if ( pingPong && ( loopCount & 1 ) === 1 ) { // invert time for the "pong round" this.time = time; return duration - time; } } this.time = time; return time; }, _setEndings: function( atStart, atEnd, pingPong ) { var settings = this._interpolantSettings; if ( pingPong ) { settings.endingStart = ZeroSlopeEnding; settings.endingEnd = ZeroSlopeEnding; } else { // assuming for LoopOnce atStart == atEnd == true if ( atStart ) { settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding; } else { settings.endingStart = WrapAroundEnding; } if ( atEnd ) { settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding; } else { settings.endingEnd = WrapAroundEnding; } } }, _scheduleFading: function( duration, weightNow, weightThen ) { var mixer = this._mixer, now = mixer.time, interpolant = this._weightInterpolant; if ( interpolant === null ) { interpolant = mixer._lendControlInterpolant(); this._weightInterpolant = interpolant; } var times = interpolant.parameterPositions, values = interpolant.sampleValues; times[ 0 ] = now; values[ 0 ] = weightNow; times[ 1 ] = now + duration; values[ 1 ] = weightThen; return this; } } ); /** * * Player for AnimationClips. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function AnimationMixer( root ) { this._root = root; this._initMemoryManager(); this._accuIndex = 0; this.time = 0; this.timeScale = 1.0; } Object.assign( AnimationMixer.prototype, EventDispatcher.prototype, { _bindAction: function ( action, prototypeAction ) { var root = action._localRoot || this._root, tracks = action._clip.tracks, nTracks = tracks.length, bindings = action._propertyBindings, interpolants = action._interpolants, rootUuid = root.uuid, bindingsByRoot = this._bindingsByRootAndName, bindingsByName = bindingsByRoot[ rootUuid ]; if ( bindingsByName === undefined ) { bindingsByName = {}; bindingsByRoot[ rootUuid ] = bindingsByName; } for ( var i = 0; i !== nTracks; ++ i ) { var track = tracks[ i ], trackName = track.name, binding = bindingsByName[ trackName ]; if ( binding !== undefined ) { bindings[ i ] = binding; } else { binding = bindings[ i ]; if ( binding !== undefined ) { // existing binding, make sure the cache knows if ( binding._cacheIndex === null ) { ++ binding.referenceCount; this._addInactiveBinding( binding, rootUuid, trackName ); } continue; } var path = prototypeAction && prototypeAction. _propertyBindings[ i ].binding.parsedPath; binding = new PropertyMixer( PropertyBinding.create( root, trackName, path ), track.ValueTypeName, track.getValueSize() ); ++ binding.referenceCount; this._addInactiveBinding( binding, rootUuid, trackName ); bindings[ i ] = binding; } interpolants[ i ].resultBuffer = binding.buffer; } }, _activateAction: function ( action ) { if ( ! this._isActiveAction( action ) ) { if ( action._cacheIndex === null ) { // this action has been forgotten by the cache, but the user // appears to be still using it -> rebind var rootUuid = ( action._localRoot || this._root ).uuid, clipUuid = action._clip.uuid, actionsForClip = this._actionsByClip[ clipUuid ]; this._bindAction( action, actionsForClip && actionsForClip.knownActions[ 0 ] ); this._addInactiveAction( action, clipUuid, rootUuid ); } var bindings = action._propertyBindings; // increment reference counts / sort out state for ( var i = 0, n = bindings.length; i !== n; ++ i ) { var binding = bindings[ i ]; if ( binding.useCount ++ === 0 ) { this._lendBinding( binding ); binding.saveOriginalState(); } } this._lendAction( action ); } }, _deactivateAction: function ( action ) { if ( this._isActiveAction( action ) ) { var bindings = action._propertyBindings; // decrement reference counts / sort out state for ( var i = 0, n = bindings.length; i !== n; ++ i ) { var binding = bindings[ i ]; if ( -- binding.useCount === 0 ) { binding.restoreOriginalState(); this._takeBackBinding( binding ); } } this._takeBackAction( action ); } }, // Memory manager _initMemoryManager: function () { this._actions = []; // 'nActiveActions' followed by inactive ones this._nActiveActions = 0; this._actionsByClip = {}; // inside: // { // knownActions: Array< AnimationAction > - used as prototypes // actionByRoot: AnimationAction - lookup // } this._bindings = []; // 'nActiveBindings' followed by inactive ones this._nActiveBindings = 0; this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer > this._controlInterpolants = []; // same game as above this._nActiveControlInterpolants = 0; var scope = this; this.stats = { actions: { get total() { return scope._actions.length; }, get inUse() { return scope._nActiveActions; } }, bindings: { get total() { return scope._bindings.length; }, get inUse() { return scope._nActiveBindings; } }, controlInterpolants: { get total() { return scope._controlInterpolants.length; }, get inUse() { return scope._nActiveControlInterpolants; } } }; }, // Memory management for AnimationAction objects _isActiveAction: function ( action ) { var index = action._cacheIndex; return index !== null && index < this._nActiveActions; }, _addInactiveAction: function ( action, clipUuid, rootUuid ) { var actions = this._actions, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipUuid ]; if ( actionsForClip === undefined ) { actionsForClip = { knownActions: [ action ], actionByRoot: {} }; action._byClipCacheIndex = 0; actionsByClip[ clipUuid ] = actionsForClip; } else { var knownActions = actionsForClip.knownActions; action._byClipCacheIndex = knownActions.length; knownActions.push( action ); } action._cacheIndex = actions.length; actions.push( action ); actionsForClip.actionByRoot[ rootUuid ] = action; }, _removeInactiveAction: function ( action ) { var actions = this._actions, lastInactiveAction = actions[ actions.length - 1 ], cacheIndex = action._cacheIndex; lastInactiveAction._cacheIndex = cacheIndex; actions[ cacheIndex ] = lastInactiveAction; actions.pop(); action._cacheIndex = null; var clipUuid = action._clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipUuid ], knownActionsForClip = actionsForClip.knownActions, lastKnownAction = knownActionsForClip[ knownActionsForClip.length - 1 ], byClipCacheIndex = action._byClipCacheIndex; lastKnownAction._byClipCacheIndex = byClipCacheIndex; knownActionsForClip[ byClipCacheIndex ] = lastKnownAction; knownActionsForClip.pop(); action._byClipCacheIndex = null; var actionByRoot = actionsForClip.actionByRoot, rootUuid = ( action._localRoot || this._root ).uuid; delete actionByRoot[ rootUuid ]; if ( knownActionsForClip.length === 0 ) { delete actionsByClip[ clipUuid ]; } this._removeInactiveBindingsForAction( action ); }, _removeInactiveBindingsForAction: function ( action ) { var bindings = action._propertyBindings; for ( var i = 0, n = bindings.length; i !== n; ++ i ) { var binding = bindings[ i ]; if ( -- binding.referenceCount === 0 ) { this._removeInactiveBinding( binding ); } } }, _lendAction: function ( action ) { // [ active actions | inactive actions ] // [ active actions >| inactive actions ] // s a // <-swap-> // a s var actions = this._actions, prevIndex = action._cacheIndex, lastActiveIndex = this._nActiveActions ++, firstInactiveAction = actions[ lastActiveIndex ]; action._cacheIndex = lastActiveIndex; actions[ lastActiveIndex ] = action; firstInactiveAction._cacheIndex = prevIndex; actions[ prevIndex ] = firstInactiveAction; }, _takeBackAction: function ( action ) { // [ active actions | inactive actions ] // [ active actions |< inactive actions ] // a s // <-swap-> // s a var actions = this._actions, prevIndex = action._cacheIndex, firstInactiveIndex = -- this._nActiveActions, lastActiveAction = actions[ firstInactiveIndex ]; action._cacheIndex = firstInactiveIndex; actions[ firstInactiveIndex ] = action; lastActiveAction._cacheIndex = prevIndex; actions[ prevIndex ] = lastActiveAction; }, // Memory management for PropertyMixer objects _addInactiveBinding: function ( binding, rootUuid, trackName ) { var bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ], bindings = this._bindings; if ( bindingByName === undefined ) { bindingByName = {}; bindingsByRoot[ rootUuid ] = bindingByName; } bindingByName[ trackName ] = binding; binding._cacheIndex = bindings.length; bindings.push( binding ); }, _removeInactiveBinding: function ( binding ) { var bindings = this._bindings, propBinding = binding.binding, rootUuid = propBinding.rootNode.uuid, trackName = propBinding.path, bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ], lastInactiveBinding = bindings[ bindings.length - 1 ], cacheIndex = binding._cacheIndex; lastInactiveBinding._cacheIndex = cacheIndex; bindings[ cacheIndex ] = lastInactiveBinding; bindings.pop(); delete bindingByName[ trackName ]; remove_empty_map: { for ( var _ in bindingByName ) break remove_empty_map; delete bindingsByRoot[ rootUuid ]; } }, _lendBinding: function ( binding ) { var bindings = this._bindings, prevIndex = binding._cacheIndex, lastActiveIndex = this._nActiveBindings ++, firstInactiveBinding = bindings[ lastActiveIndex ]; binding._cacheIndex = lastActiveIndex; bindings[ lastActiveIndex ] = binding; firstInactiveBinding._cacheIndex = prevIndex; bindings[ prevIndex ] = firstInactiveBinding; }, _takeBackBinding: function ( binding ) { var bindings = this._bindings, prevIndex = binding._cacheIndex, firstInactiveIndex = -- this._nActiveBindings, lastActiveBinding = bindings[ firstInactiveIndex ]; binding._cacheIndex = firstInactiveIndex; bindings[ firstInactiveIndex ] = binding; lastActiveBinding._cacheIndex = prevIndex; bindings[ prevIndex ] = lastActiveBinding; }, // Memory management of Interpolants for weight and time scale _lendControlInterpolant: function () { var interpolants = this._controlInterpolants, lastActiveIndex = this._nActiveControlInterpolants ++, interpolant = interpolants[ lastActiveIndex ]; if ( interpolant === undefined ) { interpolant = new LinearInterpolant( new Float32Array( 2 ), new Float32Array( 2 ), 1, this._controlInterpolantsResultBuffer ); interpolant.__cacheIndex = lastActiveIndex; interpolants[ lastActiveIndex ] = interpolant; } return interpolant; }, _takeBackControlInterpolant: function ( interpolant ) { var interpolants = this._controlInterpolants, prevIndex = interpolant.__cacheIndex, firstInactiveIndex = -- this._nActiveControlInterpolants, lastActiveInterpolant = interpolants[ firstInactiveIndex ]; interpolant.__cacheIndex = firstInactiveIndex; interpolants[ firstInactiveIndex ] = interpolant; lastActiveInterpolant.__cacheIndex = prevIndex; interpolants[ prevIndex ] = lastActiveInterpolant; }, _controlInterpolantsResultBuffer: new Float32Array( 1 ), // return an action for a clip optionally using a custom root target // object (this method allocates a lot of dynamic memory in case a // previously unknown clip/root combination is specified) clipAction: function ( clip, optionalRoot ) { var root = optionalRoot || this._root, rootUuid = root.uuid, clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip, clipUuid = clipObject !== null ? clipObject.uuid : clip, actionsForClip = this._actionsByClip[ clipUuid ], prototypeAction = null; if ( actionsForClip !== undefined ) { var existingAction = actionsForClip.actionByRoot[ rootUuid ]; if ( existingAction !== undefined ) { return existingAction; } // we know the clip, so we don't have to parse all // the bindings again but can just copy prototypeAction = actionsForClip.knownActions[ 0 ]; // also, take the clip from the prototype action if ( clipObject === null ) clipObject = prototypeAction._clip; } // clip must be known when specified via string if ( clipObject === null ) return null; // allocate all resources required to run it var newAction = new AnimationAction( this, clipObject, optionalRoot ); this._bindAction( newAction, prototypeAction ); // and make the action known to the memory manager this._addInactiveAction( newAction, clipUuid, rootUuid ); return newAction; }, // get an existing action existingAction: function ( clip, optionalRoot ) { var root = optionalRoot || this._root, rootUuid = root.uuid, clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip, clipUuid = clipObject ? clipObject.uuid : clip, actionsForClip = this._actionsByClip[ clipUuid ]; if ( actionsForClip !== undefined ) { return actionsForClip.actionByRoot[ rootUuid ] || null; } return null; }, // deactivates all previously scheduled actions stopAllAction: function () { var actions = this._actions, nActions = this._nActiveActions, bindings = this._bindings, nBindings = this._nActiveBindings; this._nActiveActions = 0; this._nActiveBindings = 0; for ( var i = 0; i !== nActions; ++ i ) { actions[ i ].reset(); } for ( var i = 0; i !== nBindings; ++ i ) { bindings[ i ].useCount = 0; } return this; }, // advance the time and update apply the animation update: function ( deltaTime ) { deltaTime *= this.timeScale; var actions = this._actions, nActions = this._nActiveActions, time = this.time += deltaTime, timeDirection = Math.sign( deltaTime ), accuIndex = this._accuIndex ^= 1; // run active actions for ( var i = 0; i !== nActions; ++ i ) { var action = actions[ i ]; action._update( time, deltaTime, timeDirection, accuIndex ); } // update scene graph var bindings = this._bindings, nBindings = this._nActiveBindings; for ( var i = 0; i !== nBindings; ++ i ) { bindings[ i ].apply( accuIndex ); } return this; }, // return this mixer's root target object getRoot: function () { return this._root; }, // free all resources specific to a particular clip uncacheClip: function ( clip ) { var actions = this._actions, clipUuid = clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipUuid ]; if ( actionsForClip !== undefined ) { // note: just calling _removeInactiveAction would mess up the // iteration state and also require updating the state we can // just throw away var actionsToRemove = actionsForClip.knownActions; for ( var i = 0, n = actionsToRemove.length; i !== n; ++ i ) { var action = actionsToRemove[ i ]; this._deactivateAction( action ); var cacheIndex = action._cacheIndex, lastInactiveAction = actions[ actions.length - 1 ]; action._cacheIndex = null; action._byClipCacheIndex = null; lastInactiveAction._cacheIndex = cacheIndex; actions[ cacheIndex ] = lastInactiveAction; actions.pop(); this._removeInactiveBindingsForAction( action ); } delete actionsByClip[ clipUuid ]; } }, // free all resources specific to a particular root target object uncacheRoot: function ( root ) { var rootUuid = root.uuid, actionsByClip = this._actionsByClip; for ( var clipUuid in actionsByClip ) { var actionByRoot = actionsByClip[ clipUuid ].actionByRoot, action = actionByRoot[ rootUuid ]; if ( action !== undefined ) { this._deactivateAction( action ); this._removeInactiveAction( action ); } } var bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ]; if ( bindingByName !== undefined ) { for ( var trackName in bindingByName ) { var binding = bindingByName[ trackName ]; binding.restoreOriginalState(); this._removeInactiveBinding( binding ); } } }, // remove a targeted clip from the cache uncacheAction: function ( clip, optionalRoot ) { var action = this.existingAction( clip, optionalRoot ); if ( action !== null ) { this._deactivateAction( action ); this._removeInactiveAction( action ); } } } ); /** * @author mrdoob / http://mrdoob.com/ */ function Uniform( value ) { if ( typeof value === 'string' ) { console.warn( 'THREE.Uniform: Type parameter is no longer needed.' ); value = arguments[ 1 ]; } this.value = value; } Uniform.prototype.clone = function () { return new Uniform( this.value.clone === undefined ? this.value : this.value.clone() ); }; /** * @author benaadams / https://twitter.com/ben_a_adams */ function InstancedBufferGeometry() { BufferGeometry.call( this ); this.type = 'InstancedBufferGeometry'; this.maxInstancedCount = undefined; } InstancedBufferGeometry.prototype = Object.assign( Object.create( BufferGeometry.prototype ), { constructor: InstancedBufferGeometry, isInstancedBufferGeometry: true, addGroup: function ( start, count, materialIndex ) { this.groups.push( { start: start, count: count, materialIndex: materialIndex } ); }, copy: function ( source ) { var index = source.index; if ( index !== null ) { this.setIndex( index.clone() ); } var attributes = source.attributes; for ( var name in attributes ) { var attribute = attributes[ name ]; this.addAttribute( name, attribute.clone() ); } var groups = source.groups; for ( var i = 0, l = groups.length; i < l; i ++ ) { var group = groups[ i ]; this.addGroup( group.start, group.count, group.materialIndex ); } return this; } } ); /** * @author benaadams / https://twitter.com/ben_a_adams */ function InterleavedBufferAttribute( interleavedBuffer, itemSize, offset, normalized ) { this.uuid = _Math.generateUUID(); this.data = interleavedBuffer; this.itemSize = itemSize; this.offset = offset; this.normalized = normalized === true; } Object.defineProperties( InterleavedBufferAttribute.prototype, { count: { get: function () { return this.data.count; } }, array: { get: function () { return this.data.array; } } } ); Object.assign( InterleavedBufferAttribute.prototype, { isInterleavedBufferAttribute: true, setX: function ( index, x ) { this.data.array[ index * this.data.stride + this.offset ] = x; return this; }, setY: function ( index, y ) { this.data.array[ index * this.data.stride + this.offset + 1 ] = y; return this; }, setZ: function ( index, z ) { this.data.array[ index * this.data.stride + this.offset + 2 ] = z; return this; }, setW: function ( index, w ) { this.data.array[ index * this.data.stride + this.offset + 3 ] = w; return this; }, getX: function ( index ) { return this.data.array[ index * this.data.stride + this.offset ]; }, getY: function ( index ) { return this.data.array[ index * this.data.stride + this.offset + 1 ]; }, getZ: function ( index ) { return this.data.array[ index * this.data.stride + this.offset + 2 ]; }, getW: function ( index ) { return this.data.array[ index * this.data.stride + this.offset + 3 ]; }, setXY: function ( index, x, y ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; return this; }, setXYZ: function ( index, x, y, z ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; this.data.array[ index + 2 ] = z; return this; }, setXYZW: function ( index, x, y, z, w ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; this.data.array[ index + 2 ] = z; this.data.array[ index + 3 ] = w; return this; } } ); /** * @author benaadams / https://twitter.com/ben_a_adams */ function InterleavedBuffer( array, stride ) { this.uuid = _Math.generateUUID(); this.array = array; this.stride = stride; this.count = array !== undefined ? array.length / stride : 0; this.dynamic = false; this.updateRange = { offset: 0, count: - 1 }; this.onUploadCallback = function () {}; this.version = 0; } Object.defineProperty( InterleavedBuffer.prototype, 'needsUpdate', { set: function ( value ) { if ( value === true ) this.version ++; } } ); Object.assign( InterleavedBuffer.prototype, { isInterleavedBuffer: true, setArray: function ( array ) { if ( Array.isArray( array ) ) { throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' ); } this.count = array !== undefined ? array.length / this.stride : 0; this.array = array; }, setDynamic: function ( value ) { this.dynamic = value; return this; }, copy: function ( source ) { this.array = new source.array.constructor( source.array ); this.count = source.count; this.stride = source.stride; this.dynamic = source.dynamic; return this; }, copyAt: function ( index1, attribute, index2 ) { index1 *= this.stride; index2 *= attribute.stride; for ( var i = 0, l = this.stride; i < l; i ++ ) { this.array[ index1 + i ] = attribute.array[ index2 + i ]; } return this; }, set: function ( value, offset ) { if ( offset === undefined ) offset = 0; this.array.set( value, offset ); return this; }, clone: function () { return new this.constructor().copy( this ); }, onUpload: function ( callback ) { this.onUploadCallback = callback; return this; } } ); /** * @author benaadams / https://twitter.com/ben_a_adams */ function InstancedInterleavedBuffer( array, stride, meshPerAttribute ) { InterleavedBuffer.call( this, array, stride ); this.meshPerAttribute = meshPerAttribute || 1; } InstancedInterleavedBuffer.prototype = Object.assign( Object.create( InterleavedBuffer.prototype ), { constructor: InstancedInterleavedBuffer, isInstancedInterleavedBuffer: true, copy: function ( source ) { InterleavedBuffer.prototype.copy.call( this, source ); this.meshPerAttribute = source.meshPerAttribute; return this; } } ); /** * @author benaadams / https://twitter.com/ben_a_adams */ function InstancedBufferAttribute( array, itemSize, meshPerAttribute ) { BufferAttribute.call( this, array, itemSize ); this.meshPerAttribute = meshPerAttribute || 1; } InstancedBufferAttribute.prototype = Object.assign( Object.create( BufferAttribute.prototype ), { constructor: InstancedBufferAttribute, isInstancedBufferAttribute: true, copy: function ( source ) { BufferAttribute.prototype.copy.call( this, source ); this.meshPerAttribute = source.meshPerAttribute; return this; } } ); /** * @author mrdoob / http://mrdoob.com/ * @author bhouston / http://clara.io/ * @author stephomi / http://stephaneginier.com/ */ function Raycaster( origin, direction, near, far ) { this.ray = new Ray( origin, direction ); // direction is assumed to be normalized (for accurate distance calculations) this.near = near || 0; this.far = far || Infinity; this.params = { Mesh: {}, Line: {}, LOD: {}, Points: { threshold: 1 }, Sprite: {} }; Object.defineProperties( this.params, { PointCloud: { get: function () { console.warn( 'THREE.Raycaster: params.PointCloud has been renamed to params.Points.' ); return this.Points; } } } ); } function ascSort( a, b ) { return a.distance - b.distance; } function intersectObject( object, raycaster, intersects, recursive ) { if ( object.visible === false ) return; object.raycast( raycaster, intersects ); if ( recursive === true ) { var children = object.children; for ( var i = 0, l = children.length; i < l; i ++ ) { intersectObject( children[ i ], raycaster, intersects, true ); } } } Object.assign( Raycaster.prototype, { linePrecision: 1, set: function ( origin, direction ) { // direction is assumed to be normalized (for accurate distance calculations) this.ray.set( origin, direction ); }, setFromCamera: function ( coords, camera ) { if ( ( camera && camera.isPerspectiveCamera ) ) { this.ray.origin.setFromMatrixPosition( camera.matrixWorld ); this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize(); } else if ( ( camera && camera.isOrthographicCamera ) ) { this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld ); } else { console.error( 'THREE.Raycaster: Unsupported camera type.' ); } }, intersectObject: function ( object, recursive ) { var intersects = []; intersectObject( object, this, intersects, recursive ); intersects.sort( ascSort ); return intersects; }, intersectObjects: function ( objects, recursive ) { var intersects = []; if ( Array.isArray( objects ) === false ) { console.warn( 'THREE.Raycaster.intersectObjects: objects is not an Array.' ); return intersects; } for ( var i = 0, l = objects.length; i < l; i ++ ) { intersectObject( objects[ i ], this, intersects, recursive ); } intersects.sort( ascSort ); return intersects; } } ); /** * @author alteredq / http://alteredqualia.com/ */ function Clock( autoStart ) { this.autoStart = ( autoStart !== undefined ) ? autoStart : true; this.startTime = 0; this.oldTime = 0; this.elapsedTime = 0; this.running = false; } Object.assign( Clock.prototype, { start: function () { this.startTime = ( typeof performance === 'undefined' ? Date : performance ).now(); // see #10732 this.oldTime = this.startTime; this.elapsedTime = 0; this.running = true; }, stop: function () { this.getElapsedTime(); this.running = false; this.autoStart = false; }, getElapsedTime: function () { this.getDelta(); return this.elapsedTime; }, getDelta: function () { var diff = 0; if ( this.autoStart && ! this.running ) { this.start(); return 0; } if ( this.running ) { var newTime = ( typeof performance === 'undefined' ? Date : performance ).now(); diff = ( newTime - this.oldTime ) / 1000; this.oldTime = newTime; this.elapsedTime += diff; } return diff; } } ); /** * @author bhouston / http://clara.io * @author WestLangley / http://github.com/WestLangley * * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system * * The poles (phi) are at the positive and negative y axis. * The equator starts at positive z. */ function Spherical( radius, phi, theta ) { this.radius = ( radius !== undefined ) ? radius : 1.0; this.phi = ( phi !== undefined ) ? phi : 0; // up / down towards top and bottom pole this.theta = ( theta !== undefined ) ? theta : 0; // around the equator of the sphere return this; } Object.assign( Spherical.prototype, { set: function ( radius, phi, theta ) { this.radius = radius; this.phi = phi; this.theta = theta; return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( other ) { this.radius = other.radius; this.phi = other.phi; this.theta = other.theta; return this; }, // restrict phi to be betwee EPS and PI-EPS makeSafe: function() { var EPS = 0.000001; this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) ); return this; }, setFromVector3: function( vec3 ) { this.radius = vec3.length(); if ( this.radius === 0 ) { this.theta = 0; this.phi = 0; } else { this.theta = Math.atan2( vec3.x, vec3.z ); // equator angle around y-up axis this.phi = Math.acos( _Math.clamp( vec3.y / this.radius, - 1, 1 ) ); // polar angle } return this; } } ); /** * @author Mugen87 / https://github.com/Mugen87 * * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system * */ function Cylindrical( radius, theta, y ) { this.radius = ( radius !== undefined ) ? radius : 1.0; // distance from the origin to a point in the x-z plane this.theta = ( theta !== undefined ) ? theta : 0; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis this.y = ( y !== undefined ) ? y : 0; // height above the x-z plane return this; } Object.assign( Cylindrical.prototype, { set: function ( radius, theta, y ) { this.radius = radius; this.theta = theta; this.y = y; return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( other ) { this.radius = other.radius; this.theta = other.theta; this.y = other.y; return this; }, setFromVector3: function( vec3 ) { this.radius = Math.sqrt( vec3.x * vec3.x + vec3.z * vec3.z ); this.theta = Math.atan2( vec3.x, vec3.z ); this.y = vec3.y; return this; } } ); /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ function VertexNormalsHelper( object, size, hex, linewidth ) { this.object = object; this.size = ( size !== undefined ) ? size : 1; var color = ( hex !== undefined ) ? hex : 0xff0000; var width = ( linewidth !== undefined ) ? linewidth : 1; // var nNormals = 0; var objGeometry = this.object.geometry; if ( objGeometry && objGeometry.isGeometry ) { nNormals = objGeometry.faces.length * 3; } else if ( objGeometry && objGeometry.isBufferGeometry ) { nNormals = objGeometry.attributes.normal.count; } // var geometry = new BufferGeometry(); var positions = new Float32BufferAttribute( nNormals * 2 * 3, 3 ); geometry.addAttribute( 'position', positions ); LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, linewidth: width } ) ); // this.matrixAutoUpdate = false; this.update(); } VertexNormalsHelper.prototype = Object.create( LineSegments.prototype ); VertexNormalsHelper.prototype.constructor = VertexNormalsHelper; VertexNormalsHelper.prototype.update = ( function () { var v1 = new Vector3(); var v2 = new Vector3(); var normalMatrix = new Matrix3(); return function update() { var keys = [ 'a', 'b', 'c' ]; this.object.updateMatrixWorld( true ); normalMatrix.getNormalMatrix( this.object.matrixWorld ); var matrixWorld = this.object.matrixWorld; var position = this.geometry.attributes.position; // var objGeometry = this.object.geometry; if ( objGeometry && objGeometry.isGeometry ) { var vertices = objGeometry.vertices; var faces = objGeometry.faces; var idx = 0; for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) { var vertex = vertices[ face[ keys[ j ] ] ]; var normal = face.vertexNormals[ j ]; v1.copy( vertex ).applyMatrix4( matrixWorld ); v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 ); position.setXYZ( idx, v1.x, v1.y, v1.z ); idx = idx + 1; position.setXYZ( idx, v2.x, v2.y, v2.z ); idx = idx + 1; } } } else if ( objGeometry && objGeometry.isBufferGeometry ) { var objPos = objGeometry.attributes.position; var objNorm = objGeometry.attributes.normal; var idx = 0; // for simplicity, ignore index and drawcalls, and render every normal for ( var j = 0, jl = objPos.count; j < jl; j ++ ) { v1.set( objPos.getX( j ), objPos.getY( j ), objPos.getZ( j ) ).applyMatrix4( matrixWorld ); v2.set( objNorm.getX( j ), objNorm.getY( j ), objNorm.getZ( j ) ); v2.applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 ); position.setXYZ( idx, v1.x, v1.y, v1.z ); idx = idx + 1; position.setXYZ( idx, v2.x, v2.y, v2.z ); idx = idx + 1; } } position.needsUpdate = true; }; }() ); /** * @author Sean Griffin / http://twitter.com/sgrif * @author Michael Guerrero / http://realitymeltdown.com * @author mrdoob / http://mrdoob.com/ * @author ikerr / http://verold.com * @author Mugen87 / https://github.com/Mugen87 */ function getBoneList( object ) { var boneList = []; if ( object && object.isBone ) { boneList.push( object ); } for ( var i = 0; i < object.children.length; i ++ ) { boneList.push.apply( boneList, getBoneList( object.children[ i ] ) ); } return boneList; } function SkeletonHelper( object ) { var bones = getBoneList( object ); var geometry = new BufferGeometry(); var vertices = []; var colors = []; var color1 = new Color( 0, 0, 1 ); var color2 = new Color( 0, 1, 0 ); for ( var i = 0; i < bones.length; i ++ ) { var bone = bones[ i ]; if ( bone.parent && bone.parent.isBone ) { vertices.push( 0, 0, 0 ); vertices.push( 0, 0, 0 ); colors.push( color1.r, color1.g, color1.b ); colors.push( color2.r, color2.g, color2.b ); } } geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); var material = new LineBasicMaterial( { vertexColors: VertexColors, depthTest: false, depthWrite: false, transparent: true } ); LineSegments.call( this, geometry, material ); this.root = object; this.bones = bones; this.matrix = object.matrixWorld; this.matrixAutoUpdate = false; this.onBeforeRender(); } SkeletonHelper.prototype = Object.create( LineSegments.prototype ); SkeletonHelper.prototype.constructor = SkeletonHelper; SkeletonHelper.prototype.onBeforeRender = function () { var vector = new Vector3(); var boneMatrix = new Matrix4(); var matrixWorldInv = new Matrix4(); return function onBeforeRender() { var bones = this.bones; var geometry = this.geometry; var position = geometry.getAttribute( 'position' ); matrixWorldInv.getInverse( this.root.matrixWorld ); for ( var i = 0, j = 0; i < bones.length; i ++ ) { var bone = bones[ i ]; if ( bone.parent && bone.parent.isBone ) { boneMatrix.multiplyMatrices( matrixWorldInv, bone.matrixWorld ); vector.setFromMatrixPosition( boneMatrix ); position.setXYZ( j, vector.x, vector.y, vector.z ); boneMatrix.multiplyMatrices( matrixWorldInv, bone.parent.matrixWorld ); vector.setFromMatrixPosition( boneMatrix ); position.setXYZ( j + 1, vector.x, vector.y, vector.z ); j += 2; } } geometry.getAttribute( 'position' ).needsUpdate = true; }; }(); /** * @author abelnation / http://github.com/abelnation * @author Mugen87 / http://github.com/Mugen87 * @author WestLangley / http://github.com/WestLangley */ /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 */ function HemisphereLightHelper( light, size ) { Object3D.call( this ); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; var geometry = new OctahedronBufferGeometry( size ); geometry.rotateY( Math.PI * 0.5 ); var material = new MeshBasicMaterial( { vertexColors: VertexColors, wireframe: true } ); var position = geometry.getAttribute( 'position' ); var colors = new Float32Array( position.count * 3 ); geometry.addAttribute( 'color', new BufferAttribute( colors, 3 ) ); this.add( new Mesh( geometry, material ) ); this.update(); } HemisphereLightHelper.prototype = Object.create( Object3D.prototype ); HemisphereLightHelper.prototype.constructor = HemisphereLightHelper; HemisphereLightHelper.prototype.dispose = function () { this.children[ 0 ].geometry.dispose(); this.children[ 0 ].material.dispose(); }; HemisphereLightHelper.prototype.update = function () { var vector = new Vector3(); var color1 = new Color(); var color2 = new Color(); return function update() { var mesh = this.children[ 0 ]; var colors = mesh.geometry.getAttribute( 'color' ); color1.copy( this.light.color ); color2.copy( this.light.groundColor ); for ( var i = 0, l = colors.count; i < l; i ++ ) { var color = ( i < ( l / 2 ) ) ? color1 : color2; colors.setXYZ( i, color.r, color.g, color.b ); } mesh.lookAt( vector.setFromMatrixPosition( this.light.matrixWorld ).negate() ); colors.needsUpdate = true; }; }(); /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ function FaceNormalsHelper( object, size, hex, linewidth ) { // FaceNormalsHelper only supports THREE.Geometry this.object = object; this.size = ( size !== undefined ) ? size : 1; var color = ( hex !== undefined ) ? hex : 0xffff00; var width = ( linewidth !== undefined ) ? linewidth : 1; // var nNormals = 0; var objGeometry = this.object.geometry; if ( objGeometry && objGeometry.isGeometry ) { nNormals = objGeometry.faces.length; } else { console.warn( 'THREE.FaceNormalsHelper: only THREE.Geometry is supported. Use THREE.VertexNormalsHelper, instead.' ); } // var geometry = new BufferGeometry(); var positions = new Float32BufferAttribute( nNormals * 2 * 3, 3 ); geometry.addAttribute( 'position', positions ); LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, linewidth: width } ) ); // this.matrixAutoUpdate = false; this.update(); } FaceNormalsHelper.prototype = Object.create( LineSegments.prototype ); FaceNormalsHelper.prototype.constructor = FaceNormalsHelper; FaceNormalsHelper.prototype.update = ( function () { var v1 = new Vector3(); var v2 = new Vector3(); var normalMatrix = new Matrix3(); return function update() { this.object.updateMatrixWorld( true ); normalMatrix.getNormalMatrix( this.object.matrixWorld ); var matrixWorld = this.object.matrixWorld; var position = this.geometry.attributes.position; // var objGeometry = this.object.geometry; var vertices = objGeometry.vertices; var faces = objGeometry.faces; var idx = 0; for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; var normal = face.normal; v1.copy( vertices[ face.a ] ) .add( vertices[ face.b ] ) .add( vertices[ face.c ] ) .divideScalar( 3 ) .applyMatrix4( matrixWorld ); v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 ); position.setXYZ( idx, v1.x, v1.y, v1.z ); idx = idx + 1; position.setXYZ( idx, v2.x, v2.y, v2.z ); idx = idx + 1; } position.needsUpdate = true; }; }() ); /** * @author alteredq / http://alteredqualia.com/ * @author Mugen87 / https://github.com/Mugen87 * * - shows frustum, line of sight and up of the camera * - suitable for fast updates * - based on frustum visualization in lightgl.js shadowmap example * http://evanw.github.com/lightgl.js/tests/shadowmap.html */ function CameraHelper( camera ) { var geometry = new BufferGeometry(); var material = new LineBasicMaterial( { color: 0xffffff, vertexColors: FaceColors } ); var vertices = []; var colors = []; var pointMap = {}; // colors var colorFrustum = new Color( 0xffaa00 ); var colorCone = new Color( 0xff0000 ); var colorUp = new Color( 0x00aaff ); var colorTarget = new Color( 0xffffff ); var colorCross = new Color( 0x333333 ); // near addLine( "n1", "n2", colorFrustum ); addLine( "n2", "n4", colorFrustum ); addLine( "n4", "n3", colorFrustum ); addLine( "n3", "n1", colorFrustum ); // far addLine( "f1", "f2", colorFrustum ); addLine( "f2", "f4", colorFrustum ); addLine( "f4", "f3", colorFrustum ); addLine( "f3", "f1", colorFrustum ); // sides addLine( "n1", "f1", colorFrustum ); addLine( "n2", "f2", colorFrustum ); addLine( "n3", "f3", colorFrustum ); addLine( "n4", "f4", colorFrustum ); // cone addLine( "p", "n1", colorCone ); addLine( "p", "n2", colorCone ); addLine( "p", "n3", colorCone ); addLine( "p", "n4", colorCone ); // up addLine( "u1", "u2", colorUp ); addLine( "u2", "u3", colorUp ); addLine( "u3", "u1", colorUp ); // target addLine( "c", "t", colorTarget ); addLine( "p", "c", colorCross ); // cross addLine( "cn1", "cn2", colorCross ); addLine( "cn3", "cn4", colorCross ); addLine( "cf1", "cf2", colorCross ); addLine( "cf3", "cf4", colorCross ); function addLine( a, b, color ) { addPoint( a, color ); addPoint( b, color ); } function addPoint( id, color ) { vertices.push( 0, 0, 0 ); colors.push( color.r, color.g, color.b ); if ( pointMap[ id ] === undefined ) { pointMap[ id ] = []; } pointMap[ id ].push( ( vertices.length / 3 ) - 1 ); } geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); LineSegments.call( this, geometry, material ); this.camera = camera; if ( this.camera.updateProjectionMatrix ) this.camera.updateProjectionMatrix(); this.matrix = camera.matrixWorld; this.matrixAutoUpdate = false; this.pointMap = pointMap; this.update(); } CameraHelper.prototype = Object.create( LineSegments.prototype ); CameraHelper.prototype.constructor = CameraHelper; CameraHelper.prototype.update = function () { var geometry, pointMap; var vector = new Vector3(); var camera = new Camera(); function setPoint( point, x, y, z ) { vector.set( x, y, z ).unproject( camera ); var points = pointMap[ point ]; if ( points !== undefined ) { var position = geometry.getAttribute( 'position' ); for ( var i = 0, l = points.length; i < l; i ++ ) { position.setXYZ( points[ i ], vector.x, vector.y, vector.z ); } } } return function update() { geometry = this.geometry; pointMap = this.pointMap; var w = 1, h = 1; // we need just camera projection matrix // world matrix must be identity camera.projectionMatrix.copy( this.camera.projectionMatrix ); // center / target setPoint( "c", 0, 0, - 1 ); setPoint( "t", 0, 0, 1 ); // near setPoint( "n1", - w, - h, - 1 ); setPoint( "n2", w, - h, - 1 ); setPoint( "n3", - w, h, - 1 ); setPoint( "n4", w, h, - 1 ); // far setPoint( "f1", - w, - h, 1 ); setPoint( "f2", w, - h, 1 ); setPoint( "f3", - w, h, 1 ); setPoint( "f4", w, h, 1 ); // up setPoint( "u1", w * 0.7, h * 1.1, - 1 ); setPoint( "u2", - w * 0.7, h * 1.1, - 1 ); setPoint( "u3", 0, h * 2, - 1 ); // cross setPoint( "cf1", - w, 0, 1 ); setPoint( "cf2", w, 0, 1 ); setPoint( "cf3", 0, - h, 1 ); setPoint( "cf4", 0, h, 1 ); setPoint( "cn1", - w, 0, - 1 ); setPoint( "cn2", w, 0, - 1 ); setPoint( "cn3", 0, - h, - 1 ); setPoint( "cn4", 0, h, - 1 ); geometry.getAttribute( 'position' ).needsUpdate = true; }; }(); /** * @author WestLangley / http://github.com/WestLangley * @author zz85 / http://github.com/zz85 * @author bhouston / http://clara.io * * Creates an arrow for visualizing directions * * Parameters: * dir - Vector3 * origin - Vector3 * length - Number * color - color in hex value * headLength - Number * headWidth - Number */ /** * @author zz85 https://github.com/zz85 * * Centripetal CatmullRom Curve - which is useful for avoiding * cusps and self-intersections in non-uniform catmull rom curves. * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf * * curve.type accepts centripetal(default), chordal and catmullrom * curve.tension is used for catmullrom which defaults to 0.5 */ /* Based on an optimized c++ solution in - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/ - http://ideone.com/NoEbVM This CubicPoly class could be used for reusing some variables and calculations, but for three.js curve use, it could be possible inlined and flatten into a single function call which can be placed in CurveUtils. */ function CubicPoly() { var c0 = 0, c1 = 0, c2 = 0, c3 = 0; /* * Compute coefficients for a cubic polynomial * p(s) = c0 + c1*s + c2*s^2 + c3*s^3 * such that * p(0) = x0, p(1) = x1 * and * p'(0) = t0, p'(1) = t1. */ function init( x0, x1, t0, t1 ) { c0 = x0; c1 = t0; c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1; c3 = 2 * x0 - 2 * x1 + t0 + t1; } return { initCatmullRom: function ( x0, x1, x2, x3, tension ) { init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) ); }, initNonuniformCatmullRom: function ( x0, x1, x2, x3, dt0, dt1, dt2 ) { // compute tangents when parameterized in [t1,t2] var t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1; var t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2; // rescale tangents for parametrization in [0,1] t1 *= dt1; t2 *= dt1; init( x1, x2, t1, t2 ); }, calc: function ( t ) { var t2 = t * t; var t3 = t2 * t; return c0 + c1 * t + c2 * t2 + c3 * t3; } }; } // var tmp = new Vector3(); var px = new CubicPoly(); var py = new CubicPoly(); var pz = new CubicPoly(); function CatmullRomCurve3( points ) { Curve.call( this ); if ( points.length < 2 ) console.warn( 'THREE.CatmullRomCurve3: Points array needs at least two entries.' ); this.points = points || []; this.closed = false; } CatmullRomCurve3.prototype = Object.create( Curve.prototype ); CatmullRomCurve3.prototype.constructor = CatmullRomCurve3; CatmullRomCurve3.prototype.getPoint = function ( t ) { var points = this.points; var l = points.length; var point = ( l - ( this.closed ? 0 : 1 ) ) * t; var intPoint = Math.floor( point ); var weight = point - intPoint; if ( this.closed ) { intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / points.length ) + 1 ) * points.length; } else if ( weight === 0 && intPoint === l - 1 ) { intPoint = l - 2; weight = 1; } var p0, p1, p2, p3; // 4 points if ( this.closed || intPoint > 0 ) { p0 = points[ ( intPoint - 1 ) % l ]; } else { // extrapolate first point tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] ); p0 = tmp; } p1 = points[ intPoint % l ]; p2 = points[ ( intPoint + 1 ) % l ]; if ( this.closed || intPoint + 2 < l ) { p3 = points[ ( intPoint + 2 ) % l ]; } else { // extrapolate last point tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] ); p3 = tmp; } if ( this.type === undefined || this.type === 'centripetal' || this.type === 'chordal' ) { // init Centripetal / Chordal Catmull-Rom var pow = this.type === 'chordal' ? 0.5 : 0.25; var dt0 = Math.pow( p0.distanceToSquared( p1 ), pow ); var dt1 = Math.pow( p1.distanceToSquared( p2 ), pow ); var dt2 = Math.pow( p2.distanceToSquared( p3 ), pow ); // safety check for repeated points if ( dt1 < 1e-4 ) dt1 = 1.0; if ( dt0 < 1e-4 ) dt0 = dt1; if ( dt2 < 1e-4 ) dt2 = dt1; px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 ); py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 ); pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 ); } else if ( this.type === 'catmullrom' ) { var tension = this.tension !== undefined ? this.tension : 0.5; px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, tension ); py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, tension ); pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, tension ); } return new Vector3( px.calc( weight ), py.calc( weight ), pz.calc( weight ) ); }; function CubicBezierCurve3( v0, v1, v2, v3 ) { Curve.call( this ); this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; } CubicBezierCurve3.prototype = Object.create( Curve.prototype ); CubicBezierCurve3.prototype.constructor = CubicBezierCurve3; CubicBezierCurve3.prototype.getPoint = function ( t ) { var v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; return new Vector3( CubicBezier( t, v0.x, v1.x, v2.x, v3.x ), CubicBezier( t, v0.y, v1.y, v2.y, v3.y ), CubicBezier( t, v0.z, v1.z, v2.z, v3.z ) ); }; /** * @author mrdoob / http://mrdoob.com/ */ // // Curve.create = function ( construct, getPoint ) { console.log( 'THREE.Curve.create() has been deprecated' ); construct.prototype = Object.create( Curve.prototype ); construct.prototype.constructor = construct; construct.prototype.getPoint = getPoint; return construct; }; // // // function Spline( points ) { console.warn( 'THREE.Spline has been removed. Use THREE.CatmullRomCurve3 instead.' ); CatmullRomCurve3.call( this, points ); this.type = 'catmullrom'; } Spline.prototype = Object.create( CatmullRomCurve3.prototype ); Object.assign( Spline.prototype, { initFromArray: function ( a ) { console.error( 'THREE.Spline: .initFromArray() has been removed.' ); }, getControlPointsArray: function ( optionalTarget ) { console.error( 'THREE.Spline: .getControlPointsArray() has been removed.' ); }, reparametrizeByArcLength: function ( samplingCoef ) { console.error( 'THREE.Spline: .reparametrizeByArcLength() has been removed.' ); } } ); // SkeletonHelper.prototype.update = function () { console.error( 'THREE.SkeletonHelper: update() no longer needs to be called.' ); }; // // Object.assign( Box2.prototype, { center: function ( optionalTarget ) { console.warn( 'THREE.Box2: .center() has been renamed to .getCenter().' ); return this.getCenter( optionalTarget ); }, empty: function () { console.warn( 'THREE.Box2: .empty() has been renamed to .isEmpty().' ); return this.isEmpty(); }, isIntersectionBox: function ( box ) { console.warn( 'THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box ); }, size: function ( optionalTarget ) { console.warn( 'THREE.Box2: .size() has been renamed to .getSize().' ); return this.getSize( optionalTarget ); } } ); Object.assign( Box3.prototype, { center: function ( optionalTarget ) { console.warn( 'THREE.Box3: .center() has been renamed to .getCenter().' ); return this.getCenter( optionalTarget ); }, empty: function () { console.warn( 'THREE.Box3: .empty() has been renamed to .isEmpty().' ); return this.isEmpty(); }, isIntersectionBox: function ( box ) { console.warn( 'THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box ); }, isIntersectionSphere: function ( sphere ) { console.warn( 'THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().' ); return this.intersectsSphere( sphere ); }, size: function ( optionalTarget ) { console.warn( 'THREE.Box3: .size() has been renamed to .getSize().' ); return this.getSize( optionalTarget ); } } ); Line3.prototype.center = function ( optionalTarget ) { console.warn( 'THREE.Line3: .center() has been renamed to .getCenter().' ); return this.getCenter( optionalTarget ); }; _Math.random16 = function () { console.warn( 'THREE.Math.random16() has been deprecated. Use Math.random() instead.' ); return Math.random(); }; Object.assign( Matrix3.prototype, { flattenToArrayOffset: function ( array, offset ) { console.warn( "THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." ); return this.toArray( array, offset ); }, multiplyVector3: function ( vector ) { console.warn( 'THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.' ); return vector.applyMatrix3( this ); }, multiplyVector3Array: function ( a ) { console.error( 'THREE.Matrix3: .multiplyVector3Array() has been removed.' ); }, applyToBuffer: function( buffer, offset, length ) { console.warn( 'THREE.Matrix3: .applyToBuffer() has been removed. Use matrix.applyToBufferAttribute( attribute ) instead.' ); return this.applyToBufferAttribute( buffer ); }, applyToVector3Array: function( array, offset, length ) { console.error( 'THREE.Matrix3: .applyToVector3Array() has been removed.' ); } } ); Object.assign( Matrix4.prototype, { extractPosition: function ( m ) { console.warn( 'THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().' ); return this.copyPosition( m ); }, flattenToArrayOffset: function ( array, offset ) { console.warn( "THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." ); return this.toArray( array, offset ); }, getPosition: function () { var v1; return function getPosition() { if ( v1 === undefined ) v1 = new Vector3(); console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' ); return v1.setFromMatrixColumn( this, 3 ); }; }(), setRotationFromQuaternion: function ( q ) { console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' ); return this.makeRotationFromQuaternion( q ); }, multiplyToArray: function () { console.warn( 'THREE.Matrix4: .multiplyToArray() has been removed.' ); }, multiplyVector3: function ( vector ) { console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this ); }, multiplyVector4: function ( vector ) { console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this ); }, multiplyVector3Array: function ( a ) { console.error( 'THREE.Matrix4: .multiplyVector3Array() has been removed.' ); }, rotateAxis: function ( v ) { console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' ); v.transformDirection( this ); }, crossVector: function ( vector ) { console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this ); }, translate: function () { console.error( 'THREE.Matrix4: .translate() has been removed.' ); }, rotateX: function () { console.error( 'THREE.Matrix4: .rotateX() has been removed.' ); }, rotateY: function () { console.error( 'THREE.Matrix4: .rotateY() has been removed.' ); }, rotateZ: function () { console.error( 'THREE.Matrix4: .rotateZ() has been removed.' ); }, rotateByAxis: function () { console.error( 'THREE.Matrix4: .rotateByAxis() has been removed.' ); }, applyToBuffer: function( buffer, offset, length ) { console.warn( 'THREE.Matrix4: .applyToBuffer() has been removed. Use matrix.applyToBufferAttribute( attribute ) instead.' ); return this.applyToBufferAttribute( buffer ); }, applyToVector3Array: function( array, offset, length ) { console.error( 'THREE.Matrix4: .applyToVector3Array() has been removed.' ); }, makeFrustum: function( left, right, bottom, top, near, far ) { console.warn( 'THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.' ); return this.makePerspective( left, right, top, bottom, near, far ); } } ); Plane.prototype.isIntersectionLine = function ( line ) { console.warn( 'THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().' ); return this.intersectsLine( line ); }; Quaternion.prototype.multiplyVector3 = function ( vector ) { console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' ); return vector.applyQuaternion( this ); }; Object.assign( Ray.prototype, { isIntersectionBox: function ( box ) { console.warn( 'THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box ); }, isIntersectionPlane: function ( plane ) { console.warn( 'THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().' ); return this.intersectsPlane( plane ); }, isIntersectionSphere: function ( sphere ) { console.warn( 'THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().' ); return this.intersectsSphere( sphere ); } } ); Object.assign( Shape.prototype, { extrude: function ( options ) { console.warn( 'THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.' ); return new ExtrudeGeometry( this, options ); }, makeGeometry: function ( options ) { console.warn( 'THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.' ); return new ShapeGeometry( this, options ); } } ); Object.assign( Vector2.prototype, { fromAttribute: function ( attribute, index, offset ) { console.error( 'THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().' ); return this.fromBufferAttribute( attribute, index, offset ); } } ); Object.assign( Vector3.prototype, { setEulerFromRotationMatrix: function () { console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' ); }, setEulerFromQuaternion: function () { console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' ); }, getPositionFromMatrix: function ( m ) { console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' ); return this.setFromMatrixPosition( m ); }, getScaleFromMatrix: function ( m ) { console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' ); return this.setFromMatrixScale( m ); }, getColumnFromMatrix: function ( index, matrix ) { console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' ); return this.setFromMatrixColumn( matrix, index ); }, applyProjection: function ( m ) { console.warn( 'THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.' ); return this.applyMatrix4( m ); }, fromAttribute: function ( attribute, index, offset ) { console.error( 'THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().' ); return this.fromBufferAttribute( attribute, index, offset ); } } ); Object.assign( Vector4.prototype, { fromAttribute: function ( attribute, index, offset ) { console.error( 'THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().' ); return this.fromBufferAttribute( attribute, index, offset ); } } ); // Geometry.prototype.computeTangents = function () { console.warn( 'THREE.Geometry: .computeTangents() has been removed.' ); }; Object.assign( Object3D.prototype, { getChildByName: function ( name ) { console.warn( 'THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().' ); return this.getObjectByName( name ); }, renderDepth: function () { console.warn( 'THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.' ); }, translate: function ( distance, axis ) { console.warn( 'THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.' ); return this.translateOnAxis( axis, distance ); } } ); Object.defineProperties( Object3D.prototype, { eulerOrder: { get: function () { console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' ); return this.rotation.order; }, set: function ( value ) { console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' ); this.rotation.order = value; } }, useQuaternion: { get: function () { console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' ); }, set: function () { console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' ); } } } ); Object.defineProperties( LOD.prototype, { objects: { get: function () { console.warn( 'THREE.LOD: .objects has been renamed to .levels.' ); return this.levels; } } } ); Object.defineProperty( Skeleton.prototype, 'useVertexTexture', { get: function () { console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' ); }, set: function () { console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' ); } } ); Object.defineProperty( Curve.prototype, '__arcLengthDivisions', { get: function () { console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' ); return this.arcLengthDivisions; }, set: function ( value ) { console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' ); this.arcLengthDivisions = value; } } ); // PerspectiveCamera.prototype.setLens = function ( focalLength, filmGauge ) { console.warn( "THREE.PerspectiveCamera.setLens is deprecated. " + "Use .setFocalLength and .filmGauge for a photographic setup." ); if ( filmGauge !== undefined ) this.filmGauge = filmGauge; this.setFocalLength( focalLength ); }; // Object.defineProperties( Light.prototype, { onlyShadow: { set: function () { console.warn( 'THREE.Light: .onlyShadow has been removed.' ); } }, shadowCameraFov: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraFov is now .shadow.camera.fov.' ); this.shadow.camera.fov = value; } }, shadowCameraLeft: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraLeft is now .shadow.camera.left.' ); this.shadow.camera.left = value; } }, shadowCameraRight: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraRight is now .shadow.camera.right.' ); this.shadow.camera.right = value; } }, shadowCameraTop: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraTop is now .shadow.camera.top.' ); this.shadow.camera.top = value; } }, shadowCameraBottom: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.' ); this.shadow.camera.bottom = value; } }, shadowCameraNear: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraNear is now .shadow.camera.near.' ); this.shadow.camera.near = value; } }, shadowCameraFar: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraFar is now .shadow.camera.far.' ); this.shadow.camera.far = value; } }, shadowCameraVisible: { set: function () { console.warn( 'THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.' ); } }, shadowBias: { set: function ( value ) { console.warn( 'THREE.Light: .shadowBias is now .shadow.bias.' ); this.shadow.bias = value; } }, shadowDarkness: { set: function () { console.warn( 'THREE.Light: .shadowDarkness has been removed.' ); } }, shadowMapWidth: { set: function ( value ) { console.warn( 'THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.' ); this.shadow.mapSize.width = value; } }, shadowMapHeight: { set: function ( value ) { console.warn( 'THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.' ); this.shadow.mapSize.height = value; } } } ); // Object.defineProperties( BufferAttribute.prototype, { length: { get: function () { console.warn( 'THREE.BufferAttribute: .length has been deprecated. Use .count instead.' ); return this.array.length; } } } ); Object.assign( BufferGeometry.prototype, { addIndex: function ( index ) { console.warn( 'THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().' ); this.setIndex( index ); }, addDrawCall: function ( start, count, indexOffset ) { if ( indexOffset !== undefined ) { console.warn( 'THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.' ); } console.warn( 'THREE.BufferGeometry: .addDrawCall() is now .addGroup().' ); this.addGroup( start, count ); }, clearDrawCalls: function () { console.warn( 'THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().' ); this.clearGroups(); }, computeTangents: function () { console.warn( 'THREE.BufferGeometry: .computeTangents() has been removed.' ); }, computeOffsets: function () { console.warn( 'THREE.BufferGeometry: .computeOffsets() has been removed.' ); } } ); Object.defineProperties( BufferGeometry.prototype, { drawcalls: { get: function () { console.error( 'THREE.BufferGeometry: .drawcalls has been renamed to .groups.' ); return this.groups; } }, offsets: { get: function () { console.warn( 'THREE.BufferGeometry: .offsets has been renamed to .groups.' ); return this.groups; } } } ); // Object.defineProperties( Uniform.prototype, { dynamic: { set: function () { console.warn( 'THREE.Uniform: .dynamic has been removed. Use object.onBeforeRender() instead.' ); } }, onUpdate: { value: function () { console.warn( 'THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.' ); return this; } } } ); // Object.defineProperties( Material.prototype, { wrapAround: { get: function () { console.warn( 'THREE.Material: .wrapAround has been removed.' ); }, set: function () { console.warn( 'THREE.Material: .wrapAround has been removed.' ); } }, wrapRGB: { get: function () { console.warn( 'THREE.Material: .wrapRGB has been removed.' ); return new Color(); } } } ); Object.defineProperties( MeshPhongMaterial.prototype, { metal: { get: function () { console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead.' ); return false; }, set: function () { console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead' ); } } } ); Object.defineProperties( ShaderMaterial.prototype, { derivatives: { get: function () { console.warn( 'THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' ); return this.extensions.derivatives; }, set: function ( value ) { console.warn( 'THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' ); this.extensions.derivatives = value; } } } ); // Object.assign( WebGLRenderer.prototype, { getCurrentRenderTarget: function () { console.warn( 'THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().' ); return this.getRenderTarget(); }, supportsFloatTextures: function () { console.warn( 'THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).' ); return this.extensions.get( 'OES_texture_float' ); }, supportsHalfFloatTextures: function () { console.warn( 'THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).' ); return this.extensions.get( 'OES_texture_half_float' ); }, supportsStandardDerivatives: function () { console.warn( 'THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).' ); return this.extensions.get( 'OES_standard_derivatives' ); }, supportsCompressedTextureS3TC: function () { console.warn( 'THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).' ); return this.extensions.get( 'WEBGL_compressed_texture_s3tc' ); }, supportsCompressedTexturePVRTC: function () { console.warn( 'THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).' ); return this.extensions.get( 'WEBGL_compressed_texture_pvrtc' ); }, supportsBlendMinMax: function () { console.warn( 'THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).' ); return this.extensions.get( 'EXT_blend_minmax' ); }, supportsVertexTextures: function () { console.warn( 'THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.' ); return this.capabilities.vertexTextures; }, supportsInstancedArrays: function () { console.warn( 'THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).' ); return this.extensions.get( 'ANGLE_instanced_arrays' ); }, enableScissorTest: function ( boolean ) { console.warn( 'THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().' ); this.setScissorTest( boolean ); }, initMaterial: function () { console.warn( 'THREE.WebGLRenderer: .initMaterial() has been removed.' ); }, addPrePlugin: function () { console.warn( 'THREE.WebGLRenderer: .addPrePlugin() has been removed.' ); }, addPostPlugin: function () { console.warn( 'THREE.WebGLRenderer: .addPostPlugin() has been removed.' ); }, updateShadowMap: function () { console.warn( 'THREE.WebGLRenderer: .updateShadowMap() has been removed.' ); } } ); Object.defineProperties( WebGLRenderer.prototype, { shadowMapEnabled: { get: function () { return this.shadowMap.enabled; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.' ); this.shadowMap.enabled = value; } }, shadowMapType: { get: function () { return this.shadowMap.type; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.' ); this.shadowMap.type = value; } }, shadowMapCullFace: { get: function () { return this.shadowMap.cullFace; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace is now .shadowMap.cullFace.' ); this.shadowMap.cullFace = value; } } } ); Object.defineProperties( WebGLShadowMap.prototype, { cullFace: { get: function () { return this.renderReverseSided ? CullFaceFront : CullFaceBack; }, set: function ( cullFace ) { var value = ( cullFace !== CullFaceBack ); console.warn( "WebGLRenderer: .shadowMap.cullFace is deprecated. Set .shadowMap.renderReverseSided to " + value + "." ); this.renderReverseSided = value; } } } ); // Object.defineProperties( WebGLRenderTarget.prototype, { wrapS: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' ); return this.texture.wrapS; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' ); this.texture.wrapS = value; } }, wrapT: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' ); return this.texture.wrapT; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' ); this.texture.wrapT = value; } }, magFilter: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' ); return this.texture.magFilter; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' ); this.texture.magFilter = value; } }, minFilter: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' ); return this.texture.minFilter; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' ); this.texture.minFilter = value; } }, anisotropy: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' ); return this.texture.anisotropy; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' ); this.texture.anisotropy = value; } }, offset: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' ); return this.texture.offset; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' ); this.texture.offset = value; } }, repeat: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' ); return this.texture.repeat; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' ); this.texture.repeat = value; } }, format: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' ); return this.texture.format; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' ); this.texture.format = value; } }, type: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' ); return this.texture.type; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' ); this.texture.type = value; } }, generateMipmaps: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' ); return this.texture.generateMipmaps; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' ); this.texture.generateMipmaps = value; } } } ); // Audio.prototype.load = function ( file ) { console.warn( 'THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.' ); var scope = this; var audioLoader = new AudioLoader(); audioLoader.load( file, function ( buffer ) { scope.setBuffer( buffer ); } ); return this; }; AudioAnalyser.prototype.getData = function () { console.warn( 'THREE.AudioAnalyser: .getData() is now .getFrequencyData().' ); return this.getFrequencyData(); }; // // // function AHI ( container ) { var stdWidth = HudObject.stdWidth; var stdMargin = HudObject.stdMargin; Group.call( this ); this.name = 'CV.AHI'; this.domObjects = []; this.lastPitch = 0; // artificial horizon instrument var globe = new Group(); var ring = new CylinderBufferGeometry( stdWidth * 0.90, stdWidth, 3, 32, 1, true ); ring.rotateX( Math.PI / 2 ); var sphere = new SphereBufferGeometry( stdWidth - 10, 31, 31 ); var bar = new Geometry(); var marks = new Geometry(); var sv = sphere.getAttribute( 'position' ).count; var sphereColors = new BufferAttribute( new Float32Array( sv * 3 ), 3 ); var colours = []; var c1 = ColourCache.hudBlue; var c2 = ColourCache.hudRed; var i; for ( i = 0; i < sv; i++ ) { colours.push( ( i < sv / 2 ) ? c1 : c2 ); } sphere.addAttribute( 'color', sphereColors.copyColorsArray( colours ) ); // view orinetation line bar.vertices.push( new Vector3( 4 - stdWidth, 0, stdWidth ) ); bar.vertices.push( new Vector3( stdWidth - 4, 0, stdWidth ) ); // pitch interval marks var m1 = new Vector3( 4, 0, stdWidth - 10 ); var m2 = new Vector3( -4, 0, stdWidth - 10 ); var xAxis = new Vector3( 1, 0, 0 ); for ( i = 0; i < 12; i++ ) { var mn1 = m1.clone(); var mn2 = m2.clone(); if ( i % 3 === 0 ) { mn1.x = 7; mn2.x = -7; } mn1.applyAxisAngle( xAxis, i * Math.PI / 6 ); mn2.applyAxisAngle( xAxis, i * Math.PI / 6 ); marks.vertices.push( mn1 ); marks.vertices.push( mn2 ); } var mRing = new Mesh( ring, new MeshPhongMaterial( { color: 0x888888, specular: 0x888888 } ) ); var mSphere = new Mesh( sphere, new MeshPhongMaterial( { vertexColors: VertexColors, specular: 0x666666, shininess: 20 } ) ); var mBar = new LineSegments( bar, new LineBasicMaterial( { color: 0xcccc00 } ) ); var mMarks = new LineSegments( marks, new LineBasicMaterial( { color: 0xffffff } ) ); mSphere.rotateOnAxis( new Vector3( 0, 1, 0 ), Math.PI / 2 ); mMarks.rotateOnAxis( new Vector3( 1, 0, 0 ), Math.PI / 2 ); mRing.rotateOnAxis( new Vector3( 0, 0, 1 ), Math.PI / 8 ); globe.add( mSphere ); globe.add( mMarks ); this.add( mRing ); this.add( globe ); this.add( mBar ); var offset = stdWidth + stdMargin; this.translateX( -3 * offset ); this.translateY( offset ); var panel = document.createElement( 'div' ); panel.classList.add( 'cv-ahi' ); panel.textContent = ''; container.appendChild( panel ); this.globe = globe; this.txt = panel; this.domObjects.push( panel ); this.addEventListener( 'removed', this.removeDomObjects ); this.txt.textContent = '-90\u00B0'; return this; } AHI.prototype = Object.create( Group.prototype ); Object.assign( AHI.prototype, HudObject.prototype ); AHI.prototype.constructor = AHI; AHI.prototype.set = function () { var direction = new Vector3(); var xAxis = new Vector3( 1, 0, 0 ); return function set ( vCamera ) { vCamera.getWorldDirection( direction ); var pitch = Math.PI / 2 - direction.angleTo( upAxis ); if ( pitch === this.lastPitch ) return; this.globe.rotateOnAxis( xAxis, pitch - this.lastPitch ); this.lastPitch = pitch; this.txt.textContent = Math.round( _Math.radToDeg( pitch ) ) + '\u00B0'; }; } (); // EOF function AngleScale ( container ) { var width = container.clientWidth; var height = container.clientHeight; var stdWidth = HudObject.stdWidth; var stdMargin = HudObject.stdMargin; var i, l; var geometry = new RingGeometry( 1, 40, 36, 1, Math.PI, Math.PI ); var c = []; var pNormal = new Vector3( 1, 0, 0 ); var hues = ColourCache.getColors( 'inclination' ); var vertices = geometry.vertices; var legNormal = new Vector3(); for ( i = 0, l = vertices.length; i < l; i++ ) { legNormal.copy( vertices[ i ] ).normalize(); var dotProduct = legNormal.dot( pNormal ); var hueIndex = Math.floor( 127 * 2 * Math.asin( Math.abs( dotProduct ) ) / Math.PI ); c[ i ] = hues[ hueIndex ]; } var faces = geometry.faces, f; for ( i = 0, l = faces.length; i < l; i++ ) { f = faces[ i ]; f.vertexColors = [ c[ f.a ], c[ f.b ], c[ f.c ] ]; } geometry.colorsNeedUpdate = true; Mesh.call( this, geometry, new MeshBasicMaterial( { color: 0xffffff, vertexColors: VertexColors, side: FrontSide } ) ); this.translateY( -height / 2 + 3 * ( stdWidth + stdMargin ) + stdMargin + 30 ); this.translateX( width / 2 - 40 - 5 ); this.name = 'CV.AngleScale'; this.domObjects = []; var legend = document.createElement( 'div' ); legend.id = 'angle-legend'; legend.textContent = 'Inclination'; container.appendChild( legend ); this.txt = legend; this.domObjects.push( legend ); this.addEventListener( 'removed', this.removeDomObjects ); return this; } AngleScale.prototype = Object.create( Mesh.prototype ); Object.assign( AngleScale.prototype, HudObject.prototype ); AngleScale.prototype.constructor = AngleScale; // EOF function Compass ( container ) { var stdWidth = HudObject.stdWidth; var stdMargin = HudObject.stdMargin; Group.call( this ); this.name = 'CV.Compass'; this.domObjects = []; var cg1 = new CylinderBufferGeometry( stdWidth * 0.90, stdWidth, 3, 32, 1, true ); cg1.rotateX( Math.PI / 2 ); var c1 = new Mesh( cg1, new MeshPhongMaterial( { color: 0x888888, specular: 0x888888 } ) ); var cg2 = new RingGeometry( stdWidth * 0.9, stdWidth, 4, 1, -Math.PI / 32 + Math.PI / 2, Math.PI / 16 ); cg2.translate( 0, 0, 5 ); var c2 = new Mesh( cg2, new MeshBasicMaterial( { color: 0xb03a14 } ) ); var r1 = _makeRose( stdWidth * 0.8, 0.141, 0x581d0a, 0x0c536a ); var r2 = _makeRose( stdWidth * 0.9, 0.141, 0xb03a14, 0x1ab4e5 ); r1.rotateZ( Math.PI / 4 ); r1.merge( r2 ); var rMesh = new Mesh( r1, new MeshLambertMaterial( { vertexColors: VertexColors, side: FrontSide, shading: FlatShading } ) ); this.add( c1 ); this.add( c2 ); this.add( rMesh ); var offset = stdWidth + stdMargin; this.translateX( -offset ); this.translateY( offset ); this.lastRotation = 0; var panel = document.createElement( 'div' ); panel.classList.add( 'cv-compass' ); panel.textContent = ''; container.appendChild( panel ); this.txt = panel; this.domObjects.push( panel ); this.addEventListener( 'removed', this.removeDomObjects ); this.txt.textContent = '000\u00B0'; return this; // make 'petal' for compass rose function _makePetal ( radius, scale, color1, color2 ) { var innerR = radius * scale; var g = new Geometry(); g.vertices.push( new Vector3( 0, radius, 0 ) ); g.vertices.push( new Vector3( innerR ,innerR, 0 ) ); g.vertices.push( new Vector3( 0, 0, 14 * scale ) ); g.vertices.push( new Vector3( -innerR, innerR, 0 ) ); var f1 = new Face3( 0, 2, 1, new Vector3( 0, 0, 1 ), color1, 0 ); var f2 = new Face3( 0, 3, 2, new Vector3( 0, 0, 1 ), color2, 0 ); g.faces.push( f1 ); g.faces.push( f2 ); return g; } function _makeRose ( radius, scale, color1, color2 ) { var p1 = _makePetal( radius, scale, new Color( color1 ), new Color( color2 ) ); var p2 = p1.clone(); var p3 = p1.clone(); var p4 = p1.clone(); p2.rotateZ( Math.PI / 2 ); p3.rotateZ( Math.PI ); p4.rotateZ( Math.PI / 2 * 3 ); p1.merge( p2 ); p1.merge( p3 ); p1.merge( p4 ); p1.computeFaceNormals(); return p1; } } Compass.prototype = Object.create( Group.prototype ); Object.assign( Compass.prototype, HudObject.prototype ); Compass.prototype.constructor = Compass; Compass.prototype.set = function () { var direction = new Vector3(); var yAxis = new Vector3( 0, 1, 0 ); var negativeZAxis = new Vector3( 0, 0, -1 ); return function set ( vCamera ) { vCamera.getWorldDirection( direction ); if ( direction.x === 0 && direction.y === 0 ) { // FIXME get camera rotation.... return; } // we are only interested in angle to horizontal plane. direction.z = 0; var a = direction.angleTo( yAxis ); if ( direction.x >= 0 ) a = 2 * Math.PI - a; if ( a === this.lastRotation ) return; var degrees = 360 - Math.round( _Math.radToDeg( a ) ); this.txt.textContent = degrees.toString().padStart( 3, '0' ) + '\u00B0'; // unicode degree symbol this.rotateOnAxis( negativeZAxis, a - this.lastRotation ); this.lastRotation = a; }; } (); // EOF var cursorVertexShader = "\r\n#ifdef SURFACE\r\n\r\nuniform vec3 uLight;\r\nvarying vec3 vNormal;\r\nvarying vec3 lNormal;\r\n\r\n#else\r\n\t\r\nvarying vec3 vColor;\r\n\r\n#endif\r\n\r\nvarying float height;\r\n\r\nvoid main() {\r\n\r\n#ifdef SURFACE\r\n\r\n\tvNormal = normalMatrix * normal;\r\n\tlNormal = uLight;\r\n\r\n#else\r\n\r\n\tvColor = color;\r\n\r\n#endif\r\n\r\n\theight = position.z;\r\n\r\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\r\n\r\n}\r\n"; var cursorFragmentShader = "\r\nuniform float cursor;\r\nuniform float cursorWidth;\r\n\r\nuniform vec3 baseColor;\r\nuniform vec3 cursorColor;\r\n\r\nvarying float height;\r\n\r\n#ifdef SURFACE\r\n\r\nvarying vec3 vNormal;\r\nvarying vec3 lNormal;\r\n\r\n#else\r\n\r\nvarying vec3 vColor;\r\n\r\n#endif\r\n\r\nvoid main() {\r\n\r\n#ifdef SURFACE\r\n\r\n\tfloat nDot = dot( normalize( vNormal ), normalize( lNormal ) );\r\n\tfloat light;\r\n\tlight = 0.5 * ( nDot + 1.0 );\r\n\r\n#else\r\n\r\n\tfloat light = 1.0;\r\n\r\n#endif\r\n\r\n\tfloat delta = abs( height - cursor );\r\n\tfloat ss = smoothstep( 0.0, cursorWidth, cursorWidth - delta );\r\n\r\n\r\n#ifdef SURFACE\r\n\r\n\tif ( delta < cursorWidth * 0.05 ) {\r\n\r\n\t\tgl_FragColor = vec4( 1.0, 1.0, 1.0, 1.0 ) * light;\r\n\r\n\t} else {\r\n\r\n\t\tgl_FragColor = vec4( mix( baseColor, cursorColor, ss ) * light, 1.0 );\r\n\r\n\t}\r\n\r\n#else\r\n\r\n\tif ( delta < cursorWidth * 0.05 ) {\r\n\r\n\t\tgl_FragColor = vec4( 1.0, 1.0, 1.0, 1.0 ) * light * vec4( vColor, 1.0 );\r\n\r\n\t} else {\r\n\r\n\t\tgl_FragColor = vec4( mix( baseColor, cursorColor, ss ) * light, 1.0 ) * vec4( vColor, 1.0 );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n}\r\n"; var depthMapVertexShader = "\r\nuniform float minZ;\r\nuniform float scaleZ;\r\n\r\nvarying float vHeight;\r\n\r\nvoid main() {\r\n\r\n\tvHeight = ( position.z - minZ ) * scaleZ;\r\n\r\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\r\n\r\n}\r\n"; var depthMapFragmentShader = "\r\nconst float PackUpscale = 256. / 255.; // fraction -> 0..1 (including 1)\r\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\r\n\r\nconst float ShiftRight8 = 1. / 256.;\r\n\r\nvec4 packFloatToRGBA( const in float v ) {\r\n\r\n\tvec4 r = vec4( fract( v * PackFactors ), v );\r\n\r\n\tr.yzw -= r.xyz * ShiftRight8; // tidy overflow\r\n\r\n\treturn r * PackUpscale;\r\n\r\n}\r\n\r\nvarying float vHeight;\r\n\r\nvoid main() {\r\n\r\n\tgl_FragColor = packFloatToRGBA( vHeight );\r\n\r\n}\r\n"; var depthVertexShader = "const float UnpackDownscale = 255. / 256.; // 0..1 -> fraction (excluding 1)\r\n\r\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\r\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\r\n\r\nfloat unpackRGBAToFloat( const in vec4 v ) {\r\n\treturn dot( v, UnpackFactors );\r\n}\r\n\r\nuniform float minX;\r\nuniform float minY;\r\nuniform float minZ;\r\n\r\nuniform float scaleX;\r\nuniform float scaleY;\r\nuniform float rangeZ;\r\n\r\nuniform float depthScale;\r\n\r\nuniform sampler2D depthMap;\r\nuniform float datumShift;\r\n\r\n#ifdef SURFACE\r\n\r\nuniform vec3 uLight;\r\n\r\nvarying vec3 vNormal;\r\nvarying vec3 lNormal;\r\n\r\n#else\r\n\r\nvarying vec3 vColor;\r\n\r\n#endif\r\n\r\nvarying float vDepth;\r\n\r\nvoid main() {\r\n\r\n#ifdef SURFACE\r\n\r\n\tvNormal = normalMatrix * normal;\r\n\tlNormal = uLight;\r\n\r\n#else\r\n\r\n\tvColor = color;\r\n\r\n#endif\r\n\r\n\t// get terrain height in model space\r\n\r\n\tvec2 terrainCoords = vec2( ( position.x - minX ) * scaleX, ( position.y - minY ) * scaleY );\r\n\tfloat terrainHeight = unpackRGBAToFloat( texture2D( depthMap, terrainCoords ) );\r\n\r\n\tterrainHeight = terrainHeight * rangeZ + minZ + datumShift;\r\n\r\n\t// depth below terrain for this vertex, scaled in 0.0 - 1.0 range\r\n\r\n\tvDepth = ( terrainHeight - position.z ) * depthScale;\r\n\r\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\r\n\r\n}\r\n"; var depthFragmentShader = "\r\nuniform sampler2D cmap;\r\nvarying float vDepth;\r\n\r\n#ifdef SURFACE\r\n\r\nvarying vec3 vNormal;\r\nvarying vec3 lNormal;\r\n\r\n#else\r\n\r\nvarying vec3 vColor;\r\n\r\n#endif\r\n\r\nvoid main() {\r\n\r\n#ifdef SURFACE\r\n\r\n\tfloat nDot = dot( normalize( vNormal ), normalize( lNormal ) );\r\n\tfloat light;\r\n\tlight = 0.5 * ( nDot + 1.0 );\r\n\r\n\tgl_FragColor = texture2D( cmap, vec2( vDepth, 1.0 ) ) * light;\r\n\r\n#else\r\n\r\n\tgl_FragColor = texture2D( cmap, vec2( vDepth, 1.0 ) ) * vec4( vColor, 1.0 );\r\n\r\n#endif\r\n\r\n}\r\n"; var depthCursorVertexShader = "\r\nconst float UnpackDownscale = 255. / 256.; // 0..1 -> fraction (excluding 1)\r\n\r\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\r\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\r\n\r\nfloat unpackRGBAToFloat( const in vec4 v ) {\r\n\treturn dot( v, UnpackFactors );\r\n}\r\n\r\nuniform float minX;\r\nuniform float minY;\r\nuniform float minZ;\r\n\r\nuniform float scaleX;\r\nuniform float scaleY;\r\nuniform float rangeZ;\r\n\r\nuniform sampler2D depthMap;\r\nuniform float datumShift;\r\n\r\n#ifdef SURFACE\r\n\r\nuniform vec3 uLight;\r\n\r\nvarying vec3 vNormal;\r\nvarying vec3 lNormal;\r\n\r\n#else\r\n\t\r\nvarying vec3 vColor;\r\n\r\n#endif\r\n\r\nvarying float vDepth;\r\n\r\nvoid main() {\r\n\r\n#ifdef SURFACE\r\n\r\n\tvNormal = normalMatrix * normal;\r\n\tlNormal = uLight;\r\n\r\n#else\r\n\r\n\tvColor = color;\r\n\r\n#endif\r\n\r\n\tvec2 terrainCoords = vec2( ( position.x - minX ) * scaleX, ( position.y - minY ) * scaleY );\r\n\tfloat terrainHeight = unpackRGBAToFloat( texture2D( depthMap, terrainCoords ) );\r\n\r\n\tvDepth = terrainHeight * rangeZ + datumShift + minZ - position.z;\r\n\r\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\r\n\r\n}\r\n\r\n\r\n\r\n\r\n\r\n"; var depthCursorFragmentShader = "\r\nuniform float cursor;\r\nuniform float cursorWidth;\r\n\r\nuniform vec3 baseColor;\r\nuniform vec3 cursorColor;\r\n\r\nvarying float vDepth;\r\n\r\n#ifdef SURFACE\r\n\r\nvarying vec3 vNormal;\r\nvarying vec3 lNormal;\r\n\r\n#else\r\n\r\nvarying vec3 vColor;\r\n\r\n#endif\r\n\r\nvoid main() {\r\n\r\n\tfloat light;\r\n#ifdef SURFACE\r\n\r\n\tfloat nDot = dot( normalize( vNormal ), normalize( lNormal ) );\r\n\tlight = 0.5 * ( nDot + 1.0 );\r\n\r\n#else\r\n\r\n\tlight = 1.0;\r\n\r\n#endif\r\n\r\n\tfloat delta = abs( vDepth - cursor );\r\n\tfloat ss = smoothstep( 0.0, cursorWidth, cursorWidth - delta );\r\n\r\n#ifdef SURFACE\r\n\r\n\tif ( delta < cursorWidth * 0.05 ) {\r\n\r\n\t\tgl_FragColor = vec4( 1.0, 1.0, 1.0, 1.0 ) * light;\r\n\r\n\t} else {\r\n\r\n\t\tgl_FragColor = vec4( mix( baseColor, cursorColor, ss ) * light, 1.0 );\r\n\r\n\t}\r\n\r\n#else\r\n\r\n\tif ( delta < cursorWidth * 0.05 ) {\r\n\r\n\t\tgl_FragColor = vec4( 1.0, 1.0, 1.0, 1.0 ) * light * vec4( vColor, 1.0 );\r\n\r\n\t} else {\r\n\r\n\t\tgl_FragColor = vec4( mix( baseColor, cursorColor, ss ) * light, 1.0 ) * vec4( vColor, 1.0 );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n}"; var extendedPointsVertexShader = "uniform float size;\r\nuniform float scale;\r\nuniform float pScale;\r\n\r\nattribute float pSize;\r\n\r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\t#ifdef USE_SIZEATTENUATION\r\n\t\tgl_PointSize = pScale * pSize * ( scale / - mvPosition.z );\r\n\t#else\r\n\t\tgl_PointSize = pScale * pSize;\r\n\t#endif\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n}\r\n"; var extendedPointsFragmentShader = "uniform vec3 diffuse;\r\nuniform float opacity;\r\n\r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n#include \r\n\r\nvoid main() {\r\n\r\n\t#include \r\n\r\n\tvec3 outgoingLight = vec3( 0.0 );\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n\toutgoingLight = diffuseColor.rgb;\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include \r\n\t#include \r\n\t#include \r\n\t#include \r\n\r\n}\r\n"; var glyphVertexShader = "\r\n\r\n// glyph shader, each instance represents one glyph.\r\n\r\nuniform float cellScale;\r\nuniform mat2 rotate;\r\nuniform float scale;\r\n\r\nattribute vec2 instanceUvs;\r\nattribute float instanceOffsets;\r\nattribute float instanceWidths;\r\n\r\nvarying vec2 vUv;\r\nvarying vec3 vColor;\r\n\r\nvoid main() {\r\n\r\n\tvColor = color;\r\n\r\n\t// select glyph from atlas ( with proportional spacing ).\r\n\r\n\tvUv = instanceUvs + vec2( position.x * cellScale * instanceWidths, position.y * cellScale );\r\n\r\n\t// scale by glyph width ( vertices form unit square with (0,0) origin )\r\n\r\n\tvec2 newPosition = vec2( position.x * instanceWidths, position.y );\r\n\r\n\t// move to correct offset in string\r\n\r\n\tnewPosition.x += instanceOffsets;\r\n\r\n\t// rotate as required\r\n\r\n\tnewPosition = rotate * newPosition;\r\n\r\n\t// position of GlyphString object on screeno\r\n\r\n\tvec4 offset = projectionMatrix * modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\r\n\r\n\t// scale glyphs\r\n\r\n\tnewPosition.xy *= 0.0625;\r\n\r\n\t// correct for aspect ratio\r\n\r\n\tnewPosition.x *= scale;\r\n\r\n\t// move to clip space\r\n\r\n\tnewPosition.xy *= offset.w;\r\n\r\n\tgl_Position = vec4( newPosition, 0.0, 0.0 ) + offset;\r\n\r\n}\r\n"; var glyphFragmentShader = "\r\nuniform sampler2D atlas;\r\n\r\nvarying vec2 vUv;\r\nvarying vec3 vColor;\r\n\r\nvoid main() {\r\n\r\n\tgl_FragColor = texture2D( atlas, vUv ) * vec4( vColor, 1.0 );\r\n\r\n}"; var heightVertexShader = "\r\nuniform sampler2D cmap;\r\n\r\nuniform float minZ;\r\nuniform float scaleZ;\r\n\r\n#ifdef SURFACE\r\n\r\nuniform vec3 uLight;\r\n\r\nvarying vec3 vNormal;\r\nvarying vec3 lNormal;\r\n\r\n#else\r\n\r\nvarying vec3 vColor;\r\n\r\n#endif\r\n\r\nvarying float zMap;\r\n\r\nvoid main() {\r\n\r\n#ifdef SURFACE\r\n\r\n\tvNormal = normalMatrix * normal;\r\n\tlNormal = uLight;\r\n\r\n#else\r\n\r\n\tvColor = color;\r\n\r\n#endif\r\n\r\n\tzMap = ( position.z - minZ ) * scaleZ;\r\n\r\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\r\n\r\n}\r\n"; var heightFragmentShader = "\r\nuniform sampler2D cmap;\r\n\r\nvarying float zMap;\r\n\r\n#ifdef SURFACE\r\n\r\nvarying vec3 vNormal;\r\nvarying vec3 lNormal;\r\n\r\n#else\r\n\r\nvarying vec3 vColor;\r\n\r\n#endif\r\n\r\nvoid main() {\r\n\r\n#ifdef SURFACE\r\n\r\n\tfloat nDot = dot( normalize( vNormal ), normalize( lNormal ) );\r\n\tfloat light;\r\n\tlight = 0.5 * ( nDot + 1.0 );\r\n\r\n\tgl_FragColor = texture2D( cmap, vec2( 1.0 - zMap, 1.0 ) ) * vec4( light, light, light, 1.0 );\r\n\r\n#else\r\n\r\n\tgl_FragColor = texture2D( cmap, vec2( 1.0 - zMap, 1.0 ) ) * vec4( vColor, 1.0 );\r\n\r\n#endif\r\n\r\n}\r\n"; var waterVertexShader = "\r\nattribute vec3 sinks;\r\n\r\nvarying vec3 vPosition;\r\nvarying vec3 vSink;\r\n\r\nvoid main() {\r\n\r\n\tvPosition = position;\r\n\tvSink = sinks;\r\n\r\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\r\n\r\n}\r\n"; var waterFragmentShader = "\r\nuniform float offset;\r\n\r\nvarying vec3 vPosition;\r\nvarying vec3 vSink;\r\n\r\nvoid main() {\r\n\r\n\tgl_FragColor = vec4( 0.1, 0.1, sin( offset + distance( vPosition, vSink ) ) * 0.4 + 0.6, 0.0 );\r\n\r\n}\r\n"; var Shaders = { cursorVertexShader: cursorVertexShader, cursorFragmentShader: cursorFragmentShader, depthMapVertexShader: depthMapVertexShader, depthMapFragmentShader: depthMapFragmentShader, depthVertexShader: depthVertexShader, depthFragmentShader: depthFragmentShader, depthCursorVertexShader: depthCursorVertexShader, depthCursorFragmentShader: depthCursorFragmentShader, extendedPointsVertexShader: extendedPointsVertexShader, extendedPointsFragmentShader: extendedPointsFragmentShader, glyphVertexShader: glyphVertexShader, glyphFragmentShader: glyphFragmentShader, heightVertexShader: heightVertexShader, heightFragmentShader: heightFragmentShader, waterVertexShader: waterVertexShader, waterFragmentShader: waterFragmentShader }; // EOF function CursorMaterial ( type, limits ) { ShaderMaterial.call( this ); this.halfRange = ( limits.max.z - limits.min.z ) / 2; this.defines = ( type === MATERIAL_LINE ) ? { USE_COLOR: true } : { SURFACE: true }; this.uniforms = { uLight: { value: new Vector3( -1, -1, 2 ) }, cursor: { value: 0 }, cursorWidth: { value: 5.0 }, baseColor: { value: ColourCache.lightGrey }, cursorColor: { value: ColourCache.green } }; this.vertexShader = Shaders.cursorVertexShader; this.fragmentShader = Shaders.cursorFragmentShader; this.type = 'CV.CursorMaterial'; this.addEventListener( 'update', _update ); return this; function _update() { this.uniforms.surfaceOpacity.value = this.opacity; } } CursorMaterial.prototype = Object.create( ShaderMaterial.prototype ); CursorMaterial.prototype.constructor = CursorMaterial; CursorMaterial.prototype.setCursor = function ( value ) { var newValue = Math.max( Math.min( value, this.halfRange ), -this.halfRange ); this.uniforms.cursor.value = newValue; return newValue; // return value clamped to material range }; CursorMaterial.prototype.getCursor = function () { return this.uniforms.cursor.value; }; // EOF function DepthMaterial ( type, surveyLimits, terrain ) { var limits = terrain.boundingBox; var range = limits.getSize(); var defines = ( type === MATERIAL_LINE ) ? { USE_COLOR: true } : { SURFACE: true }; ShaderMaterial.call( this, { uniforms: { // pseudo light source somewhere over viewer's left shoulder. uLight: { value: new Vector3( -1, -1, 2 ) }, minX: { value: limits.min.x }, minY: { value: limits.min.y }, minZ: { value: limits.min.z }, scaleX: { value: 1 / range.x }, scaleY: { value: 1 / range.y }, rangeZ: { value: range.z }, depthScale: { value: 1 / ( surveyLimits.max.z - surveyLimits.min.z ) }, cmap: { value: ColourCache.getTexture( 'gradient' ) }, depthMap: { value: terrain.depthTexture }, datumShift: { value: 0.0 } }, defines: defines, vertexShader: Shaders.depthVertexShader, fragmentShader: Shaders.depthFragmentShader } ); this.type = 'CV.DepthMaterial'; return this; } DepthMaterial.prototype = Object.create( ShaderMaterial.prototype ); DepthMaterial.prototype.constructor = DepthMaterial; DepthMaterial.prototype.setDatumShift = function ( shift ) { this.uniforms.datumShift.value = shift; }; // EOF function DepthCursorMaterial ( type, surveyLimits, terrain ) { var limits = terrain.boundingBox; var range = limits.getSize(); // max range of depth values this.max = surveyLimits.max.z - surveyLimits.min.z; ShaderMaterial.call( this, { uniforms: { uLight: { value: new Vector3( -1, -1, 2 ) }, minX: { value: limits.min.x }, minY: { value: limits.min.y }, minZ: { value: limits.min.z }, scaleX: { value: 1 / range.x }, scaleY: { value: 1 / range.y }, rangeZ: { value: range.z }, depthMap: { value: terrain.depthTexture }, datumShift: { value: 0.0 }, cursor: { value: this.max / 2 }, cursorWidth: { value: 5.0 }, baseColor: { value: ColourCache.lightGrey }, cursorColor: { value: ColourCache.green } }, vertexShader: Shaders.depthCursorVertexShader, fragmentShader: Shaders.depthCursorFragmentShader } ); this.defines = {}; if ( type === MATERIAL_LINE ) { this.defines.USE_COLOR = true; } else { this.defines.SURFACE = true; } this.type = 'CV.DepthCursorMaterial'; return this; } DepthCursorMaterial.prototype = Object.create( ShaderMaterial.prototype ); DepthCursorMaterial.prototype.constructor = DepthCursorMaterial; DepthCursorMaterial.prototype.setCursor = function ( value ) { var newValue = Math.max( Math.min( value, this.max ), 0 ); this.uniforms.cursor.value = newValue; return newValue; // return value clamped to material range }; DepthCursorMaterial.prototype.getCursor = function () { return this.uniforms.cursor.value; }; DepthCursorMaterial.prototype.setDatumShift = function ( shift ) { this.uniforms.datumShift.value = shift; }; // EOF function DepthMapMaterial ( terrain ) { if ( terrain.boundingBox === undefined ) terrain.computeBoundingBox(); var boundingBox = terrain.boundingBox; var minHeight = boundingBox.min.z; var maxHeight = boundingBox.max.z; ShaderMaterial.call( this, { uniforms: { minZ: { value: minHeight }, scaleZ: { value: 1 / ( maxHeight - minHeight ) } }, vertexShader: Shaders.depthMapVertexShader, fragmentShader: Shaders.depthMapFragmentShader, depthWrite: false, type: 'CV.DepthMapMaterial' } ); return this; } DepthMapMaterial.prototype = Object.create( ShaderMaterial.prototype ); DepthMapMaterial.prototype.constructor = DepthMapMaterial; // EOF function HeightMaterial ( type, limits ) { ShaderMaterial.call( this ); this.defines = ( type === MATERIAL_LINE ) ? { USE_COLOR: true } : { SURFACE: true }; this.uniforms = { uLight: { value: new Vector3( -1, -1, 2 ) }, // pseudo light source somewhere over viewer's left shoulder. minZ: { value: limits.min.z }, scaleZ: { value: 1 / ( limits.max.z - limits.min.z ) }, cmap: { value: ColourCache.getTexture( 'gradient' ) }, }; this.vertexShader = Shaders.heightVertexShader; this.fragmentShader = Shaders.heightFragmentShader; this.type = 'CV.HeightMaterial'; return this; } HeightMaterial.prototype = Object.create( ShaderMaterial.prototype ); HeightMaterial.prototype.constructor = HeightMaterial; // EOF function GlyphAtlas ( glyphAtlasSpec ) { var atlasSize = 512; var cellSize = 32; var canvas = document.createElement( 'canvas' ); var map = {}; if ( ! canvas ) console.error( 'creating canvas for glyph atlas failed' ); canvas.width = atlasSize; canvas.height = atlasSize; var ctx = canvas.getContext( '2d' ); if ( ! ctx ) console.error( 'cannot obtain 2D canvas' ); // set background ctx.fillStyle = 'rgba( 0, 0, 0, 1 )'; ctx.fillRect( 0, 0, atlasSize, atlasSize ); // populate with glyphs var glyphs = '\u2610 ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.-_'; var divisions = atlasSize / cellSize; var glyphCount = glyphs.length; if ( glyphCount > divisions * divisions ) { console.error( 'too many glyphs for atlas' ); return; } var glyph; var fontSize = 20; ctx.textAlign = 'left'; ctx.font = fontSize + 'px ' + glyphAtlasSpec; ctx.fillStyle = '#ffffff'; var row, column; for ( var i = 0; i < glyphCount; i++ ) { glyph = glyphs.charAt( i ); var glyphWidth = ctx.measureText( glyph ).width / cellSize; row = Math.floor( i / divisions ) + 1; column = i % divisions; map[ glyph ] = { row: ( divisions - row ) / divisions, column: column / divisions, width: glyphWidth }; ctx.fillText( glyph, cellSize * column, cellSize * row - 6 ); } this.texture = new CanvasTexture( canvas ); this.map = map; this.cellScale = cellSize / atlasSize; } GlyphAtlas.prototype.constructor = GlyphAtlas; GlyphAtlas.prototype.getTexture = function () { return this.texture; }; GlyphAtlas.prototype.getCellScale = function () { return this.cellScale; }; GlyphAtlas.prototype.getGlyph = function ( glyph ) { var glyphData = this.map[ glyph ]; if ( glyphData === undefined ) { console.warn( 'unavailable glyph [' + glyph + ']', glyph.codePointAt() ); glyphData = this.map[ '\u2610' ]; // substitute empty box } return glyphData; }; var atlasCache = {}; var AtlasFactory = {}; AtlasFactory.getAtlas = function ( glyphAtlasSpec ) { var atlas = atlasCache[ glyphAtlasSpec ]; if ( atlas === undefined ) { atlas = new GlyphAtlas( glyphAtlasSpec ); atlasCache[ glyphAtlasSpec ] = atlas; } return atlas; }; // EOF function GlyphMaterial ( glyphAtlasSpec, container, rotation, colour ) { var glyphAtlas = AtlasFactory.getAtlas( glyphAtlasSpec ); var cellScale = glyphAtlas.getCellScale(); var cos = Math.cos( rotation ); var sin = Math.sin( rotation ); var rotationMatrix = new Float32Array( [ cos, sin, -sin, cos ] ); colour = colour || [ 1, 1, 1 ]; ShaderMaterial.call( this, { uniforms: { cellScale: { value: cellScale }, atlas: { value: glyphAtlas.getTexture() }, rotate: { value: rotationMatrix }, scale: { value: container.clientHeight / container.clientWidth } }, vertexShader: Shaders.glyphVertexShader, fragmentShader: Shaders.glyphFragmentShader, } ); this.opacity = 1.0; this.alphaTest = 0.8; this.depthTest = false; this.transparent = true; this.defines = { USE_COLOR: true }; this.defaultAttributeValues.color = colour; this.type = 'CV.GlyphMaterial'; this.atlas = glyphAtlas; // event handler window.addEventListener( 'resize', _resize ); var self = this; return this; function _resize() { self.uniforms.scale.value = container.clientHeight / container.clientWidth; } } GlyphMaterial.prototype = Object.create( ShaderMaterial.prototype ); GlyphMaterial.prototype.constructor = GlyphMaterial; GlyphMaterial.prototype.getAtlas = function () { return this.atlas; }; // EOF var cache = new Map(); var viewer; var cursorMaterials = []; var depthMaterials = []; var perSurveyMaterials = {}; function updateMaterialCursor ( material ) { viewer.initCursorHeight = material.setCursor( viewer.cursorHeight ); } function updateCursors( /* event */ ) { cursorMaterials.forEach( updateMaterialCursor ); } function updateDatumShifts( event ) { var datumShift = event.value; depthMaterials.forEach( _updateMaterialDepth ); function _updateMaterialDepth ( material ) { material.setDatumShift( datumShift ); } } function getHeightMaterial ( type, limits ) { var name = 'height' + type; if ( cache.has( name ) ) return cache.get( name ); var material = new HeightMaterial( type, limits ); cache.set( name, material ); perSurveyMaterials[ name ] = material; return material; } function getDepthMapMaterial ( terrain ) { return new DepthMapMaterial( terrain ); } function getDepthMaterial ( type, limits, terrain ) { var name = 'depth' + type; var material = cache.get( name ); if ( material === undefined ) { material = new DepthMaterial( type, limits, terrain ); cache.set( name, material ); perSurveyMaterials[ name ] = material; depthMaterials.push( material ); } return material; } function getCursorMaterial ( type, limits ) { var name = 'cursor' + type; var material = cache.get( name ); if ( material === undefined ) { material = new CursorMaterial( type, limits ); perSurveyMaterials[ name ] = material; cache.set( name, material ); } // restore current cursor viewer.initCursorHeight = material.getCursor(); // set active cursor material for updating cursorMaterials[ type ] = material; return material; } function getDepthCursorMaterial( type, limits, terrain ) { var name = 'depthCursor' + type; var material = cache.get( name ); if ( material === undefined ) { material = new DepthCursorMaterial( type, limits, terrain ); perSurveyMaterials[ name ] = material; depthMaterials.push( material ); cache.set( name, material ); } // restore current cursor viewer.initCursorHeight = material.getCursor(); // set active cursor material for updating cursorMaterials[ type ] = material; return material; } function getSurfaceMaterial () { if ( cache.has( 'surface' ) ) return cache.get( 'surface' ); var material = new MeshLambertMaterial( { color: 0xFFFFFF, vertexColors: NoColors } ); cache.set( 'surface', material ); return material; } function getLineMaterial () { if ( cache.has( 'line' ) ) return cache.get( 'line' ); var material = new LineBasicMaterial( { color: 0xFFFFFF, vertexColors: VertexColors } ); cache.set( 'line', material ); return material; } function getGlyphMaterial ( glyphAtlasSpec, rotation, colour ) { var name = glyphAtlasSpec + ':' + rotation.toString() + ':' + ( colour ? colour.toString() : 'default' ); if ( cache.has( name ) ) return cache.get( name ); var material = new GlyphMaterial( glyphAtlasSpec, viewer.container, rotation, colour ); cache.set( name, material ); return material; } function setTerrain( terrain ) { terrain.addEventListener( 'datumShiftChange', updateDatumShifts ); } function initCache ( Viewer ) { cache.clear(); viewer = Viewer; viewer.addEventListener( 'cursorChange', updateCursors ); } function flushCache() { var name; for ( name in perSurveyMaterials ) { var material = perSurveyMaterials[ name ]; material.dispose(); cache.delete( name ); } depthMaterials = []; perSurveyMaterials = {}; } var Materials$1 = { getHeightMaterial: getHeightMaterial, getDepthMapMaterial: getDepthMapMaterial, getDepthMaterial: getDepthMaterial, getDepthCursorMaterial: getDepthCursorMaterial, getCursorMaterial: getCursorMaterial, getSurfaceMaterial: getSurfaceMaterial, getLineMaterial: getLineMaterial, getGlyphMaterial: getGlyphMaterial, setTerrain: setTerrain, initCache: initCache, flushCache: flushCache }; // EOF function LinearScale ( container, Viewer ) { var width = container.clientWidth; var height = container.clientHeight; var stdWidth = HudObject.stdWidth; var stdMargin = HudObject.stdMargin; this.name = 'CV.LinearScale'; this.domObjects = []; var barOffset = 3 * ( stdWidth + stdMargin ); var barHeight = ( height - barOffset ) / 2; var barWidth = stdWidth / 2; var range = Viewer.maxHeight - Viewer.minHeight; var geometry = new PlaneBufferGeometry( barWidth, range ); // rotate the model to put the plane in the xz plane, covering the range of view height values - the gradient shader works on z values. geometry.rotateX( Math.PI / 2 ); geometry.translate( -barWidth / 2, 0, 0 ); Mesh.call( this, geometry, Materials$1.getHeightMaterial( MATERIAL_LINE ) ); var ms = new Matrix4().makeScale( 1, 1, barHeight / range ); ms.multiply( new Matrix4().makeTranslation( width / 2 - stdMargin, -height / 2 + barOffset + barHeight / 2, 0 ) ); this.applyMatrix( ms ); // rotate the model in the world view. this.rotateOnAxis( new Vector3( 1, 0, 0 ), -Math.PI / 2 ); // add labels var maxdiv = document.createElement( 'div' ); var mindiv = document.createElement( 'div' ); var caption = document.createElement( 'div' ); maxdiv.classList.add( 'linear-scale' ); mindiv.classList.add( 'linear-scale' ); caption.classList.add( 'linear-scale-caption' ); maxdiv.id = 'max-div'; mindiv.id = 'min-div'; caption.id = 'linear-caption'; maxdiv.style.top = barHeight + 'px'; mindiv.style.bottom = barOffset + 'px'; caption.style.bottom = height - barHeight + 'px'; container.appendChild( maxdiv ); container.appendChild( mindiv ); container.appendChild( caption ); maxdiv.textContent = '---'; mindiv.textContent = '---'; caption.textContent = 'xxxx'; this.maxDiv = maxdiv; this.minDiv = mindiv; this.caption = caption; this.domObjects.push( mindiv ); this.domObjects.push( maxdiv ); this.domObjects.push( caption ); this.addEventListener( 'removed', this.removeDomObjects ); return this; } LinearScale.prototype = Object.create( Mesh.prototype ); Object.assign( LinearScale.prototype, HudObject.prototype ); LinearScale.prototype.constructor = LinearScale; LinearScale.prototype.setRange = function ( min, max, caption ) { this.maxDiv.textContent = Math.round( max ) + 'm'; this.minDiv.textContent = Math.round( min ) + 'm'; this.setCaption( caption ); return this; }; LinearScale.prototype.setCaption = function ( caption ) { this.caption.textContent = caption; return this; }; LinearScale.prototype.setMaterial = function ( material ) { this.material = material; return this; }; // EOF function CursorScale ( container ) { var width = container.clientWidth; var height = container.clientHeight; var stdWidth = HudObject.stdWidth; var stdMargin = HudObject.stdMargin; this.name = 'CV.CursorScale'; this.domObjects = []; var barOffset = 3 * ( stdWidth + stdMargin ); var barHeight = ( height - barOffset ) / 2; var barWidth = stdWidth / 2; var geometry = new PlaneBufferGeometry( barWidth, barHeight ); Mesh.call( this, geometry, new MeshBasicMaterial( { color: 0x777777 } ) ); this.translateX( width / 2 - barWidth / 2 - stdMargin ); this.translateY( -height / 2 + barHeight / 2 + barOffset ); this.barHeight = barHeight; // make cursor line var cursorGeometry = new Geometry(); cursorGeometry.vertices.push( new Vector3( barWidth / 2, -barHeight / 2, 0 ) ); cursorGeometry.vertices.push( new Vector3( -barWidth / 2, -barHeight / 2, 0 ) ); var cursor = new Line( cursorGeometry, new LineBasicMaterial( { color: 0xffffff } ) ); this.add( cursor ); this.cursor = cursor; // add labels var maxdiv = document.createElement( 'div' ); var mindiv = document.createElement( 'div' ); var caption = document.createElement( 'div' ); maxdiv.classList.add( 'linear-scale' ); mindiv.classList.add( 'linear-scale' ); caption.classList.add( 'linear-scale-caption' ); maxdiv.id = 'max-div'; mindiv.id = 'min-div'; caption.id = 'linear-caption'; maxdiv.style.top = barHeight + 'px'; mindiv.style.bottom = barOffset + 'px'; caption.style.bottom = height - barHeight + 'px'; container.appendChild( maxdiv ); container.appendChild( mindiv ); container.appendChild( caption ); maxdiv.textContent = '---'; mindiv.textContent = '---'; caption.textContent = 'xxxx'; this.maxDiv = maxdiv; this.minDiv = mindiv; this.caption = caption; this.domObjects.push( mindiv ); this.domObjects.push( maxdiv ); this.domObjects.push( caption ); this.addEventListener( 'removed', this.removeDomObjects ); return this; } CursorScale.prototype = Object.create( Mesh.prototype ); Object.assign( CursorScale.prototype, HudObject.prototype ); CursorScale.prototype.constructor = CursorScale; CursorScale.prototype.setRange = function ( min, max, caption ) { this.maxDiv.textContent = Math.round( max ) + 'm'; this.minDiv.textContent = Math.round( min ) + 'm'; this.caption.textContent = caption; return this; }; CursorScale.prototype.setCursor = function ( scaledValue /*, displayValue */ ) { this.cursor.position.setY( this.barHeight * scaledValue ); return this; }; // EOF function ProgressDial () { var stdWidth = HudObject.stdWidth; var stdMargin = HudObject.stdMargin; var geometry = new RingGeometry( stdWidth * 0.9, stdWidth, 50 ); Mesh.call( this, geometry, new MeshBasicMaterial( { color: 0xffffff, vertexColors: FaceColors } ) ); this.name = 'CV.ProgressDial'; this.domObjects = []; var offset = stdWidth + stdMargin; this.translateX( -offset * 5 ); this.translateY( offset ); this.rotateOnAxis( upAxis, Math.PI / 2 ); this.visible = false; this.isVisible = true; this.addEventListener( 'removed', this.removeDomObjects ); return this; } ProgressDial.prototype = Object.create( Mesh.prototype ); Object.assign( ProgressDial.prototype, HudObject.prototype ); ProgressDial.prototype.constructor = ProgressDial; ProgressDial.prototype.set = function ( progress ) { this.progress = progress; var l = Math.floor( Math.min( 100, Math.round( progress ) ) / 2 ) * 2; var faces = this.geometry.faces; for ( var i = 0; i < l; i++ ) { faces[ 99 - i ].color.set( 0x00ff00 ); } this.geometry.colorsNeedUpdate = true; }; ProgressDial.prototype.add = function ( progress ) { this.set( this.progress + progress ); }; ProgressDial.prototype.start = function () { var faces = this.geometry.faces; for ( var i = 0; i < 100; i++ ) { faces[ i ].color.set( 0x333333 ); } this.geometry.colorsNeedUpdate = true; this.progress = 0; this.visible = this.isVisible; }; ProgressDial.prototype.end = function () { var self = this; setTimeout( function () { self.visible = false; Viewer.renderView(); }, 500 ); }; ProgressDial.prototype.setVisibility = function ( visibility ) { this.isVisible = visibility; this.visible = ( this.visible && visibility ); }; // EOF function ScaleBar ( container, hScale, rightMargin ) { var leftMargin = 10; Group.call( this ); this.name = 'CV.ScaleBar'; this.domObjects = []; this.hScale = hScale; this.scaleBars = []; this.currentLength = 0; this.position.set( -container.clientWidth / 2 + 5, -container.clientHeight / 2 + leftMargin, 0 ); this.scaleMax = container.clientWidth - ( leftMargin + rightMargin ); var legend = document.createElement( 'div' ); legend.classList.add( 'scale-legend' ); legend.textContent = ''; container.appendChild( legend ); this.legend = legend; this.domObjects.push( legend ); this.addEventListener( 'removed', this.removeDomObjects ); return this; } ScaleBar.prototype = Object.create( Group.prototype ); Object.assign( ScaleBar.prototype, HudObject.prototype ); ScaleBar.prototype.constructor = ScaleBar; ScaleBar.prototype.setVisibility = function ( visible ) { HudObject.prototype.setVisibility.call( this, visible ); if ( this.currentLength !== 0 ) this.scaleBars[ this.currentLength ].mesh.visible = visible; }; ScaleBar.prototype.setScale = function ( scale ) { var scaleBars = this.scaleBars; var length = 0; var self = this; var maxVisible = this.scaleMax / ( scale * this.hScale ); var exponent = Math.ceil( Math.log( maxVisible ) / Math.LN10 ) - 1; var rMax = Math.pow( 10, exponent ); var maxInc = maxVisible / rMax; var legendText; if ( maxInc < 2 ) { length = 10; exponent = exponent - 1; } else if ( maxInc < 5 ) { length = 2; } else { length = 5; } if ( exponent >= 3 ) { legendText = length * Math.pow( 10, exponent - 3) + 'km'; } else { legendText = length * Math.pow( 10, exponent ) + 'm'; } scale = scale * Math.pow( 10, exponent ); if ( this.currentLength !== length ) { if ( ! scaleBars[ length ] ) { var bar = _makeScaleBar( length ); scaleBars[ length ] = bar; this.add( bar.mesh ); } if ( this.currentLength > 0 ) { scaleBars[ this.currentLength ].mesh.visible = false; } scaleBars[ length ].mesh.visible = this.visible; this.currentLength = length; } scaleBars[ length ].mesh.scale.x = scale; var legend = this.legend; legend.style.display = this.visible ? 'block' : 'none'; legend.style.left = ( scale * scaleBars[ length ].topRight - legend.clientWidth ) + 'px'; legend.textContent = legendText; return this; function _makeScaleBar ( length ) { var height = 4; var rLength = length * self.hScale; var i, l; var bar = new PlaneGeometry( rLength, height, length ); var bar2 = new PlaneGeometry( rLength, height, length * 10 ); var line = new Geometry(); line.vertices.push( new Vector3( -rLength / 2, 0, 1 ) ); line.vertices.push( new Vector3( rLength / 2, 0, 1 ) ); var mBar = new Mesh( bar, new MeshBasicMaterial( { color: 0xffffff, vertexColors: FaceColors, side: FrontSide } ) ); var mBar2 = new Mesh( bar2, new MeshBasicMaterial( { color: 0xffffff, vertexColors: FaceColors, side: FrontSide } ) ); var mLine = new LineSegments( line, new LineBasicMaterial( { color: 0xff0000 } ) ); for ( i = 0, l = bar.faces.length; i < l; i = i + 4 ) { bar.faces[ i ].color = ColourCache.red; bar.faces[ i + 1 ].color = ColourCache.red; } for ( i = 0, l = bar2.faces.length; i < l; i = i + 4 ) { bar2.faces[ i ].color = ColourCache.red; bar2.faces[ i + 1 ].color = ColourCache.red; } bar.translate( rLength / 2, height + height / 2 + 1, 0 ); bar2.translate( rLength / 2, height / 2, 0 ); line.translate( rLength / 2, height, 0 ); bar.computeBoundingBox(); var group = new Group(); group.add( mBar ); group.add( mBar2 ); group.add( mLine ); return { mesh: group, topRight: bar.boundingBox.max.x }; } }; // EOF // THREE objects var renderer$1; var camera$1; var scene$1; var hScale = 0; var attitudeGroup; var linearScale = null; var angleScale = null; var cursorScale = null; var scaleBar = null; var compass; var ahi; var progressDial; // DOM objects var container$1; // viewer state var controls$1; var isVisible = true; function init$1 ( domId, viewRenderer ) { container$1 = document.getElementById( domId ); renderer$1 = viewRenderer; var hHeight = container$1.clientHeight / 2; var hWidth = container$1.clientWidth / 2; // create GL scene and camera for overlay camera$1 = new OrthographicCamera( -hWidth, hWidth, hHeight, -hHeight, 1, 1000 ); camera$1.position.z = 600; scene$1 = new Scene(); // group to simplyfy resize handling attitudeGroup = new Group(); attitudeGroup.position.set( hWidth, -hHeight, 0 ); scene$1.add( attitudeGroup ); var aLight = new AmbientLight( 0x888888 ); var dLight = new DirectionalLight( 0xFFFFFF ); dLight.position.set( -1, 1, 1 ); scene$1.add( aLight ); scene$1.add( dLight ); compass = new Compass( container$1 ); ahi = new AHI( container$1 ); progressDial = new ProgressDial(); attitudeGroup.add( compass ); attitudeGroup.add( ahi ); attitudeGroup.add( progressDial ); window.addEventListener( 'resize', resize$1 ); Viewer.addEventListener( 'newCave', caveChanged ); Viewer.addEventListener( 'change', viewChanged ); controls$1 = Viewer.getControls(); controls$1.addEventListener( 'change', update ); } function setVisibility ( visible ) { compass.setVisibility( visible ); ahi.setVisibility( visible ); progressDial.setVisibility( visible ); if ( scaleBar ) scaleBar.setVisibility( visible ); isVisible = visible; // reset correct disposition of colour keys etc. if ( linearScale ) { if ( visible ) { viewChanged ( { type: 'change', name: 'shadingMode' } ); } else { linearScale.setVisibility( false ); cursorScale.setVisibility( false ); angleScale.setVisibility( false ); } } Viewer.renderView(); } function getVisibility() { return isVisible; } function getProgressDial() { return progressDial; } function setScale$1( scale ) { hScale = scale; } function resize$1 () { var hWidth = container$1.clientWidth / 2; var hHeight = container$1.clientHeight / 2; // adjust cameras to new aspect ratio etc. camera$1.left = -hWidth; camera$1.right = hWidth; camera$1.top = hHeight; camera$1.bottom = -hHeight; camera$1.updateProjectionMatrix(); attitudeGroup.position.set( hWidth, -hHeight, 0 ); newScales(); setVisibility ( isVisible ); // set correct visibility of elements } function update () { // update HUD components var currentCamera = controls$1.object; compass.set( currentCamera ); ahi.set( currentCamera ); updateScaleBar( currentCamera ); } function renderHUD () { // render on screen renderer$1.clearDepth(); renderer$1.render( scene$1, camera$1 ); } function caveChanged ( /* event */ ) { newScales(); viewChanged ( { type: 'change', name: 'shadingMode' } ); } function newScales () { if ( linearScale ) scene$1.remove( linearScale ); linearScale = new LinearScale( container$1, Viewer ); scene$1.add( linearScale ); if ( cursorScale ) scene$1.remove( cursorScale ); cursorScale = new CursorScale( container$1 ); scene$1.add( cursorScale ); if ( angleScale ) scene$1.remove( angleScale ); angleScale = new AngleScale( container$1 ); scene$1.add( angleScale ); if ( scaleBar ) { scene$1.remove( scaleBar ); scaleBar = null; } updateScaleBar( controls$1.object ); } function viewChanged ( event ) { if ( event.name !== 'shadingMode' || ! isVisible ) return; // hide all - and only make required elements visible var useAngleScale = false; var useLinearScale = false; var useCursorScale = false; switch ( Viewer.shadingMode ) { case SHADING_HEIGHT: useLinearScale = true; linearScale.setRange( Viewer.minHeight, Viewer.maxHeight, 'Height above Datum' ).setMaterial( Materials$1.getHeightMaterial( MATERIAL_LINE ) ); break; case SHADING_DEPTH: useLinearScale = true; linearScale.setRange( Viewer.maxHeight - Viewer.minHeight, 0, 'Depth below surface' ).setMaterial( Materials$1.getHeightMaterial( MATERIAL_LINE ) ); break; case SHADING_CURSOR: useCursorScale = true; cursorScale.setRange( Viewer.minHeight, Viewer.maxHeight, 'Height' ); cursorChanged(); break; case SHADING_DEPTH_CURSOR: useCursorScale = true; cursorScale.setRange( Viewer.maxHeight - Viewer.minHeight, 0, 'Depth' ); cursorChanged(); break; case SHADING_LENGTH: useLinearScale = true; linearScale.setRange( Viewer.minLegLength, Viewer.maxLegLength, 'Leg length' ).setMaterial( Materials$1.getHeightMaterial( MATERIAL_LINE, true ) ).setVisibility( true ); break; case SHADING_INCLINATION: useAngleScale = true; break; } angleScale.setVisibility( useAngleScale ); linearScale.setVisibility( useLinearScale ); cursorScale.setVisibility( useCursorScale ); if ( useCursorScale ) { Viewer.addEventListener( 'cursorChange', cursorChanged ); } else { Viewer.removeEventListener( 'cursorChange', cursorChanged ); } Viewer.renderView(); } function cursorChanged ( /* event */ ) { var cursorHeight = Viewer.cursorHeight; var range = Viewer.maxHeight - Viewer.minHeight; var scaledHeight = 0; if ( Viewer.shadingMode === SHADING_CURSOR ) { scaledHeight = ( Viewer.cursorHeight + range / 2 ) / range; } else { scaledHeight = 1 - cursorHeight / range; } scaledHeight = Math.max( Math.min( scaledHeight, 1 ), 0 ); cursorScale.setCursor( scaledHeight, Math.round( cursorHeight ) ); } function updateScaleBar ( camera ) { if ( camera instanceof OrthographicCamera ) { if ( scaleBar === null ) { scaleBar = new ScaleBar( container$1, hScale, ( HudObject.stdWidth + HudObject.stdMargin ) * 4 ); scene$1.add( scaleBar ); } if ( isVisible !== scaleBar.visible ) scaleBar.setVisibility( isVisible ); scaleBar.setScale( camera.zoom ); } else { if ( scaleBar !== null && scaleBar.visible ) scaleBar.setVisibility( false ); } } var HUD = { init: init$1, renderHUD: renderHUD, update: update, setVisibility: setVisibility, getVisibility: getVisibility, getProgressDial: getProgressDial, setScale: setScale$1 }; // EOF function CameraMove ( controls, renderFunction, endCallback ) { this.cameraTarget = null; this.targetPOI = null; this.controls = controls; this.renderFunction = renderFunction; this.endCallback = endCallback; this.frameCount = 0; this.frames = 0; this.targetZoom = 1; this.curve = null; this.skipNext = false; this.moveRequired = false; } CameraMove.prototype.constructor = CameraMove; CameraMove.prototype.prepare = function ( cameraTarget, targetPOI ) { if ( this.frameCount !== 0 ) return; this.skipNext = false; if ( targetPOI && targetPOI.isBox3 ) { // target can be a Box3 in world space var size = targetPOI.getSize(); var camera = this.controls.object; var elevation; targetPOI = targetPOI.getCenter(); if ( camera.isPerspectiveCamera ) { var tan = Math.tan( _Math.DEG2RAD * 0.5 * camera.getEffectiveFOV() ); var e1 = 1.5 * tan * size.y / 2 + size.z; var e2 = tan * camera.aspect * size.x / 2 + size.z; elevation = Math.max( e1, e2 ); this.targetZoom = 1; if ( elevation === 0 ) elevation = 100; } else { var hRatio = ( camera.right - camera.left ) / size.x; var vRatio = ( camera.top - camera.bottom ) / size.y; this.targetZoom = Math.min( hRatio, vRatio ); elevation = 600; } cameraTarget = targetPOI.clone(); cameraTarget.z = cameraTarget.z + elevation; } this.cameraTarget = cameraTarget; this.targetPOI = targetPOI; this.moveRequired = ( this.cameraTarget !== null || this.targetPOI !== null ); var startPOI = this.controls.target; var cameraStart = this.controls.object.position; if ( cameraTarget !== null ) { if ( cameraTarget.equals( cameraStart ) ) { // start and end camera positions are identical. this.moveRequired = false; if ( targetPOI === null ) this.skipNext = true; } else { if ( targetPOI === null ) targetPOI = startPOI; var distance = cameraStart.distanceTo( cameraTarget ); var cp1 = this.getControlPoint( startPOI, cameraStart, cameraTarget, distance ); var cp2 = this.getControlPoint( targetPOI, cameraTarget, cameraStart, distance ); this.curve = new CubicBezierCurve3( cameraStart, cp1, cp2, cameraTarget ); } } }; CameraMove.prototype.getControlPoint = function ( common, p1, p2, distance ) { var v1 = new Vector3(); var v2 = new Vector3(); var normal = new Vector3(); var l = 0; while ( l === 0 ) { v1.copy( p1 ).sub( common ); v2.copy( p2 ).sub( common ); normal.crossVectors( v1, v2 ); l = normal.length(); if ( l === 0 ) { // adjust the targetPOI to avoid degenerate triangles. common.addScalar( -1 ); } } var adjust = new Vector3().crossVectors( normal, v1 ).setLength( Math.min( distance, v1.length() ) / 3 ); var candidate1 = new Vector3().copy( adjust ).add( v1 ); var candidate2 = new Vector3().copy( adjust ).negate().add( v1 ); return ( v2.distanceTo( candidate1 ) < v2.distanceTo( candidate2 ) ) ? candidate1 : candidate2; }; CameraMove.prototype.start = function ( time ) { if ( this.frameCount === 0 && ! this.skipNext ) { this.frameCount = time + 1; this.frames = this.frameCount; this.controls.enabled = ! this.moveRequired; this.animate(); } }; CameraMove.prototype.animate = function () { var tRemaining = --this.frameCount; var controls = this.controls; var curve = this.curve; if ( tRemaining < 0 ) { this.frameCount = 0; this.endAnimation(); return; } if ( this.moveRequired ) { // update camera position and controls.target var camera = controls.object; var t = 1 - tRemaining / this.frames; controls.target.lerp( this.targetPOI, t ); if ( curve !== null ) { camera.position.copy( this.curve.getPoint( t ) ); } camera.zoom = camera.zoom + ( this.targetZoom - camera.zoom ) * t; // if ( targetPOI.quaternion ) camera.quaternion.slerp( targetPOI.quaternion, t ); camera.updateProjectionMatrix(); } controls.update(); if ( tRemaining === 0 ) { // end of animation this.endAnimation(); return; } var self = this; requestAnimationFrame( function () { self.animate(); } ); this.renderFunction(); }; CameraMove.prototype.endAnimation = function () { this.controls.enabled = true; this.moveRequired = false; this.cameraTarget = null; this.targetPOI = null; this.renderFunction(); this.endCallback(); }; CameraMove.prototype.stop = function () { this.frameCount = 1; }; CameraMove.prototype.cancel = function () { this.frameCount = 0; this.skipNext = false; }; CameraMove.prototype.isActive = function () { return ( this.frameCount > 0 ); }; function Tree( name, id, root, parent ) { // root parameter only used internally if ( root === undefined ) { this.id = 0; this.maxId = 0; this.root = this; this.parent = null; } else { this.root = root; this.parent = parent; this.id = ( id === null ) ? ++root.maxId : id; } this.name = name || ''; this.children = []; } Tree.prototype.constructor = Tree; Tree.prototype.traverse = function ( func ) { var children = this.children; func ( this ); for ( var i = 0; i < children.length; i++ ) { children[ i ].traverse( func ); } }; Tree.prototype.traverseDepthFirst = function ( func ) { var children = this.children; for ( var i = 0; i < children.length; i++ ) { children[ i ].traverseDepthFirst( func ); } func ( this ); }; Tree.prototype.forEachChild = function ( func, recurse ) { var children = this.children; var child; for ( var i = 0; i < children.length; i++ ) { child = children[ i ]; func( child ); if ( recurse === true ) child.forEachChild( func, true ); } }; Tree.prototype.addById = function ( name, id, parentId, properties ) { var parentNode = this.findById( parentId ); if ( parentNode ) { var node = new Tree( name, id, this.root, parentNode ); if ( properties !== undefined ) Object.assign( node, properties ); parentNode.children.push( node ); var root = this.root; root.maxId = Math.max( root.maxId, id ); return node.id; } return null; }; Tree.prototype.findById = function ( id ) { if ( this.id == id ) return this; for ( var i = 0, l = this.children.length; i < l; i++ ) { var child = this.children[ i ]; var found = child.findById( id ); if ( found ) return found; } return undefined; }; Tree.prototype.getByPath = function ( path ) { var pathArray = path.split( '.' ); var node = this.getByPathArray( pathArray ); return pathArray.length === 0 ? node : undefined; }; Tree.prototype.getByPathArray = function ( path ) { var node = this; var search = true; while ( search && path.length > 0 ) { search = false; for ( var i = 0, l = node.children.length; i < l; i++ ) { var child = node.children[ i ]; if ( child.name === path[ 0 ] ) { node = child; path.shift(); search = true; break; } } } return node; }; Tree.prototype.addPath = function ( path, properties ) { var node; var newNode; // find part of path that exists already node = this.getByPathArray( path ); if ( path.length === 0 ) return node; // add remainder of path to node while ( path.length > 0 ) { newNode = new Tree( path.shift(), null, this.root, node ); node.children.push( newNode ); node = newNode; } if ( properties !== undefined ) Object.assign( node, properties ); return node; }; Tree.prototype.getPath = function ( endNode ) { var node = this; var path = []; if ( endNode === undefined ) endNode = this.root; do { path.push( node.name ); node = node.parent; } while ( node !== endNode ); return path.reverse().join( '.' ); }; Tree.prototype.getSubtreeIds = function ( id, idSet ) { var node = this.findById( id ); node.traverse( _getId ); function _getId( node ) { idSet.add( node.id ); } }; Tree.prototype.getIdByPath = function ( path ) { var node = this.getByPathArray( path ); if ( path.length === 0 ) { return node.id; } else { return undefined; } }; // EOF /** * based on BoxHelper * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / http://github.com/Mugen87 */ function Box3Helper( box3, color ) { this.box3 = box3; if ( color === undefined ) color = 0xffff00; var indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] ); var positions = new Float32Array( 8 * 3 ); var geometry = new BufferGeometry(); geometry.setIndex( new BufferAttribute( indices, 1 ) ); geometry.addAttribute( 'position', new BufferAttribute( positions, 3 ) ); LineSegments.call( this, geometry, new LineBasicMaterial( { color: color } ) ); this.matrixAutoUpdate = false; this.update( box3 ); } Box3Helper.prototype.type = 'Box3Helper'; Box3Helper.prototype = Object.create( LineSegments.prototype ); Box3Helper.prototype.constructor = Box3Helper; Box3Helper.prototype.update = function ( box3 ) { this.box3 = box3; if ( box3.isEmpty() ) return; var min = box3.min; var max = box3.max; /* 5____4 1/___0/| | 6__|_7 2/___3/ 0: max.x, max.y, max.z 1: min.x, max.y, max.z 2: min.x, min.y, max.z 3: max.x, min.y, max.z 4: max.x, max.y, min.z 5: min.x, max.y, min.z 6: min.x, min.y, min.z 7: max.x, min.y, min.z */ var position = this.geometry.attributes.position; var array = position.array; array[ 0 ] = max.x; array[ 1 ] = max.y; array[ 2 ] = max.z; array[ 3 ] = min.x; array[ 4 ] = max.y; array[ 5 ] = max.z; array[ 6 ] = min.x; array[ 7 ] = min.y; array[ 8 ] = max.z; array[ 9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z; array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z; array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z; array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z; array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z; position.needsUpdate = true; this.geometry.computeBoundingSphere(); }; Box3Helper.prototype.removed = function () { if ( this.geometry ) this.geometry.dispose(); }; function GlyphStringGeometry ( text, glyphAtlas ) { InstancedBufferGeometry.call( this ); this.type = 'GlyphStringGeometry'; this.name = text; this.width = 0; var indexAttribute = new Uint16BufferAttribute( [ 0, 2, 1, 0, 3, 2 ], 1 ); // unit square var positions = [ 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0 ]; var positionAttribute = new Float32BufferAttribute( positions, 3 ); this.setIndex( indexAttribute ); this.addAttribute( 'position', positionAttribute ); var i, l, glyphData; var offset = 0; l = text.length; var uvs = new Float32Array( l * 2 ); var widths = new Float32Array( l ); var offsets = new Float32Array( l ); for ( i = 0; i < l; i++ ) { if ( text.charCodeAt() === 0 ) continue; // skip null characters glyphData = glyphAtlas.getGlyph( text[ i ] ); uvs[ i * 2 ] = glyphData.column; uvs[ i * 2 + 1 ] = glyphData.row; widths[ i ] = glyphData.width; offsets[ i ] = offset; offset += glyphData.width; } this.width = offset; this.addAttribute( 'instanceUvs', new InstancedBufferAttribute( uvs, 2, 1 ) ); this.addAttribute( 'instanceOffsets', new InstancedBufferAttribute( offsets, 1, 1 ) ); this.addAttribute( 'instanceWidths', new InstancedBufferAttribute( widths, 1, 1 ) ); } GlyphStringGeometry.indexAttribute = null; GlyphStringGeometry.positionAttribute = null; GlyphStringGeometry.prototype = Object.assign( Object.create( InstancedBufferGeometry.prototype ), { constructor: GlyphStringGeometry } ); function GlyphString ( text, glyphMaterial ) { var geometry = new GlyphStringGeometry( text, glyphMaterial.getAtlas() ); Mesh.call( this, geometry, glyphMaterial ); this.type = 'GlyphString'; this.name = text; this.frustumCulled = false; } GlyphString.prototype = Object.assign( Object.create( Mesh.prototype ), { constructor: GlyphString, isGlyphString: true, getWidth: function () { return this.geometry.width; } } ); // EOF function Point ( material ) { var geometry = new BufferGeometry(); material = material || new PointsMaterial( { color: 0xffffff } ); geometry.addAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0 ], 3 ) ); Points.call( this, geometry, material ); this.type = 'Point'; return this; } Point.prototype = Object.create( Points.prototype ); Point.prototype.constructor = Point; // preallocated objects for projected area calculation var A = new Vector3(); var B = new Vector3(); var C = new Vector3(); var D = new Vector3(); var T1 = new Triangle( A, B, C ); var T2 = new Triangle( A, C, D ); var clusterMaterialCache = []; function getClusterMaterial ( count ) { var material = clusterMaterialCache[ count ]; if ( material !== undefined ) return material; var markerSize = 64; var halfSize = markerSize / 2; var canvas = document.createElement( 'canvas' ); if ( ! canvas ) console.error( 'creating canvas for glyph atlas failed' ); canvas.width = markerSize; canvas.height = markerSize; var ctx = canvas.getContext( '2d' ); if ( ! ctx ) console.error( 'cannot obtain 2D canvas' ); // set transparent background ctx.fillStyle = 'rgba( 0, 0, 0, 0 )'; ctx.fillRect( 0, 0, markerSize, markerSize ); var fontSize = 40; ctx.textAlign = 'center'; ctx.font = 'bold ' + fontSize + 'px helvetica,sans-serif'; ctx.fillStyle = '#ffffff'; var gradient = ctx.createRadialGradient( halfSize, halfSize, 30, halfSize, halfSize, 0 ); gradient.addColorStop( 0.0, 'rgba( 255, 128, 0, 64 )' ); gradient.addColorStop( 0.3, 'rgba( 255, 200, 0, 255 )' ); gradient.addColorStop( 1.0, 'rgba( 255, 255, 0, 255 )' ); ctx.fillStyle = gradient; ctx.beginPath(); ctx.arc( halfSize, halfSize, 30, 0, Math.PI * 2 ); ctx.fill(); ctx.fillStyle = 'rgba( 0, 0, 0, 255 )'; ctx.fillText( count, halfSize, halfSize + 15 ); material = new PointsMaterial( { map: new CanvasTexture( canvas ), size: 32, depthTest: false, transparent: true, alphaTest: 0.8, sizeAttenuation: false } ); clusterMaterialCache[ count ] = material; return material; } function makeClusterMarker ( count ) { return new Point( getClusterMaterial( count ) ); } function QuadTree ( xMin, xMax, yMin, yMax ) { this.nodes = new Array( 4 ); this.count = 0; this.markers = []; this.quadMarker = null; this.centroid = new Vector3(); this.xMin = xMin; this.xMax = xMax; this.yMin = yMin; this.yMax = yMax; } QuadTree.prototype.addNode = function ( marker, depth ) { // add marker into this quad and recurse to inner quads var index = 0; var position = marker.position; this.markers.push( marker ); this.centroid.add( marker.position ); this.count++; if ( depth-- === 0 ) return; var xMid = ( this.xMin + this.xMax ) / 2; var yMid = ( this.yMin + this.yMax ) / 2; if ( position.x > xMid ) index += 1; if ( position.y > yMid ) index += 2; var subQuad = this.nodes[ index ]; if ( subQuad === undefined ) { switch ( index ) { case 0: subQuad = new QuadTree( this.xMin, xMid, this.yMin, yMid ); break; case 1: subQuad = new QuadTree( xMid, this.xMax, this.yMin, yMid ); break; case 2: subQuad = new QuadTree( this.xMin, xMid, yMid, this.yMax ); break; case 3: subQuad = new QuadTree( xMid, this.xMax, yMid, this.yMax ); break; } this.nodes[ index ] = subQuad; } subQuad.addNode( marker, depth ); }; QuadTree.prototype.check = function ( cluster ) { var subQuad; for ( var i = 0; i < 4; i++ ) { subQuad = this.nodes[ i ]; if ( subQuad !== undefined ) { // prune quads that will never be clustered. will not be checked after first pass if ( subQuad.count < 2 ) { this.nodes[ i ] = undefined; continue; } // test for projected area for quad containing multiple markers var area = subQuad.projectedArea( cluster ); if ( area < 0.80 ) { // FIXME calibrate by screen size ??? subQuad.clusterMarkers( cluster ); } else { subQuad.showMarkers(); subQuad.check( cluster ); } } } }; QuadTree.prototype.showMarkers = function () { var markers = this.markers; // hide the indiviual markers in this quad for ( var i = 0, l = markers.length; i < l; i++ ) { markers[ i ].visible = true; } if ( this.quadMarker !== null ) this.quadMarker.visible = false; }; QuadTree.prototype.clusterMarkers = function ( cluster ) { var i, l, subQuad; var markers = this.markers; // hide the indiviual markers in this quad for ( i = 0, l = markers.length; i < l; i++ ) { markers[ i ].visible = false; } // hide quadMarkers for contained quads for ( i = 0; i < 4; i++ ) { subQuad = this.nodes[ i ]; if ( subQuad !== undefined ) subQuad.hideQuadMarkers(); } if ( this.quadMarker === null ) { var quadMarker = makeClusterMarker( this.count ); // set to center of distribution of markers in this quad. quadMarker.position.copy( this.centroid ).divideScalar( this.count ); quadMarker.layers.set( FEATURE_ENTRANCES ); cluster.add( quadMarker ); this.quadMarker = quadMarker; } this.quadMarker.visible = true; }; QuadTree.prototype.hideQuadMarkers = function () { var subQuad; if ( this.quadMarker ) this.quadMarker.visible = false; for ( var i = 0; i < 4; i++ ) { subQuad = this.nodes[ i ]; if ( subQuad !== undefined ) subQuad.hideQuadMarkers(); } }; QuadTree.prototype.projectedArea = function ( cluster ) { var camera = cluster.camera; var matrixWorld = cluster.matrixWorld; var zAverage = this.centroid.z / this.count; A.set( this.xMin, this.yMin, zAverage ).applyMatrix4( matrixWorld ).project( camera ); B.set( this.xMin, this.yMax, zAverage ).applyMatrix4( matrixWorld ).project( camera ); C.set( this.xMax, this.yMax, zAverage ).applyMatrix4( matrixWorld ).project( camera ); D.set( this.xMax, this.yMin, zAverage ).applyMatrix4( matrixWorld ).project( camera ); return T1.area() + T2.area(); }; function ClusterMarkers ( limits, maxDepth ) { Object3D.call( this ); var min = limits.min; var max = limits.max; this.maxDepth = maxDepth; this.type = 'CV.ClusterMarker'; this.quadTree = new QuadTree( min.x, max.x, min.y, max.y ); this.addEventListener( 'removed', this.onRemoved ); return this; } ClusterMarkers.prototype = Object.create( Object3D.prototype ); ClusterMarkers.prototype.constructor = ClusterMarkers; ClusterMarkers.prototype.onRemoved = function () { this.traverse( function _traverse ( obj ) { if ( obj.type === 'GlyphString' ) { obj.geometry.dispose(); } } ); }; ClusterMarkers.prototype.addMarker = function ( position, label ) { // create marker var material = Materials$1.getGlyphMaterial( 'normal helvetica,sans-serif', Math.PI / 4 ); var marker = new GlyphString( label, material ); marker.layers.set( FEATURE_ENTRANCES ); marker.position.copy( position ); this.quadTree.addNode( marker, this.maxDepth ); this.add( marker ); return marker; }; ClusterMarkers.prototype.cluster = function ( camera ) { // determine which labels are too close together to be usefully displayed as separate objects. // immediate exit if only a single label or none. if ( this.children.length < 2 ) return; this.camera = camera; this.quadTree.check( this ) ; return; }; // EOF function ExtendedPointsMaterial () { ShaderMaterial.call( this, { uniforms: { diffuse: { value: ColourCache.white }, opacity: { value: 1.0 }, size: { value: 1.0 }, scale: { value: 1.0 }, pScale: { value: 1.0 }, offsetRepeat: { value: new Vector4() }, map: { value: null } }, vertexShader: Shaders.extendedPointsVertexShader, fragmentShader: Shaders.extendedPointsFragmentShader, vertexColors: VertexColors } ); this.map = new TextureLoader().load( getEnvironmentValue( 'home', '' ) + 'images/disc.png' ); this.color = ColourCache.white; this.opacity = 1.0; this.alphaTest = 0.8; this.size = 1; this.scale = 1; this.sizeAttenuation = true; this.transparent = true; this.type = 'CV.ExtendedPointsMaterial'; this.isPointsMaterial = true; return this; } ExtendedPointsMaterial.prototype = Object.create( ShaderMaterial.prototype ); ExtendedPointsMaterial.prototype.constructor = ExtendedPointsMaterial; // EOF function Stations () { Points.call( this, new BufferGeometry, new ExtendedPointsMaterial() ); this.type = 'CV.Stations'; this.map = new Map(); this.stationCount = 0; this.baseColor = ColourCache.red; this.junctionColor = ColourCache.yellow; this.layers.set( FEATURE_STATIONS ); this.pointSizes = []; this.vertices = []; this.colors = []; this.stations = []; this.selected = null; this.selectedSize = 0; var self = this; Viewer.addEventListener( 'change', _viewChanged ); this.addEventListener( 'removed', _removed ); Object.defineProperty( this, 'count', { get: function () { return this.stations.length; } } ); function _viewChanged( event ) { if ( event.name === 'splays' ) { var splaySize = Viewer.splays ? 1.0 : 0.0; var stations = self.stations; var pSize = self.geometry.getAttribute( 'pSize' ); var i; var l = stations.length; for ( i = 0; i < l; i++ ) { if ( stations[ i ].hitCount === 0 ) { pSize.setX( i, splaySize ); } } pSize.needsUpdate = true; Viewer.renderView(); } } function _removed ( ) { Viewer.removeEventListener( 'change', _viewChanged ); } } Stations.prototype = Object.create ( Points.prototype ); Stations.prototype.constructor = Stations; Stations.prototype.addStation = function ( node ) { var point = node.p; this.vertices.push( point ); this.colors.push( this.baseColor ); this.pointSizes.push( point.type === STATION_ENTRANCE ? 8.0 : 0.0 ); this.map.set( point.x.toString() + ':' + point.y.toString() + ':' + point.z.toString(), node ); this.stations.push( node ); node.hitCount = 0; node.stationVertexIndex = this.stationCount++; node.linkedSegments = []; }; Stations.prototype.getStation = function ( vertex ) { return this.map.get( vertex.x.toString() + ':' + vertex.y.toString() + ':' + vertex.z.toString() ); }; Stations.prototype.getStationByIndex = function ( index ) { return this.stations[ index ]; }; Stations.prototype.clearSelected = function () { if ( this.selected !== null ) { var pSize = this.geometry.getAttribute( 'pSize' ); pSize.setX( this.selected, this.selectedSize ); pSize.needsUpdate = true; this.selected = null; } }; Stations.prototype.selectStation = function ( node ) { this.selectStationByIndex( node.stationVertexIndex ); }; Stations.prototype.selectStationByIndex = function ( index ) { var pSize = this.geometry.getAttribute( 'pSize' ); if ( this.selected !== null ) { pSize.setX( this.selected, this.selectedSize ); } this.selectedSize = pSize.getX( index ); pSize.setX( index, this.selectedSize * 2 ); // pSize.updateRange.offset = index; // pSize.updateRange.count = 1; pSize.needsUpdate = true; this.selected = index; }; Stations.prototype.updateStation = function ( vertex ) { var station = this.getStation( vertex ); if ( station !== undefined ) { station.hitCount++; if ( station.hitCount > 2 ) { this.colors[ station.stationVertexIndex ] = this.junctionColor; this.pointSizes[ station.stationVertexIndex ] = 4.0; } else if ( station.hitCount > 0 ) { this.pointSizes[ station.stationVertexIndex ] = 2.0; } } }; Stations.prototype.finalise = function () { var bufferGeometry = this.geometry; var positions = new Float32BufferAttribute(this.vertices.length * 3, 3 ); var colors = new Float32BufferAttribute( this.colors.length * 3, 3 ); bufferGeometry.addAttribute( 'pSize', new Float32BufferAttribute( this.pointSizes, 1 ) ); bufferGeometry.addAttribute( 'position', positions.copyVector3sArray( this.vertices ) ); bufferGeometry.addAttribute( 'color', colors.copyColorsArray( this.colors ) ); this.pointSizes = null; this.vertices = null; this.colors = null; }; Stations.prototype.setScale = function ( scale ) { this.material.uniforms.pScale.value = scale; this.material.needsUpdate = true; }; var _tmpVector3 = new Vector3(); function StationLabels () { Group.call( this ); this.type = 'CV.StationLabels'; this.layers.set( LABEL_STATION ); this.junctionLabelMaterial = Materials$1.getGlyphMaterial( 'normal helvetica,sans-serif', 0, [ 1, 1, 0 ] ); this.defaultLabelMaterial = Materials$1.getGlyphMaterial( 'normal helvetica,sans-serif', 0 ); this.splayLabelMaterial = Materials$1.getGlyphMaterial( 'normal helvetica,sans-serif', 0, [ 0.6, 0.6, 0.6 ] ); } StationLabels.prototype = Object.create ( Group.prototype ); StationLabels.prototype.constructor = StationLabels; StationLabels.prototype.addStation = function ( station ) { var material; if ( station.hitCount === 0 ) { material = this.splayLabelMaterial; } else if ( station.hitCount < 3 ) { material = this.defaultLabelMaterial; } else { material = this.junctionLabelMaterial; } var label = new GlyphString( station.name, material ); label.layers.set( LABEL_STATION ); label.position.copy( station.p ); label.hitCount = station.hitCount; label.visible = false; this.add( label ); }; StationLabels.prototype.update = function ( camera, target, inverseWorld ) { var cameraPosition = _tmpVector3.copy( camera.position ); if ( camera.isOrthographicCamera ) { // if orthographic, calculate 'virtual' camera position cameraPosition.sub( target ); // now vector from target cameraPosition.setLength( CAMERA_OFFSET / camera.zoom ); // scale for zoom factor cameraPosition.add( target ); // relocate in world space } // transform camera position into model coordinate system cameraPosition.applyMatrix4( inverseWorld ); var label, limit; var splaysVisible = camera.layers.mask & 1 << LEG_SPLAY; var children = this.children; for ( var i = 0, l = children.length; i < l; i++ ) { label = children[ i ]; // only show labels for splay end stations if splays visible if ( label.hitCount === 0 && ! splaysVisible ) { label.visible = false; } else { // show labels for network vertices at greater distance than intermediate stations limit = ( label.hitCount < 3 ) ? 5000 : 40000; label.visible = ( label.position.distanceToSquared( cameraPosition) < limit ); } } }; function Routes ( metadataSource ) { // determine segments between junctions and entrances/passage ends and create mapping array. this.metadataSource = metadataSource; this.surveyTree = null; this.vertexPairToSegment = []; // maps vertex index to segment membership this.segmentMap = new Map(); // maps segments of survey between ends of passages and junctions. this.segmentToInfo = {}; this.routes = new Map(); this.routeNames = []; this.currentRoute = new Set(); this.currentRouteName = null; this.adjacentSegments = new Set(); Object.defineProperty( this, 'setRoute', { set: function ( x ) { this.loadRoute( x ); }, get: function () { return this.currentRouteName; } } ); var routes = metadataSource.getRoutes(); var routeName; var routeNames = this.routeNames; for ( routeName in routes ) { var route = routes[ routeName ]; routeNames.push( routeName ); this.routes.set( routeName, route.segments ); } routeNames.sort(); this.dispatchEvent( { type: 'changed', name: 'download' } ); } Routes.prototype.constructor = Routes; Object.assign( Routes.prototype, EventDispatcher.prototype ); Routes.prototype.mapSurvey = function ( stations, legs, surveyTree ) { // determine segments between junctions and entrances/passage ends and create mapping array. this.surveyTree = surveyTree; var segmentMap = this.segmentMap; var newSegment = true; var station; var segment = 0; var vertexPairToSegment = this.vertexPairToSegment; var segmentToInfo = this.segmentToInfo; var v1, v2; var i, l = legs.length; var segmentInfo; for ( i = 0; i < l; i = i + 2 ) { v1 = legs[ i ]; v2 = legs[ i + 1 ]; vertexPairToSegment.push( segment ); if ( newSegment ) { station = stations.getStation( v1 ); if ( station === undefined ) continue; // possible use of separator in station name. segmentInfo = { segment: segment, startStation: station, endStation: null }; station.linkedSegments.push( segment ); newSegment = false; } station = stations.getStation( v2 ); if ( station === undefined ) continue; // possible use of separator in station name. if ( ( station && station.hitCount > 2 ) || ( i + 2 < l && ! v2.equals( legs[ i + 2 ] ) ) ) { // we have found a junction or a passage end segmentInfo.endStation = station; segmentMap.set( segmentInfo.startStation.id + ':' + station.id, segmentInfo ); segmentToInfo[ segment ] = segmentInfo; station.linkedSegments.push( segment ); segment++; newSegment = true; } } if ( ! newSegment ) { segmentInfo.endStation = station; segmentMap.set( segmentInfo.startStation.id + ':' + station.id, segmentInfo ); station.linkedSegments.push( segment ); } return this; }; Routes.prototype.createWireframe = function () { var geometry = new Geometry(); var vertices = geometry.vertices; this.segmentMap.forEach( _addSegment ); return new LineSegments( geometry, new LineBasicMaterial( { color: 0x00ff00 } ) ); function _addSegment( value /*, key */ ) { vertices.push( value.startStation.p ); vertices.push( value.endStation.p ); } }; Routes.prototype.addRoute = function ( routeName ) { if ( routeName === this.currentRouteName || routeName === undefined ) return; if ( this.routeNames.indexOf( routeName ) < 0 ) { // create entry for empty route if a new name this.routeNames.push( routeName ); this.routes.set( routeName, [] ); } this.loadRoute( routeName ); }; Routes.prototype.loadRoute = function ( routeName ) { var self = this; var surveyTree = this.surveyTree; var currentRoute = this.currentRoute; var segmentMap = this.segmentMap; var map; var segment; var routeSegments = this.routes.get( routeName ); if ( ! routeSegments ) { alert( 'route ' + routeName + ' does not exist' ); return false; } currentRoute.clear(); for ( var i = 0; i < routeSegments.length; i++ ) { segment = routeSegments[ i ]; map = segmentMap.get( surveyTree.getIdByPath( segment.start.split( '.' ) ) + ':' + surveyTree.getIdByPath( segment.end.split( '.' ) ) ); if ( map !== undefined ) currentRoute.add( map.segment ); } this.currentRouteName = routeName; self.dispatchEvent( { type: 'changed', name: '' } ); return true; }; Routes.prototype.getCurrentRoute = function () { return this.currentRoute; }; Routes.prototype.saveCurrent = function () { var routeName = this.currentRouteName; if ( ! routeName ) return; var segmentMap = this.segmentMap; var route = this.currentRoute; var routeSegments = []; segmentMap.forEach( _addRoute ); // update in memory route this.routes.set( routeName, routeSegments ); // update persistant browser storage this.metadataSource.saveRoute( routeName, { segments: routeSegments } ); function _addRoute ( value /*, key */ ) { if ( route.has( value.segment ) ) { routeSegments.push( { start: value.startStation.getPath(), end: value.endStation.getPath() } ); } } }; Routes.prototype.getRouteNames = function () { return this.routeNames; }; Routes.prototype.toggleSegment = function ( index ) { var self = this; var route = this.currentRoute; var segment = this.vertexPairToSegment[ index / 2 ]; this.adjacentSegments.clear(); if ( route.has( segment ) ) { route.delete( segment ); } else { route.add( segment ); // handle adjacent segments to the latest segment toggled 'on' var segmentInfo = this.segmentToInfo[ segment ]; if ( segmentInfo !== undefined ) { segmentInfo.startStation.linkedSegments.forEach( _setAdjacentSegments ); segmentInfo.endStation.linkedSegments.forEach( _setAdjacentSegments ); } } return; function _setAdjacentSegments ( segment ) { if ( ! route.has( segment ) ) self.adjacentSegments.add( segment ); } }; Routes.prototype.inCurrentRoute = function ( index ) { return this.currentRoute.has( this.vertexPairToSegment[ index / 2 ] ); }; Routes.prototype.adjacentToRoute = function ( index ) { return this.adjacentSegments.has( this.vertexPairToSegment[ index / 2 ] ); }; var unselectedMaterial = new LineBasicMaterial( { color: 0x444444, vertexColors: VertexColors } ); function onBeforeRender( renderer ) { var stencil = renderer.state.buffers.stencil; var gl = renderer.context; stencil.setTest( true ); stencil.setOp( gl.KEEP, gl.KEEP, gl.INCR ); } function onAfterRender( renderer ) { var stencil = renderer.state.buffers.stencil; stencil.setTest( false ); } function Legs ( layer ) { var geometry = new Geometry(); LineSegments.call( this, geometry, unselectedMaterial ); this.layers.set( layer ); this.type = 'Legs'; this.onBeforeRender = onBeforeRender; this.onAfterRender = onAfterRender; return this; } Legs.prototype = Object.create( LineSegments.prototype ); Legs.prototype.constructor = Legs; Legs.prototype.addLegs = function ( vertices, colors, legRuns ) { var geometry = this.geometry; if ( geometry.vertices.length === 0 ) { geometry.vertices = vertices; geometry.colors = colors; } else { // FIXME: alllocate new buffer of old + new length, adjust indexs and append old data after new data. console.error( 'Walls: appending not yet implemented' ); } geometry.computeBoundingBox(); this.legRuns = legRuns; this.computeStats(); return this; }; Legs.prototype.cutRuns = function ( selectedRuns ) { var legRuns = this.legRuns; if ( ! legRuns ) return; var geometry = this.geometry; var vertices = geometry.vertices; var colors = geometry.colors; var newGeometry = new Geometry(); var newVertices = newGeometry.vertices; var newColors = newGeometry.colors; var newLegRuns = []; var vp = 0; for ( var run = 0, l = legRuns.length; run < l; run++ ) { var legRun = legRuns[ run ]; var survey = legRun.survey; var start = legRun.start; var end = legRun.end; if ( selectedRuns.has( survey ) ) { for ( var v = start; v < end; v++ ) { newVertices.push( vertices[ v ] ); newColors.push( colors[ v ] ); } // adjust vertex run for new vertices and color arrays legRun.start = vp; vp += end - start; legRun.end = vp; newLegRuns.push( legRun ); } } if ( newGeometry.vertices.length === 0 ) return false; newGeometry.computeBoundingBox(); newGeometry.name = geometry.name; this.geometry = newGeometry; this.legRuns = newLegRuns; geometry.dispose(); this.computeStats(); return true; }; Legs.prototype.computeStats = function () { var stats = { maxLegLength: -Infinity, minLegLength: Infinity, legCount: 0, legLength: 0 }; var vertices = this.geometry.vertices; var vertex1, vertex2, legLength; var l = vertices.length; for ( var i = 0; i < l; i += 2 ) { vertex1 = vertices[ i ]; vertex2 = vertices[ i + 1 ]; legLength = Math.abs( vertex1.distanceTo( vertex2 ) ); stats.legLength = stats.legLength + legLength; stats.maxLegLength = Math.max( stats.maxLegLength, legLength ); stats.minLegLength = Math.min( stats.minLegLength, legLength ); } stats.legLengthRange = stats.maxLegLength - stats.minLegLength; stats.legCount = l / 2; this.stats = stats; }; Legs.prototype.setShading = function ( selectedRuns, colourSegment, material ) { this.material = material; var geometry = this.geometry; var legRuns = this.legRuns; var colors = geometry.colors; var l, run, v; if ( selectedRuns.size && legRuns ) { for ( run = 0, l = legRuns.length; run < l; run++ ) { var legRun = legRuns[ run ]; var survey = legRun.survey; var start = legRun.start; var end = legRun.end; if ( selectedRuns.has( survey ) ) { for ( v = start; v < end; v += 2 ) { colourSegment( geometry, v, v + 1, survey ); } } else { for ( v = start; v < end; v += 2 ) { colors[ v ] = ColourCache.grey; colors[ v + 1 ] = ColourCache.grey; } } } } else { for ( v = 0, l = geometry.vertices.length; v < l; v += 2 ) { colourSegment( geometry, v, v + 1 ); } } geometry.colorsNeedUpdate = true; }; var unselectedMaterial$1 = new MeshLambertMaterial( { color: 0x444444, vertexColors: FaceColors } ); function Walls ( layer ) { var geometry = new BufferGeometry(); Mesh.call( this, geometry, unselectedMaterial$1 ); this.layers.set( layer ); this.type = 'Walls'; return this; } Walls.prototype = Object.create( Mesh.prototype ); Walls.prototype.constructor = Walls; Walls.prototype.addWalls = function ( vertices, indices, indexRuns ) { var geometry = this.geometry; var position = geometry.getAttribute( 'position' ); if ( position === undefined ) { var positions = new Float32BufferAttribute( vertices.length * 3, 3 ); geometry.addAttribute( 'position', positions.copyVector3sArray( vertices ) ); geometry.setIndex( indices ); } else { // FIXME: alllocate new buffer of old + new length, adjust indexs and append old data after new data. console.error( 'Walls: appending not yet implemented' ); } geometry.computeVertexNormals(); geometry.computeBoundingBox(); this.indexRuns = indexRuns; return this; }; Walls.prototype.setShading = function ( selectedRuns, selectedMaterial ) { var geometry = this.geometry; geometry.clearGroups(); var indexRuns = this.indexRuns; if ( selectedRuns.size && indexRuns ) { this.material = [ selectedMaterial, unselectedMaterial$1 ]; var indexRun = indexRuns[ 0 ]; var start = indexRun.start; var count = indexRun.count; var currentMaterial; var lastMaterial = selectedRuns.has( indexRun.survey ) ? 0 : 1; // merge adjacent runs with shared material. for ( var run = 1, l = indexRuns.length; run < l; run++ ) { indexRun = indexRuns[ run ]; currentMaterial = selectedRuns.has( indexRun.survey ) ? 0 : 1; if ( currentMaterial === lastMaterial && indexRun.start === start + count ) { count += indexRun.count; } else { geometry.addGroup( start, count, lastMaterial ); start = indexRun.start; count = indexRun.count; lastMaterial = currentMaterial; } } geometry.addGroup( start, count, lastMaterial ); } else { this.material = selectedMaterial; } }; Walls.prototype.cutRuns = function ( selectedRuns ) { var indexRuns = this.indexRuns; var geometry = this.geometry; var vertices = geometry.getAttribute( 'position' ); var indices = geometry.index; var newIndices = []; var newVertices = []; var newIndexRuns = []; var fp = 0; var vMap = new Map(); var index, newIndex; var newVertexIndex = 0; var offset; for ( var run = 0, l = indexRuns.length; run < l; run++ ) { var indexRun = indexRuns[ run ]; if ( selectedRuns.has( indexRun.survey ) ) { var start = indexRun.start; var count = indexRun.count; var end = start + count; var itemSize = vertices.itemSize; var oldVertices = vertices.array; for ( var i = start; i < end; i++ ) { index = indices.getX( i ); newIndex = vMap.get( index ); if ( newIndex === undefined ) { newIndex = newVertexIndex++; vMap.set( index, newIndex ); offset = index * itemSize; newVertices.push( oldVertices[ offset ], oldVertices[ offset + 1 ], oldVertices[ offset + 2 ] ); } newIndices.push( newIndex ); } indexRun.start = fp; fp += count; newIndexRuns.push( indexRun ); } } if ( newIndices.length === 0 ) return false; // replace position and index attributes - dispose of old attributes geometry.index.setArray( new indices.array.constructor( newIndices ) ); geometry.index.needsUpdate = true; vertices.setArray( new Float32Array( newVertices ) ); vertices.needsUpdate = true; geometry.computeVertexNormals(); geometry.computeBoundingBox(); this.indexRuns = newIndexRuns; return true; }; function WaterMaterial () { ShaderMaterial.call( this, { uniforms: { offset: { value: 0 } }, vertexShader: Shaders.waterVertexShader, fragmentShader: Shaders.waterFragmentShader, depthWrite: false, type: 'CV.WaterMaterial', side: DoubleSide } ); return this; } WaterMaterial.prototype = Object.create( ShaderMaterial.prototype ); WaterMaterial.prototype.constructor = WaterMaterial; // EOF function beforeRender ( renderer, scene, camera, geometry, material ) { material.uniforms.offset.value += 0.1; } function DyeTraces () { var geometry = new BufferGeometry(); Mesh.call( this, geometry, new WaterMaterial() ); this.vertices = []; this.ends = []; this.onBeforeRender = beforeRender; this.layers.set( FEATURE_TRACES ); return this; } DyeTraces.prototype = Object.create( Mesh.prototype ); DyeTraces.prototype.constructor = DyeTraces; DyeTraces.prototype.finish = function () { var geometry = this.geometry; var vertices = this.vertices; var ends = this.ends; var positions = new Float32BufferAttribute( vertices.length * 3, 3 ); var sinks = new Float32BufferAttribute( ends.length * 3, 3 ); geometry.addAttribute( 'position', positions.copyVector3sArray( vertices ) ); geometry.addAttribute( 'sinks', sinks.copyVector3sArray( ends ) ); return this; }; DyeTraces.prototype.addTrace = function ( startStation, endStation ) { var vertices = this.vertices; var ends = this.ends; var end = new Vector3().copy( endStation ); var v = new Vector3().subVectors( endStation, startStation ).cross( upAxis ).setLength( 2 ); var v1 = new Vector3().add( startStation ).add( v ); var v2 = new Vector3().add( startStation ).sub( v ); vertices.push( v1 ); vertices.push( v2 ); vertices.push( end ); ends.push ( end ); ends.push ( end ); ends.push ( end ); }; function SurveyMetadata( name, metadata ) { this.name = name; var routes = {}; var traces = []; if ( metadata !== null ) { if ( metadata.routes ) routes = metadata.routes; if ( metadata.traces ) traces = metadata.traces; } var localMetadata = localStorage.getItem( name ); if ( localMetadata !== null ) { localMetadata = JSON.parse( localMetadata ); var localRoutes = localMetadata.routes; var routeName, route; // add local routes to any routes in metadata (if any) for ( routeName in localRoutes ) { route = localRoutes[ routeName ]; route.local = true; routes[ routeName ] = route; } } this.routes = routes; this.traces = traces; } SurveyMetadata.prototype.constructor = SurveyMetadata; SurveyMetadata.prototype.getTraces = function () { return this.traces; }; SurveyMetadata.prototype.getRoutes = function () { return this.routes; }; SurveyMetadata.prototype.saveRoute = function ( routeName, route ) { this.routes[ routeName ] = route; this.saveLocal(); }; SurveyMetadata.prototype.saveLocal = function () { var localMetadata = { routes: this.routes, traces: this.traces }; localStorage.setItem( this.name, JSON.stringify( localMetadata ) ); }; SurveyMetadata.prototype.getURL = function () { // dump of json top window for cut and paste capture var routesJSON = { name: 'test', version: 1.0, routes: this.routes, traces: this.traces }; return 'data:text/json;charset=utf8,' + encodeURIComponent( JSON.stringify( routesJSON ) ); }; var map = []; var selectedSection$1 = 0; var SurveyColours = {}; SurveyColours.clearMap = function () { map = []; selectedSection$1 = 0; }; SurveyColours.getSurveyColour = function ( surveyId ) { var surveyColours = ColourCache.getColors( 'survey' ); return surveyColours[ surveyId % surveyColours.length ]; }; SurveyColours.getSurveyColourMap = function ( surveyTree, newSelectedSection ) { if ( selectedSection$1 === newSelectedSection && map.length > 0 ) { // use cached mapping return map; } map = []; selectedSection$1 = newSelectedSection; var survey = ( selectedSection$1 === 0 ) ? surveyTree.id : selectedSection$1; // create mapping of survey id to colour // map each child id _and_ all its lower level survey ids to the same colour var subTree = surveyTree.findById( survey ); var colour = this.getSurveyColour( survey ); _addMapping( subTree ); var children = subTree.children; while ( children.length === 1 ) { subTree = children[ 0 ]; _addMapping( subTree ); children = subTree.children; } for ( var i = 0, l = children.length; i < l; i++ ) { var childId = children[ i ].id; subTree = surveyTree.findById( childId ); colour = this.getSurveyColour( childId ); subTree.traverse( _addMapping ); } return map; function _addMapping ( node ) { // only add values for sections - not stations if ( node.p === undefined ) map[ node.id ] = colour; } }; // unpack GLSL created RGBA packed float values var unpackDownscale = 255 / ( 256 * 256 ); var unpackFactor0 = unpackDownscale / ( 256 * 256 * 256 ); var unpackFactor1 = unpackDownscale / ( 256 * 256 ); var unpackFactor2 = unpackDownscale / 256; var unpackFactor3 = unpackDownscale / 1; function unpackRGBA( buffer ) { return unpackFactor0 * buffer[ 0 ] + unpackFactor1 * buffer[ 1 ] + unpackFactor2 * buffer[ 2 ] + unpackFactor3 * buffer[ 3 ]; } function CommonTerrain () { Group.call( this ); this.hasOverlay = false; this.defaultOverlay = null; this.activeOverlay = null; this.depthTexture = null; this.renderer = null; this.renderTarget = null; this.datumShift = 0; this.activeDatumShift = 0; this.terrainBase = null; this.terrainRange = null; this.addEventListener( 'removed', function removeTerrain() { this.removed(); } ); } CommonTerrain.prototype = Object.create( Group.prototype ); CommonTerrain.prototype.constructor = CommonTerrain; CommonTerrain.prototype.shadingMode = SHADING_SHADED; CommonTerrain.prototype.opacity = 0.5; CommonTerrain.prototype.removed = function () {}; CommonTerrain.prototype.getOpacity = function () { return this.opacity; }; CommonTerrain.prototype.commonRemoved = function () { var activeOverlay = this.activeOverlay; if ( activeOverlay !== null ) { activeOverlay.flushCache(); activeOverlay.hideAttribution(); } if ( this.renderTarget !== null ) this.renderTarget.dispose(); }; CommonTerrain.prototype.setShadingMode = function ( mode, renderCallback ) { var material; var hideAttribution = true; var activeOverlay = this.activeOverlay; switch ( mode ) { case SHADING_HEIGHT: material = Materials$1.getHeightMaterial( MATERIAL_SURFACE ); break; case SHADING_OVERLAY: this.setOverlay( ( activeOverlay === null ? this.defaultOverlay : activeOverlay ), renderCallback ); hideAttribution = false; break; case SHADING_SHADED: material = new MeshLambertMaterial( { color: 0xffffff, vertexColors: VertexColors, side: FrontSide, transparent: true, opacity: this.opacity } ); break; default: console.warn( 'unknown mode', mode ); return false; } if ( hideAttribution && activeOverlay !== null ) { activeOverlay.flushCache(); activeOverlay.hideAttribution(); this.activeOverlay = null; } if ( material !== undefined ) this.setMaterial( material ); this.shadingMode = mode; return true; }; CommonTerrain.prototype.setVisibility = function ( mode ) { if ( this.activeOverlay === null ) return; if ( mode ) { this.activeOverlay.showAttribution(); } else { this.activeOverlay.hideAttribution(); } }; CommonTerrain.prototype.applyDatumShift = function ( mode ) { if ( mode && this.activeDatumShift === 0 ) { this.translateZ( this.datumShift ); this.activeDatumShift = this.datumShift; } else if ( ! mode && this.activeDatumShift !== 0 ) { this.translateZ( - this.datumShift ); this.activeDatumShift = 0; } this.dispatchEvent( { type: 'datumShiftChange', value: this.activeDatumShift } ); }; CommonTerrain.prototype.computeBoundingBox = function () { var bb = new Box3(); this.traverse( _getBoundingBox ); this.boundingBox = bb; function _getBoundingBox( obj ) { if ( obj.isTile ) bb.union( obj.geometry.boundingBox ); } return bb; }; CommonTerrain.prototype.addHeightMap = function ( renderer, renderTarget ) { this.depthTexture = renderTarget.texture; this.renderer = renderer; this.renderTarget = renderTarget; }; CommonTerrain.prototype.getHeight = function () { var pixelCoords = new Vector3(); var adjust = new Vector3(); var result = new Uint8Array( 4 ); return function getHeight( point ) { var renderTarget = this.renderTarget; if ( this.terrainBase === null ) { if ( this.boundingBox === undefined ) this.computeBoundingBox(); this.terrainBase = this.boundingBox.min; this.terrainRange = this.boundingBox.getSize(); // setup value cached in closure adjust.set( renderTarget.width, renderTarget.height, 1 ).divide( this.terrainRange ); } var terrainBase = this.terrainBase; pixelCoords.copy( point ).sub( terrainBase ).multiply( adjust ).round(); this.renderer.readRenderTargetPixels( renderTarget, pixelCoords.x, pixelCoords.y, 1, 1, result ); // convert to survey units and return return unpackRGBA( result ) * this.terrainRange.z + terrainBase.z; }; } (); // EOF /** * @author Angus Sawyer * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 * * based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Plane.as */ function LoxTerrainGeometry( dtm, offsets ) { BufferGeometry.call( this ); this.type = 'LoxTerrainGeometry'; var heightData = dtm.data; var ix, iy, i, l, x, y, z; // buffers var indices = []; var vertices = []; var minZ = Infinity; var maxZ = -Infinity; // generate vertices var zIndex = 0; var lines = dtm.lines; var samples = dtm.samples; var vertexCount = lines * samples; // 2 x 2 scale & rotate callibration matrix var xx = dtm.xx; var xy = dtm.xy; var yx = dtm.yx; var yy = dtm.yy; // offsets from dtm -> survey -> model var xOffset = dtm.xOrigin - offsets.x; var yOffset = dtm.yOrigin - offsets.y; var zOffset = - offsets.z; // var x, y, z; var lx = samples - 1; var ly = lines - 1; for ( iy = 0; iy < lines; iy++ ) { for ( ix = 0; ix < samples; ix++ ) { z = heightData[ zIndex++ ]; x = ix * xx + ( ly - iy ) * xy + xOffset; y = ix * yx + ( ly - iy ) * yy + yOffset; z += zOffset; vertices.push( x, y, z ); if ( z < minZ ) minZ = z; if ( z > maxZ ) maxZ = z; } } var maxX = lx * xx + ly * xy + xOffset; var maxY = lx * yx + ly * yy + yOffset; this.boundingBox = new Box3( new Vector3( xOffset, yOffset, minZ ), new Vector3( maxX, maxY, maxZ ) ); // indices for ( iy = 0; iy < ly; iy ++ ) { for ( ix = 0; ix < lx; ix ++ ) { var a = ix + samples * iy; var b = ix + samples * ( iy + 1 ); var c = ( ix + 1 ) + samples * ( iy + 1 ); var d = ( ix + 1 ) + samples * iy; // faces - render each quad such that the shared diagonal edge has the minimum length - gives a smother terrain surface // diagonals b - d, a - c var d1 = Math.abs( vertices[ a * 3 + 2 ] - vertices[ d * 3 + 2 ] ); // diff in Z values between diagonal vertices var d2 = Math.abs( vertices[ b * 3 + 2 ] - vertices[ c * 3 + 2 ] ); // diff in Z values between diagonal vertices if ( d1 < d2 ) { indices.push( a, b, d ); indices.push( b, c, d ); } else { indices.push( a, b, c ); indices.push( c, d, a ); } } } // build geometry this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); // calibration data from terrain and local survey -> model - offsets this.computeVertexNormals(); var colourScale = Colours.terrain; var colourRange = colourScale.length - 1; var colourIndex; var dotProduct; var normal = this.getAttribute( 'normal' ); var vNormal = new Vector3(); var buffer = new Float32Array( vertexCount * 3 ); var colours = []; var colour; // convert scale to float values for ( i = 0, l = colourScale.length; i < l; i++ ) { colour = colourScale[ i ]; colours.push( [ colour[ 0 ] / 255, colour[ 1 ] / 255, colour[ 2 ] / 255 ] ); } for ( i = 0; i < vertexCount; i++ ) { vNormal.fromArray( normal.array, i * 3 ); dotProduct = vNormal.dot( upAxis ); colourIndex = Math.floor( colourRange * 2 * Math.acos( Math.abs( dotProduct ) ) / Math.PI ); colour = colours[ colourIndex ]; var offset = i * 3; buffer[ offset ] = colour[ 0 ]; buffer[ offset + 1 ] = colour[ 1 ]; buffer[ offset + 2 ] = colour[ 2 ]; } this.addAttribute( 'color', new Float32BufferAttribute( buffer, 3 ) ); } LoxTerrainGeometry.prototype = Object.create( BufferGeometry.prototype ); LoxTerrainGeometry.prototype.constructor = LoxTerrainGeometry; LoxTerrainGeometry.prototype.setupUVs = function ( bitmap, image, offsets ) { var det = bitmap.xx * bitmap.yy - bitmap.xy * bitmap.yx; if ( det === 0 ) return false; var xx = bitmap.yy / det; var xy = - bitmap.xy / det; var yx = - bitmap.yx / det; var yy = bitmap.xx / det; var vertices = this.getAttribute( 'position' ).array; var width = image.naturalWidth; var height = image.naturalHeight; var x, y, u, v; var xOffset = - ( xx * bitmap.xOrigin + xy * bitmap.yOrigin ); var yOffset = - ( yx * bitmap.xOrigin + yy * bitmap.yOrigin ); var uvs = []; for ( var i = 0; i < vertices.length; i += 3 ) { x = vertices[ i ] + offsets.x; y = vertices[ i + 1 ] + offsets.y; u = ( x * xx + y * xy + xOffset ) / width; v = ( x * yx + y * yy + yOffset ) / height; uvs.push( u, v ); } var uvAttribute = this.getAttribute( 'uv' ); if ( uvAttribute !== undefined ) { console.alert( 'replacing attribute uv' ); } this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); }; var terrainLib = { onBeforeRender: function ( renderer ) { var stencil = renderer.state.buffers.stencil; var gl = renderer.context; stencil.setTest( true ); stencil.setOp( gl.KEEP, gl.KEEP, gl.KEEP ); stencil.setFunc( gl.EQUAL, 0, 0xFFFF ); }, onAfterRender: function ( renderer ) { var stencil = renderer.state.buffers.stencil; stencil.setTest( false ); } }; function LoxTerrain ( terrainData, offsets ) { CommonTerrain.call( this ); this.type = 'CV.Terrain'; this.offsets = offsets; this.bitmap = terrainData.bitmap; this.overlayMaterial = null; var tile = new Mesh( new LoxTerrainGeometry( terrainData.dtm, offsets ), Materials$1.getSurfaceMaterial() ); tile.layers.set( FEATURE_TERRAIN ); tile.isTile = true; tile.onBeforeRender = terrainLib.onBeforeRender; tile.onAfterRender = terrainLib.onAfterRender; this.tile = tile; this.add( tile ); this.hasOverlay = ( terrainData.bitmap ) ? true : false; } LoxTerrain.prototype = Object.create( CommonTerrain.prototype ); LoxTerrain.prototype.constructor = LoxTerrain; LoxTerrain.prototype.isTiled = false; LoxTerrain.prototype.isLoaded = function () { return true; }; LoxTerrain.prototype.setOverlay = function ( overlay, overlayLoadedCallback ) { if ( this.overlayMaterial !== null ) { this.setMaterial( this.overlayMaterial ); overlayLoadedCallback(); return; } var texture = new TextureLoader().load( this.bitmap.image, _overlayLoaded ); var self = this; function _overlayLoaded( ) { var bitmap = self.bitmap; self.tile.geometry.setupUVs( bitmap, texture.image, self.offsets ); self.overlayMaterial = new MeshLambertMaterial( { map: texture, transparent: true, opacity: self.opacity } ); bitmap.data = null; self.setMaterial( self.overlayMaterial ); overlayLoadedCallback(); } }; LoxTerrain.prototype.removed = function () { var overlayMaterial = this.overlayMaterial; if ( overlayMaterial !== null ) { // dispose of overlay texture and material overlayMaterial.map.dispose(); overlayMaterial.dispose(); } this.commonRemoved(); }; LoxTerrain.prototype.setMaterial = function ( material ) { this.tile.material = material; }; LoxTerrain.prototype.setOpacity = function ( opacity ) { var material = this.tile.material; material.opacity = opacity; material.needsUpdate = true; this.opacity = opacity; }; // EOF function WorkerPool ( script ) { this.script = getEnvironmentValue( 'home', '' ) + 'js/workers/' + script; if ( WorkerPool.workers[ script ] === undefined ) { // no existing workers running WorkerPool.workers[ script ] = []; } this.workers = WorkerPool.workers[ script ]; } WorkerPool.workers = {}; WorkerPool.prototype.constructor = WorkerPool; WorkerPool.prototype.getWorker = function () { if ( this.workers.length === 0 ) { return new Worker( this.script ); } else { return this.workers.pop(); } }; WorkerPool.prototype.putWorker = function ( worker ) { if ( this.workers.length < 4 ) { this.workers.push( worker ); } else { worker.terminate(); } }; WorkerPool.prototype.dispose = function () { for ( var i = 0; i < this.workers.length; i++ ) { this.workers[ i ].terminate(); } }; var zeroVector = new Vector3(); function Survey ( cave ) { if ( ! cave ) { alert( 'failed loading cave information' ); return; } Object3D.call( this ); this.selectedSectionIds = new Set(); this.selectedSection = 0; this.selectedBox = null; this.highlightBox = null; this.featureBox = null; this.surveyTree = null; this.projection = null; // objects targetted by raycasters and objects with variable LOD this.pointTargets = []; this.legTargets = []; this.type = 'CV.Survey'; this.cutInProgress = false; this.terrain = null; this.isRegion = cave.isRegion; this.features = []; this.routes = null; this.stations = null; this.workerPool = new WorkerPool( 'caveWorker.js' ); this.inverseWorld = null; // highlit point marker var pointerTexture = new TextureLoader().load( getEnvironmentValue( 'home', '' ) + 'images/ic_location.png' ); var pointerMaterial = new PointsMaterial( { size: 32, map: pointerTexture, transparent : true, sizeAttenuation: false, alphaTest: 0.8 } ); var point = new Point( pointerMaterial ); point.visible = false; this.add( point ); this.stationHighlight = point; var self = this; SurveyColours.clearMap(); // clear cache of survey section to colour var survey = cave.getSurvey(); this.name = survey.title; this.CRS = ( survey.sourceCRS === null ) ? getEnvironmentValue( 'CRS', 'fred' ) : survey.sourceCRS; if ( this.isRegion === true ) { this.surveyTree = survey.surveyTree; this.limits = cave.getLimits(); } else { var surveyLimits = survey.limits; this.limits = new Box3( new Vector3().copy( surveyLimits.min ), new Vector3().copy( surveyLimits.max ) ); this.offsets = survey.offsets; var modelLimits = new Box3().copy( this.limits ); modelLimits.min.sub( this.offsets ); modelLimits.max.sub( this.offsets ); this.modelLimits = modelLimits; this.loadCave( survey ); this.legTargets = [ this.features[ LEG_CAVE ] ]; } this.loadEntrances(); this.setFeatureBox(); _setProjectionScale(); this.addEventListener( 'removed', this.onRemoved ); return; function _setProjectionScale () { // calculate scaling distortion if we have required CRS definitions if ( survey.sourceCRS === null || survey.targetCRS === null ) { self.scaleFactor = 1; return; } var limits = self.limits; var p1 = limits.min.clone(); var p2 = limits.max.clone(); p1.z = 0; p2.z = 0; var l1 = p1.distanceTo( p2 ); var transform = proj4( survey.targetCRS, survey.sourceCRS ); // eslint-disable-line no-undef p1.copy( transform.forward( p1 ) ); p2.copy( transform.forward( p2 ) ); self.projection = transform; var l2 = p1.distanceTo( p2 ); self.scaleFactor = l1 / l2; } } Survey.prototype = Object.create( Object3D.prototype ); Survey.prototype.constructor = Survey; Survey.prototype.onRemoved = function ( /* event */ ) { if ( this.cutInProgress ) { // avoid disposal phase when a cut operation is taking place. // this survey is being redisplayed. this.cutInProgress = false; return; } // needs explicit removal to call removed handlers atm this.remove( this.stations ); this.traverse( _dispose ); return; function _dispose ( object ) { if ( object.geometry ) object.geometry.dispose(); } }; Survey.prototype.loadEntrances = function () { var surveyTree = this.surveyTree; var self = this; var clusterMarkers = new ClusterMarkers( this.modelLimits, 4 ); // remove common elements from station names var endNode = surveyTree; while ( endNode.children.length === 1 ) endNode = endNode.children [ 0 ]; // find entrances and add Markers surveyTree.traverse( _addEntrance ); this.addFeature( clusterMarkers, FEATURE_ENTRANCES, 'CV.Survey:entrances' ); return; function _addEntrance( node ) { var marker; if ( node.type !== STATION_ENTRANCE ) return; marker = clusterMarkers.addMarker( node.p, node.getPath( endNode ) ); self.pointTargets.push( marker ); } }; Survey.prototype.calibrateTerrain = function ( terrain ) { var s1 = 0, s2 = 0; var n = 0; // find height difference between all entrance locations and terrain // find average differences and use to alter height of terrain this.surveyTree.traverse( _testHeight ); if ( n > 0 ) { // standard deviation var sd = Math.sqrt( s2 / n - Math.pow( s1 / n, 2 ) ); // simple average terrain.datumShift = s1 / n; console.log( 'Adjustmenting terrain height by ', terrain.datumShift, sd ); } if ( this.terrain === null ) this.terrain = terrain; return; function _testHeight( node ) { // FIXME to extend to surface points if ( node.type !== STATION_ENTRANCE) return; var v = node.p.z - terrain.getHeight( node.p ); s1 += v; s2 += v * v; n++; } }; Survey.prototype.loadCave = function ( cave ) { var self = this; _restoreSurveyTree( cave.surveyTree ); _loadSegments( cave.lineSegments ); this.loadStations( cave.surveyTree ); _loadScraps( cave.scraps ); _loadCrossSections( cave.crossSections ); _loadTerrain( cave ); this.computeBoundingBoxes( cave.surveyTree ); this.pointTargets.push( this.stations ); var metadata = new SurveyMetadata( this.name, cave.metadata ); this.metadata = metadata; this.loadDyeTraces(); this.routes = new Routes( metadata ).mapSurvey( this.stations, this.getLegs(), this.surveyTree ); return; function _restoreSurveyTree ( surveyTree ) { if ( surveyTree.forEachChild === undefined ) { // surveyTree from worker loading - add Tree methods to all objects in tree. _restore( surveyTree ); surveyTree.forEachChild( _restore, true ); } if ( self.surveyTree === null ) { self.surveyTree = surveyTree; } else { self.surveyTree.children.push( surveyTree ); } return; function _restore ( child ) { Object.assign( child, Tree.prototype ); } } function _loadScraps ( scrapList ) { var l = scrapList.length; if ( l === 0 ) return null; var mesh = self.getFeature( FACE_SCRAPS, Walls ); var indices = []; var vertices = []; var indexRuns = []; var vertexOffset = 0; var lastEnd = 0; for ( var i = 0; i < l; i++ ) { _loadScrap( scrapList[ i ] ); } mesh.addWalls( vertices, indices, indexRuns ); self.addFeature( mesh, FACE_SCRAPS, 'CV.Survey:faces:scraps' ); return; function _loadScrap ( scrap ) { var i, l; for ( i = 0, l = scrap.vertices.length; i < l; i++ ) { var vertex = scrap.vertices[ i ]; vertices.push( new Vector3( vertex.x, vertex.y, vertex.z ) ); } for ( i = 0, l = scrap.faces.length; i < l; i++ ) { var face = scrap.faces[ i ]; indices.push( face[ 0 ] + vertexOffset, face[ 2 ] + vertexOffset, face[ 1 ] + vertexOffset ); } var end = indices.length; indexRuns.push( { start: lastEnd, count: end - lastEnd, survey: scrap.survey } ); lastEnd = end; vertexOffset += scrap.vertices.length; } } function _loadCrossSections ( crossSectionGroups ) { var mesh = self.getFeature( FACE_WALLS, Walls ); var indices = []; var vertices = []; var v = 0; var l = crossSectionGroups.length; // survey to face index mapping var currentSurvey; var indexRuns = []; var lastEnd = 0; var l1, r1, u1, d1, l2, r2, u2, d2, lrud; var i, j; var cross = new Vector3(); var lastCross = new Vector3(); var run = null; if ( l === 0 ) return; for ( i = 0; i < l; i++ ) { var crossSectionGroup = crossSectionGroups[ i ]; var m = crossSectionGroup.length; if ( m < 2 ) continue; // enter first station vertices - FIXME use fudged approach vector for this (points wrong way). lrud = _getLRUD( crossSectionGroup[ 0 ] ); vertices.push( lrud.l ); vertices.push( lrud.r ); vertices.push( lrud.u ); vertices.push( lrud.d ); for ( j = 0; j < m; j++ ) { var survey = crossSectionGroup[ j ].survey; lrud = _getLRUD( crossSectionGroup[ j ] ); if ( survey !== currentSurvey ) { currentSurvey = survey; if ( run !== null ) { // close section with two triangles to form cap. indices.push( u2, r2, d2 ); indices.push( u2, d2, l2 ); lastEnd = indices.length; run.count = lastEnd - run.start; indexRuns.push( run ); run = null; } } // next station vertices vertices.push( lrud.l ); vertices.push( lrud.r ); vertices.push( lrud.u ); vertices.push( lrud.d ); // triangles to form passage box l1 = v++; r1 = v++; u1 = v++; d1 = v++; l2 = v++; r2 = v++; u2 = v++; d2 = v++; // all face vertices specified in CCW winding order to define front side. // top faces indices.push( u1, r1, r2 ); indices.push( u1, r2, u2 ); indices.push( u1, u2, l2 ); indices.push( u1, l2, l1 ); // bottom faces indices.push( d1, r2, r1 ); indices.push( d1, d2, r2 ); indices.push( d1, l2, d2 ); indices.push( d1, l1, l2 ); v = v - 4; // rewind to allow current vertices to be start of next box section. if ( run === null ) { // handle first section of run run = { start: lastEnd, survey: survey }; // start tube with two triangles to form cap indices.push( u1, r1, d1 ); indices.push( u1, d1, l1 ); } } currentSurvey = null; v = v + 4; // advance because we are starting a new set of independant x-sections. } if ( run !== null ) { // close tube with two triangles indices.push( u2, r2, d2 ); indices.push( u2, d2, l2 ); run.count = indices.length - run.start; indexRuns.push( run ); } l = indices.length; if ( l === 0 ) return; mesh.addWalls( vertices, indices, indexRuns ); self.addFeature( mesh, FACE_WALLS, 'CV.Survey:faces:walls' ); return; function _getLRUD ( crossSection ) { var station = crossSection.end; var lrud = crossSection.lrud; var stationV = new Vector3( station.x, station.y, station.z ); // cross product of leg and up AXIS to give direction of LR vector cross.subVectors( crossSection.start, crossSection.end ).cross( upAxis ); var L, R, U, D; if ( cross.equals( zeroVector ) ) { // leg is vertical if ( lastCross.equals( zeroVector ) ) { // previous leg was vertical L = stationV; R = stationV; } else { // use previous leg to determine passage orientation for L and R for vertical legs L = lastCross.clone().setLength( lrud.l ).add( stationV ); R = lastCross.clone().setLength( -lrud.r ).add( stationV ); } } else { L = cross.clone().setLength( lrud.l ).add( stationV ); R = cross.clone().setLength( -lrud.r ).add( stationV ); } U = new Vector3( station.x, station.y, station.z + lrud.u ); D = new Vector3( station.x, station.y, station.z - lrud.d ); lastCross.copy( cross ); return { l: L, r: R, u: U, d: D }; } } function _loadSegments ( srcSegments ) { var typeLegs = []; typeLegs[ LEG_CAVE ] = { vertices: [], colors: [], runs: [] }; typeLegs[ LEG_SURFACE ] = { vertices: [], colors: [], runs: [] }; typeLegs[ LEG_SPLAY ] = { vertices: [], colors: [], runs: [] }; var legs; var currentType; var currentSurvey; var run; var l = srcSegments.length; if ( l === 0 ) return null; var vertex1, vertex2; var lastVertex = new Vector3(); for ( var i = 0; i < l; i++ ) { var leg = srcSegments[ i ]; var type = leg.type; var survey = leg.survey; // most line segments will share vertices - avoid allocating new Vector3() in this case. vertex1 = lastVertex.equals( leg.from ) ? lastVertex : new Vector3( leg.from.x, leg.from.y, leg.from.z ); vertex2 = new Vector3( leg.to.x, leg.to.y, leg.to.z ); lastVertex = vertex2; legs = typeLegs[ type ]; if ( leg === undefined ) { console.warn( 'unknown segment type: ', type ); break; } if ( survey !== currentSurvey || type !== currentType ) { // complete last run data if ( run !== undefined ) { var lastLegs = typeLegs[ currentType ]; run.end = lastLegs.vertices.length; lastLegs.runs.push( run ); } // start new run run = {}; run.survey = survey; run.start = legs.vertices.length; currentSurvey = survey; currentType = type; } legs.vertices.push( vertex1 ); legs.vertices.push( vertex2 ); legs.colors.push( ColourCache.white ); legs.colors.push( ColourCache.white ); } // add vertices run for last survey section encountered if ( run.end === undefined ) { run.end = legs.vertices.length; legs.runs.push( run ); } _addModelSegments( LEG_CAVE, 'CV.Survey:cave:cave' ); _addModelSegments( LEG_SURFACE, 'CV.Survey:surface:surface' ); _addModelSegments( LEG_SPLAY, 'CV.Survey:cave:splay' ); return; function _addModelSegments ( tag, name ) { var legs = typeLegs[ tag ]; if ( legs.vertices.length === 0 ) return; var legObject = self.getFeature( tag, Legs ); legObject.addLegs( legs.vertices, legs.colors, legs.runs ); self.addFeature( legObject, tag, name + ':g' ); } } function _loadTerrain ( cave ) { if ( cave.hasTerrain === false ) return; var terrain = new LoxTerrain( cave.terrain, self.offsets ); // get limits of terrain - ignoring maximum which distorts height shading etc var terrainLimits = new Box3().copy( terrain.tile.geometry.boundingBox ); var modelLimits = self.modelLimits; terrainLimits.min.z = modelLimits.min.z; terrainLimits.max.z = modelLimits.max.z; modelLimits.union( terrainLimits ); self.terrain = terrain; return; } }; Survey.prototype.getFeature = function ( tag, obj ) { var o = this.features[ tag ]; if ( o === undefined && obj ) { o = new obj ( tag ); } return o; }; Survey.prototype.update = function ( camera, target ) { var cameraLayers = camera.layers; if ( this.features[ FEATURE_ENTRANCES ] && cameraLayers.mask & 1 << FEATURE_ENTRANCES ) { this.getFeature( FEATURE_ENTRANCES ).cluster( camera ); } if ( this.features[ LABEL_STATION ] && cameraLayers.mask & 1 << LABEL_STATION ) { if ( this.inverseWorld === null ) { this.inverseWorld = new Matrix4().getInverse( this.matrixWorld ); } this.getFeature( LABEL_STATION ).update( camera, target, this.inverseWorld ); } }; Survey.prototype.addFeature = function ( obj, tag, name ) { obj.name = name; this.features[ tag ] = obj; this.add( obj ); }; Survey.prototype.removeFeature = function ( obj ) { this.layers.mask &= ~ obj.layers.mask; var features = this.features; for ( var i = 0, l = features.length; i < l; i++ ) { if ( features[ i ] === obj ) delete features[ i ]; } }; Survey.prototype.hasFeature = function ( tag ) { return ! ( this.features[ tag ] === undefined ); }; Survey.prototype.loadStations = function ( surveyTree ) { var i, l; var stations = new Stations(); var stationLabels = new StationLabels(); surveyTree.traverse( _addStation ); var legs = this.getLegs(); // count number of legs linked to each station for ( i = 0; i < legs.length; i++ ) { stations.updateStation( legs[ i ] ); } // we have finished adding stations. stations.finalise(); // add labels for stations for ( i = 0, l = stations.count; i < l; i++ ) { stationLabels.addStation( stations.getStationByIndex( i ) ); } this.addFeature( stations, FEATURE_STATIONS, 'CV.Stations' ); this.addFeature( stationLabels, LABEL_STATION, 'CV.StationLabels' ); this.stations = stations; return; function _addStation ( node ) { if ( node.p === undefined ) return; stations.addStation( node ); } }; Survey.prototype.computeBoundingBoxes = function ( surveyTree ) { surveyTree.traverseDepthFirst( _computeBoundingBox ); return; function _computeBoundingBox ( node ) { var parent = node.parent; if ( parent && parent.boundingBox === undefined ) parent.boundingBox = new Box3(); if ( node.p !== undefined ) { parent.boundingBox.expandByPoint( node.p ); } else if ( parent ) { if ( node.children.length === 0 || ( node.boundingBox !== undefined && node.boundingBox.isEmpty() ) ) return; parent.boundingBox.expandByPoint( node.boundingBox.min ); parent.boundingBox.expandByPoint( node.boundingBox.max ); } } }; Survey.prototype.loadDyeTraces = function () { var traces = this.metadata.getTraces(); if ( traces.length === 0 ) return; var surveyTree = this.surveyTree; var dyeTraces = new DyeTraces(); for ( var i = 0, l = traces.length; i < l; i++ ) { var trace = traces[ i ]; var startStation = surveyTree.getByPath( trace.start ); var endStation = surveyTree.getByPath( trace.end ); if ( endStation === undefined || startStation === undefined ) continue; dyeTraces.addTrace( startStation.p, endStation.p ); } dyeTraces.finish(); this.addFeature( dyeTraces, FEATURE_TRACES, 'CV.DyeTraces' ); }; Survey.prototype.loadFromEntrance = function ( entrance, loadedCallback ) { var self = this; var name = replaceExtension( entrance.name, '3d' ); var prefix = getEnvironmentValue( 'surveyDirectory', '' ); if ( entrance.loaded ) return; entrance.loaded = true; console.log( 'load: ', name ); var worker = this.workerPool.getWorker(); worker.onmessage = _surveyLoaded; worker.postMessage( prefix + name ); return; function _surveyLoaded ( event ) { var surveyData = event.data; // FIXME check for ok; self.workerPool.putWorker( worker ); self.loadCave( surveyData.survey ); loadedCallback(); } }; Survey.prototype.getMetadataURL = function () { return this.metadata.getURL(); }; Survey.prototype.getLegs = function () { return this.getFeature( LEG_CAVE ).geometry.vertices; }; Survey.prototype.getRoutes = function () { return this.routes; }; Survey.prototype.setScale = function ( scale ) { this.stations.setScale( scale ); }; Survey.prototype.getWorldPosition = function ( position ) { return new Vector3().copy( position ).applyMatrix4( this.matrixWorld ); }; Survey.prototype.getGeographicalPosition = function ( position ) { var offsets = this.offsets; var projection = this.projection; var originalPosition = { x: position.x + offsets.x, y: position.y + offsets.y, z: 0 }; // convert to original survey CRS if ( projection !== null ) originalPosition = projection.forward( originalPosition ); originalPosition.z = position.z + offsets.z; return originalPosition; }; Survey.prototype.selectStation = function ( index ) { var stations = this.stations; var station = stations.getStationByIndex( index ); stations.selectStation( station ); return station; }; Survey.prototype.clearSelection = function () { this.selectedSection = 0; this.selectedSectionIds.clear(); this.stations.clearSelected(); var box = this.selectedBox; if ( box !== null ) box.visible = false; }; Survey.prototype.boxSection = function ( node, box, colour ) { if ( box === null ) { box = new Box3Helper( node.boundingBox, colour ); box.layers.set( FEATURE_SELECTED_BOX ); this.add( box ); } else { box.visible = true; box.update( node.boundingBox ); } return box; }; Survey.prototype.highlightSelection = function ( id ) { var surveyTree = this.surveyTree; var node; var box = this.highlightBox; if ( id ) { node = surveyTree.findById( id ); if ( node.p === undefined && node.boundingBox !== undefined ) { this.highlightBox = this.boxSection( node, box, 0xffff00 ); } else if ( node.p ) { var highlight = this.stationHighlight; highlight.position.copy( node.p ); highlight.visible = true; } } else { if ( box !== null ) box.visible = false; } }; Survey.prototype.selectSection = function ( id ) { var selectedSectionIds = this.selectedSectionIds; var surveyTree = this.surveyTree; var node; this.clearSelection(); if ( id ) { node = surveyTree.findById( id ); if ( node.p === undefined && node.boundingBox !== undefined ) { this.selectedBox = this.boxSection( node, this.selectedBox, 0x00ff00 ); surveyTree.getSubtreeIds( id, selectedSectionIds ); } else { if ( node.p !== undefined ) this.stations.selectStation( node ); } } this.selectedSection = id; return node; }; Survey.prototype.setFeatureBox = function () { if ( this.featureBox === null ) { var box = new Box3Helper( this.modelLimits, 0xffffff ); box.layers.set( FEATURE_BOX ); box.name = 'survey-boundingbox'; this.featureBox = box; this.add( box ); } else { this.featureBox.update( this.modelLimits ); } }; Survey.prototype.cutSection = function ( id ) { var selectedSectionIds = this.selectedSectionIds; var self = this; if ( selectedSectionIds.size === 0 ) return; // clear target lists this.PointTargets = []; this.legTargets = []; this.terrain = null; // iterate through objects replace geometries and remove bounding boxes; var cutList = []; // list of Object3D's to remove from survey - workaround for lack of traverseReverse this.traverse( _cutObject ); for ( var i = 0, l = cutList.length; i < l; i++ ) { var obj = cutList[ i ]; var parent = obj.parent; if ( parent ) parent.remove( obj ); // dispose of all geometry of this object and descendants if ( obj.geometry ) obj.geometry.dispose(); this.removeFeature( obj ); } this.surveyTree = this.surveyTree.findById( id ); this.surveyTree.parent = null; this.loadStations( this.surveyTree ); // ordering is important here this.clearSelection(); this.highlightSelection( 0 ); this.modelLimits = this.getBounds(); this.limits.copy( this.modelLimits ); this.limits.min.add( this.offsets ); this.limits.max.add( this.offsets ); this.setFeatureBox(); this.loadEntrances(); this.cutInProgress = true; return; function _cutObject ( obj ) { switch ( obj.type ) { case 'Legs': case 'Walls': if ( ! obj.cutRuns( self.selectedSectionIds ) ) cutList.push( obj ); break; case 'Box3Helper': case 'CV.Stations': case 'CV.StationLabels': case 'CV.ClusterMarker': cutList.push( obj ); break; case 'Group': break; } } }; Survey.prototype.getBounds = function () { var box = new Box3(); var min = box.min; var max = box.max; this.traverse( _addObjectBounds ); return box; function _addObjectBounds ( obj ) { if ( obj.type === 'CV.Survey' ) return; // skip survey which is positioned/scaled into world space var geometry = obj.geometry; if ( geometry && geometry.boundingBox ) { min.min( geometry.boundingBox.min ); max.max( geometry.boundingBox.max ); } } }; Survey.prototype.setShadingMode = function ( mode ) { var material; switch ( mode ) { case SHADING_HEIGHT: material = Materials$1.getHeightMaterial( MATERIAL_SURFACE, this.modelLimits ); break; case SHADING_CURSOR: material = Materials$1.getCursorMaterial( MATERIAL_SURFACE, this.modelLimits ); break; case SHADING_SINGLE: material = Materials$1.getSurfaceMaterial(); break; case SHADING_SURVEY: // FIXME make multiple material for survey - > color and pass to Walls(). break; case SHADING_DEPTH: material = Materials$1.getDepthMaterial( MATERIAL_SURFACE, this.modelLimits, this.terrain ); if ( ! material ) return false; break; case SHADING_DEPTH_CURSOR: material = Materials$1.getDepthCursorMaterial( MATERIAL_SURFACE, this.modelLimits, this.terrain ); if ( ! material ) return false; break; } if ( this.setLegShading( LEG_CAVE, mode ) ) { this.setWallShading( this.features[ FACE_WALLS ], mode, material ); this.setWallShading( this.features[ FACE_SCRAPS ], mode, material ); return true; } return false; }; Survey.prototype.setWallShading = function ( mesh, node, selectedMaterial ) { if ( ! mesh ) return; if ( selectedMaterial ) { mesh.setShading( this.selectedSectionIds, selectedMaterial ); mesh.visible = true; } else { mesh.visible = false; } // FIXME - ressurect SHADING_SURVEY ??? }; Survey.prototype.setLegShading = function ( legType, legShadingMode ) { var mesh = this.features[ legType ]; if ( mesh === undefined ) return; switch ( legShadingMode ) { case SHADING_HEIGHT: this.setLegColourByHeight( mesh ); break; case SHADING_LENGTH: this.setLegColourByLength( mesh ); break; case SHADING_INCLINATION: this.setLegColourByInclination( mesh, upAxis ); break; case SHADING_CURSOR: this.setLegColourByCursor( mesh ); break; case SHADING_DEPTH_CURSOR: this.setLegColourByDepthCursor( mesh ); break; case SHADING_SINGLE: this.setLegColourByColour( mesh, ColourCache.white ); break; case SHADING_SURVEY: this.setLegColourBySurvey( mesh ); break; case SHADING_PATH: this.setLegColourByPath( mesh ); break; case SHADING_OVERLAY: break; case SHADING_SHADED: break; case SHADING_DEPTH: this.setLegColourByDepth( mesh ); break; default: console.warn( 'invalid leg shading mode' ); return false; } return true; }; Survey.prototype.setLegColourByMaterial = function ( mesh, material ) { material.needsUpdate = true; mesh.setShading( this.selectedSectionIds, _colourSegment, material ); function _colourSegment ( geometry, v1, v2 ) { geometry.colors[ v1 ] = ColourCache.white; geometry.colors[ v2 ] = ColourCache.white; } }; Survey.prototype.setLegColourByDepth = function ( mesh ) { this.setLegColourByMaterial( mesh, Materials$1.getDepthMaterial( MATERIAL_LINE, this.modelLimits, this.terrain ) ); }; Survey.prototype.setLegColourByDepthCursor = function ( mesh ) { this.setLegColourByMaterial( mesh, Materials$1.getDepthCursorMaterial( MATERIAL_LINE, this.modelLimits, this.terrain ) ); }; Survey.prototype.setLegColourByHeight = function ( mesh ) { this.setLegColourByMaterial( mesh, Materials$1.getHeightMaterial( MATERIAL_LINE, this.modelLimits ) ); }; Survey.prototype.setLegColourByCursor = function ( mesh ) { this.setLegColourByMaterial( mesh, Materials$1.getCursorMaterial( MATERIAL_LINE, this.modelLimits ) ); }; Survey.prototype.setLegColourByColour = function ( mesh, colour ) { mesh.setShading( this.selectedSectionIds, _colourSegment, Materials$1.getLineMaterial() ); function _colourSegment ( geometry, v1, v2 ) { geometry.colors[ v1 ] = colour; geometry.colors[ v2 ] = colour; } }; Survey.prototype.setLegColourByLength = function ( mesh ) { var colours = ColourCache.getColors( 'gradient' ); var colourRange = colours.length - 1; var stats = mesh.stats; mesh.setShading( this.selectedSectionIds, _colourSegment, Materials$1.getLineMaterial() ); function _colourSegment ( geometry, v1, v2 ) { var vertex1 = geometry.vertices[ v1 ]; var vertex2 = geometry.vertices[ v2 ]; var relLength = ( Math.abs( vertex1.distanceTo( vertex2 ) ) - stats.minLegLength ) / stats.legLengthRange; var colour = colours[ Math.floor( ( 1 - relLength ) * colourRange ) ]; geometry.colors[ v1 ] = colour; geometry.colors[ v2 ] = colour; } }; Survey.prototype.setLegColourBySurvey = function ( mesh ) { var surveyTree = this.surveyTree; var selectedSection = this.selectedSection; if ( selectedSection === 0) selectedSection = surveyTree.id; var surveyToColourMap = SurveyColours.getSurveyColourMap( surveyTree, selectedSection ); if ( this.selectedSectionIds.size === 0 ) this.surveyTree.getSubtreeIds( selectedSection, this.selectedSectionIds ); mesh.setShading( this.selectedSectionIds, _colourSegment, Materials$1.getLineMaterial() ); function _colourSegment ( geometry, v1, v2, survey ) { var colour = surveyToColourMap[ survey ]; geometry.colors[ v1 ] = colour; geometry.colors[ v2 ] = colour; } }; Survey.prototype.setLegColourByPath = function ( mesh ) { var routes = this.getRoutes(); var c1 = ColourCache.yellow; var c2 = ColourCache.red; var c3 = ColourCache.white; var colour; mesh.setShading( this.selectedSectionIds, _colourSegment, Materials$1.getLineMaterial() ); function _colourSegment ( geometry, v1, v2 /*, survey */ ) { if ( routes.inCurrentRoute( v1 ) ) { colour = c1; } else if ( routes.adjacentToRoute( v1 ) ) { colour = c2; } else { colour = c3; } geometry.colors[ v1 ] = colour; geometry.colors[ v2 ] = colour; } }; Survey.prototype.setLegColourByInclination = function ( mesh, pNormal ) { var colours = ColourCache.getColors( 'inclination' ); var colourRange = colours.length - 1; var hueFactor = colourRange * 2 / Math.PI; var legNormal = new Vector3(); // pNormal = normal of reference plane in model space mesh.setShading( this.selectedSectionIds, _colourSegment, Materials$1.getLineMaterial() ); function _colourSegment ( geometry, v1, v2 ) { var vertex1 = geometry.vertices[ v1 ]; var vertex2 = geometry.vertices[ v2 ]; legNormal.subVectors( vertex1, vertex2 ).normalize(); var dotProduct = legNormal.dot( pNormal ); var hueIndex = Math.floor( hueFactor * Math.acos( Math.abs( dotProduct ) ) ); var colour = colours[ hueIndex ]; geometry.colors[ v1 ] = colour; geometry.colors[ v2 ] = colour; } }; // EOF function Popup( cssClass ) { this.div = document.createElement( 'div' ); this.div.classList.add( cssClass ); } Popup.prototype.constructor = Popup; Popup.prototype.display = function ( container, x, y, camera, p ) { var div = this.div; var screenPosition = new Vector3(); div.style.left = x + 'px'; div.style.top = y + 'px'; container.appendChild ( div ); container.addEventListener( 'mouseup', _mouseUp ); container.addEventListener( 'mousemove', _mouseMove ); function _mouseMove ( /* event */ ) { camera.updateMatrixWorld(); screenPosition.copy( p ); screenPosition.project( camera ); var X = container.clientWidth * ( screenPosition.x + 1 ) / 2; var Y = container.clientHeight * ( -screenPosition.y + 1 ) / 2; if ( X + div.clientWidth > container.clientWidth || Y + div.clientHeight > container.clientHeight ) { // moving off screen, delete now. _mouseUp(); } else { div.style.left = X + 'px'; div.style.top = Y + 'px'; } } function _mouseUp ( /* event */ ) { container.removeChild( div ); container.removeEventListener( 'mousemove', _mouseMove ); container.removeEventListener( 'mouseup', _mouseUp ); } }; Popup.prototype.addLine = function ( line ) { var newLine = document.createElement( 'div' ); newLine.textContent = line; this.div.appendChild ( newLine ); return this; }; function StationPopup ( station, position, depth ) { Popup.call( this, 'station-info' ); var name = station.getPath(); var long = false; var tmp; // reduce name length if too long while ( name.length > 20 ) { tmp = name.split( '.' ); tmp.shift(); name = tmp.join( '.' ); long = true; } if ( long ) name = '...' + name; this.addLine( name ); this.addLine( 'x: ' + position.x + ' m' ).addLine( 'y: ' + position.y + ' m' ).addLine( 'z: ' + position.z + ' m' ); if ( depth !== null ) this.addLine( 'depth from surface: ' + Math.round( depth ) + ' m' ); } StationPopup.prototype = Object.create( Popup.prototype ); StationPopup.prototype.constructor = StationPopup; // preallocated for projected area calculations var A$1 = new Vector3(); var B$1 = new Vector3(); var C$1 = new Vector3(); var D$1 = new Vector3(); var T1$1 = new Triangle( A$1, B$1, C$1 ); var T2$1 = new Triangle( A$1, C$1, D$1 ); function onUploadDropBuffer() { // call back from BufferAttribute to drop JS buffers after data has been transfered to GPU this.array = null; } function Tile ( x, y, zoom, tileSet, clip ) { this.x = x; this.y = y; this.zoom = zoom; this.tileSet = tileSet; this.clip = clip; this.canZoom = true; this.evicted = false; this.replaced = false; this.evictionCount = 1; this.resurrectionPending = false; this.childrenLoading = 0; this.childErrors = 0; this.boundingBox = null; this.worldBoundingBox = null; Mesh.call( this, new BufferGeometry(), Materials$1.getSurfaceMaterial() ); this.onBeforeRender = terrainLib.onBeforeRender; this.onAfterRender = terrainLib.onAfterRender; return this; } Tile.liveTiles = 0; Tile.prototype = Object.create( Mesh.prototype ); Tile.prototype.constructor = Tile; Tile.prototype.type = 'Tile'; Tile.prototype.isTile = true; Tile.prototype.createFromBufferAttributes = function ( index, attributes, boundingBox, material ) { var attributeName; var attribute; var bufferGeometry = this.geometry; // assemble BufferGeometry from binary buffer objects transfered from worker for ( attributeName in attributes ) { attribute = attributes[ attributeName ]; bufferGeometry.addAttribute( attributeName, new Float32BufferAttribute( attribute.array, attribute.itemSize ) ); } bufferGeometry.setIndex( new Uint16BufferAttribute( index, 1 ) ); // use precalculated bounding box rather than recalculating it here. bufferGeometry.boundingBox = new Box3( new Vector3( boundingBox.min.x, boundingBox.min.y, boundingBox.min.z ), new Vector3( boundingBox.max.x, boundingBox.max.y, boundingBox.max.z ) ); attributes = bufferGeometry.attributes; // discard javascript attribute buffers after upload to GPU for ( var name in attributes ) attributes[ name ].onUpload( onUploadDropBuffer ); this.geometry.index.onUpload( onUploadDropBuffer ); this.layers.set( FEATURE_TERRAIN ); this.material = material; return this; }; Tile.prototype.getWorldBoundingBox = function () { var boundingBox; if ( this.worldBoundingBox === null ) { this.updateMatrixWorld(); boundingBox = this.getBoundingBox().clone(); boundingBox.applyMatrix4( this.matrixWorld ); this.worldBoundingBox = boundingBox; } return this.worldBoundingBox; }; Tile.prototype.getBoundingBox = function () { var boundingBox; if ( this.boundingBox === null ) { boundingBox = this.geometry.boundingBox.clone(); var adj = 5; // adjust to cope with overlaps // FIXME - was resolution boundingBox.min.x += adj; boundingBox.min.y += adj; boundingBox.max.x -= adj; boundingBox.max.y -= adj; this.boundingBox = boundingBox; } return this.boundingBox; }; Tile.prototype.empty = function () { this.isMesh = false; if ( ! this.boundingBox ) { console.warn( 'FIXUP :', this.x, this.y ); this.getWorldBoundingBox(); } if ( this.geometry ) { this.geometry.dispose(); this.geometry = new BufferGeometry(); } --Tile.liveTiles; }; Tile.prototype.evict = function () { this.evictionCount++; this.evicted = true; this.replaced = false; this.empty(); }; Tile.prototype.setReplaced = function () { this.evicted = false; this.replaced = true; this.empty(); }; Tile.prototype.setPending = function ( parentTile ) { if ( parentTile && this.parent === null ) { parentTile.add( this ); } this.parent.childrenLoading++; this.isMesh = false; this.evicted = false; }; Tile.prototype.setFailed = function () { var parent = this.parent; parent.childErrors++; parent.childrenLoading--; parent.canZoom = false; parent.remove( this ); }; Tile.prototype.setLoaded = function ( overlay, opacity, renderCallback ) { var parent = this.parent; var tilesWaiting = 0; if ( --parent.childrenLoading === 0 ) { // this tile and all siblings loaded if ( parent.childErrors === 0 ) { // all loaded without error if ( parent.isTile ) parent.setReplaced(); var siblings = parent.children; for ( var i = 0, l = siblings.length; i < l; i++ ) { var sibling = siblings[ i ]; if ( sibling.replaced || sibling.evicted ) continue; if ( overlay === null ) { sibling.isMesh = true; Tile.liveTiles++; } else { // delay finalising until overlays loaded - avoids flash of raw surface sibling.setOverlay( overlay, opacity, _completed ); tilesWaiting++; } } if ( tilesWaiting === 0 ) renderCallback(); return true; } else { parent.remove( this ); } } return false; function _completed( tile ) { tile.isMesh = true; Tile.liveTiles++; if ( --tilesWaiting === 0 ) renderCallback(); } }; Tile.prototype.removed = function () { if ( this.geometry ) this.geometry.dispose(); }; Tile.prototype.setMaterial = function ( material ) { this.material = material; }; Tile.prototype.setOpacity = function ( opacity ) { var material = this.material; material.opacity = opacity; material.needsUpdate = true; }; Tile.prototype.setOverlay = function ( overlay, opacity, imageLoadedCallback ) { var self = this; overlay.getTile( this.x, this.y, this.zoom, opacity, _overlayLoaded ); return; function _overlayLoaded ( material ) { self.material = material; imageLoadedCallback( self ); } }; Tile.prototype.projectedArea = function ( camera ) { var boundingBox = this.getWorldBoundingBox(); var z = boundingBox.max.z; A$1.copy( boundingBox.min ).setZ( z ); C$1.copy( boundingBox.max ); B$1.set( A$1.x, C$1.y, z ); D$1.set( C$1.x, A$1.y, z ); // clamping reduces accuracy of area but stops offscreen area contributing to zoom pressure // .clampScalar( -1, 1 ); A$1.project( camera ); B$1.project( camera ); C$1.project( camera ); D$1.project( camera ); return T1$1.area() + T2$1.area(); }; // EOF //import { Box3Helper } from '../core/Box3'; var halfMapExtent = 6378137 * Math.PI; // from EPSG:3875 definition function WebTerrain ( survey, onReady, onLoaded ) { CommonTerrain.call( this ); this.name = 'WebTerrain'; this.type = 'CV.WebTerrain'; var limits = survey.limits; this.limits = new Box2( new Vector2( limits.min.x, limits.min.y ), new Vector2( limits.max.x, limits.max.y ) ); this.offsets = survey.offsets; this.onLoaded = onLoaded; this.childrenLoading = 0; this.childErrors = 0; this.terrainLoaded = false; this.material = null; this.initialZoom = null; this.currentZoom = null; this.currentLimits = null; this.dying = false; this.overlaysLoading = 0; this.debug = true; this.workerPool = new WorkerPool( 'webTileWorker.js' ); if ( HUD !== undefined ) { this.progressDial = HUD.getProgressDial(); } var self = this; new FileLoader().setResponseType( 'text' ).load( getEnvironmentValue( 'terrainDirectory', '' ) + '/' + 'tileSets.json', _tileSetLoaded, function () {}, _tileSetMissing ); function _tileSetLoaded( text ) { self.tileSets = JSON.parse( text ); onReady(); // call handler } function _tileSetMissing( ) { onReady(); // call handler } } WebTerrain.prototype = Object.create( CommonTerrain.prototype ); WebTerrain.prototype.constructor = WebTerrain; WebTerrain.prototype.isTiled = true; WebTerrain.prototype.isLoaded = function () { return this.terrainLoaded; }; WebTerrain.prototype.hasCoverage = function () { var limits = this.limits; var tileSets = this.tileSets; var tileSet; var coverage; if ( tileSets === undefined ) return false; // iterate through available tileSets and pick the first match var baseDirectory = getEnvironmentValue( 'terrainDirectory', '' ); for ( var i = 0, l = tileSets.length; i < l; i++ ) { tileSet = tileSets[ i ]; coverage = this.getCoverage( limits, tileSet.minZoom ); if ( ( coverage.min_x >= tileSet.minX && coverage.max_x <= tileSet.maxX ) && ( ( coverage.min_y >= tileSet.minY && coverage.max_y <= tileSet.maxY ) ) ) { tileSet.directory = baseDirectory + tileSet.subdirectory; this.tileSet = tileSet; return true; } } return false; }; WebTerrain.prototype.getCoverage = function ( limits, zoom ) { var coverage = { zoom: zoom }; var N = halfMapExtent; var W = -halfMapExtent; var tileCount = Math.pow( 2, zoom - 1 ) / halfMapExtent; // tile count per metre coverage.min_x = Math.floor( ( limits.min.x - W ) * tileCount ); coverage.max_x = Math.floor( ( limits.max.x - W ) * tileCount ); coverage.max_y = Math.floor( ( N - limits.min.y ) * tileCount ); coverage.min_y = Math.floor( ( N - limits.max.y ) * tileCount ); coverage.count = ( coverage.max_x - coverage.min_x + 1 ) * ( coverage.max_y - coverage.min_y + 1 ); return coverage; }; WebTerrain.prototype.pickCoverage = function ( limits ) { var tileSet = this.tileSet; var zoom = tileSet.maxZoom + 1; var coverage; do { --zoom; coverage = this.getCoverage( limits, zoom ); } while ( coverage.count > 4 && zoom > tileSet.minZoom ); return coverage; }; WebTerrain.prototype.loadTile = function ( x, y, z, existingTile, parentTile ) { // account for limits of DTM resolution var tileSet = this.tileSet; var scale = ( z > tileSet.dtmMaxZoom ) ? Math.pow( 2, tileSet.dtmMaxZoom - z ) : 1; // don't zoom in with no overlay - no improvement of terrain rendering in this case if ( scale !== 1 && this.activeOverlay === null && this.currentZoom !== null ) return; console.log( 'load: [ ', z +'/' + x + '/' + y, ']' ); var self = this; var limits = this.limits; var tileWidth = halfMapExtent / Math.pow( 2, z - 1 ); var clip = { top: 0, bottom: 0, left: 0, right: 0 }; var tileMinX = tileWidth * x - halfMapExtent; var tileMaxX = tileMinX + tileWidth; var tileMaxY = halfMapExtent - tileWidth * y; var tileMinY = tileMaxY - tileWidth; var divisions = ( tileSet.divisions ) * scale; var resolution = tileWidth / divisions; ++this.tilesLoading; // trim excess off sides of tile where overlapping with region if ( tileMaxY > limits.max.y ) clip.top = Math.floor( ( tileMaxY - limits.max.y ) / resolution ); if ( tileMinY < limits.min.y ) clip.bottom = Math.floor( ( limits.min.y - tileMinY ) / resolution ); if ( tileMinX < limits.min.x ) clip.left = Math.floor( ( limits.min.x - tileMinX ) / resolution ); if ( tileMaxX > limits.max.x ) clip.right = Math.floor( ( tileMaxX - limits.max.x ) / resolution ); // get Tile instance. var tile = existingTile ? existingTile : new Tile( x, y, z, self.tileSet, clip ); var parent = parentTile ? parentTile : this; tile.setPending( parent ); // tile load/reload pending // get a web worker from the pool and create new geometry in it var tileLoader = this.workerPool.getWorker(); tileLoader.onmessage = _mapLoaded; tileLoader.postMessage( { tileSet: tileSet, divisions: divisions, resolution: resolution, x: x, y: y, z: z, clip: clip, offsets: this.offsets } ); return; function _mapLoaded ( event ) { var tileData = event.data; // return worker to pool self.workerPool.putWorker( tileLoader ); --self.tilesLoading; // the survey/region in the viewer may have changed while the height maps are being loaded. // bail out in this case to avoid errors if ( self.dying ) { self.progressDial.end(); return; } // error out early if we or other tiles have failed to load. if ( tileData.status !== 'ok' || tile.parent.childErrors !== 0 ) { tile.setFailed(); if ( self.progressDial ) self.progressDial.end(); return; } if ( self.progressDial ) self.progressDial.add( self.progressInc ); tile.createFromBufferAttributes( tileData.index, tileData.attributes, tileData.boundingBox, self.material ); if ( self.progressDial ) self.progressDial.add( self.progressInc ); if ( tile.setLoaded( self.activeOverlay, self.opacity, self.onLoaded ) ) { if ( self.progressDial ) self.progressDial.end(); } self.terrainLoaded = true; } }; WebTerrain.prototype.resurrectTile = function ( tile ) { if ( tile.isMesh ) { console.warn( 'resurrecting the undead!' ); return; } // reload tile (use exiting tile object to preserve canZoom). this.loadTile( tile.x, tile.y, tile.zoom, tile ); }; WebTerrain.prototype.tileArea = function ( limits, tile ) { var coverage = this.pickCoverage( limits ); var zoom = coverage.zoom; if ( tile && tile.zoom == zoom ) { console.error( 'ERROR - looping on tile replacement' ); return; } this.currentLimits = limits; if ( this.initialZoom === null ) { this.initialZoom = zoom; } for ( var x = coverage.min_x; x < coverage.max_x + 1; x++ ) { for ( var y = coverage.min_y; y < coverage.max_y + 1; y++ ) { this.loadTile( x, y, zoom, null, tile ); } } if ( this.tilesLoading > 0 && this.progressDial !== undefined ) { this.progressDial.start( 'Loading ' + this.tilesLoading + ' terrain tiles' ); this.progressInc = 100 / ( this.tilesLoading * 2 ); } this.currentZoom = zoom; return; }; WebTerrain.prototype.setDefaultOverlay = function ( overlay ) { this.defaultOverlay = overlay; }; WebTerrain.prototype.setOverlay = function ( overlay, overlayLoadedCallback ) { if ( this.tilesLoading > 0 ) return; var self = this; var currentOverlay = this.activeOverlay; if ( currentOverlay !== null ) { if ( currentOverlay === overlay ) { return; } else { currentOverlay.flushCache(); currentOverlay.hideAttribution(); } } this.activeOverlay = overlay; this.defaultOverlay = overlay; overlay.showAttribution(); this.traverse( _setTileOverlays ); return; function _setTileOverlays ( obj ) { if ( ! obj.isTile ) return; obj.setOverlay( overlay, self.opacity, _overlayLoaded ); self.overlaysLoading++; } function _overlayLoaded () { if ( --self.overlaysLoading === 0 ) overlayLoadedCallback(); } }; WebTerrain.prototype.removed = function () { this.dying = true; if ( this.tilesLoading > 0 ) return; var self = this; this.traverse( _disposeTileMesh ); this.commonRemoved(); return; function _disposeTileMesh ( obj ) { if ( obj !== self ) obj.removed( obj ); } }; WebTerrain.prototype.setMaterial = function ( material ) { if ( this.tilesLoading > 0 ) return; this.traverse( _setTileMeshMaterial ); this.activeOverlay = null; // use for commmon material access for opacity material.opacity = this.opacity; material.needsUpdate = true; this.material = material; return; function _setTileMeshMaterial ( obj ) { if ( ! obj.isTile ) return; obj.setMaterial( material ); } }; WebTerrain.prototype.setOpacity = function ( opacity ) { if ( this.shadingMode === SHADING_OVERLAY ) { // each tile has its own material, therefore need setting separately this.traverse( _setTileOpacity ); } else { if ( this.material ) { this.material.opacity = opacity; this.material.needsUpdate = true; } } this.opacity = opacity; return; function _setTileOpacity ( obj ) { if ( obj.isTile ) obj.setOpacity( opacity ); } }; WebTerrain.prototype.zoomCheck = function ( camera ) { var maxZoom = this.tileSet.maxZoom; var initialZoom = this.initialZoom; var self = this; var frustum = new Frustum(); var candidateTiles = []; var candidateEvictTiles = []; var resurrectTiles = []; var retry = false; var total, tile, i; if ( this.tilesLoading > 0 ) return true; camera.updateMatrix(); // make sure camera's local matrix is updated camera.updateMatrixWorld(); // make sure camera's world matrix is updated camera.matrixWorldInverse.getInverse( camera.matrixWorld ); frustum.setFromMatrix( new Matrix4().multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ) ); // scan scene graph of terrain this.traverse( _scanTiles ); var resurrectCount = resurrectTiles.length; var candidateCount = candidateTiles.length; _evictTiles(); if ( resurrectCount !== 0 ) { if ( this.progressDial ) this.progressDial.start( 'Resurrecting tiles' ); for ( i = 0; i < resurrectCount; i++ ) { this.resurrectTile( resurrectTiles[ i ] ); retry = true; } this.progressInc = 100 / ( 2 * resurrectCount ); } else if ( candidateCount !== 0 ) { total = candidateTiles.reduce( function ( a, b ) { return { area: a.area + b.area }; } ); for ( i = 0; i < candidateCount; i++ ) { if ( candidateTiles[ i ].area / total.area > 0.3 ) { // FIXME - weight by tile resolution to balance view across all visible areas first. tile = candidateTiles[ i ].tile; if ( tile.zoom < maxZoom ) { var bb = tile.getBoundingBox().clone(); bb.min.add( this.offsets ); bb.max.add( this.offsets ); this.tileArea( bb, tile ); retry = true; } } } } return retry; function _scanTiles( tile ) { if ( tile === self || ! tile.isTile ) return; if ( frustum.intersectsBox( tile.getWorldBoundingBox() ) ) { // this tile intersects the screen if ( tile.children.length === 0 ) { if ( ! tile.isMesh ) { // this tile is not loaded, but has been previously resurrectTiles.push( tile ); } else { // this tile is loaded, maybe increase resolution? if ( tile.canZoom ) candidateTiles.push( { tile: tile, area: tile.projectedArea( camera ) } ); } } else { if ( ! tile.isMesh && tile.evicted && ! this.parent.resurrectionPending ) { tile.resurrectionPending = true; resurrectTiles.push( tile ); } if ( tile.parent.ResurrectionPending && this.isMesh ) { // remove tile - will be replaced with parent console.warn( ' should not get here' ); } } } else { // off screen tile if ( tile.isMesh ) candidateEvictTiles.push( tile ); } } function _evictTiles() { var EVICT_PRESSURE = 5; var evictCount = candidateEvictTiles.length; var i; if ( evictCount !== 0 ) { candidateEvictTiles.sort( _sortByPressure ); for ( i = 0; i < evictCount; i++ ) { var tile = candidateEvictTiles[ i ]; // heuristics for evicting tiles - needs refinement var pressure = Tile.liveTiles / EVICT_PRESSURE; var tilePressure = tile.evictionCount * Math.pow( 2, initialZoom - tile.zoom ); //console.log( 'ir', initialZoom, 'p: ', pressure, ' tp: ', tilePressure, ( pressure > tilePressure ? '*** EVICTING ***' : 'KEEP' ) ); if ( pressure > tilePressure ) tile.evict(); } } function _sortByPressure( tileA, tileB ) { return tileA.evictionCount / tileA.zoom - tileB.evictionCount / tileB.zoom; } } }; // EOF // FIXME fix lifecycle of materials and textures - ensure disposal/caching as required // GPU resource leak etc. function Overlay ( overlayProvider, container ) { this.provider = overlayProvider; this.container = container; var attribution = overlayProvider.getAttribution(); if ( attribution ) { attribution.classList.add( 'overlay-branding' ); this.attribution = attribution; } this.materialCache = {}; } Overlay.prototype.showAttribution = function () { var attribution = this.attribution; if ( attribution !== undefined ) this.container.appendChild( attribution ); }; Overlay.prototype.hideAttribution = function () { var attribution = this.attribution; var parent = attribution.parentNode; if ( parent !== null ) parent.removeChild( attribution ); }; Overlay.prototype.getTile = function ( x, y, z, opacity, overlayLoaded ) { var self = this; var key = x + ':' + y + ':' + z; var material = this.materialCache[ key ]; if ( material !== undefined ) { overlayLoaded( material ); return; } var url = this.provider.getUrl( x, y, z ); if ( url === null ) return; new TextureLoader().setCrossOrigin( 'anonymous' ).load( url, _textureLoaded ); return; function _textureLoaded( texture ) { var material = new MeshLambertMaterial( { transparent: true, opacity: opacity, color: 0xffffff } ); material.map = texture; material.needsUpdate = true; self.materialCache[ key ] = material; overlayLoaded( material ); } }; Overlay.prototype.flushCache = function () { var materialCache = this.materialCache; var material; for ( var name in materialCache ) { material = materialCache[ name ]; material.map.dispose(); material.dispose(); } this.materialCache = {}; }; Overlay.prototype.constructor = Overlay; /** * @author qiao / https://github.com/qiao * @author mrdoob / http://mrdoob.com * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author erich666 / http://erichaines.com */ // This set of controls performs orbiting, dollying (zooming), and panning. // Unlike TrackballControls, it maintains the "up" direction object.up (+Y by default). // // Orbit - left mouse / touch: one finger move // Zoom - middle mouse, or mousewheel / touch: two finger spread or squish // Pan - right mouse, or arrow keys / touch: three finter swipe /* eslint-disable */ function OrbitControls ( object, domElement ) { this.object = object; this.domElement = ( domElement !== undefined ) ? domElement : document; // Set to false to disable this control this.enabled = true; // "target" sets the location of focus, where the object orbits around this.target = new Vector3(); // How far you can dolly in and out ( PerspectiveCamera only ) this.minDistance = 0; this.maxDistance = Infinity; // How far you can zoom in and out ( OrthographicCamera only ) this.minZoom = 0; this.maxZoom = Infinity; // How far you can orbit vertically, upper and lower limits. // Range is 0 to Math.PI radians. this.minPolarAngle = 0; // radians this.maxPolarAngle = Math.PI; // radians // How far you can orbit horizontally, upper and lower limits. // If set, must be a sub-interval of the interval [ - Math.PI, Math.PI ]. this.minAzimuthAngle = - Infinity; // radians this.maxAzimuthAngle = Infinity; // radians // Set to true to enable damping (inertia) // If damping is enabled, you must call controls.update() in your animation loop this.enableDamping = false; this.dampingFactor = 0.25; // This option actually enables dollying in and out; left as "zoom" for backwards compatibility. // Set to false to disable zooming this.enableZoom = true; this.zoomSpeed = 1.0; // Set to false to disable rotating this.enableRotate = true; this.rotateSpeed = 1.0; // Set to false to disable panning this.enablePan = true; this.keyPanSpeed = 7.0; // pixels moved per arrow key push // Set to true to automatically rotate around the target // If auto-rotate is enabled, you must call controls.update() in your animation loop this.autoRotate = false; this.autoRotateSpeed = 2.0; // 30 seconds per round when fps is 60 // Set to false to disable use of the keys this.enableKeys = true; // The four arrow keys this.keys = { LEFT: 37, UP: 38, RIGHT: 39, BOTTOM: 40 }; // Mouse buttons this.mouseButtons = { ORBIT: MOUSE.LEFT, ZOOM: MOUSE.MIDDLE, PAN: MOUSE.RIGHT }; // for reset this.target0 = this.target.clone(); this.position0 = this.object.position.clone(); this.zoom0 = this.object.zoom; // // public methods // this.getPolarAngle = function () { return spherical.phi; }; this.getAzimuthalAngle = function () { return spherical.theta; }; this.reset = function () { scope.target.copy( scope.target0 ); scope.object.position.copy( scope.position0 ); scope.object.zoom = scope.zoom0; scope.object.updateProjectionMatrix(); scope.dispatchEvent( changeEvent ); scope.update(); state = STATE.NONE; }; // this method is exposed, but perhaps it would be better if we can make it private... this.update = function() { var offset = new Vector3(); // so camera.up is the orbit axis var quat = new Quaternion().setFromUnitVectors( object.up, new Vector3( 0, 1, 0 ) ); var quatInverse = quat.clone().inverse(); var lastPosition = new Vector3(); var lastQuaternion = new Quaternion(); return function update () { var position = scope.object.position; offset.copy( position ).sub( scope.target ); // rotate offset to "y-axis-is-up" space offset.applyQuaternion( quat ); // angle from z-axis around y-axis spherical.setFromVector3( offset ); if ( scope.autoRotate && state === STATE.NONE ) { rotateLeft( getAutoRotationAngle() ); } spherical.theta += sphericalDelta.theta; spherical.phi += sphericalDelta.phi; // restrict theta to be between desired limits spherical.theta = Math.max( scope.minAzimuthAngle, Math.min( scope.maxAzimuthAngle, spherical.theta ) ); // restrict phi to be between desired limits spherical.phi = Math.max( scope.minPolarAngle, Math.min( scope.maxPolarAngle, spherical.phi ) ); spherical.makeSafe(); spherical.radius *= scale; // restrict radius to be between desired limits spherical.radius = Math.max( scope.minDistance, Math.min( scope.maxDistance, spherical.radius ) ); // move target to panned location scope.target.add( panOffset ); offset.setFromSpherical( spherical ); // rotate offset back to "camera-up-vector-is-up" space offset.applyQuaternion( quatInverse ); position.copy( scope.target ).add( offset ); scope.object.lookAt( scope.target ); if ( scope.enableDamping === true ) { sphericalDelta.theta *= ( 1 - scope.dampingFactor ); sphericalDelta.phi *= ( 1 - scope.dampingFactor ); } else { sphericalDelta.set( 0, 0, 0 ); } scale = 1; panOffset.set( 0, 0, 0 ); // update condition is: // min(camera displacement, camera rotation in radians)^2 > EPS // using small-angle approximation cos(x/2) = 1 - x^2 / 8 if ( zoomChanged || lastPosition.distanceToSquared( scope.object.position ) > EPS || 8 * ( 1 - lastQuaternion.dot( scope.object.quaternion ) ) > EPS ) { scope.dispatchEvent( changeEvent ); lastPosition.copy( scope.object.position ); lastQuaternion.copy( scope.object.quaternion ); zoomChanged = false; return true; } return false; }; }(); this.dispose = function() { scope.domElement.removeEventListener( 'contextmenu', onContextMenu, false ); scope.domElement.removeEventListener( 'mousedown', onMouseDown, false ); scope.domElement.removeEventListener( 'wheel', onMouseWheel, false ); scope.domElement.removeEventListener( 'touchstart', onTouchStart, false ); scope.domElement.removeEventListener( 'touchend', onTouchEnd, false ); scope.domElement.removeEventListener( 'touchmove', onTouchMove, false ); document.removeEventListener( 'mousemove', onMouseMove, false ); document.removeEventListener( 'mouseup', onMouseUp, false ); window.removeEventListener( 'keydown', onKeyDown, false ); //scope.dispatchEvent( { type: 'dispose' } ); // should this be added here? }; // // internals // var scope = this; var changeEvent = { type: 'change' }; var startEvent = { type: 'start' }; var endEvent = { type: 'end' }; var STATE = { NONE : - 1, ROTATE : 0, DOLLY : 1, PAN : 2, TOUCH_ROTATE : 3, TOUCH_DOLLY : 4, TOUCH_PAN : 5 }; var state = STATE.NONE; var EPS = 0.000001; // current position in spherical coordinates var spherical = new Spherical(); var sphericalDelta = new Spherical(); var scale = 1; var panOffset = new Vector3(); var zoomChanged = false; var rotateStart = new Vector2(); var rotateEnd = new Vector2(); var rotateDelta = new Vector2(); var panStart = new Vector2(); var panEnd = new Vector2(); var panDelta = new Vector2(); var dollyStart = new Vector2(); var dollyEnd = new Vector2(); var dollyDelta = new Vector2(); function getAutoRotationAngle() { return 2 * Math.PI / 60 / 60 * scope.autoRotateSpeed; } function getZoomScale() { return Math.pow( 0.95, scope.zoomSpeed ); } function rotateLeft( angle ) { sphericalDelta.theta -= angle; } function rotateUp( angle ) { sphericalDelta.phi -= angle; } var panLeft = function() { var v = new Vector3(); return function panLeft( distance, objectMatrix ) { v.setFromMatrixColumn( objectMatrix, 0 ); // get X column of objectMatrix v.multiplyScalar( - distance ); panOffset.add( v ); }; }(); var panUp = function() { var v = new Vector3(); return function panUp( distance, objectMatrix ) { v.setFromMatrixColumn( objectMatrix, 1 ); // get Y column of objectMatrix v.multiplyScalar( distance ); panOffset.add( v ); }; }(); // deltaX and deltaY are in pixels; right and down are positive var pan = function() { var offset = new Vector3(); return function pan ( deltaX, deltaY ) { var element = scope.domElement === document ? scope.domElement.body : scope.domElement; if ( scope.object instanceof PerspectiveCamera ) { // perspective var position = scope.object.position; offset.copy( position ).sub( scope.target ); var targetDistance = offset.length(); // half of the fov is center to top of screen targetDistance *= Math.tan( ( scope.object.fov / 2 ) * Math.PI / 180.0 ); // we actually don't use screenWidth, since perspective camera is fixed to screen height panLeft( 2 * deltaX * targetDistance / element.clientHeight, scope.object.matrix ); panUp( 2 * deltaY * targetDistance / element.clientHeight, scope.object.matrix ); } else if ( scope.object instanceof OrthographicCamera ) { // orthographic panLeft( deltaX * ( scope.object.right - scope.object.left ) / scope.object.zoom / element.clientWidth, scope.object.matrix ); panUp( deltaY * ( scope.object.top - scope.object.bottom ) / scope.object.zoom / element.clientHeight, scope.object.matrix ); } else { // camera neither orthographic nor perspective console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - pan disabled.' ); scope.enablePan = false; } }; }(); function dollyIn( dollyScale ) { if ( scope.object instanceof PerspectiveCamera ) { scale /= dollyScale; } else if ( scope.object instanceof OrthographicCamera ) { scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom * dollyScale ) ); scope.object.updateProjectionMatrix(); zoomChanged = true; } else { console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' ); scope.enableZoom = false; } } function dollyOut( dollyScale ) { if ( scope.object instanceof PerspectiveCamera ) { scale *= dollyScale; } else if ( scope.object instanceof OrthographicCamera ) { scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom / dollyScale ) ); scope.object.updateProjectionMatrix(); zoomChanged = true; } else { console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' ); scope.enableZoom = false; } } // // event callbacks - update the object state // function handleMouseDownRotate( event ) { //console.log( 'handleMouseDownRotate' ); rotateStart.set( event.clientX, event.clientY ); } function handleMouseDownDolly( event ) { //console.log( 'handleMouseDownDolly' ); dollyStart.set( event.clientX, event.clientY ); } function handleMouseDownPan( event ) { //console.log( 'handleMouseDownPan' ); panStart.set( event.clientX, event.clientY ); } function handleMouseMoveRotate( event ) { //console.log( 'handleMouseMoveRotate' ); rotateEnd.set( event.clientX, event.clientY ); rotateDelta.subVectors( rotateEnd, rotateStart ); var element = scope.domElement === document ? scope.domElement.body : scope.domElement; // rotating across whole screen goes 360 degrees around rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientWidth * scope.rotateSpeed ); // rotating up and down along whole screen attempts to go 360, but limited to 180 rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight * scope.rotateSpeed ); rotateStart.copy( rotateEnd ); scope.update(); } function handleMouseMoveDolly( event ) { //console.log( 'handleMouseMoveDolly' ); dollyEnd.set( event.clientX, event.clientY ); dollyDelta.subVectors( dollyEnd, dollyStart ); if ( dollyDelta.y > 0 ) { dollyIn( getZoomScale() ); } else if ( dollyDelta.y < 0 ) { dollyOut( getZoomScale() ); } dollyStart.copy( dollyEnd ); scope.update(); } function handleMouseMovePan( event ) { //console.log( 'handleMouseMovePan' ); panEnd.set( event.clientX, event.clientY ); panDelta.subVectors( panEnd, panStart ); pan( panDelta.x, panDelta.y ); panStart.copy( panEnd ); scope.update(); } function handleMouseUp( event ) { //console.log( 'handleMouseUp' ); } function handleMouseWheel( event ) { //console.log( 'handleMouseWheel' ); if ( event.deltaY < 0 ) { dollyOut( getZoomScale() ); } else if ( event.deltaY > 0 ) { dollyIn( getZoomScale() ); } scope.update(); } function handleKeyDown( event ) { //console.log( 'handleKeyDown' ); switch ( event.keyCode ) { case scope.keys.UP: pan( 0, scope.keyPanSpeed ); scope.update(); break; case scope.keys.BOTTOM: pan( 0, - scope.keyPanSpeed ); scope.update(); break; case scope.keys.LEFT: pan( scope.keyPanSpeed, 0 ); scope.update(); break; case scope.keys.RIGHT: pan( - scope.keyPanSpeed, 0 ); scope.update(); break; } } function handleTouchStartRotate( event ) { //console.log( 'handleTouchStartRotate' ); rotateStart.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY ); } function handleTouchStartDolly( event ) { //console.log( 'handleTouchStartDolly' ); var dx = event.touches[ 0 ].pageX - event.touches[ 1 ].pageX; var dy = event.touches[ 0 ].pageY - event.touches[ 1 ].pageY; var distance = Math.sqrt( dx * dx + dy * dy ); dollyStart.set( 0, distance ); } function handleTouchStartPan( event ) { //console.log( 'handleTouchStartPan' ); panStart.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY ); } function handleTouchMoveRotate( event ) { //console.log( 'handleTouchMoveRotate' ); rotateEnd.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY ); rotateDelta.subVectors( rotateEnd, rotateStart ); var element = scope.domElement === document ? scope.domElement.body : scope.domElement; // rotating across whole screen goes 360 degrees around rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientWidth * scope.rotateSpeed ); // rotating up and down along whole screen attempts to go 360, but limited to 180 rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight * scope.rotateSpeed ); rotateStart.copy( rotateEnd ); scope.update(); } function handleTouchMoveDolly( event ) { //console.log( 'handleTouchMoveDolly' ); var dx = event.touches[ 0 ].pageX - event.touches[ 1 ].pageX; var dy = event.touches[ 0 ].pageY - event.touches[ 1 ].pageY; var distance = Math.sqrt( dx * dx + dy * dy ); dollyEnd.set( 0, distance ); dollyDelta.subVectors( dollyEnd, dollyStart ); if ( dollyDelta.y > 0 ) { dollyOut( getZoomScale() ); } else if ( dollyDelta.y < 0 ) { dollyIn( getZoomScale() ); } dollyStart.copy( dollyEnd ); scope.update(); } function handleTouchMovePan( event ) { //console.log( 'handleTouchMovePan' ); panEnd.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY ); panDelta.subVectors( panEnd, panStart ); pan( panDelta.x, panDelta.y ); panStart.copy( panEnd ); scope.update(); } function handleTouchEnd( event ) { //console.log( 'handleTouchEnd' ); } // // event handlers - FSM: listen for events and reset state // function onMouseDown( event ) { if ( scope.enabled === false ) return; event.preventDefault(); if ( event.button === scope.mouseButtons.ORBIT ) { if ( scope.enableRotate === false ) return; handleMouseDownRotate( event ); state = STATE.ROTATE; } else if ( event.button === scope.mouseButtons.ZOOM ) { if ( scope.enableZoom === false ) return; handleMouseDownDolly( event ); state = STATE.DOLLY; } else if ( event.button === scope.mouseButtons.PAN ) { if ( scope.enablePan === false ) return; handleMouseDownPan( event ); state = STATE.PAN; } if ( state !== STATE.NONE ) { document.addEventListener( 'mousemove', onMouseMove, false ); document.addEventListener( 'mouseup', onMouseUp, false ); scope.dispatchEvent( startEvent ); } } function onMouseMove( event ) { if ( scope.enabled === false ) return; event.preventDefault(); if ( state === STATE.ROTATE ) { if ( scope.enableRotate === false ) return; handleMouseMoveRotate( event ); } else if ( state === STATE.DOLLY ) { if ( scope.enableZoom === false ) return; handleMouseMoveDolly( event ); } else if ( state === STATE.PAN ) { if ( scope.enablePan === false ) return; handleMouseMovePan( event ); } } function onMouseUp( event ) { if ( scope.enabled === false ) return; handleMouseUp( event ); document.removeEventListener( 'mousemove', onMouseMove, false ); document.removeEventListener( 'mouseup', onMouseUp, false ); scope.dispatchEvent( endEvent ); state = STATE.NONE; } function onMouseWheel( event ) { if ( scope.enabled === false || scope.enableZoom === false || ( state !== STATE.NONE && state !== STATE.ROTATE ) ) return; event.preventDefault(); event.stopPropagation(); handleMouseWheel( event ); scope.dispatchEvent( startEvent ); // not sure why these are here... scope.dispatchEvent( endEvent ); } function onKeyDown( event ) { if ( scope.enabled === false || scope.enableKeys === false || scope.enablePan === false ) return; handleKeyDown( event ); } function onTouchStart( event ) { if ( scope.enabled === false ) return; switch ( event.touches.length ) { case 1: // one-fingered touch: rotate if ( scope.enableRotate === false ) return; handleTouchStartRotate( event ); state = STATE.TOUCH_ROTATE; break; case 2: // two-fingered touch: dolly if ( scope.enableZoom === false ) return; handleTouchStartDolly( event ); state = STATE.TOUCH_DOLLY; break; case 3: // three-fingered touch: pan if ( scope.enablePan === false ) return; handleTouchStartPan( event ); state = STATE.TOUCH_PAN; break; default: state = STATE.NONE; } if ( state !== STATE.NONE ) { scope.dispatchEvent( startEvent ); } } function onTouchMove( event ) { if ( scope.enabled === false ) return; event.preventDefault(); event.stopPropagation(); switch ( event.touches.length ) { case 1: // one-fingered touch: rotate if ( scope.enableRotate === false ) return; if ( state !== STATE.TOUCH_ROTATE ) return; // is this needed?... handleTouchMoveRotate( event ); break; case 2: // two-fingered touch: dolly if ( scope.enableZoom === false ) return; if ( state !== STATE.TOUCH_DOLLY ) return; // is this needed?... handleTouchMoveDolly( event ); break; case 3: // three-fingered touch: pan if ( scope.enablePan === false ) return; if ( state !== STATE.TOUCH_PAN ) return; // is this needed?... handleTouchMovePan( event ); break; default: state = STATE.NONE; } } function onTouchEnd( event ) { if ( scope.enabled === false ) return; handleTouchEnd( event ); scope.dispatchEvent( endEvent ); state = STATE.NONE; } function onContextMenu( event ) { event.preventDefault(); } // scope.domElement.addEventListener( 'contextmenu', onContextMenu, false ); scope.domElement.addEventListener( 'mousedown', onMouseDown, false ); scope.domElement.addEventListener( 'wheel', onMouseWheel, false ); scope.domElement.addEventListener( 'touchstart', onTouchStart, false ); scope.domElement.addEventListener( 'touchend', onTouchEnd, false ); scope.domElement.addEventListener( 'touchmove', onTouchMove, false ); window.addEventListener( 'keydown', onKeyDown, false ); // force an update at start this.update(); } OrbitControls.prototype = Object.create( EventDispatcher.prototype ); OrbitControls.prototype.constructor = OrbitControls; //import { DirectionGlobe } from '../analysis/DirectionGlobe'; //import { LeakWatch } from '../../../../LeakWatch/src/LeakWatch'; var lightPosition = new Vector3( -1, -1, 0.5 ); var RETILE_TIMEOUT = 150; // ms pause after last movement before attempting retiling var caveIsLoaded = false; var container; // THREE.js objects var renderer; var scene = new Scene(); var oCamera; var pCamera; var camera; var mouse = new Vector2(); var mouseMode = MOUSE_MODE_NORMAL; var mouseTargets = []; var raycaster; var terrain = null; var directionalLight; var survey; var limits; var stats = {}; var zScale; var cursorHeight; var shadingMode; var surfaceShadingMode = SHADING_SINGLE; var terrainShadingMode; var overlays = {}; var activeOverlay = null; var cameraMode; var selectedSection = 0; var controls; var defaultTarget = new Vector3(); var cameraMove; var lastActivityTime = 0; //var leakWatcher; var Viewer = Object.create( EventDispatcher.prototype ); function init ( domID, configuration ) { // public method console.log( 'CaveView v' + VERSION ); container = document.getElementById( domID ); if ( ! container ) alert( 'No container DOM object [' + domID + '] available' ); setEnvironment( configuration ); var width = container.clientWidth; var height = container.clientHeight; renderer = new WebGLRenderer( { antialias: true } ) ; renderer.setSize( width, height ); renderer.setPixelRatio( window.devicePixelRatio ); renderer.setClearColor( 0x000000 ); renderer.autoClear = false; oCamera = new OrthographicCamera( -width / 2, width / 2, height / 2, -height / 2, 1, 4000 ); oCamera.rotateOnAxis( upAxis, Math.PI / 2 ); initCamera( oCamera ); pCamera = new PerspectiveCamera( 75, width / height, 1, 16000 ); initCamera( pCamera ); camera = pCamera; scene.add( pCamera ); scene.add( oCamera ); directionalLight = new DirectionalLight( 0xffffff ); directionalLight.position.copy( lightPosition ); scene.add( directionalLight ); scene.add( new HemisphereLight( 0xffffff, 0x00ffff, 0.3 ) ); raycaster = new Raycaster(); renderer.clear(); container.appendChild( renderer.domElement ); controls = new OrbitControls( camera, renderer.domElement ); cameraMove = new CameraMove( controls, renderView, onCameraMoveEnd ); controls.addEventListener( 'change', function () { cameraMove.prepare( null, null ); cameraMove.start( 80 ); } ); controls.enableDamping = true; // event handler window.addEventListener( 'resize', resize ); Object.defineProperties( Viewer, { 'container': { value: container }, 'terrain': { writeable: true, get: function () { return testCameraLayer( FEATURE_TERRAIN ); }, set: function ( x ) { loadTerrain( x ); } }, 'terrainShading': { writeable: true, get: function () { return terrainShadingMode; }, set: function ( x ) { _stateSetter( setTerrainShadingMode, 'terrainShading', x ); } }, 'hasTerrain': { get: function () { return !! terrain; } }, 'terrainDatumShift': { writeable: true, get: function () { return !! terrain.activeDatumShift; }, set: function ( x ) { applyTerrainDatumShift( x ); } }, 'terrainOverlays': { get: function () { if ( terrain.isTiled ) return Object.keys( overlays ); else return terrain.hasOverlay ? [ true ] : []; } }, 'terrainOverlay': { writeable: true, get: function () { return activeOverlay; }, set: function ( x ) { _stateSetter( setTerrainOverlay, 'terrainOverlay', x ); } }, 'terrainOpacity': { writeable: true, get: function () { return terrain.getOpacity(); }, set: function ( x ) { setTerrainOpacity( x ); } }, 'shadingMode': { writeable: true, get: function () { return shadingMode; }, set: function ( x ) { _stateSetter( setShadingMode, 'shadingMode', x ); } }, 'surfaceShading': { writeable: true, get: function () { return surfaceShadingMode; }, set: function ( x ) { _stateSetter( setSurfaceShadingMode, 'surfaceShading', x ); } }, 'cameraType': { writeable: true, get: function () { return cameraMode; }, set: function ( x ) { _stateSetter( setCameraMode, 'cameraType', x ); } }, 'view': { writeable: true, get: function () { return VIEW_NONE; }, set: function ( x ) { _stateSetter( setViewMode, 'view', x ); } }, 'cursorHeight': { writeable: true, get: function () { return cursorHeight; }, set: function ( x ) { setCursorHeight( x ); } }, 'initCursorHeight': { writeable: true, get: function () { return cursorHeight; }, set: function ( x ) { cursorHeight = x; } }, 'maxHeight': { get: function () { return limits.max.z; } }, 'minHeight': { get: function () { return limits.min.z; } }, 'maxLegLength': { get: function () { return stats.maxLegLength; } }, 'minLegLength': { get: function () { return stats.minLegLength; } }, 'section': { writeable: true, get: function () { return selectedSection; }, set: function ( x ) { _stateSetter( selectSection, 'section', x ); } }, 'highlight': { writeable: true, set: function ( x ) { _stateSetter( highlightSelection, 'highlight', x ); } }, 'routeEdit': { writeable: true, get: function () { return ( mouseMode === MOUSE_MODE_ROUTE_EDIT ); }, set: function ( x ) { _setRouteEdit( x ); this.dispatchEvent( { type: 'change', name: 'routeEdit' } ); } }, 'setPOI': { writeable: true, get: function () { return true; }, set: function ( x ) { _stateSetter( setCameraPOI, 'setPOI', x ); } }, 'developerInfo': { writeable: true, get: function () { return true; }, set: function ( x ) { showDeveloperInfo( x ); } }, 'HUD': { writeable: true, get: function () { return HUD.getVisibility(); }, set: function ( x ) { HUD.setVisibility( x ); } }, 'cut': { writeable: true, get: function () { return true; }, set: function () { cutSection(); } }, 'zScale': { writeable: true, get: function () { return zScale; }, set: function ( x ) { setZScale( x ); } }, 'autoRotate': { writeable: true, get: function () { return controls.autoRotate; }, set: function ( x ) { setAutoRotate( !! x ); } }, 'autoRotateSpeed': { writeable: true, get: function () { return controls.autoRotateSpeed / 11; }, set: function ( x ) { controls.autoRotateSpeed = x * 11; } } } ); _enableLayer( FEATURE_BOX, 'box' ); _conditionalLayer( FEATURE_ENTRANCES, 'entrances' ); _conditionalLayer( FEATURE_STATIONS, 'stations' ); _conditionalLayer( FEATURE_TRACES, 'traces' ); _conditionalLayer( FACE_SCRAPS, 'scraps' ); _conditionalLayer( FACE_WALLS, 'walls' ); _conditionalLayer( LEG_SPLAY, 'splays' ); _conditionalLayer( LEG_SURFACE, 'surfaceLegs' ); _conditionalLayer( LABEL_STATION, 'stationLabels' ); Materials$1.initCache( Viewer ); HUD.init( domID, renderer ); return; function _enableLayer ( layerTag, name ) { Object.defineProperty( Viewer, name, { writeable: true, get: function () { return testCameraLayer( layerTag ); }, set: function ( x ) { setCameraLayer( layerTag, x ); this.dispatchEvent( { type: 'change', name: name } ); } } ); } function _conditionalLayer ( layerTag, name ) { _enableLayer ( layerTag, name ); name = 'has' + name.substr( 0, 1 ).toUpperCase() + name.substr( 1 ); Object.defineProperty( Viewer, name, { get: function () { return survey.hasFeature( layerTag ); } } ); } function _stateSetter ( modeFunction, name, newMode ) { modeFunction( isNaN( newMode ) ? newMode : Number( newMode ) ); Viewer.dispatchEvent( { type: 'change', name: name } ); } function _setRouteEdit ( x ) { mouseMode = x ? MOUSE_MODE_ROUTE_EDIT : MOUSE_MODE_NORMAL; switch ( mouseMode ) { case MOUSE_MODE_NORMAL: mouseTargets = survey.pointTargets; break; case MOUSE_MODE_ROUTE_EDIT: mouseTargets = survey.legTargets; break; default: console.warn( 'invalid mouse mode' ); } } } function setZScale ( scale ) { // scale - in range 0 - 1 var lastScale = Math.pow( 2, ( zScale - 0.5 ) * 4 ); var newScale = Math.pow( 2, ( scale - 0.5 ) * 4 ); survey.applyMatrix( new Matrix4().makeScale( 1, 1, newScale / lastScale ) ); zScale = scale; renderView(); } function setAutoRotate ( state ) { controls.autoRotate = state; if ( state ) { cameraMove.prepare( null, null ); cameraMove.start( 2952000 ); } else { cameraMove.stop(); } } function setCursorHeight ( x ) { cursorHeight = x; Viewer.dispatchEvent( { type: 'cursorChange', name: 'cursorHeight' } ); renderView(); } function setTerrainOpacity ( x ) { terrain.setOpacity( x ); Viewer.dispatchEvent( { type: 'change', name: 'terrainOpacity' } ); renderView(); } function applyTerrainDatumShift( x ) { terrain.applyDatumShift( x ); Viewer.dispatchEvent( { type: 'change', name: 'terrainDatumShift' } ); renderView(); } function showDeveloperInfo( /* x */ ) { // console.log( renderer.info ); /* var info = renderer.getResourceInfo(); if ( leakWatcher === undefined ) { leakWatcher = new LeakWatch(); leakWatcher.setBaseline( scene, info ); } else { leakWatcher.compare( scene, info ); } */ } function renderDepthTexture () { if ( terrain === null || ! terrain.isLoaded() ) return; var dim = 512; // set camera frustrum to cover region/survey area var width = container.clientWidth; var height = container.clientHeight; var range = limits.getSize(); var scaleX = width / range.x; var scaleY = height / range.y; if ( scaleX < scaleY ) { height = height * scaleX / scaleY; } else { width = width * scaleY / scaleX; } // render the terrain to a new canvas square canvas and extract image data var rtCamera = new OrthographicCamera( -width / 2, width / 2, height / 2, -height / 2, -10000, 10000 ); rtCamera.layers.set( FEATURE_TERRAIN ); // just render the terrain scene.overrideMaterial = Materials$1.getDepthMapMaterial( terrain ); var renderTarget = new WebGLRenderTarget( dim, dim, { minFilter: LinearFilter, magFilter: NearestFilter, format: RGBAFormat } ); renderTarget.texture.generateMipmaps = false; renderTarget.texture.name = 'CV.DepthMapTexture'; Materials$1.setTerrain( terrain ); renderer.setSize( dim, dim ); renderer.setPixelRatio( 1 ); renderer.clear(); renderer.render( scene, rtCamera, renderTarget, true ); // correct height between entrances and terrain ( compensates for mismatch beween CRS and datums ) terrain.addHeightMap( renderer, renderTarget ); survey.calibrateTerrain( terrain ); // restore renderer to normal render size and target renderer.setRenderTarget(); // revert to screen canvas renderer.setSize( container.clientWidth, container.clientHeight ); renderer.setPixelRatio( window.devicePixelRatio ); scene.overrideMaterial = null; renderView(); // clear renderList to release objects on heap associated with rtCamera renderer.renderLists.dispose(); } function setCameraMode ( mode ) { if ( mode === cameraMode ) return; // get offset vector of current camera from target var offset = camera.position.clone().sub( controls.target ); switch ( mode ) { case CAMERA_PERSPECTIVE: offset.setLength( CAMERA_OFFSET / oCamera.zoom ); camera = pCamera; break; case CAMERA_ORTHOGRAPHIC: // calculate zoom from ratio of pCamera distance from target to base distance. oCamera.zoom = CAMERA_OFFSET / offset.length(); offset.setLength( CAMERA_OFFSET * 2 ); camera = oCamera; break; default: console.warn( 'unknown camera mode', mode ); return; } // update new camera with position to give same apparent zoom and view camera.position.copy( offset.add( controls.target ) ); camera.updateProjectionMatrix(); camera.lookAt( controls.target ); controls.object = camera; cameraMode = mode; HUD.update(); renderView(); } function initCamera ( camera ) { camera.up = upAxis; camera.zoom = 1; camera.layers.set( 0 ); camera.layers.enable( LEG_CAVE ); camera.layers.enable( FEATURE_ENTRANCES ); camera.layers.enable( FEATURE_BOX ); camera.layers.enable( FEATURE_SELECTED_BOX ); camera.position.set( 0, 0, CAMERA_OFFSET ); camera.lookAt( 0, 0, 0 ); camera.updateProjectionMatrix(); } function setCameraLayer ( layerTag, enable ) { if ( enable ) { oCamera.layers.enable( layerTag ); pCamera.layers.enable( layerTag ); } else { oCamera.layers.disable( layerTag ); pCamera.layers.disable( layerTag ); } renderView(); } function testCameraLayer ( layerTag ) { return ( ( camera.layers.mask & 1 << layerTag ) > 0 ); } function setViewMode ( mode, t ) { var cameraPosition = new Vector3(); var tAnimate = t || 240; switch ( mode ) { case VIEW_PLAN: // reset camera to start position cameraPosition.set( 0, 0, CAMERA_OFFSET ); break; case VIEW_ELEVATION_N: cameraPosition.set( 0, CAMERA_OFFSET, 0 ); break; case VIEW_ELEVATION_S: cameraPosition.set( 0, -CAMERA_OFFSET, 0 ); break; case VIEW_ELEVATION_E: cameraPosition.set( CAMERA_OFFSET, 0, 0 ); break; case VIEW_ELEVATION_W: cameraPosition.set( -CAMERA_OFFSET, 0, 0 ); break; default: console.warn( 'invalid view mode specified: ', mode ); return; } cameraPosition.add( defaultTarget ); cameraMove.cancel(); cameraMove.prepare( cameraPosition, defaultTarget ); cameraMove.start( tAnimate ); } function setTerrainShadingMode ( mode ) { if ( terrain.setShadingMode( mode, renderView ) ) terrainShadingMode = mode; renderView(); } function setShadingMode ( mode ) { if ( terrain === null && ( mode === SHADING_DEPTH || mode === SHADING_DEPTH_CURSOR ) ) return; if ( survey.setShadingMode( mode ) ) shadingMode = mode; renderView(); } function setSurfaceShadingMode ( mode ) { if ( survey.setLegShading( LEG_SURFACE, mode ) ) surfaceShadingMode = mode; renderView(); } function setTerrainOverlay ( overlayName ) { if ( terrainShadingMode === SHADING_OVERLAY ) { activeOverlay = overlayName; terrain.setOverlay( overlays[ overlayName ], renderView ); } } function addOverlay ( name, overlayProvider ) { overlays[ name ] = new Overlay( overlayProvider, container ); if ( Object.keys( overlays ).length === 1 ) { activeOverlay = name; } } function cutSection () { if ( selectedSection === 0 ) return; survey.remove( terrain ); survey.cutSection( selectedSection ); // grab a reference to prevent survey being destroyed in clearView() var cutSurvey = survey; // reset view clearView(); loadSurvey( cutSurvey ); } function highlightSelection ( id ) { survey.highlightSelection( id ); renderView(); } function selectSection ( id ) { var node = survey.selectSection( id ); setShadingMode( shadingMode ); selectedSection = id; if ( id === 0 ) return; if ( node.p === undefined ) { if ( node.boundingBox === undefined ) return; // a section of the survey rather than a station var boundingBox = node.boundingBox.clone(); cameraMove.prepare( null, boundingBox.applyMatrix4( survey.matrixWorld ) ); } else { // a single station cameraMove.prepare( null, survey.getWorldPosition( node.p ) ); } renderView(); } function resize () { var width = container.clientWidth; var height = container.clientHeight; // adjust the renderer to the new canvas size renderer.setSize( width, height ); if ( oCamera === undefined ) return; // adjust cameras to new aspect ratio etc. oCamera.left = -width / 2; oCamera.right = width / 2; oCamera.top = height / 2; oCamera.bottom = -height / 2; oCamera.updateProjectionMatrix(); pCamera.aspect = width / height; pCamera.updateProjectionMatrix(); renderView(); } function clearView () { // clear the current cave model, and clear the screen caveIsLoaded = false; renderer.clear(); HUD.setVisibility( false ); if ( survey ) { survey.remove( terrain ); scene.remove( survey ); } controls.enabled = false; survey = null; terrain = null; selectedSection = 0; mouseMode = MOUSE_MODE_NORMAL; mouseTargets = []; shadingMode = SHADING_HEIGHT; surfaceShadingMode = SHADING_SINGLE; terrainShadingMode = SHADING_SHADED; // remove event listeners unloadTerrainListeners(); Materials$1.flushCache(); container.removeEventListener( 'mousedown', mouseDown ); initCamera( pCamera ); initCamera( oCamera ); Viewer.cameraType = CAMERA_PERSPECTIVE; setViewMode( VIEW_PLAN, 1 ); renderView(); } function loadCave ( cave ) { if ( ! cave ) { alert( 'failed loading cave information' ); return; } loadSurvey( new Survey( cave ) ); } function loadSurvey ( newSurvey ) { var asyncTerrainLoading = false; survey = newSurvey; stats = survey.getFeature( LEG_CAVE ).stats; setScale( survey ); terrain = survey.terrain; scene.up = upAxis; scene.add( survey ); // scene.add( new DirectionGlobe( survey ) ); caveIsLoaded = true; selectSection( 0 ); mouseTargets = survey.pointTargets; setSurfaceShadingMode( surfaceShadingMode ); // set if we have independant terrain maps if ( terrain === null ) { terrain = new WebTerrain( survey, _terrainReady, _tilesLoaded, renderView ); asyncTerrainLoading = true; } else { survey.add( terrain ); setTerrainShadingMode( terrainShadingMode ); renderDepthTexture(); } scene.matrixAutoUpdate = false; container.addEventListener( 'mousedown', mouseDown, false ); HUD.setVisibility( true ); // signal any listeners that we have a new cave if ( ! asyncTerrainLoading ) Viewer.dispatchEvent( { type: 'newCave', name: 'newCave' } ); controls.object = camera; controls.enabled = true; survey.getRoutes().addEventListener( 'changed', _routesChanged ); setViewMode( VIEW_PLAN, 1 ); renderView(); function _terrainReady () { if ( terrain.hasCoverage() ) { setTerrainShadingMode( terrainShadingMode ); terrain.tileArea( survey.limits ); terrain.setDefaultOverlay( overlays[ activeOverlay ] ); survey.add( terrain ); } else { terrain = null; } // delayed notification to ensure and event listeners get accurate terrain information Viewer.dispatchEvent( { type: 'newCave', name: 'newCave' } ); } function _tilesLoaded () { renderView(); loadTerrainListeners(); if ( terrain.depthTexture === null ) renderDepthTexture(); } function _routesChanged ( /* event */ ) { setShadingMode( shadingMode ); renderView(); } } function loadTerrain ( mode ) { if ( terrain.isLoaded() ) { if ( mode ) { loadTerrainListeners(); } else { unloadTerrainListeners(); } terrain.setVisibility( mode ); setCameraLayer( FEATURE_TERRAIN, mode ); Viewer.dispatchEvent( { type: 'change', name: 'terrain' } ); } } function loadTerrainListeners () { clockStart(); controls.addEventListener( 'end', clockStart ); } function unloadTerrainListeners () { if ( ! controls ) return; controls.removeEventListener( 'end', clockStart ); clockStop(); } function clockStart ( /* event */ ) { lastActivityTime = performance.now(); } function clockStop ( /* event */ ) { lastActivityTime = 0; } function mouseDown ( event ) { var picked, result; mouse.x = ( event.clientX / container.clientWidth ) * 2 - 1; mouse.y = - ( event.clientY / container.clientHeight ) * 2 + 1; raycaster.setFromCamera( mouse, camera ); var intersects = raycaster.intersectObjects( mouseTargets, false ); for ( var i = 0, l = intersects.length; i < l; i++ ) { picked = intersects[ i ]; switch ( mouseMode ) { case MOUSE_MODE_NORMAL: if ( picked.object.isPoints ) { result = _selectStation( picked ); } else { result = _selectEntrance( picked ); } break; case MOUSE_MODE_ROUTE_EDIT: result = _selectSegment( picked ); break; } if ( result ) break; } function _selectStation ( picked ) { var station = survey.selectStation( picked.index ); renderView(); var depth = ( terrain ) ? station.p.z - terrain.getHeight( station.p ) : null; var popup = new StationPopup( station, survey.getGeographicalPosition( station.p ), depth ); var p = survey.getWorldPosition( station.p ); popup.display( container, event.clientX, event.clientY, camera, p ); cameraMove.prepare( null, p.clone() ); return true; } function _selectSegment ( picked ) { var routes = getRoutes(); routes.toggleSegment( picked.index ); setShadingMode( SHADING_PATH ); renderView(); return true; } function _selectEntrance ( picked ) { if ( ! Viewer.entrances ) return false; var entrance = picked.object; var position = entrance.getWorldPosition(); cameraMove.prepare( position.clone().add( new Vector3( 0, 0, 5 ) ), position ); console.log( entrance.type, entrance.name ); if ( survey.isRegion === true ) { survey.loadFromEntrance( entrance, _loaded ); } else { cameraMove.start( 80 ); } return true; } function _loaded () { setShadingMode( shadingMode ); renderView(); } } var renderView = function () { var lPosition = new Vector3(); var rotation = new Euler(); return function renderView () { if ( ! caveIsLoaded ) return; camera.getWorldRotation( rotation ); lPosition.copy( lightPosition ); directionalLight.position.copy( lPosition.applyAxisAngle( upAxis, rotation.z ) ); survey.update( camera, controls.target ); renderer.clear(); renderer.render( scene, camera ); HUD.renderHUD(); clockStart(); }; } (); function onCameraMoveEnd () { if ( terrain && terrain.isTiled && Viewer.terrain ) setTimeout( updateTerrain, RETILE_TIMEOUT ); } function updateTerrain () { if ( lastActivityTime && performance.now() - lastActivityTime > RETILE_TIMEOUT ) { clockStop(); if ( terrain.zoomCheck( camera ) ) { setTimeout( updateTerrain, RETILE_TIMEOUT * 5 ); } } } function setCameraPOI ( /* fixme */ ) { cameraMove.start( 200 ); } function setScale ( obj ) { var width = container.clientWidth; var height = container.clientHeight; // scaling to compensate distortion introduced by projection ( x and y coords only ) - approx only var scaleFactor = survey.scaleFactor; limits = survey.limits; zScale = 0.5; var range = limits.getSize(); // initialize cursor height to be mid range of heights cursorHeight = 0; var hScale = Math.min( width / range.x, height / range.y ); var vScale = hScale * scaleFactor; var scale = new Vector3( hScale, hScale, vScale ); obj.scale.copy( scale ); obj.position.copy( survey.modelLimits.getCenter().multiply( scale ).negate() ); HUD.setScale( vScale ); // pass to survey to adjust size of symbology obj.setScale( vScale ); } function getStats () { return stats; } function getControls () { return controls; } function getMetadata () { return survey.getMetadataURL(); } function getRoutes () { return survey.getRoutes(); } function getSurveyTree () { return survey.surveyTree; } // export public interface Object.assign( Viewer, { init: init, clearView: clearView, loadCave: loadCave, getMetadata: getMetadata, getRoutes: getRoutes, getStats: getStats, getSurveyTree: getSurveyTree, getControls: getControls, getState: Viewer, renderView: renderView, addOverlay: addOverlay } ); // EOF function Page( id, onTop ) { var tab = document.createElement( 'div' ); var page = document.createElement( 'div' ); var frame = Page.frame; page.classList.add( 'page' ); tab.id = id; tab.classList.add( 'tab' ); tab.style.top = ( Page.position++ * 40 ) + 'px'; tab.addEventListener( 'click', this.tabHandleClick ); if ( onTop !== undefined ) { // callback when this page is made visible tab.addEventListener( 'click', onTop ); } if ( frame === null ) { // create UI side panel and reveal tabs frame = document.createElement( 'div' ); frame.id = 'frame'; frame.style.display = 'block'; Page.frame = frame; var close = document.createElement( 'div' ); close.id = 'close'; close.addEventListener( 'click', _closeFrame ); frame.appendChild( close ); } frame.appendChild( tab ); frame.appendChild( page ); Page.pages.push( { tab: tab, page: page } ); this.page = page; this.slide = undefined; function _closeFrame ( event ) { event.target.parentElement.classList.remove( 'onscreen' ); } } Page.pages = []; Page.listeners = []; Page.position = 0; Page.inHandler = false; Page.controls = []; Page.frame = null; Page.reset = function () { Page.listeners = []; Page.pages = []; Page.position = 0; Page.inHandler = false; Page.controls = []; Page.frame = null; }; Page.clear = function () { Page.frame.addEventListener( 'transitionend', _afterReset ); Page.frame.classList.remove( 'onscreen' ); var i, l, listener; for ( i = 0, l = Page.listeners.length; i < l; i++ ) { listener = Page.listeners[ i ]; listener.obj.removeEventListener( listener.name, listener.handler ); } Page.listeners = []; function _afterReset ( event ) { var frame = event.target; frame.removeEventListener( 'transitionend', _afterReset ); if ( frame !== null ) frame.parentElement.removeChild( frame ); } }; Page.addListener = function ( obj, name, handler ) { obj.addEventListener( name, handler ); Page.listeners.push( { obj: obj, name: name, handler: handler } ); }; Page.handleChange = function ( event ) { var obj = event.target; var property = event.name; if ( ! Page.inHandle ) { if ( Page.controls[ property ] ) { var ctrl = Page.controls[ property ]; switch ( ctrl.type ) { case 'checkbox': ctrl.checked = obj[ property ]; break; case 'select-one': case 'range': ctrl.value = obj[ property ]; break; case 'download': ctrl.href = obj[ property ]; break; } } } }; Page.prototype.constructor = Page; Page.prototype.addListener = function ( obj, name, handler ) { Page.addListener( obj, name, handler ); // redirect to :: method - allows later rework to page specific destruction }; Page.prototype.tabHandleClick = function ( event ) { var tab = event.target; var pages = Page.pages; tab.classList.add( 'toptab' ); tab.parentElement.classList.add( 'onscreen' ); for ( var i = 0, l = pages.length; i < l; i++ ) { var otherTab = pages[ i ].tab; var otherPage = pages[ i ].page; if ( otherTab === tab ) { otherPage.style.display = 'block'; } else { otherTab.classList.remove( 'toptab' ); otherPage.style.display = 'none'; } } }; Page.prototype.appendChild = function ( domElement ) { this.page.appendChild( domElement ); }; Page.prototype.addHeader = function ( text ) { var div = document.createElement( 'div' ); div.classList.add( 'header' ); div.textContent = text; this.page.appendChild( div ); return div; }; Page.prototype.addText = function ( text ) { var p = document.createElement( 'p' ); p.textContent = text; this.page.appendChild( p ); return p; }; Page.prototype.addSelect = function ( title, obj, trgObj, property, replace ) { var div = document.createElement( 'div' ); var label = document.createElement( 'label' ); var select = document.createElement( 'select' ); var opt; div.classList.add( 'control' ); if ( obj instanceof Array ) { for ( var i = 0, l = obj.length; i < l; i++ ) { opt = document.createElement( 'option' ); opt.value = obj[ i ]; opt.text = obj[ i ]; if ( opt.text === trgObj[ property ] ) opt.selected = true; select.add( opt, null ); } } else { for ( var p in obj ) { opt = document.createElement( 'option' ); opt.text = p; opt.value = obj[ p ]; if ( opt.value == trgObj[ property ] ) opt.selected = true; select.add( opt, null ); } } this.addListener( select, 'change', function ( event ) { Page.inHandler = true; trgObj[ property ] = event.target.value; Page.inHandler = false; } ); label.textContent = title; Page.controls[ property ] = select; div.appendChild( label ); div.appendChild( select ); if ( replace === undefined ) { this.page.appendChild( div ); } else { this.page.replaceChild( div, replace ); } return div; }; Page.prototype.addCheckbox = function ( title, obj, property ) { var label = document.createElement( 'label' ); var cb = document.createElement( 'input' ); label.textContent = title; cb.type = 'checkbox'; cb.checked = obj[ property ]; this.addListener( cb, 'change', _checkboxChanged ); Page.controls[ property ] = cb; label.appendChild( cb ); this.page.appendChild( label ); return label; function _checkboxChanged ( event ) { Page.inHandler = true; obj[ property ] = event.target.checked; Page.inHandler = false; } }; Page.prototype.addRange = function ( title, obj, property ) { var div = document.createElement( 'div' ); var label = document.createElement( 'label' ); var range = document.createElement( 'input' ); div.classList.add( 'control' ); range.type = 'range'; range.min = 0; range.max = 1; range.step = 0.05; range.value = obj[ property ]; this.addListener( range, 'input', _rangeChanged ); this.addListener( range, 'change', _rangeChanged ); // for IE11 support label.textContent = title; Page.controls[ property ] = range; div.appendChild( label ); div.appendChild( range ); this.page.appendChild( div ); return div; function _rangeChanged ( event ) { Page.inHandler = true; obj[ property ] = event.target.value; Page.inHandler = false; } }; Page.prototype.addSlide = function ( domElement, depth, handleClick ) { var slide = document.createElement( 'div' ); slide.classList.add( 'slide' ); slide.style.zIndex = 200 - depth; slide.addEventListener( 'click', handleClick ); slide.appendChild( domElement ); this.page.appendChild( slide ); this.slide = slide; this.slideDepth = depth; return slide; }; Page.prototype.replaceSlide = function ( domElement, depth, handleClick ) { var newSlide = document.createElement( 'div' ); var oldSlide = this.slide; var page = this.page; var redraw; // eslint-disable-line no-unused-vars newSlide.classList.add( 'slide' ); newSlide.style.zIndex = 200 - depth; newSlide.addEventListener( 'click', handleClick ); if ( depth < this.slideDepth ) { newSlide.classList.add( 'slide-out' ); } newSlide.appendChild( domElement ); page.appendChild( newSlide ); if ( depth > this.slideDepth ) { oldSlide.addEventListener( 'transitionend', afterSlideOut ); oldSlide.classList.add( 'slide-out' ); redraw = oldSlide.clientHeight; } else if ( depth < this.slideDepth ) { newSlide.addEventListener( 'transitionend', afterSlideIn ); redraw = newSlide.clientHeight; newSlide.classList.remove( 'slide-out' ); } else { page.removeChild( oldSlide ); } this.slide = newSlide; this.slideDepth = depth; return; function afterSlideOut () { oldSlide.removeEventListener( 'transitionend', afterSlideOut ); page.removeChild( oldSlide ); } function afterSlideIn () { page.removeChild( oldSlide ); newSlide.removeEventListener( 'transitionend', afterSlideIn ); } }; Page.prototype.addButton = function ( title, func ) { var button = document.createElement( 'button' ); button.type = 'button'; button.textContent = title; this.addListener( button, 'click', func ); this.page.appendChild( button ); return button; }; Page.prototype.addTextBox = function ( labelText, placeholder, getResultGetter ) { var div = document.createElement( 'div' ); var label = document.createElement( 'label' ); label.textContent = labelText; var input = document.createElement( 'input' ); var value; input.type = 'text'; input.placeholder = placeholder; div.appendChild( label ); div.appendChild( input ); this.page.appendChild( div ); this.addListener( input, 'change', function ( e ) { value = e.target.value; return true; } ) ; getResultGetter( _result ); return div; function _result() { input.value = ''; return value; } }; Page.prototype.addDownloadButton = function ( title, urlProvider, fileName ) { var a = document.createElement( 'a' ); if ( typeof a.download === 'undefined' ) return null; this.addListener( a, 'click', _setHref ); a.textContent = title; a.type = 'download'; a.download = fileName; a.href = 'javascript:void();'; a.classList.add( 'download' ); this.page.appendChild( a ); return a; function _setHref() { a.href = urlProvider(); } }; // EOF function ProgressBar ( container ) { var offset = ( container.clientWidth - 300 ) / 2; var statusText = document.createElement( 'div' ); statusText.id = 'status-text'; statusText.style.width = '300px'; statusText.style.left = offset + 'px'; var progressBar = document.createElement( 'progress' ); progressBar.id = 'progress-bar'; progressBar.style.width = '300px'; progressBar.style.left = offset + 'px'; progressBar.setAttribute( 'max', '100' ); this.container = container; this.progressBar = progressBar; this.statusText = statusText; } ProgressBar.prototype.constructor = ProgressBar; ProgressBar.prototype.Start = function ( text ) { var statusText = this.statusText; var progressBar = this.progressBar; statusText.textContent = text; progressBar.value = 0; this.container.appendChild( statusText ); this.container.appendChild( progressBar ); }; ProgressBar.prototype.Update = function ( pcent ) { this.progressBar.value = pcent; }; ProgressBar.prototype.Add = function ( pcent ) { this.progressBar.value += pcent; }; ProgressBar.prototype.End = function () { var container = this.container; container.removeChild( this.statusText ); container.removeChild( this.progressBar ); }; // EOF // Survex 3d file handler function Svx3dHandler ( fileName ) { this.fileName = fileName; this.groups = []; this.surface = []; this.xGroups = []; this.surveyTree = new Tree(); this.sourceCRS = null; this.targetCRS = 'EPSG:3857'; // "web mercator" this.projection = null; } Svx3dHandler.prototype.constructor = Svx3dHandler; Svx3dHandler.prototype.type = 'arraybuffer'; Svx3dHandler.prototype.isRegion = 'false'; Svx3dHandler.prototype.parse = function ( dataStream, metadata ) { this.metadata = metadata; var source = dataStream; // file data as arrrayBuffer var pos = 0; // file position // read file header readLF(); // Survex 3D Image File var version = readLF(); // 3d version var auxInfo = readNSLF(); readLF(); // Date var sourceCRS = ( auxInfo[ 1 ] === undefined ) ? null : auxInfo[ 1 ]; // coordinate reference system ( proj4 format ) if ( sourceCRS !== null ) { // work around lack of +init string support in proj4js var matches = sourceCRS.match( /\+init=(.*)\s/); if ( matches && matches.length === 2 ) { switch( matches[ 1 ] ) { case 'epsg:27700' : sourceCRS = '+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000 +ellps=airy +datum=OSGB36 +units=m +no_defs'; break; default: sourceCRS = null; console.warn( 'unsupported projection' ); } } } // FIXME use NAD grid corrections OSTM15 etc ( UK Centric ) if ( sourceCRS !== null ) { console.log( 'Reprojecting from', sourceCRS, 'to', this.targetCRS ); this.sourceCRS = sourceCRS; this.projection = proj4( this.sourceCRS, this.targetCRS ); // eslint-disable-line no-undef } console.log( 'Survex .3d version ', version ); switch ( version ) { case 'Bv0.01': this.handleOld( source, pos, 1 ); break; case 'v3': case 'v4': case 'v5': case 'v6': case 'v7': case 'v8': this.handleVx( source, pos, Number( version.charAt( 1 ) ) ); break; default: alert( 'unknown .3d version ' + version ); } return this; function readLF () { // read until Line feed return readNSLF()[ 0 ]; } function readNSLF () { // read until Line feed and split by null bytes var bytes = new Uint8Array( source, 0 ); var lfString = []; var b; var strings = []; do { b = bytes[ pos++ ]; if ( b === 0x0a || b === 0 ) { strings.push( String.fromCharCode.apply( null, lfString ).trim() ); lfString = []; } else { lfString.push( b ); } } while ( b != 0x0a ); return strings; } }; Svx3dHandler.prototype.handleOld = function ( source, pos, version ) { var groups = this.groups; var surveyTree = this.surveyTree; var self = this; var cmd = []; var legs = []; var label = ''; var stations = new Map(); var sectionId = 0; var data = new Uint8Array( source, 0 ); var dataLength = data.length; var lastPosition = { x: 0, y:0, z: 0 }; // value to allow approach vector for xsect coord frame var i, j, li, lj; var dataView = new DataView( source, 0 ); // selected correct read coordinates function var readCoordinates = ( this.projection === null ) ? __readCoordinates : __readCoordinatesProjected; // range var min = { x: Infinity, y: Infinity, z: Infinity }; var max = { x: -Infinity, y: -Infinity, z: -Infinity }; // init cmd handler table withh error handler for unsupported records or invalid records function _errorHandler ( e ) { console.warn( 'unhandled command: ', e.toString( 16 ) ); return false; } for ( i = 0; i < 256; i++ ) { cmd[ i ] = _errorHandler; } cmd[ 0x00 ] = cmd_STOP; cmd[ -1 ] = cmd_STOP; cmd[ 0x01 ] = cmd_SKIP; cmd[ 0x02 ] = cmd_LABEL_V1; // version numbers not related to Survex versions cmd[ 0x03 ] = cmd_LABEL_V1; cmd[ 0x04 ] = cmd_MOVE; cmd[ 0x05 ] = cmd_LINE_V1; cmd[ 0x06 ] = cmd_LABEL_V2; cmd[ 0x07 ] = cmd_LABEL_V3; for ( i = 0x40; i < 0x80; i++ ) { cmd[ i ] = cmd_LABEL_V4; } for ( i = 0x80; i < 0x100; i++ ) { cmd[ i ] = cmd_LINE_V2; } // dispatch table end // common record iterator // loop though data, handling record types as required. if ( version === 1 ) { while ( pos < dataLength ) { var cmdCode = dataView.getInt32( pos, true ); pos += 4; if ( ! cmd[ cmdCode ]() ) break; } } else { alert( 'Unsupported version' + version ); while ( pos < dataLength ) { if ( ! cmd[ data[ pos ] ]( data[ pos++ ] ) ) break; } } groups.push( legs ); // assign survey ids to all leg vertices by looking up tree node for coords var group, leg, coords, node; for ( i = 0, li = groups.length; i < li; i++ ) { group = groups[ i ]; for ( j = 0, lj = group.length; j < lj; j++ ) { leg = group[ j ]; coords = leg.coords; node = stations.get( coords.x + ':' + coords.y + ':' + coords.z ); if ( node === undefined ) continue; leg.survey = node.parent.id; } } var offsets = { x: ( min.x + max.x ) / 2, y: ( min.y + max.y ) / 2, z: ( min.z + max.z ) / 2 }; surveyTree.traverse( adjustCoords ); this.offsets = offsets; this.limits = { min: min, max: max }; return; function adjustCoords( node ) { var coords = node.p; if ( coords === undefined ) return; coords.x -= offsets.x; coords.y -= offsets.y; coords.z -= offsets.z; } function cmd_STOP ( /* c */ ) { return true; } function cmd_SKIP ( /* c */ ) { console.log( 'SKIP' ); return false; } function cmd_LABEL_V1 ( /* c */ ) { var db = []; var nextByte = data[ pos++ ]; while ( nextByte !== 10 ) { db.push( nextByte ); nextByte = data[ pos++ ]; } if ( db[ 0 ] === 92 ) db.shift(); // remove initial '/' characters label = String.fromCharCode.apply( null, db ); // console.log( 'NODE', label, lastPosition ); var node = surveyTree.addPath( label.split( '.' ), { p: lastPosition, type: STATION_NORMAL } ); // track coords to sectionId to allow survey ID's to be added to leg vertices stations.set( lastPosition.x + ':' + lastPosition.y + ':' + lastPosition.z, node ); return true; } function cmd_LABEL_V2 ( /* c */ ) { console.log( 'LABEL_V2' ); return false; } function cmd_LABEL_V3 ( /* c */ ) { console.log( 'LABEL_V3' ); return false; } function cmd_LABEL_V4 ( /* c */ ) { console.log( 'LABEL_V4' ); return false; } function cmd_MOVE ( /* c */ ) { var coords = readCoordinates(); lastPosition = coords; if ( version === 1 && dataView.getInt32( pos, true ) === 2 ) { // version 1 uses MOVE+LABEL pairs to label stations return true; } // console.log( 'MOVE', coords ); if ( legs.length > 1 ) groups.push( legs ); legs = []; legs.push( { coords: coords } ); return true; } function cmd_LINE_V1 ( /* c */ ) { var coords = readCoordinates(); legs.push( { coords: coords, type: LEG_CAVE, survey: sectionId } ); lastPosition = coords; // console.log( 'LINE_V1', coords ); return true; } function cmd_LINE_V2 ( /* c */ ) { console.log( 'LINE_V2' ); return false; } // functions aliased at runtime as required function __readCoordinatesProjected () { var l = new DataView( source, pos ); var projectedCoords = self.projection.forward( { x: l.getInt32( 0, true ) / 100, y: l.getInt32( 4, true ) / 100 } ); var coords = { x: projectedCoords.x, y: projectedCoords.y, z: l.getInt32( 8, true ) / 100 }; min.x = Math.min( coords.x, min.x ); min.y = Math.min( coords.y, min.y ); min.z = Math.min( coords.z, min.z ); max.x = Math.max( coords.x, max.x ); max.y = Math.max( coords.y, max.y ); max.z = Math.max( coords.z, max.z ); pos += 12; return coords; } function __readCoordinates () { var l = new DataView( source, pos ); var coords = { x: l.getInt32( 0, true ) / 100, y: l.getInt32( 4, true ) / 100, z: l.getInt32( 8, true ) / 100 }; min.x = Math.min( coords.x, min.x ); min.y = Math.min( coords.y, min.y ); min.z = Math.min( coords.z, min.z ); max.x = Math.max( coords.x, max.x ); max.y = Math.max( coords.y, max.y ); max.z = Math.max( coords.z, max.z ); pos += 12; return coords; } }; Svx3dHandler.prototype.handleVx = function ( source, pos, version ) { var groups = this.groups; var xGroups = this.xGroups; var surveyTree = this.surveyTree; var self = this; var cmd = []; var legs = []; var label = ''; var stations = new Map(); var lineEnds = new Set(); // implied line ends to fixnup xsects var xSects = []; var sectionId = 0; var sectionLabels = new Set(); var data = new Uint8Array( source, 0 ); var dataLength = data.length; var lastPosition = { x: 0, y:0, z: 0 }; // value to allow approach vector for xsect coord frame var i; var labelChanged = false; // functions var readLabel; // selected correct read coordinates function var readCoordinates = ( this.projection === null ) ? __readCoordinates : __readCoordinatesProjected; // range var min = { x: Infinity, y: Infinity, z: Infinity }; var max = { x: -Infinity, y: -Infinity, z: -Infinity }; // init cmd handler table withh error handler for unsupported records or invalid records function _errorHandler ( e ) { console.warn( 'unhandled command: ', e.toString( 16 ) ); return false; } for ( i = 0; i < 256; i++ ) { cmd[ i ] = _errorHandler; } if ( version === 8 ) { // v8 dispatch table start cmd[ 0x00 ] = cmd_STYLE; cmd[ 0x01 ] = cmd_STYLE; cmd[ 0x02 ] = cmd_STYLE; cmd[ 0x03 ] = cmd_STYLE; cmd[ 0x04 ] = cmd_STYLE; cmd[ 0x0f ] = cmd_MOVE; cmd[ 0x10 ] = cmd_DATE_NODATE; cmd[ 0x11 ] = cmd_DATEV8_1; cmd[ 0x12 ] = cmd_DATEV8_2; cmd[ 0x13 ] = cmd_DATEV8_3; cmd[ 0x1F ] = cmd_ERROR; cmd[ 0x30 ] = cmd_XSECT16; cmd[ 0x31 ] = cmd_XSECT16; cmd[ 0x32 ] = cmd_XSECT32; cmd[ 0x33 ] = cmd_XSECT32; for ( i = 0x40; i < 0x80; i++ ) { cmd[ i ] = cmd_LINE; } for ( i = 0x80; i < 0x100; i++ ) { cmd[ i ] = cmd_LABEL; } // dispatch table end readLabel = readLabelV8; // skip v8 file wide flags after header pos++; } else { // dispatch table for v7 format for ( i = 0x01; i < 0x0f; i++ ) { cmd[ i ] = cmd_TRIM_PLUS; } cmd[ 0x0f ] = cmd_MOVE; for ( i = 0x10; i < 0x20; i++ ) { cmd[ i ] = cmd_TRIM; } cmd[ 0x00 ] = cmd_STOP; cmd[ 0x20 ] = cmd_DATE_V7; cmd[ 0x21 ] = cmd_DATE2_V7; cmd[ 0x23 ] = cmd_DATE3_V7; cmd[ 0x24 ] = cmd_DATE_NODATE; cmd[ 0x22 ] = cmd_ERROR; cmd[ 0x30 ] = cmd_XSECT16; cmd[ 0x31 ] = cmd_XSECT16; cmd[ 0x32 ] = cmd_XSECT32; cmd[ 0x33 ] = cmd_XSECT32; for ( i = 0x40; i < 0x80; i++ ) { cmd[ i ] = cmd_LABEL; } for ( i = 0x80; i < 0xc0; i++ ) { cmd[ i ] = cmd_LINE; } // dispatch table end readLabel = readLabelV7; } if ( version === 6 ) { cmd[ 0x20 ] = cmd_DATE_V4; cmd[ 0x21 ] = cmd_DATE2_V4; } // common record iterator // loop though data, handling record types as required. while ( pos < dataLength ) { if ( ! cmd[ data[ pos ] ]( data[ pos++ ] ) ) break; } if ( xSects.length > 1 ) { xGroups.push( xSects ); } groups.push( legs ); var offsets = { x: ( min.x + max.x ) / 2, y: ( min.y + max.y ) / 2, z: ( min.z + max.z ) / 2 }; surveyTree.traverse( adjustCoords ); this.offsets = offsets; this.limits = { min: min, max: max }; return; function adjustCoords( node ) { var coords = node.p; if ( coords === undefined ) return; coords.x -= offsets.x; coords.y -= offsets.y; coords.z -= offsets.z; } function readLabelV7 () { // find length of label and read label = v3 - v7 .3d format var len = 0; var l; switch ( data[ pos ] ) { case 0xfe: l = new DataView( source, pos ); len = l.getUint16( 0, true ) + data[ pos ]; pos += 2; break; case 0xff: l = new DataView( source, pos ); len = l.getUint32( 0, true ); pos += 4; break; default: len = data[ pos++ ]; } if ( len === 0 ) return; var db = []; for ( var i = 0; i < len; i++ ) { db.push( data[ pos++ ] ); } label += String.fromCharCode.apply( null, db ); labelChanged = true; return; } function readLabelV8 ( flags ) { if ( flags & 0x20 ) return false; // no label change var b = data[ pos++ ]; var add = 0; var del = 0; var l; if ( b !== 0 ) { // handle 4b= bit del/add codes del = b >> 4; // left most 4 bits add = b & 0x0f; // right most 4 bits } else { // handle 8 bit and 32 bit del/add codes b = data[ pos++ ]; if ( b !== 0xff ) { del = b; } else { l = new DataView( source, pos ); del = l.getUint32( 0, true ); pos += 4; } b = data[ pos++ ]; if ( b !== 0xff ) { add = b; } else { l = new DataView( source, pos ); add = l.getUint32( 0, true ); pos += 4; } } if ( add === 0 && del === 0 ) return; if ( del ) label = label.slice( 0, -del ); if ( add ) { var db = []; for ( var i = 0; i < add; i++ ) { db.push( data[ pos++ ] ); } label += String.fromCharCode.apply( null, db ); } labelChanged = true; return; } function cmd_STOP ( /* c */ ) { if ( label ) label = ''; return true; } function cmd_TRIM_PLUS ( c ) { // v7 and previous label = label.slice( 0, -16 ); if ( label.charAt( label.length - 1 ) === '.') label = label.slice( 0, -1 ); // strip trailing '.' var parts = label.split( '.' ); parts.splice( -( c ) ); label = parts.join( '.' ); if ( label ) label += '.'; labelChanged = true; return true; } function cmd_TRIM ( c ) { // v7 and previous var trim = c - 15; label = label.slice( 0, -trim ); labelChanged = true; return true; } function cmd_DATE_V4 ( /* c */ ) { pos += 4; return true; } function cmd_DATE_V7 ( /* c */ ) { pos += 2; return true; } function cmd_DATE3_V7 ( /* c */ ) { pos += 4; return true; } function cmd_DATE2_V4 ( /* c */ ) { pos += 8; return true; } function cmd_DATE2_V7 ( /* c */ ) { pos += 3; return true; } function cmd_STYLE ( /* c */ ) { return true; } function cmd_DATEV8_1 ( /* c */ ) { pos += 2; return true; } function cmd_DATEV8_2 ( /* c */ ) { pos += 3; return true; } function cmd_DATEV8_3 ( /* c */ ) { pos += 4; return true; } function cmd_DATE_NODATE ( /* c */ ) { return true; } function cmd_LINE ( c ) { var flags = c & 0x3f; readLabel( flags ); if ( labelChanged && label !== '' ) { // we have a new section name var path = label.split( '.' ); var partLabel = path[ 0 ]; // save valid survey station prefixes sectionLabels.add( partLabel ); for ( var i = 1, l = path.length; i < l; i++ ) { partLabel = partLabel + '.' + path[ i ]; sectionLabels.add( partLabel ); } // add it to the survey tree sectionId = surveyTree.addPath( path ).id; // consumes path labelChanged = false; } var coords = readCoordinates(); if ( flags & 0x01 ) { legs.push( { coords: coords, type: LEG_SURFACE, survey: sectionId } ); } else if ( flags & 0x04 ) { legs.push( { coords: coords, type: LEG_SPLAY, survey: sectionId } ); } else { legs.push( { coords: coords, type: LEG_CAVE, survey: sectionId } ); } lastPosition = coords; return true; } function cmd_MOVE ( /* c */ ) { // new set of line segments if ( legs.length > 1 ) groups.push( legs ); legs = []; // heuristic to detect line ends. lastPosition was presumably set in a line sequence therefore is at the end // of a line, Add the current label, presumably specified in the last LINE, to a Set of lineEnds. lineEnds.add( lastPosition.x + ':' + lastPosition.y + ':' + lastPosition.z ); var coords = readCoordinates(); legs.push( { coords: coords } ); lastPosition = coords; return true; } function cmd_ERROR ( /* c */ ) { /* var l = new DataView( source, pos ); var legs = l.getInt32( 0, true ); var length = l.getInt32( 4, true ); var E = l.getInt32( 8, true ); var H = l.getInt32( 12, true ); var V = l.getInt32( 16, true ); */ pos += 20; return true; } function cmd_LABEL ( c ) { var flags = c & 0x7f; readLabel( 0 ); if ( ! ( flags & 0x0E ) || flags & 0x20 ) { // skip surface only stations pos += 12; //skip coordinates return true; } var coords = readCoordinates(); var path = label.split( '.' ); var prefix = path.slice( 0, -1 ).join( '.' ); if ( path.length > 1 && ! sectionLabels.has( prefix ) ) { // handle station names containing separator character var i = 0; var test = path[ i ]; while ( sectionLabels.has( test ) ) { test = test + '.' + path[ ++ i ]; } var last = path.slice( i ).join( '.' ); path = path.slice( 0, i ); path.push( last ); } stations.set( label, coords ); surveyTree.addPath( path, { p: coords, type: ( flags & 0x04 ) ? STATION_ENTRANCE : STATION_NORMAL } ); return true; } function cmd_XSECT16 ( c ) { var flags = c & 0x01; readLabel( flags ); var l = new DataView( source, pos ); pos += 8; return commonXSECT( flags, { l: l.getInt16( 0, true ) / 100, r: l.getInt16( 2, true ) / 100, u: l.getInt16( 4, true ) / 100, d: l.getInt16( 6, true ) / 100 } ); } function cmd_XSECT32 ( c ) { var flags = c & 0x01; readLabel( flags ); var l = new DataView( source, pos ); pos += 16; return commonXSECT( flags, { l: l.getInt32( 0, true ) / 100, r: l.getInt32( 0, true ) / 100, u: l.getInt32( 0, true ) / 100, d: l.getInt32( 0, true ) / 100 } ); } function commonXSECT ( flags, lrud ) { var position = stations.get( label ); if ( ! position ) return; var station = label.split( '.' ); // get survey path by removing last component of station name station.pop(); var surveyId = surveyTree.getIdByPath( station ); // FIXME to get a approach vector for the first XSECT in a run so we can add it to the display xSects.push( { start: lastPosition, end: position, lrud: lrud, survey: surveyId } ); lastPosition = position; // some XSECTS are not flagged as last in passage // heuristic - the last line position before a move is an implied line end. // cmd_MOVE saves these in the set lineEnds. // this fixes up surveys that display incorrectly withg 'fly-back' artefacts in Aven and Loch. var endRun = false; if ( flags ) { endRun = true; } else if ( lineEnds.has( [ position.x, position.y, position.z ].toString() ) ) { endRun = true; // console.warn( 'unterminated LRUD passage at ', label ); } if ( endRun ) { if ( xSects.length > 0 ) xGroups.push( xSects ); lastPosition = { x: 0, y: 0, z: 0 }; xSects = []; } return true; } // functions aliased at runtime as required function __readCoordinatesProjected () { var l = new DataView( source, pos ); var projectedCoords = self.projection.forward( { x: l.getInt32( 0, true ) / 100, y: l.getInt32( 4, true ) / 100 } ); var coords = { x: projectedCoords.x, y: projectedCoords.y, z: l.getInt32( 8, true ) / 100 }; min.x = Math.min( coords.x, min.x ); min.y = Math.min( coords.y, min.y ); min.z = Math.min( coords.z, min.z ); max.x = Math.max( coords.x, max.x ); max.y = Math.max( coords.y, max.y ); max.z = Math.max( coords.z, max.z ); pos += 12; return coords; } function __readCoordinates () { var l = new DataView( source, pos ); var coords = { x: l.getInt32( 0, true ) / 100, y: l.getInt32( 4, true ) / 100, z: l.getInt32( 8, true ) / 100 }; min.x = Math.min( coords.x, min.x ); min.y = Math.min( coords.y, min.y ); min.z = Math.min( coords.z, min.z ); max.x = Math.max( coords.x, max.x ); max.y = Math.max( coords.y, max.y ); max.z = Math.max( coords.z, max.z ); pos += 12; return coords; } }; Svx3dHandler.prototype.getLineSegments = function () { var lineSegments = []; var groups = this.groups; var offsets = this.offsets; for ( var i = 0, l = groups.length; i < l; i++ ) { var g = groups[ i ]; for ( var v = 0, vMax = g.length - 1; v < vMax; v++ ) { // create vertex pairs for each line segment. // all vertices except first and last are duplicated. var from = g[ v ]; var to = g[ v + 1 ]; // move coordinates around origin from.coords.x -= offsets.x; from.coords.y -= offsets.y; from.coords.z -= offsets.z; var fromCoords = from.coords; var toCoords = to.coords; // skip repeated points ( co-located stations ) if ( fromCoords.x === toCoords.x && fromCoords.y === toCoords.y && fromCoords.z === toCoords.z ) continue; lineSegments.push( { from: fromCoords, to: toCoords, type: to.type, survey: to.survey } ); } // move coordinates around origin to.coords.x -= offsets.x; to.coords.y -= offsets.y; to.coords.z -= offsets.z; } return lineSegments; }; Svx3dHandler.prototype.getTerrainDimensions = function () { return { lines: 0, samples: 0 }; }; Svx3dHandler.prototype.getTerrainBitmap = function () { return false; }; Svx3dHandler.prototype.getSurvey = function () { return { title: this.fileName, surveyTree: this.surveyTree, sourceCRS: this.sourceCRS, targetCRS: this.targetCRS, limits: this.limits, offsets: this.offsets, lineSegments: this.getLineSegments(), crossSections: this.xGroups, scraps: [], hasTerrain: false, metadata: this.metadata }; }; // EOF function loxHandler ( fileName ) { this.fileName = fileName; this.scraps = []; this.faults = []; this.lineSegments = []; this.xGroups = []; this.surveyTree = new Tree( '', 0 ); this.terrain = {}; this.hasTerrain = false; } loxHandler.prototype.constructor = loxHandler; loxHandler.prototype.type = 'arraybuffer'; loxHandler.prototype.isRegion = 'false'; loxHandler.prototype.parse = function( dataStream, metadata ) { this.metadata = metadata; var lineSegments = []; var stations = []; var self = this; var surveyTree = this.surveyTree; // assumes little endian data ATM - FIXME var source = dataStream; var pos = 0; // file position var dataStart; var f = new DataView( source, 0 ); var l = source.byteLength; var xGroup = []; var lastTo; // range var min = { x: Infinity, y: Infinity, z: Infinity }; var max = { x: -Infinity, y: -Infinity, z: -Infinity }; while ( pos < l ) readChunkHdr(); this.lineSegments = lineSegments; // Drop data to give GC a chance ASAP source = null; this.limits = { min: min, max: max }; var offsets = { x: ( min.x + max.x ) / 2, y: ( min.y + max.y ) / 2, z: ( min.z + max.z ) / 2 }; this.offsets = offsets; // convert to origin centered coordinates var i, j, coords, vertices; for ( i = 0; i < stations.length; i++ ) { coords = stations[ i ]; coords.x -= offsets.x; coords.y -= offsets.y; coords.z -= offsets.z; } var scraps = this.scraps; // covert scraps coordinates for ( i = 0; i < scraps.length; i++ ) { vertices = scraps[ i ].vertices; for ( j = 0; j < vertices.length; j++ ) { coords = vertices[ j ]; coords.x -= offsets.x; coords.y -= offsets.y; coords.z -= offsets.z; } } return this; // .lox parsing functions function readChunkHdr () { var m_type = readUint(); var m_recSize = readUint(); var m_recCount = readUint(); var m_dataSize = readUint(); var doFunction; // offset of data region for out of line strings/images/scrap data. dataStart = pos + m_recSize; switch ( m_type ) { case 1: doFunction = readSurvey; break; case 2: doFunction = readStation; break; case 3: doFunction = readShot; break; case 4: doFunction = readScrap; break; case 5: doFunction = readSurface; break; case 6: doFunction = readSurfaceBMP; break; default: console.warn( 'unknown chunk header. type : ', m_type ); } if ( doFunction !== undefined ) { for ( var i = 0; i < m_recCount; i++ ) { doFunction(); } } skipData( m_dataSize ); } function readUint () { var i = f.getUint32( pos, true ); pos += 4; return i; } function skipData ( i ) { pos += i; } function readSurvey () { var m_id = readUint(); var namePtr = readDataPtr(); var m_parent = readUint(); var titlePtr = readDataPtr(); if ( m_parent != m_id ) { if ( ! surveyTree.addById( readString( namePtr ), m_id, m_parent ) ) console.warn( 'error constructing survey tree for', readString( titlePtr ) ); } } function readDataPtr () { var m_position = readUint(); var m_size = readUint(); return { position: m_position, size: m_size }; } function readString ( ptr ) { // strings are null terminated. Igore last byte in string var bytes = new Uint8Array( source, dataStart + ptr.position, ptr.size - 1 ); return String.fromCharCode.apply( null, bytes ); } function readStation () { var m_id = readUint(); var m_surveyId = readUint(); var namePtr = readDataPtr(); readDataPtr(); // commentPtr var m_flags = readUint(); var coords = readCoords(); stations[ m_id ] = coords; // add stations to surveyTree make station id negative to avoid clashes with survey id space. // m_flags & 0x01 = surface surveyTree.addById( readString( namePtr ), - m_id, m_surveyId, { p: coords, type: ( m_flags & 0x02 ) ? STATION_ENTRANCE : STATION_NORMAL } ); } function readCoords () { var f = new DataView( source, pos ); pos += 24; coords = { x: f.getFloat64( 0, true ), y: f.getFloat64( 8, true ), z: f.getFloat64( 16, true ) }; min.x = Math.min( coords.x, min.x ); min.y = Math.min( coords.y, min.y ); min.z = Math.min( coords.z, min.z ); max.x = Math.max( coords.x, max.x ); max.y = Math.max( coords.y, max.y ); max.z = Math.max( coords.z, max.z ); return coords; } function readShot () { var m_from = readUint(); var m_to = readUint(); var fromLRUD = readLRUD(); var toLRUD = readLRUD(); var m_flags = readUint(); var m_sectionType = readUint(); var m_surveyId = readUint(); f.getFloat64( pos, true ); // m_threshold var type = LEG_CAVE; pos += 8; if ( m_flags & 0x01 ) type = LEG_SURFACE; if ( m_flags & 0x08 ) type = LEG_SPLAY; var from = stations[ m_from ]; var to = stations[ m_to ]; if ( m_sectionType !== 0x00 ) { if ( m_from !== lastTo ) { // new set of shots xGroup = []; self.xGroups.push( xGroup ); xGroup.push( { start: to, end: from, lrud: fromLRUD, survey: m_surveyId } ); } xGroup.push( { start: from, end: to, lrud: toLRUD, survey: m_surveyId } ); } if ( from.x === to.x && from.y === to.y && from.z === to.z ) return; lineSegments.push( { from: from, to: to, type: type, survey: m_surveyId } ); lastTo = m_to; } function readLRUD () { var f = new DataView( source, pos ); pos += 32; return { l: f.getFloat64( 0, true ), r: f.getFloat64( 8, true ), u: f.getFloat64( 16, true ), d: f.getFloat64( 24, true ) }; } function readScrap () { readUint(); // m_id var m_surveyId = readUint(); var m_numPoints = readUint(); var pointsPtr = readDataPtr(); var m_num3Angles = readUint(); var facesPtr = readDataPtr(); var scrap = { vertices: [], faces: [], survey: m_surveyId }; var lastFace; var i, offset, f; for ( i = 0; i < m_numPoints; i++ ) { offset = dataStart + pointsPtr.position + i * 24; // 24 = 3 * sizeof( double ) f = new DataView( source, offset ); scrap.vertices.push( { x: f.getFloat64( 0, true ), y: f.getFloat64( 8, true ), z: f.getFloat64( 16, true ) } ); } // read faces from out of line data area for ( i = 0; i < m_num3Angles; i++ ) { offset = dataStart + facesPtr.position + i * 12; // 12 = 3 * sizeof( uint32 ) f = new DataView( source, offset ); var face = [ f.getUint32( 0, true ), f.getUint32( 4, true ), f.getUint32( 8, true ) ]; // check for face winding order == orientation fix_direction: { if ( lastFace !== undefined ) { var j; for ( j = 0; j < 3; j++ ) { // this case triggers more often than those below. if ( face[ j ] == lastFace[ ( j + 2 ) % 3 ] && face[ ( j + 1 ) % 3 ] == lastFace[ ( j + 3 ) % 3 ] ) { face.reverse(); break fix_direction; } } for ( j = 0; j < 3; j++ ) { if ( face[ j ] == lastFace[ j ] && face[ ( j + 1 ) % 3 ] == lastFace[ ( j + 1 ) % 3 ] ) { face.reverse(); break fix_direction; } } for ( j = 0; j < 3; j++ ) { if ( face[ j ] == lastFace[ ( j + 1 ) % 3 ] && face[ ( j + 1 ) % 3 ] == lastFace[ ( j + 2 ) % 3 ] ) { face.reverse(); break fix_direction; } } } } scrap.faces.push( face ); lastFace = face; } self.scraps.push( scrap ); } function readSurface () { readUint(); // m_id var m_width = readUint(); var m_height = readUint(); var surfacePtr = readDataPtr(); var m_calib = readCalibration(); var ab = source.slice( pos, pos + surfacePtr.size ); // required for 64b alignment var dtm = new Float64Array( ab, 0 ); // flip y direction var data = []; for ( var i = 0; i < m_height; i++ ) { var offset = ( m_height - 1 - i ) * m_width; for ( var j = 0; j < m_width; j++ ) { data.push( dtm[ offset + j ] ); } } var terrain = self.terrain; terrain.dtm = { data: data, samples: m_width, lines: m_height, xOrigin: m_calib[ 0 ], yOrigin: m_calib[ 1 ], xx: m_calib[ 2 ], xy: m_calib[ 3 ], yx: m_calib[ 4 ], yy: m_calib[ 5 ] }; self.hasTerrain = true; } function readCalibration () { var f = new DataView( source, pos ); var m_calib = []; m_calib[ 0 ] = f.getFloat64( 0, true ); // x origin m_calib[ 1 ] = f.getFloat64( 8, true ); // y origin m_calib[ 2 ] = f.getFloat64( 16, true ); // xx ( 2 x 2 ) rotate and scale matrix m_calib[ 3 ] = f.getFloat64( 24, true ); // xy " m_calib[ 4 ] = f.getFloat64( 32, true ); // yx " m_calib[ 5 ] = f.getFloat64( 40, true ); // yy " pos += 48; return m_calib; } function readSurfaceBMP () { readUint(); // m_type readUint(); // m_surfaceId var imagePtr = readDataPtr(); var m_calib = readCalibration(); self.terrain.bitmap = { image: extractImage( imagePtr ), xOrigin: m_calib[ 0 ], yOrigin: m_calib[ 1 ], xx: m_calib[ 2 ], xy: m_calib[ 3 ], yx: m_calib[ 4 ], yy: m_calib[ 5 ] }; } function extractImage ( imagePtr ) { var imgData = new Uint8Array( source, dataStart + imagePtr.position, imagePtr.size ); var type; var b1 = imgData[ 0 ]; var b2 = imgData[ 1 ]; if ( b1 === 0xff && b2 === 0xd8 ) { type = 'image/jpeg'; } else if ( b1 === 0x89 && b2 === 0x50 ) { type = 'image/png'; } if ( ! type ) return ''; var blob = new Blob( [ imgData ], { type: type } ); var blobURL = URL.createObjectURL( blob ); return blobURL; } }; loxHandler.prototype.getSurvey = function () { return { title: this.fileName, surveyTree: this.surveyTree, sourceCRS: null, targetCRS: null, lineSegments: this.lineSegments, crossSections: this.xGroups, scraps: this.scraps, hasTerrain: this.hasTerrain, metadata: this.metadata, terrain: this.terrain, limits: this.limits, offsets: this.offsets }; }; // EOF // Survex kml file handler //import { LEG_CAVE, LEG_SPLAY, LEG_SURFACE, STATION_NORMAL, STATION_ENTRANCE } from '../core/constants'; function kmlHandler ( fileName ) { this.fileName = fileName; this.groups = []; this.surface = []; this.xGroups = []; this.surveyTree = new Tree(); this.sourceCRS = null; this.targetCRS = 'EPSG:3857'; // "web mercator" this.projection = null; } kmlHandler.prototype.constructor = kmlHandler; kmlHandler.prototype.type = 'document'; kmlHandler.prototype.isRegion = 'false'; kmlHandler.prototype.mimeType = 'text/xml'; kmlHandler.prototype.parse = function ( dataStream, metadata ) { this.metadata = metadata; console.log( 'x', dataStream ); for ( var n in dataStream ) { console.log( ':', n ); } return this; }; kmlHandler.prototype.getLineSegments = function () { var lineSegments = []; var groups = this.groups; var offsets = this.offsets; for ( var i = 0, l = groups.length; i < l; i++ ) { var g = groups[ i ]; for ( var v = 0, vMax = g.length - 1; v < vMax; v++ ) { // create vertex pairs for each line segment. // all vertices except first and last are duplicated. var from = g[ v ]; var to = g[ v + 1 ]; // move coordinates around origin from.coords.x -= offsets.x; from.coords.y -= offsets.y; from.coords.z -= offsets.z; var fromCoords = from.coords; var toCoords = to.coords; // skip repeated points ( co-located stations ) if ( fromCoords.x === toCoords.x && fromCoords.y === toCoords.y && fromCoords.z === toCoords.z ) continue; lineSegments.push( { from: fromCoords, to: toCoords, type: to.type, survey: to.survey } ); } // move coordinates around origin to.coords.x -= offsets.x; to.coords.y -= offsets.y; to.coords.z -= offsets.z; } return lineSegments; }; kmlHandler.prototype.getTerrainDimensions = function () { return { lines: 0, samples: 0 }; }; kmlHandler.prototype.getTerrainBitmap = function () { return false; }; kmlHandler.prototype.getSurvey = function () { return { title: this.fileName, surveyTree: this.surveyTree, sourceCRS: this.sourceCRS, targetCRS: this.targetCRS, limits: this.limits, offsets: this.offsets, lineSegments: this.getLineSegments(), crossSections: this.xGroups, scraps: [], hasTerrain: false, metadata: this.metadata }; }; // EOF function RegionHandler ( filename ) { this.filename = filename; this.box = new Box3(); } RegionHandler.prototype.constructor = RegionHandler; RegionHandler.prototype.type = 'json'; RegionHandler.prototype.isRegion = 'true'; RegionHandler.prototype.parse = function ( dataStream ) { this.data = dataStream; var entrances = []; var caves = this.data.caves; var caveName; var min = this.box.min; var max = this.box.max; for ( caveName in caves ) { var i; var e = caves[ caveName ].entrances; for ( i = 0; i < e.length; i++ ) { var entrance = e[ i ]; min.min( entrance.position ); max.max( entrance.position ); entrances.push( entrance ); } } this.data.entrances = entrances; this.data.surveyTree = new Tree( this.data.title ); }; RegionHandler.prototype.getSurvey = function () { return this.data; }; RegionHandler.prototype.getLimits = function () { return this.box; }; // EOF function CaveLoader ( callback, progress ) { if ( ! callback ) { alert( 'No callback specified' ); } this.callback = callback; this.progress = progress; this.dataResponse = null; this.metadataResponse = null; this.taskCount = 0; } CaveLoader.prototype.constructor = CaveLoader; CaveLoader.prototype.setHandler = function ( fileName ) { var rev = fileName.split( '.' ).reverse(); this.extention = rev.shift().toLowerCase(); var handler; switch ( this.extention ) { case '3d': handler = new Svx3dHandler( fileName ); break; case 'lox': handler = new loxHandler( fileName ); break; case 'kml': handler = new kmlHandler( fileName ); break; case 'reg': case 'json': handler = new RegionHandler( fileName ); break; default: console.warn( 'Cave: unknown response extension [', self.extention, ']' ); return false; } this.handler = handler; return true; }; CaveLoader.prototype.loadURL = function ( fileName ) { var self = this; var prefix = getEnvironmentValue( 'surveyDirectory', '' ); // setup file handler if ( ! this.setHandler( fileName ) ) { alert( 'Cave: unknown file extension [' + self.extention + ']' ); return false; } var handler = this.handler; this.doneCount = 0; this.taskCount = handler.isRegion ? 1 : 2; var loader = new FileLoader().setPath( prefix ); // request metadata file if not a region if ( ! handler.isRegion ) { loader.setResponseType( 'json' ).load( replaceExtension( fileName, 'json' ), _metadataLoaded, undefined, _metadataError ); } if ( handler.mimeType !== undefined ) loader.setMimeType( 'text/xml' ); loader.setResponseType( handler.type ); loader.load( fileName, _dataLoaded, _progress, _dataError ); return true; function _dataLoaded ( result ) { self.doneCount++; self.dataResponse = result; if ( self.doneCount === self.taskCount ) self.callHandler(); } function _metadataLoaded ( result ) { self.doneCount++; self.metadataResponse = result; if ( self.doneCount === self.taskCount ) self.callHandler(); } function _progress ( e ) { if ( self.progress) self.progress( Math.round( 100 * e.loaded / e.total ) ); } function _dataError ( event ) { self.doneCount++; console.warn( ' error event', event ); if ( self.doneCount === self.taskCount ) self.callHandler( fileName ); } function _metadataError ( /* event */ ) { self.doneCount++; if ( self.doneCount === self.taskCount ) self.callHandler( fileName ); } }; CaveLoader.prototype.loadFile = function ( file ) { var self = this; var fileName = file.name; if ( ! this.setHandler( fileName ) ) { alert( 'Cave: unknown file extension [' + this.extention + ']' ); return false; } var type = this.handler.type; var fLoader = new FileReader(); fLoader.addEventListener( 'load', _loaded ); fLoader.addEventListener( 'progress', _progress ); switch ( type ) { case 'arraybuffer': fLoader.readAsArrayBuffer( file ); break; default: alert( 'unknown file data type' ); return false; } return true; function _loaded () { self.dataResponse = fLoader.result; self.callHandler(); } function _progress ( e ) { if ( self.progress ) self.progress( Math.round( 100 * e.loaded / e.total ) ); } }; CaveLoader.prototype.callHandler = function () { if ( this.dataResponse === null ) { this.callback( false ); return; } var data = this.dataResponse; var metadata = this.metadataResponse; this.dataResponse = null; this.metadataResponse = null; this.callback( this.handler.parse( data, metadata ) ); }; // EOF var cave; var caveLoader; var routes = null; var caveIndex = Infinity; var caveList = []; var guiState = {}; var surveyTree; var currentTop; var isCaveLoaded = false; var container$2; var file; var progressBar; var terrainControls = []; var routeControls = []; var terrainOverlay = null; var legShadingModes = { 'by height': SHADING_HEIGHT, 'by leg length': SHADING_LENGTH, 'by leg inclination': SHADING_INCLINATION, 'height cursor': SHADING_CURSOR, 'fixed': SHADING_SINGLE, 'survey': SHADING_SURVEY, 'route': SHADING_PATH }; var surfaceShadingModes = { 'by height': SHADING_HEIGHT, 'by leg inclination': SHADING_INCLINATION, 'height cursor': SHADING_CURSOR, 'fixed': SHADING_SINGLE }; var terrainShadingModes = { 'Relief shading': SHADING_SHADED, 'by height': SHADING_HEIGHT }; var cameraViews = { '