2
0
mirror of https://expo.survex.com/repositories/troggle/.git synced 2024-11-24 16:21:53 +00:00
troggle/media/jslib/CaveView/js/workers/caveWorker.js

23174 lines
566 KiB
JavaScript
Raw Normal View History

2021-04-02 19:02:10 +01:00
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory() :
typeof define === 'function' && define.amd ? define(factory) :
(factory());
}(this, (function () { 'use strict';
var environment = new Map();
function getEnvironmentValue ( item, defaultValue ) {
if ( environment.has( item ) ) {
return environment.get( item );
} else {
return defaultValue;
}
}
function replaceExtension( fileName, newExtention ) {
return fileName.split( '.' ).shift() + '.' + newExtention;
}
// polyfill padStart for IE11 - now supported for Chrome, FireFox and Edge
if ( ! String.prototype.padStart ) {
String.prototype.padStart = function padStart( targetLength, padString ) {
targetLength = targetLength >> 0; //floor if number or convert non-number to 0;
padString = String( padString || ' ' );
if (this.length > targetLength) {
return String( this );
} else {
targetLength = targetLength - this.length;
if ( targetLength > padString.length ) {
padString += padString.repeat( targetLength / padString.length ); //append to original to ensure we are longer than needed
}
return padString.slice( 0, targetLength ) + String( this );
}
};
}
if ( ! String.prototype.repeat ) {
String.prototype.repeat = function( count ) {
if ( this == null ) throw new TypeError( 'can\'t convert ' + this + ' to object' );
var str = '' + this;
count = +count;
if ( count != count ) count = 0;
if ( count < 0 ) throw new RangeError( 'repeat count must be non-negative' );
if ( count == Infinity ) throw new RangeError( 'repeat count must be less than infinity' );
count = Math.floor( count );
if ( str.length == 0 || count == 0 ) return '';
// Ensuring count is a 31-bit integer allows us to heavily optimize the
// main part. But anyway, most current (August 2014) browsers can't handle
// strings 1 << 28 chars or longer, so:
if ( str.length * count >= 1 << 28 ) throw new RangeError('repeat count must not overflow maximum string size');
var rpt = '';
for (;;) {
if ( ( count & 1) == 1 ) rpt += str;
count >>>= 1;
if ( count == 0 ) break;
str += str;
}
// Could we try:
// return Array(count + 1).join(this);
return rpt;
};
}
// EOF
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
var _Math = {
DEG2RAD: Math.PI / 180,
RAD2DEG: 180 / Math.PI,
generateUUID: function () {
// http://www.broofa.com/Tools/Math.uuid.htm
var chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'.split( '' );
var uuid = new Array( 36 );
var rnd = 0, r;
return function generateUUID() {
for ( var i = 0; i < 36; i ++ ) {
if ( i === 8 || i === 13 || i === 18 || i === 23 ) {
uuid[ i ] = '-';
} else if ( i === 14 ) {
uuid[ i ] = '4';
} else {
if ( rnd <= 0x02 ) rnd = 0x2000000 + ( Math.random() * 0x1000000 ) | 0;
r = rnd & 0xf;
rnd = rnd >> 4;
uuid[ i ] = chars[ ( i === 19 ) ? ( r & 0x3 ) | 0x8 : r ];
}
}
return uuid.join( '' );
};
}(),
clamp: function ( value, min, max ) {
return Math.max( min, Math.min( max, value ) );
},
// compute euclidian modulo of m % n
// https://en.wikipedia.org/wiki/Modulo_operation
euclideanModulo: function ( n, m ) {
return ( ( n % m ) + m ) % m;
},
// Linear mapping from range <a1, a2> to range <b1, b2>
mapLinear: function ( x, a1, a2, b1, b2 ) {
return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );
},
// https://en.wikipedia.org/wiki/Linear_interpolation
lerp: function ( x, y, t ) {
return ( 1 - t ) * x + t * y;
},
// http://en.wikipedia.org/wiki/Smoothstep
smoothstep: function ( x, min, max ) {
if ( x <= min ) return 0;
if ( x >= max ) return 1;
x = ( x - min ) / ( max - min );
return x * x * ( 3 - 2 * x );
},
smootherstep: function ( x, min, max ) {
if ( x <= min ) return 0;
if ( x >= max ) return 1;
x = ( x - min ) / ( max - min );
return x * x * x * ( x * ( x * 6 - 15 ) + 10 );
},
// Random integer from <low, high> interval
randInt: function ( low, high ) {
return low + Math.floor( Math.random() * ( high - low + 1 ) );
},
// Random float from <low, high> interval
randFloat: function ( low, high ) {
return low + Math.random() * ( high - low );
},
// Random float from <-range/2, range/2> interval
randFloatSpread: function ( range ) {
return range * ( 0.5 - Math.random() );
},
degToRad: function ( degrees ) {
return degrees * _Math.DEG2RAD;
},
radToDeg: function ( radians ) {
return radians * _Math.RAD2DEG;
},
isPowerOfTwo: function ( value ) {
return ( value & ( value - 1 ) ) === 0 && value !== 0;
},
nearestPowerOfTwo: function ( value ) {
return Math.pow( 2, Math.round( Math.log( value ) / Math.LN2 ) );
},
nextPowerOfTwo: function ( value ) {
value --;
value |= value >> 1;
value |= value >> 2;
value |= value >> 4;
value |= value >> 8;
value |= value >> 16;
value ++;
return value;
}
};
/**
* @author mrdoob / http://mrdoob.com/
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author philogb / http://blog.thejit.org/
* @author jordi_ros / http://plattsoft.com
* @author D1plo1d / http://github.com/D1plo1d
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author timknip / http://www.floorplanner.com/
* @author bhouston / http://clara.io
* @author WestLangley / http://github.com/WestLangley
*/
function Matrix4() {
this.elements = [
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
];
if ( arguments.length > 0 ) {
console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' );
}
}
Object.assign( Matrix4.prototype, {
isMatrix4: true,
set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {
var te = this.elements;
te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;
return this;
},
identity: function () {
this.set(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
},
clone: function () {
return new Matrix4().fromArray( this.elements );
},
copy: function ( m ) {
var te = this.elements;
var me = m.elements;
te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ];
te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ];
te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ];
te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ];
return this;
},
copyPosition: function ( m ) {
var te = this.elements, me = m.elements;
te[ 12 ] = me[ 12 ];
te[ 13 ] = me[ 13 ];
te[ 14 ] = me[ 14 ];
return this;
},
extractBasis: function ( xAxis, yAxis, zAxis ) {
xAxis.setFromMatrixColumn( this, 0 );
yAxis.setFromMatrixColumn( this, 1 );
zAxis.setFromMatrixColumn( this, 2 );
return this;
},
makeBasis: function ( xAxis, yAxis, zAxis ) {
this.set(
xAxis.x, yAxis.x, zAxis.x, 0,
xAxis.y, yAxis.y, zAxis.y, 0,
xAxis.z, yAxis.z, zAxis.z, 0,
0, 0, 0, 1
);
return this;
},
extractRotation: function () {
var v1 = new Vector3();
return function extractRotation( m ) {
var te = this.elements;
var me = m.elements;
var scaleX = 1 / v1.setFromMatrixColumn( m, 0 ).length();
var scaleY = 1 / v1.setFromMatrixColumn( m, 1 ).length();
var scaleZ = 1 / v1.setFromMatrixColumn( m, 2 ).length();
te[ 0 ] = me[ 0 ] * scaleX;
te[ 1 ] = me[ 1 ] * scaleX;
te[ 2 ] = me[ 2 ] * scaleX;
te[ 4 ] = me[ 4 ] * scaleY;
te[ 5 ] = me[ 5 ] * scaleY;
te[ 6 ] = me[ 6 ] * scaleY;
te[ 8 ] = me[ 8 ] * scaleZ;
te[ 9 ] = me[ 9 ] * scaleZ;
te[ 10 ] = me[ 10 ] * scaleZ;
return this;
};
}(),
makeRotationFromEuler: function ( euler ) {
if ( ! ( euler && euler.isEuler ) ) {
console.error( 'THREE.Matrix: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );
}
var te = this.elements;
var x = euler.x, y = euler.y, z = euler.z;
var a = Math.cos( x ), b = Math.sin( x );
var c = Math.cos( y ), d = Math.sin( y );
var e = Math.cos( z ), f = Math.sin( z );
if ( euler.order === 'XYZ' ) {
var ae = a * e, af = a * f, be = b * e, bf = b * f;
te[ 0 ] = c * e;
te[ 4 ] = - c * f;
te[ 8 ] = d;
te[ 1 ] = af + be * d;
te[ 5 ] = ae - bf * d;
te[ 9 ] = - b * c;
te[ 2 ] = bf - ae * d;
te[ 6 ] = be + af * d;
te[ 10 ] = a * c;
} else if ( euler.order === 'YXZ' ) {
var ce = c * e, cf = c * f, de = d * e, df = d * f;
te[ 0 ] = ce + df * b;
te[ 4 ] = de * b - cf;
te[ 8 ] = a * d;
te[ 1 ] = a * f;
te[ 5 ] = a * e;
te[ 9 ] = - b;
te[ 2 ] = cf * b - de;
te[ 6 ] = df + ce * b;
te[ 10 ] = a * c;
} else if ( euler.order === 'ZXY' ) {
var ce = c * e, cf = c * f, de = d * e, df = d * f;
te[ 0 ] = ce - df * b;
te[ 4 ] = - a * f;
te[ 8 ] = de + cf * b;
te[ 1 ] = cf + de * b;
te[ 5 ] = a * e;
te[ 9 ] = df - ce * b;
te[ 2 ] = - a * d;
te[ 6 ] = b;
te[ 10 ] = a * c;
} else if ( euler.order === 'ZYX' ) {
var ae = a * e, af = a * f, be = b * e, bf = b * f;
te[ 0 ] = c * e;
te[ 4 ] = be * d - af;
te[ 8 ] = ae * d + bf;
te[ 1 ] = c * f;
te[ 5 ] = bf * d + ae;
te[ 9 ] = af * d - be;
te[ 2 ] = - d;
te[ 6 ] = b * c;
te[ 10 ] = a * c;
} else if ( euler.order === 'YZX' ) {
var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[ 0 ] = c * e;
te[ 4 ] = bd - ac * f;
te[ 8 ] = bc * f + ad;
te[ 1 ] = f;
te[ 5 ] = a * e;
te[ 9 ] = - b * e;
te[ 2 ] = - d * e;
te[ 6 ] = ad * f + bc;
te[ 10 ] = ac - bd * f;
} else if ( euler.order === 'XZY' ) {
var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[ 0 ] = c * e;
te[ 4 ] = - f;
te[ 8 ] = d * e;
te[ 1 ] = ac * f + bd;
te[ 5 ] = a * e;
te[ 9 ] = ad * f - bc;
te[ 2 ] = bc * f - ad;
te[ 6 ] = b * e;
te[ 10 ] = bd * f + ac;
}
// last column
te[ 3 ] = 0;
te[ 7 ] = 0;
te[ 11 ] = 0;
// bottom row
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1;
return this;
},
makeRotationFromQuaternion: function ( q ) {
var te = this.elements;
var x = q._x, y = q._y, z = q._z, w = q._w;
var x2 = x + x, y2 = y + y, z2 = z + z;
var xx = x * x2, xy = x * y2, xz = x * z2;
var yy = y * y2, yz = y * z2, zz = z * z2;
var wx = w * x2, wy = w * y2, wz = w * z2;
te[ 0 ] = 1 - ( yy + zz );
te[ 4 ] = xy - wz;
te[ 8 ] = xz + wy;
te[ 1 ] = xy + wz;
te[ 5 ] = 1 - ( xx + zz );
te[ 9 ] = yz - wx;
te[ 2 ] = xz - wy;
te[ 6 ] = yz + wx;
te[ 10 ] = 1 - ( xx + yy );
// last column
te[ 3 ] = 0;
te[ 7 ] = 0;
te[ 11 ] = 0;
// bottom row
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1;
return this;
},
lookAt: function () {
var x = new Vector3();
var y = new Vector3();
var z = new Vector3();
return function lookAt( eye, target, up ) {
var te = this.elements;
z.subVectors( eye, target );
if ( z.lengthSq() === 0 ) {
// eye and target are in the same position
z.z = 1;
}
z.normalize();
x.crossVectors( up, z );
if ( x.lengthSq() === 0 ) {
// up and z are parallel
if ( Math.abs( up.z ) === 1 ) {
z.x += 0.0001;
} else {
z.z += 0.0001;
}
z.normalize();
x.crossVectors( up, z );
}
x.normalize();
y.crossVectors( z, x );
te[ 0 ] = x.x; te[ 4 ] = y.x; te[ 8 ] = z.x;
te[ 1 ] = x.y; te[ 5 ] = y.y; te[ 9 ] = z.y;
te[ 2 ] = x.z; te[ 6 ] = y.z; te[ 10 ] = z.z;
return this;
};
}(),
multiply: function ( m, n ) {
if ( n !== undefined ) {
console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' );
return this.multiplyMatrices( m, n );
}
return this.multiplyMatrices( this, m );
},
premultiply: function ( m ) {
return this.multiplyMatrices( m, this );
},
multiplyMatrices: function ( a, b ) {
var ae = a.elements;
var be = b.elements;
var te = this.elements;
var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];
var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];
te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
return this;
},
multiplyScalar: function ( s ) {
var te = this.elements;
te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;
return this;
},
applyToBufferAttribute: function () {
var v1 = new Vector3();
return function applyToBufferAttribute( attribute ) {
for ( var i = 0, l = attribute.count; i < l; i ++ ) {
v1.x = attribute.getX( i );
v1.y = attribute.getY( i );
v1.z = attribute.getZ( i );
v1.applyMatrix4( this );
attribute.setXYZ( i, v1.x, v1.y, v1.z );
}
return attribute;
};
}(),
determinant: function () {
var te = this.elements;
var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];
//TODO: make this more efficient
//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
return (
n41 * (
+ n14 * n23 * n32
- n13 * n24 * n32
- n14 * n22 * n33
+ n12 * n24 * n33
+ n13 * n22 * n34
- n12 * n23 * n34
) +
n42 * (
+ n11 * n23 * n34
- n11 * n24 * n33
+ n14 * n21 * n33
- n13 * n21 * n34
+ n13 * n24 * n31
- n14 * n23 * n31
) +
n43 * (
+ n11 * n24 * n32
- n11 * n22 * n34
- n14 * n21 * n32
+ n12 * n21 * n34
+ n14 * n22 * n31
- n12 * n24 * n31
) +
n44 * (
- n13 * n22 * n31
- n11 * n23 * n32
+ n11 * n22 * n33
+ n13 * n21 * n32
- n12 * n21 * n33
+ n12 * n23 * n31
)
);
},
transpose: function () {
var te = this.elements;
var tmp;
tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;
tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;
return this;
},
setPosition: function ( v ) {
var te = this.elements;
te[ 12 ] = v.x;
te[ 13 ] = v.y;
te[ 14 ] = v.z;
return this;
},
getInverse: function ( m, throwOnDegenerate ) {
// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
var te = this.elements,
me = m.elements,
n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ],
n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ],
n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ],
n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ],
t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
if ( det === 0 ) {
var msg = "THREE.Matrix4.getInverse(): can't invert matrix, determinant is 0";
if ( throwOnDegenerate === true ) {
throw new Error( msg );
} else {
console.warn( msg );
}
return this.identity();
}
var detInv = 1 / det;
te[ 0 ] = t11 * detInv;
te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv;
te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv;
te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv;
te[ 4 ] = t12 * detInv;
te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv;
te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv;
te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv;
te[ 8 ] = t13 * detInv;
te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv;
te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv;
te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv;
te[ 12 ] = t14 * detInv;
te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv;
te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv;
te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv;
return this;
},
scale: function ( v ) {
var te = this.elements;
var x = v.x, y = v.y, z = v.z;
te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;
return this;
},
getMaxScaleOnAxis: function () {
var te = this.elements;
var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];
var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];
return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );
},
makeTranslation: function ( x, y, z ) {
this.set(
1, 0, 0, x,
0, 1, 0, y,
0, 0, 1, z,
0, 0, 0, 1
);
return this;
},
makeRotationX: function ( theta ) {
var c = Math.cos( theta ), s = Math.sin( theta );
this.set(
1, 0, 0, 0,
0, c, - s, 0,
0, s, c, 0,
0, 0, 0, 1
);
return this;
},
makeRotationY: function ( theta ) {
var c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, 0, s, 0,
0, 1, 0, 0,
- s, 0, c, 0,
0, 0, 0, 1
);
return this;
},
makeRotationZ: function ( theta ) {
var c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, - s, 0, 0,
s, c, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
},
makeRotationAxis: function ( axis, angle ) {
// Based on http://www.gamedev.net/reference/articles/article1199.asp
var c = Math.cos( angle );
var s = Math.sin( angle );
var t = 1 - c;
var x = axis.x, y = axis.y, z = axis.z;
var tx = t * x, ty = t * y;
this.set(
tx * x + c, tx * y - s * z, tx * z + s * y, 0,
tx * y + s * z, ty * y + c, ty * z - s * x, 0,
tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
0, 0, 0, 1
);
return this;
},
makeScale: function ( x, y, z ) {
this.set(
x, 0, 0, 0,
0, y, 0, 0,
0, 0, z, 0,
0, 0, 0, 1
);
return this;
},
makeShear: function ( x, y, z ) {
this.set(
1, y, z, 0,
x, 1, z, 0,
x, y, 1, 0,
0, 0, 0, 1
);
return this;
},
compose: function ( position, quaternion, scale ) {
this.makeRotationFromQuaternion( quaternion );
this.scale( scale );
this.setPosition( position );
return this;
},
decompose: function () {
var vector = new Vector3();
var matrix = new Matrix4();
return function decompose( position, quaternion, scale ) {
var te = this.elements;
var sx = vector.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();
var sy = vector.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();
var sz = vector.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();
// if determine is negative, we need to invert one scale
var det = this.determinant();
if ( det < 0 ) sx = - sx;
position.x = te[ 12 ];
position.y = te[ 13 ];
position.z = te[ 14 ];
// scale the rotation part
matrix.copy( this );
var invSX = 1 / sx;
var invSY = 1 / sy;
var invSZ = 1 / sz;
matrix.elements[ 0 ] *= invSX;
matrix.elements[ 1 ] *= invSX;
matrix.elements[ 2 ] *= invSX;
matrix.elements[ 4 ] *= invSY;
matrix.elements[ 5 ] *= invSY;
matrix.elements[ 6 ] *= invSY;
matrix.elements[ 8 ] *= invSZ;
matrix.elements[ 9 ] *= invSZ;
matrix.elements[ 10 ] *= invSZ;
quaternion.setFromRotationMatrix( matrix );
scale.x = sx;
scale.y = sy;
scale.z = sz;
return this;
};
}(),
makePerspective: function ( left, right, top, bottom, near, far ) {
if ( far === undefined ) {
console.warn( 'THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.' );
}
var te = this.elements;
var x = 2 * near / ( right - left );
var y = 2 * near / ( top - bottom );
var a = ( right + left ) / ( right - left );
var b = ( top + bottom ) / ( top - bottom );
var c = - ( far + near ) / ( far - near );
var d = - 2 * far * near / ( far - near );
te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0;
te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0;
te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d;
te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0;
return this;
},
makeOrthographic: function ( left, right, top, bottom, near, far ) {
var te = this.elements;
var w = 1.0 / ( right - left );
var h = 1.0 / ( top - bottom );
var p = 1.0 / ( far - near );
var x = ( right + left ) * w;
var y = ( top + bottom ) * h;
var z = ( far + near ) * p;
te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x;
te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y;
te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 * p; te[ 14 ] = - z;
te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1;
return this;
},
equals: function ( matrix ) {
var te = this.elements;
var me = matrix.elements;
for ( var i = 0; i < 16; i ++ ) {
if ( te[ i ] !== me[ i ] ) return false;
}
return true;
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
for ( var i = 0; i < 16; i ++ ) {
this.elements[ i ] = array[ i + offset ];
}
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
var te = this.elements;
array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ];
array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ];
array[ offset + 8 ] = te[ 8 ];
array[ offset + 9 ] = te[ 9 ];
array[ offset + 10 ] = te[ 10 ];
array[ offset + 11 ] = te[ 11 ];
array[ offset + 12 ] = te[ 12 ];
array[ offset + 13 ] = te[ 13 ];
array[ offset + 14 ] = te[ 14 ];
array[ offset + 15 ] = te[ 15 ];
return array;
}
} );
/**
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author WestLangley / http://github.com/WestLangley
* @author bhouston / http://clara.io
*/
function Quaternion( x, y, z, w ) {
this._x = x || 0;
this._y = y || 0;
this._z = z || 0;
this._w = ( w !== undefined ) ? w : 1;
}
Object.assign( Quaternion, {
slerp: function ( qa, qb, qm, t ) {
return qm.copy( qa ).slerp( qb, t );
},
slerpFlat: function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) {
// fuzz-free, array-based Quaternion SLERP operation
var x0 = src0[ srcOffset0 + 0 ],
y0 = src0[ srcOffset0 + 1 ],
z0 = src0[ srcOffset0 + 2 ],
w0 = src0[ srcOffset0 + 3 ],
x1 = src1[ srcOffset1 + 0 ],
y1 = src1[ srcOffset1 + 1 ],
z1 = src1[ srcOffset1 + 2 ],
w1 = src1[ srcOffset1 + 3 ];
if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) {
var s = 1 - t,
cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
dir = ( cos >= 0 ? 1 : - 1 ),
sqrSin = 1 - cos * cos;
// Skip the Slerp for tiny steps to avoid numeric problems:
if ( sqrSin > Number.EPSILON ) {
var sin = Math.sqrt( sqrSin ),
len = Math.atan2( sin, cos * dir );
s = Math.sin( s * len ) / sin;
t = Math.sin( t * len ) / sin;
}
var tDir = t * dir;
x0 = x0 * s + x1 * tDir;
y0 = y0 * s + y1 * tDir;
z0 = z0 * s + z1 * tDir;
w0 = w0 * s + w1 * tDir;
// Normalize in case we just did a lerp:
if ( s === 1 - t ) {
var f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 );
x0 *= f;
y0 *= f;
z0 *= f;
w0 *= f;
}
}
dst[ dstOffset ] = x0;
dst[ dstOffset + 1 ] = y0;
dst[ dstOffset + 2 ] = z0;
dst[ dstOffset + 3 ] = w0;
}
} );
Object.defineProperties( Quaternion.prototype, {
x: {
get: function () {
return this._x;
},
set: function ( value ) {
this._x = value;
this.onChangeCallback();
}
},
y: {
get: function () {
return this._y;
},
set: function ( value ) {
this._y = value;
this.onChangeCallback();
}
},
z: {
get: function () {
return this._z;
},
set: function ( value ) {
this._z = value;
this.onChangeCallback();
}
},
w: {
get: function () {
return this._w;
},
set: function ( value ) {
this._w = value;
this.onChangeCallback();
}
}
} );
Object.assign( Quaternion.prototype, {
set: function ( x, y, z, w ) {
this._x = x;
this._y = y;
this._z = z;
this._w = w;
this.onChangeCallback();
return this;
},
clone: function () {
return new this.constructor( this._x, this._y, this._z, this._w );
},
copy: function ( quaternion ) {
this._x = quaternion.x;
this._y = quaternion.y;
this._z = quaternion.z;
this._w = quaternion.w;
this.onChangeCallback();
return this;
},
setFromEuler: function ( euler, update ) {
if ( ! ( euler && euler.isEuler ) ) {
throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' );
}
var x = euler._x, y = euler._y, z = euler._z, order = euler.order;
// http://www.mathworks.com/matlabcentral/fileexchange/
// 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
// content/SpinCalc.m
var cos = Math.cos;
var sin = Math.sin;
var c1 = cos( x / 2 );
var c2 = cos( y / 2 );
var c3 = cos( z / 2 );
var s1 = sin( x / 2 );
var s2 = sin( y / 2 );
var s3 = sin( z / 2 );
if ( order === 'XYZ' ) {
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
} else if ( order === 'YXZ' ) {
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
} else if ( order === 'ZXY' ) {
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
} else if ( order === 'ZYX' ) {
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
} else if ( order === 'YZX' ) {
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
} else if ( order === 'XZY' ) {
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
}
if ( update !== false ) this.onChangeCallback();
return this;
},
setFromAxisAngle: function ( axis, angle ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
// assumes axis is normalized
var halfAngle = angle / 2, s = Math.sin( halfAngle );
this._x = axis.x * s;
this._y = axis.y * s;
this._z = axis.z * s;
this._w = Math.cos( halfAngle );
this.onChangeCallback();
return this;
},
setFromRotationMatrix: function ( m ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
var te = m.elements,
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],
trace = m11 + m22 + m33,
s;
if ( trace > 0 ) {
s = 0.5 / Math.sqrt( trace + 1.0 );
this._w = 0.25 / s;
this._x = ( m32 - m23 ) * s;
this._y = ( m13 - m31 ) * s;
this._z = ( m21 - m12 ) * s;
} else if ( m11 > m22 && m11 > m33 ) {
s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );
this._w = ( m32 - m23 ) / s;
this._x = 0.25 * s;
this._y = ( m12 + m21 ) / s;
this._z = ( m13 + m31 ) / s;
} else if ( m22 > m33 ) {
s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );
this._w = ( m13 - m31 ) / s;
this._x = ( m12 + m21 ) / s;
this._y = 0.25 * s;
this._z = ( m23 + m32 ) / s;
} else {
s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );
this._w = ( m21 - m12 ) / s;
this._x = ( m13 + m31 ) / s;
this._y = ( m23 + m32 ) / s;
this._z = 0.25 * s;
}
this.onChangeCallback();
return this;
},
setFromUnitVectors: function () {
// assumes direction vectors vFrom and vTo are normalized
var v1 = new Vector3();
var r;
var EPS = 0.000001;
return function setFromUnitVectors( vFrom, vTo ) {
if ( v1 === undefined ) v1 = new Vector3();
r = vFrom.dot( vTo ) + 1;
if ( r < EPS ) {
r = 0;
if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) {
v1.set( - vFrom.y, vFrom.x, 0 );
} else {
v1.set( 0, - vFrom.z, vFrom.y );
}
} else {
v1.crossVectors( vFrom, vTo );
}
this._x = v1.x;
this._y = v1.y;
this._z = v1.z;
this._w = r;
return this.normalize();
};
}(),
inverse: function () {
return this.conjugate().normalize();
},
conjugate: function () {
this._x *= - 1;
this._y *= - 1;
this._z *= - 1;
this.onChangeCallback();
return this;
},
dot: function ( v ) {
return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
},
lengthSq: function () {
return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
},
length: function () {
return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w );
},
normalize: function () {
var l = this.length();
if ( l === 0 ) {
this._x = 0;
this._y = 0;
this._z = 0;
this._w = 1;
} else {
l = 1 / l;
this._x = this._x * l;
this._y = this._y * l;
this._z = this._z * l;
this._w = this._w * l;
}
this.onChangeCallback();
return this;
},
multiply: function ( q, p ) {
if ( p !== undefined ) {
console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' );
return this.multiplyQuaternions( q, p );
}
return this.multiplyQuaternions( this, q );
},
premultiply: function ( q ) {
return this.multiplyQuaternions( q, this );
},
multiplyQuaternions: function ( a, b ) {
// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;
this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
this.onChangeCallback();
return this;
},
slerp: function ( qb, t ) {
if ( t === 0 ) return this;
if ( t === 1 ) return this.copy( qb );
var x = this._x, y = this._y, z = this._z, w = this._w;
// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
if ( cosHalfTheta < 0 ) {
this._w = - qb._w;
this._x = - qb._x;
this._y = - qb._y;
this._z = - qb._z;
cosHalfTheta = - cosHalfTheta;
} else {
this.copy( qb );
}
if ( cosHalfTheta >= 1.0 ) {
this._w = w;
this._x = x;
this._y = y;
this._z = z;
return this;
}
var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta );
if ( Math.abs( sinHalfTheta ) < 0.001 ) {
this._w = 0.5 * ( w + this._w );
this._x = 0.5 * ( x + this._x );
this._y = 0.5 * ( y + this._y );
this._z = 0.5 * ( z + this._z );
return this;
}
var halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta );
var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;
this._w = ( w * ratioA + this._w * ratioB );
this._x = ( x * ratioA + this._x * ratioB );
this._y = ( y * ratioA + this._y * ratioB );
this._z = ( z * ratioA + this._z * ratioB );
this.onChangeCallback();
return this;
},
equals: function ( quaternion ) {
return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this._x = array[ offset ];
this._y = array[ offset + 1 ];
this._z = array[ offset + 2 ];
this._w = array[ offset + 3 ];
this.onChangeCallback();
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this._x;
array[ offset + 1 ] = this._y;
array[ offset + 2 ] = this._z;
array[ offset + 3 ] = this._w;
return array;
},
onChange: function ( callback ) {
this.onChangeCallback = callback;
return this;
},
onChangeCallback: function () {}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author kile / http://kile.stravaganza.org/
* @author philogb / http://blog.thejit.org/
* @author mikael emtinger / http://gomo.se/
* @author egraether / http://egraether.com/
* @author WestLangley / http://github.com/WestLangley
*/
function Vector3( x, y, z ) {
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
}
Object.assign( Vector3.prototype, {
isVector3: true,
set: function ( x, y, z ) {
this.x = x;
this.y = y;
this.z = z;
return this;
},
setScalar: function ( scalar ) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
return this;
},
setX: function ( x ) {
this.x = x;
return this;
},
setY: function ( y ) {
this.y = y;
return this;
},
setZ: function ( z ) {
this.z = z;
return this;
},
setComponent: function ( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
},
getComponent: function ( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
default: throw new Error( 'index is out of range: ' + index );
}
},
clone: function () {
return new this.constructor( this.x, this.y, this.z );
},
copy: function ( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
return this;
},
add: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
return this.addVectors( v, w );
}
this.x += v.x;
this.y += v.y;
this.z += v.z;
return this;
},
addScalar: function ( s ) {
this.x += s;
this.y += s;
this.z += s;
return this;
},
addVectors: function ( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
return this;
},
addScaledVector: function ( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
return this;
},
sub: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
return this.subVectors( v, w );
}
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
return this;
},
subScalar: function ( s ) {
this.x -= s;
this.y -= s;
this.z -= s;
return this;
},
subVectors: function ( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
return this;
},
multiply: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' );
return this.multiplyVectors( v, w );
}
this.x *= v.x;
this.y *= v.y;
this.z *= v.z;
return this;
},
multiplyScalar: function ( scalar ) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
return this;
},
multiplyVectors: function ( a, b ) {
this.x = a.x * b.x;
this.y = a.y * b.y;
this.z = a.z * b.z;
return this;
},
applyEuler: function () {
var quaternion = new Quaternion();
return function applyEuler( euler ) {
if ( ! ( euler && euler.isEuler ) ) {
console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' );
}
return this.applyQuaternion( quaternion.setFromEuler( euler ) );
};
}(),
applyAxisAngle: function () {
var quaternion = new Quaternion();
return function applyAxisAngle( axis, angle ) {
return this.applyQuaternion( quaternion.setFromAxisAngle( axis, angle ) );
};
}(),
applyMatrix3: function ( m ) {
var x = this.x, y = this.y, z = this.z;
var e = m.elements;
this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z;
this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z;
this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z;
return this;
},
applyMatrix4: function ( m ) {
var x = this.x, y = this.y, z = this.z;
var e = m.elements;
var w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] );
this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w;
this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w;
this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w;
return this;
},
applyQuaternion: function ( q ) {
var x = this.x, y = this.y, z = this.z;
var qx = q.x, qy = q.y, qz = q.z, qw = q.w;
// calculate quat * vector
var ix = qw * x + qy * z - qz * y;
var iy = qw * y + qz * x - qx * z;
var iz = qw * z + qx * y - qy * x;
var iw = - qx * x - qy * y - qz * z;
// calculate result * inverse quat
this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy;
this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz;
this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx;
return this;
},
project: function () {
var matrix = new Matrix4();
return function project( camera ) {
matrix.multiplyMatrices( camera.projectionMatrix, matrix.getInverse( camera.matrixWorld ) );
return this.applyMatrix4( matrix );
};
}(),
unproject: function () {
var matrix = new Matrix4();
return function unproject( camera ) {
matrix.multiplyMatrices( camera.matrixWorld, matrix.getInverse( camera.projectionMatrix ) );
return this.applyMatrix4( matrix );
};
}(),
transformDirection: function ( m ) {
// input: THREE.Matrix4 affine matrix
// vector interpreted as a direction
var x = this.x, y = this.y, z = this.z;
var e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
return this.normalize();
},
divide: function ( v ) {
this.x /= v.x;
this.y /= v.y;
this.z /= v.z;
return this;
},
divideScalar: function ( scalar ) {
return this.multiplyScalar( 1 / scalar );
},
min: function ( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
this.z = Math.min( this.z, v.z );
return this;
},
max: function ( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
this.z = Math.max( this.z, v.z );
return this;
},
clamp: function ( min, max ) {
// assumes min < max, componentwise
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
this.z = Math.max( min.z, Math.min( max.z, this.z ) );
return this;
},
clampScalar: function () {
var min = new Vector3();
var max = new Vector3();
return function clampScalar( minVal, maxVal ) {
min.set( minVal, minVal, minVal );
max.set( maxVal, maxVal, maxVal );
return this.clamp( min, max );
};
}(),
clampLength: function ( min, max ) {
var length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
},
floor: function () {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
this.z = Math.floor( this.z );
return this;
},
ceil: function () {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
this.z = Math.ceil( this.z );
return this;
},
round: function () {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
this.z = Math.round( this.z );
return this;
},
roundToZero: function () {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
return this;
},
negate: function () {
this.x = - this.x;
this.y = - this.y;
this.z = - this.z;
return this;
},
dot: function ( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z;
},
// TODO lengthSquared?
lengthSq: function () {
return this.x * this.x + this.y * this.y + this.z * this.z;
},
length: function () {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );
},
lengthManhattan: function () {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );
},
normalize: function () {
return this.divideScalar( this.length() || 1 );
},
setLength: function ( length ) {
return this.normalize().multiplyScalar( length );
},
lerp: function ( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
return this;
},
lerpVectors: function ( v1, v2, alpha ) {
return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
},
cross: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' );
return this.crossVectors( v, w );
}
var x = this.x, y = this.y, z = this.z;
this.x = y * v.z - z * v.y;
this.y = z * v.x - x * v.z;
this.z = x * v.y - y * v.x;
return this;
},
crossVectors: function ( a, b ) {
var ax = a.x, ay = a.y, az = a.z;
var bx = b.x, by = b.y, bz = b.z;
this.x = ay * bz - az * by;
this.y = az * bx - ax * bz;
this.z = ax * by - ay * bx;
return this;
},
projectOnVector: function ( vector ) {
var scalar = vector.dot( this ) / vector.lengthSq();
return this.copy( vector ).multiplyScalar( scalar );
},
projectOnPlane: function () {
var v1 = new Vector3();
return function projectOnPlane( planeNormal ) {
v1.copy( this ).projectOnVector( planeNormal );
return this.sub( v1 );
};
}(),
reflect: function () {
// reflect incident vector off plane orthogonal to normal
// normal is assumed to have unit length
var v1 = new Vector3();
return function reflect( normal ) {
return this.sub( v1.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) );
};
}(),
angleTo: function ( v ) {
var theta = this.dot( v ) / ( Math.sqrt( this.lengthSq() * v.lengthSq() ) );
// clamp, to handle numerical problems
return Math.acos( _Math.clamp( theta, - 1, 1 ) );
},
distanceTo: function ( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
},
distanceToSquared: function ( v ) {
var dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z;
return dx * dx + dy * dy + dz * dz;
},
distanceToManhattan: function ( v ) {
return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z );
},
setFromSpherical: function ( s ) {
var sinPhiRadius = Math.sin( s.phi ) * s.radius;
this.x = sinPhiRadius * Math.sin( s.theta );
this.y = Math.cos( s.phi ) * s.radius;
this.z = sinPhiRadius * Math.cos( s.theta );
return this;
},
setFromCylindrical: function ( c ) {
this.x = c.radius * Math.sin( c.theta );
this.y = c.y;
this.z = c.radius * Math.cos( c.theta );
return this;
},
setFromMatrixPosition: function ( m ) {
var e = m.elements;
this.x = e[ 12 ];
this.y = e[ 13 ];
this.z = e[ 14 ];
return this;
},
setFromMatrixScale: function ( m ) {
var sx = this.setFromMatrixColumn( m, 0 ).length();
var sy = this.setFromMatrixColumn( m, 1 ).length();
var sz = this.setFromMatrixColumn( m, 2 ).length();
this.x = sx;
this.y = sy;
this.z = sz;
return this;
},
setFromMatrixColumn: function ( m, index ) {
return this.fromArray( m.elements, index * 4 );
},
equals: function ( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.x = array[ offset ];
this.y = array[ offset + 1 ];
this.z = array[ offset + 2 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
array[ offset + 2 ] = this.z;
return array;
},
fromBufferAttribute: function ( attribute, index, offset ) {
if ( offset !== undefined ) {
console.warn( 'THREE.Vector3: offset has been removed from .fromBufferAttribute().' );
}
this.x = attribute.getX( index );
this.y = attribute.getY( index );
this.z = attribute.getZ( index );
return this;
}
} );
// preset camera views
// mouse selection operation mode
// shading types
// layer tags for scene objects
var LEG_CAVE = 1;
var LEG_SPLAY = 2;
var LEG_SURFACE = 3;
// flags in legs exported by Cave models
var STATION_NORMAL = 0;
var STATION_ENTRANCE = 1;
// EOF
function Tree( name, id, root, parent ) { // root parameter only used internally
if ( root === undefined ) {
this.id = 0;
this.maxId = 0;
this.root = this;
this.parent = null;
} else {
this.root = root;
this.parent = parent;
this.id = ( id === null ) ? ++root.maxId : id;
}
this.name = name || '';
this.children = [];
}
Tree.prototype.constructor = Tree;
Tree.prototype.traverse = function ( func ) {
var children = this.children;
func ( this );
for ( var i = 0; i < children.length; i++ ) {
children[ i ].traverse( func );
}
};
Tree.prototype.traverseDepthFirst = function ( func ) {
var children = this.children;
for ( var i = 0; i < children.length; i++ ) {
children[ i ].traverseDepthFirst( func );
}
func ( this );
};
Tree.prototype.forEachChild = function ( func, recurse ) {
var children = this.children;
var child;
for ( var i = 0; i < children.length; i++ ) {
child = children[ i ];
func( child );
if ( recurse === true ) child.forEachChild( func, true );
}
};
Tree.prototype.addById = function ( name, id, parentId, properties ) {
var parentNode = this.findById( parentId );
if ( parentNode ) {
var node = new Tree( name, id, this.root, parentNode );
if ( properties !== undefined ) Object.assign( node, properties );
parentNode.children.push( node );
var root = this.root;
root.maxId = Math.max( root.maxId, id );
return node.id;
}
return null;
};
Tree.prototype.findById = function ( id ) {
if ( this.id == id ) return this;
for ( var i = 0, l = this.children.length; i < l; i++ ) {
var child = this.children[ i ];
var found = child.findById( id );
if ( found ) return found;
}
return undefined;
};
Tree.prototype.getByPath = function ( path ) {
var pathArray = path.split( '.' );
var node = this.getByPathArray( pathArray );
return pathArray.length === 0 ? node : undefined;
};
Tree.prototype.getByPathArray = function ( path ) {
var node = this;
var search = true;
while ( search && path.length > 0 ) {
search = false;
for ( var i = 0, l = node.children.length; i < l; i++ ) {
var child = node.children[ i ];
if ( child.name === path[ 0 ] ) {
node = child;
path.shift();
search = true;
break;
}
}
}
return node;
};
Tree.prototype.addPath = function ( path, properties ) {
var node;
var newNode;
// find part of path that exists already
node = this.getByPathArray( path );
if ( path.length === 0 ) return node.id;
// add remainder of path to node
while ( path.length > 0 ) {
newNode = new Tree( path.shift(), null, this.root, node );
node.children.push( newNode );
node = newNode;
}
if ( properties !== undefined ) Object.assign( node, properties );
return node.id;
};
Tree.prototype.getPath = function ( endNode ) {
var node = this;
var path = [];
if ( endNode === undefined ) endNode = this.root;
do {
path.push( node.name );
node = node.parent;
} while ( node !== endNode );
return path.reverse().join( '.' );
};
Tree.prototype.getSubtreeIds = function ( id, idSet ) {
var node = this.findById( id );
node.traverse( _getId );
function _getId( node ) {
idSet.add( node.id );
}
};
Tree.prototype.getIdByPath = function ( path ) {
var node = this.getByPathArray( path );
if ( path.length === 0 ) {
return node.id;
} else {
return undefined;
}
};
// EOF
// Survex 3d file handler
function Svx3dHandler ( fileName, dataStream, metadata ) {
this.fileName = fileName;
this.groups = [];
this.surface = [];
this.xGroups = [];
this.surveyTree = new Tree();
this.isRegion = false;
this.sourceCRS = null;
this.targetCRS = 'EPSG:3857'; // "web mercator"
this.projection = null;
this.metadata = metadata;
var source = dataStream; // file data as arrrayBuffer
var pos = 0; // file position
// read file header
readLF(); // Survex 3D Image File
var version = readLF(); // 3d version
var auxInfo = readNSLF();
readLF(); // Date
console.log( 'title: ', auxInfo[ 0 ] );
var sourceCRS = ( auxInfo[ 1 ] === undefined ) ? null : auxInfo[ 1 ]; // coordinate reference system ( proj4 format )
if ( sourceCRS !== null ) {
// work around lack of +init string support in proj4js
var matches = sourceCRS.match( /\+init=(.*)\s/);
if ( matches && matches.length === 2 ) {
switch( matches[ 1 ] ) {
case 'epsg:27700' :
sourceCRS = '+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000 +ellps=airy +datum=OSGB36 +units=m +no_defs';
break;
default:
sourceCRS = null;
console.warn( 'unsupported projection' );
}
}
}
// FIXME use NAD grid corrections OSTM15 etc ( UK Centric )
if ( sourceCRS !== null ) {
console.log( 'Reprojecting from', sourceCRS, 'to', this.targetCRS );
this.sourceCRS = sourceCRS;
this.projection = proj4( this.sourceCRS, this.targetCRS ); // eslint-disable-line no-undef
}
this.handleVx( source, pos, Number( version.charAt( 1 ) ) );
return;
function readLF () { // read until Line feed
return readNSLF()[ 0 ];
}
function readNSLF () { // read until Line feed and split by null bytes
var bytes = new Uint8Array( source, 0 );
var lfString = [];
var b;
var strings = [];
do {
b = bytes[ pos++ ];
if ( b === 0x0a || b === 0 ) {
strings.push( String.fromCharCode.apply( null, lfString ).trim() );
lfString = [];
} else {
lfString.push( b );
}
} while ( b != 0x0a );
return strings;
}
}
Svx3dHandler.prototype.constructor = Svx3dHandler;
Svx3dHandler.prototype.handleVx = function ( source, pos, version ) {
var groups = this.groups;
var xGroups = this.xGroups;
var surveyTree = this.surveyTree;
var self = this;
var cmd = [];
var legs = [];
var label = '';
var stations = new Map();
var lineEnds = new Set(); // implied line ends to fixnup xsects
var xSects = [];
var sectionId = 0;
var data = new Uint8Array( source, 0 );
var dataLength = data.length;
var lastPosition = { x: 0, y:0, z: 0 }; // value to allow approach vector for xsect coord frame
var i;
// functions
var readLabel;
// selected correct read coordinates function
var readCoordinates = ( this.projection === null ) ? __readCoordinates : __readCoordinatesProjected;
// range
var min = { x: Infinity, y: Infinity, z: Infinity };
var max = { x: -Infinity, y: -Infinity, z: -Infinity };
// init cmd handler table withh error handler for unsupported records or invalid records
function _errorHandler ( e ) { console.log ('unhandled command: ', e.toString( 16 ) ); return false; }
for ( i = 0; i < 256; i++ ) {
cmd[ i ] = _errorHandler;
}
if ( version === 8 ) {
// v8 dispatch table start
cmd[ 0x00 ] = cmd_STYLE;
cmd[ 0x01 ] = cmd_STYLE;
cmd[ 0x02 ] = cmd_STYLE;
cmd[ 0x03 ] = cmd_STYLE;
cmd[ 0x04 ] = cmd_STYLE;
cmd[ 0x0f ] = cmd_MOVE;
cmd[ 0x10 ] = cmd_DATE_NODATE;
cmd[ 0x11 ] = cmd_DATEV8_1;
cmd[ 0x12 ] = cmd_DATEV8_2;
cmd[ 0x13 ] = cmd_DATEV8_3;
cmd[ 0x1F ] = cmd_ERROR;
cmd[ 0x30 ] = cmd_XSECT16;
cmd[ 0x31 ] = cmd_XSECT16;
cmd[ 0x32 ] = cmd_XSECT32;
cmd[ 0x33 ] = cmd_XSECT32;
for ( i = 0x40; i < 0x80; i++ ) {
cmd[ i ] = cmd_LINE;
}
for ( i = 0x80; i < 0x100; i++ ) {
cmd[ i ] = cmd_LABEL;
}
// dispatch table end
readLabel = readLabelV8;
// skip v8 file wide flags after header
pos++;
} else {
// dispatch table for v7 format
for ( i = 0x01; i < 0x0f; i++ ) {
cmd[ i ] = cmd_TRIM_PLUS;
}
cmd[ 0x0f ] = cmd_MOVE;
for ( i = 0x10; i < 0x20; i++ ) {
cmd[ i ] = cmd_TRIM;
}
cmd[ 0x00 ] = cmd_STOP;
cmd[ 0x20 ] = cmd_DATE_V7;
cmd[ 0x21 ] = cmd_DATE2_V7;
cmd[ 0x23 ] = cmd_DATE3_V7;
cmd[ 0x24 ] = cmd_DATE_NODATE;
cmd[ 0x22 ] = cmd_ERROR;
cmd[ 0x30 ] = cmd_XSECT16;
cmd[ 0x31 ] = cmd_XSECT16;
cmd[ 0x32 ] = cmd_XSECT32;
cmd[ 0x33 ] = cmd_XSECT32;
for ( i = 0x40; i < 0x80; i++ ) {
cmd[ i ] = cmd_LABEL;
}
for ( i = 0x80; i < 0xc0; i++ ) {
cmd[ i ] = cmd_LINE;
}
// dispatch table end
readLabel = readLabelV7;
}
if ( version === 6 ) {
cmd[ 0x20 ] = cmd_DATE_V4;
cmd[ 0x21 ] = cmd_DATE2_V4;
}
// common record iterator
// loop though data, handling record types as required.
while ( pos < dataLength ) {
if ( ! cmd[ data[ pos ] ]( data[ pos++ ] ) ) break;
}
if ( xSects.length > 1 ) {
xGroups.push( xSects );
}
groups.push( legs );
var offsets = {
x: ( min.x + max.x ) / 2,
y: ( min.y + max.y ) / 2,
z: ( min.z + max.z ) / 2
};
surveyTree.traverse( adjustCoords );
this.offsets = offsets;
this.limits = {
min: min,
max: max
};
return;
function adjustCoords( node ) {
var coords = node.p;
if ( coords === undefined ) return;
coords.x -= offsets.x;
coords.y -= offsets.y;
coords.z -= offsets.z;
}
function readLabelV7 () {
// find length of label and read label = v3 - v7 .3d format
var len = 0;
var l;
switch ( data[ pos ] ) {
case 0xfe:
l = new DataView( source, pos );
len = l.getUint16( 0, true ) + data[ pos ];
pos += 2;
break;
case 0xff:
l = new DataView( source, pos );
len = l.getUint32( 0, true );
pos += 4;
break;
default:
len = data[ pos++ ];
}
if ( len === 0 ) return false; // no label
var db = [];
for ( var i = 0; i < len; i++ ) {
db.push( data[ pos++ ] );
}
label += String.fromCharCode.apply( null, db );
return true;
}
function readLabelV8 ( flags ) {
if ( flags & 0x20 ) return false; // no label change
var b = data[ pos++ ];
var add = 0;
var del = 0;
var l;
if ( b !== 0 ) {
// handle 4b= bit del/add codes
del = b >> 4; // left most 4 bits
add = b & 0x0f; // right most 4 bits
} else {
// handle 8 bit and 32 bit del/add codes
b = data[ pos++ ];
if ( b !== 0xff ) {
del = b;
} else {
l = new DataView( source, pos );
del = l.getUint32( 0, true );
pos += 4;
}
b = data[ pos++ ];
if ( b !== 0xff ) {
add = b;
} else {
l = new DataView( source, pos );
add = l.getUint32( 0, true );
pos += 4;
}
}
if ( add === 0 && del === 0 ) return;
if ( del ) label = label.slice( 0, -del );
if ( add ) {
var db = [];
for ( var i = 0; i < add; i++ ) {
db.push( data[ pos++ ] );
}
label += String.fromCharCode.apply( null, db );
}
return true;
}
function cmd_STOP ( /* c */ ) {
if ( label ) label = '';
return true;
}
function cmd_TRIM_PLUS ( c ) { // v7 and previous
label = label.slice( 0, -16 );
if ( label.charAt( label.length - 1 ) === '.') label = label.slice( 0, -1 ); // strip trailing '.'
var parts = label.split( '.' );
parts.splice( -( c ) );
label = parts.join( '.' );
if ( label ) label += '.';
return true;
}
function cmd_TRIM ( c ) { // v7 and previous
var trim = c - 15;
label = label.slice( 0, -trim );
return true;
}
function cmd_DATE_V4 ( /* c */ ) {
pos += 4;
return true;
}
function cmd_DATE_V7 ( /* c */ ) {
pos += 2;
return true;
}
function cmd_DATE3_V7 ( /* c */ ) {
pos += 4;
return true;
}
function cmd_DATE2_V4 ( /* c */ ) {
pos += 8;
return true;
}
function cmd_DATE2_V7 ( /* c */ ) {
pos += 3;
return true;
}
function cmd_STYLE ( /* c */ ) {
return true;
}
function cmd_DATEV8_1 ( /* c */ ) {
pos += 2;
return true;
}
function cmd_DATEV8_2 ( /* c */ ) {
pos += 3;
return true;
}
function cmd_DATEV8_3 ( /* c */ ) {
pos += 4;
return true;
}
function cmd_DATE_NODATE ( /* c */ ) {
return true;
}
function cmd_LINE ( c ) {
var flags = c & 0x3f;
if ( readLabel( flags ) ) {
// we have a new section name, add it to the survey tree
sectionId = surveyTree.addPath( label.split( '.' ) );
}
var coords = readCoordinates();
if ( flags & 0x01 ) {
legs.push( { coords: coords, type: LEG_SURFACE, survey: sectionId } );
} else if ( flags & 0x04 ) {
legs.push( { coords: coords, type: LEG_SPLAY, survey: sectionId } );
} else {
legs.push( { coords: coords, type: LEG_CAVE, survey: sectionId } );
}
lastPosition = coords;
return true;
}
function cmd_MOVE ( /* c */ ) {
// new set of line segments
if ( legs.length > 1 ) groups.push( legs );
legs = [];
// heuristic to detect line ends. lastPosition was presumably set in a line sequence therefore is at the end
// of a line, Add the current label, presumably specified in the last LINE, to a Set of lineEnds.
lineEnds.add( lastPosition.x + ':' + lastPosition.y + ':' + lastPosition.z );
var coords = readCoordinates();
legs.push( { coords: coords } );
lastPosition = coords;
return true;
}
function cmd_ERROR ( /* c */ ) {
//var l = new DataView(source, pos);
//console.log('legs : ', l.getInt32(0, true));
//console.log('length : ', l.getInt32(4, true));
//console.log('E : ', l.getInt32(8, true));
//console.log('H : ', l.getInt32(12, true));
//console.log('V : ', l.getInt32(16, true));
pos += 20;
return true;
}
function cmd_LABEL ( c ) {
var flags = c & 0x7f;
readLabel( 0 );
if ( ! ( flags & 0x0E ) || flags & 0x20 ) { // skip surface only stations
pos += 12; //skip coordinates
return true;
}
var coords = readCoordinates();
var path = label.split( '.' );
stations.set( label, coords );
surveyTree.addPath( path, { p: coords, type: ( flags & 0x04 ) ? STATION_ENTRANCE : STATION_NORMAL } );
return true;
}
function cmd_XSECT16 ( c ) {
var flags = c & 0x01;
readLabel( flags );
var l = new DataView( source, pos );
pos += 8;
return commonXSECT(
flags,
{
l: l.getInt16( 0, true ) / 100,
r: l.getInt16( 2, true ) / 100,
u: l.getInt16( 4, true ) / 100,
d: l.getInt16( 6, true ) / 100
}
);
}
function cmd_XSECT32 ( c ) {
var flags = c & 0x01;
readLabel( flags );
var l = new DataView( source, pos );
pos += 16;
return commonXSECT(
flags,
{
l: l.getInt32( 0, true ) / 100,
r: l.getInt32( 0, true ) / 100,
u: l.getInt32( 0, true ) / 100,
d: l.getInt32( 0, true ) / 100
}
);
}
function commonXSECT ( flags, lrud ) {
var position = stations.get( label );
if ( ! position ) return;
var station = label.split( '.' );
// get survey path by removing last component of station name
station.pop();
var surveyId = surveyTree.getIdByPath( station );
// FIXME to get a approach vector for the first XSECT in a run so we can add it to the display
xSects.push( { start: lastPosition, end: position, lrud: lrud, survey: surveyId } );
lastPosition = position;
// some XSECTS are not flagged as last in passage
// heuristic - the last line position before a move is an implied line end.
// cmd_MOVE saves these in the set lineEnds.
// this fixes up surveys that display incorrectly withg 'fly-back' artefacts in Aven and Loch.
var endRun = false;
if ( flags ) {
endRun = true;
} else if ( lineEnds.has( [ position.x, position.y, position.z ].toString() ) ) {
endRun = true;
// console.log( 'unterminated LRUD passage at ', label );
}
if ( endRun ) {
if ( xSects.length > 0 ) xGroups.push( xSects );
lastPosition = { x: 0, y: 0, z: 0 };
xSects = [];
}
return true;
}
// functions aliased at runtime as required
function __readCoordinatesProjected () {
var l = new DataView( source, pos );
var projectedCoords = self.projection.forward( {
x: l.getInt32( 0, true ) / 100,
y: l.getInt32( 4, true ) / 100
} );
var coords = {
x: projectedCoords.x,
y: projectedCoords.y,
z: l.getInt32( 8, true ) / 100
};
min.x = Math.min( coords.x, min.x );
min.y = Math.min( coords.y, min.y );
min.z = Math.min( coords.z, min.z );
max.x = Math.max( coords.x, max.x );
max.y = Math.max( coords.y, max.y );
max.z = Math.max( coords.z, max.z );
pos += 12;
return coords;
}
function __readCoordinates () {
var l = new DataView( source, pos );
var coords = {
x: l.getInt32( 0, true ) / 100,
y: l.getInt32( 4, true ) / 100,
z: l.getInt32( 8, true ) / 100
};
min.x = Math.min( coords.x, min.x );
min.y = Math.min( coords.y, min.y );
min.z = Math.min( coords.z, min.z );
max.x = Math.max( coords.x, max.x );
max.y = Math.max( coords.y, max.y );
max.z = Math.max( coords.z, max.z );
pos += 12;
return coords;
}
};
Svx3dHandler.prototype.getLineSegments = function () {
var lineSegments = [];
var groups = this.groups;
var offsets = this.offsets;
for ( var i = 0, l = groups.length; i < l; i++ ) {
var g = groups[ i ];
for ( var v = 0, vMax = g.length - 1; v < vMax; v++ ) {
// create vertex pairs for each line segment.
// all vertices except first and last are duplicated.
var from = g[ v ];
var to = g[ v + 1 ];
// move coordinates around origin
from.coords.x -= offsets.x;
from.coords.y -= offsets.y;
from.coords.z -= offsets.z;
var fromCoords = from.coords;
var toCoords = to.coords;
// skip repeated points ( co-located stations )
if ( fromCoords.x === toCoords.x && fromCoords.y === toCoords.y && fromCoords.z === toCoords.z ) continue;
lineSegments.push( { from: fromCoords, to: toCoords, type: to.type, survey: to.survey } );
}
// move coordinates around origin
to.coords.x -= offsets.x;
to.coords.y -= offsets.y;
to.coords.z -= offsets.z;
}
return lineSegments;
};
Svx3dHandler.prototype.getTerrainDimensions = function () {
return { lines: 0, samples: 0 };
};
Svx3dHandler.prototype.getTerrainBitmap = function () {
return false;
};
Svx3dHandler.prototype.getSurvey = function () {
return {
title: this.fileName,
surveyTree: this.surveyTree,
sourceCRS: this.sourceCRS,
targetCRS: this.targetCRS,
limits: this.limits,
offsets: this.offsets,
lineSegments: this.getLineSegments(),
crossSections: this.xGroups,
scraps: [],
hasTerrain: false,
metadata: this.metadata
};
};
// EOF
function loxHandler ( fileName, dataStream, metadata ) {
this.fileName = fileName;
this.scraps = [];
this.faults = [];
this.lineSegments = [];
this.xGroups = [];
this.surveyTree = new Tree( '', 0 );
this.isRegion = false;
this.metadata = metadata;
this.terrain = {};
this.hasTerrain = false;
var lineSegments = [];
var stations = [];
var self = this;
var surveyTree = this.surveyTree;
// assumes little endian data ATM - FIXME
var source = dataStream;
var pos = 0; // file position
var dataStart;
var f = new DataView( source, 0 );
var l = source.byteLength;
var xGroup = [];
var lastTo;
// range
var min = { x: Infinity, y: Infinity, z: Infinity };
var max = { x: -Infinity, y: -Infinity, z: -Infinity };
while ( pos < l ) readChunkHdr();
this.lineSegments = lineSegments;
// Drop data to give GC a chance ASAP
source = null;
this.limits = {
min: min,
max: max
};
var offsets = {
x: ( min.x + max.x ) / 2,
y: ( min.y + max.y ) / 2,
z: ( min.z + max.z ) / 2
};
this.offsets = offsets;
// convert to origin centered coordinates
var i, j, coords, vertices;
for ( i = 0; i < stations.length; i++ ) {
coords = stations[ i ];
coords.x -= offsets.x;
coords.y -= offsets.y;
coords.z -= offsets.z;
}
var scraps = this.scraps;
// covert scraps coordinates
for ( i = 0; i < scraps.length; i++ ) {
vertices = scraps[ i ].vertices;
for ( j = 0; j < vertices.length; j++ ) {
coords = vertices[ j ];
coords.x -= offsets.x;
coords.y -= offsets.y;
coords.z -= offsets.z;
}
}
return;
// .lox parsing functions
function readChunkHdr () {
var m_type = readUint();
var m_recSize = readUint();
var m_recCount = readUint();
var m_dataSize = readUint();
var doFunction;
// offset of data region for out of line strings/images/scrap data.
dataStart = pos + m_recSize;
switch ( m_type ) {
case 1:
doFunction = readSurvey;
break;
case 2:
doFunction = readStation;
break;
case 3:
doFunction = readShot;
break;
case 4:
doFunction = readScrap;
break;
case 5:
doFunction = readSurface;
break;
case 6:
doFunction = readSurfaceBMP;
break;
default:
console.log( 'unknown chunk header. type : ', m_type );
}
if ( doFunction !== undefined ) {
for ( var i = 0; i < m_recCount; i++ ) {
doFunction();
}
}
skipData( m_dataSize );
}
function readUint () {
var i = f.getUint32( pos, true );
pos += 4;
return i;
}
function skipData ( i ) {
pos += i;
}
function readSurvey () {
var m_id = readUint();
var namePtr = readDataPtr();
var m_parent = readUint();
var titlePtr = readDataPtr();
if ( m_parent != m_id ) {
if ( ! surveyTree.addById( readString( namePtr ), m_id, m_parent ) ) console.log( 'error constructing survey tree for', readString( titlePtr ) );
}
}
function readDataPtr () {
var m_position = readUint();
var m_size = readUint();
return { position: m_position, size: m_size };
}
function readString ( ptr ) {
// strings are null terminated. Igore last byte in string
var bytes = new Uint8Array( source, dataStart + ptr.position, ptr.size - 1 );
return String.fromCharCode.apply( null, bytes );
}
function readStation () {
var m_id = readUint();
var m_surveyId = readUint();
var namePtr = readDataPtr();
readDataPtr(); // commentPtr
var m_flags = readUint();
var coords = readCoords();
stations[ m_id ] = coords;
// add stations to surveyTree make station id negative to avoid clashes with survey id space.
// m_flags & 0x01 = surface
surveyTree.addById( readString( namePtr ), - m_id, m_surveyId, { p: coords, type: ( m_flags & 0x02 ) ? STATION_ENTRANCE : STATION_NORMAL } );
}
function readCoords () {
var f = new DataView( source, pos );
pos += 24;
coords = {
x: f.getFloat64( 0, true ),
y: f.getFloat64( 8, true ),
z: f.getFloat64( 16, true )
};
min.x = Math.min( coords.x, min.x );
min.y = Math.min( coords.y, min.y );
min.z = Math.min( coords.z, min.z );
max.x = Math.max( coords.x, max.x );
max.y = Math.max( coords.y, max.y );
max.z = Math.max( coords.z, max.z );
return coords;
}
function readShot () {
var m_from = readUint();
var m_to = readUint();
var fromLRUD = readLRUD();
var toLRUD = readLRUD();
var m_flags = readUint();
var m_sectionType = readUint();
var m_surveyId = readUint();
f.getFloat64( pos, true ); // m_threshold
var type = LEG_CAVE;
pos += 8;
if ( m_flags & 0x01 ) type = LEG_SURFACE;
if ( m_flags & 0x08 ) type = LEG_SPLAY;
var from = stations[ m_from ];
var to = stations[ m_to ];
if ( m_sectionType !== 0x00 ) {
if ( m_from !== lastTo ) {
// new set of shots
xGroup = [];
self.xGroups.push( xGroup );
xGroup.push( { start: to, end: from, lrud: fromLRUD, survey: m_surveyId } );
}
xGroup.push( { start: from, end: to, lrud: toLRUD, survey: m_surveyId } );
}
if ( from.x === to.x && from.y === to.y && from.z === to.z ) return;
lineSegments.push( { from: from, to: to, type: type, survey: m_surveyId } );
lastTo = m_to;
}
function readLRUD () {
var f = new DataView( source, pos );
pos += 32;
return {
l: f.getFloat64( 0, true ),
r: f.getFloat64( 8, true ),
u: f.getFloat64( 16, true ),
d: f.getFloat64( 24, true )
};
}
function readScrap () {
readUint(); // m_id
var m_surveyId = readUint();
var m_numPoints = readUint();
var pointsPtr = readDataPtr();
var m_num3Angles = readUint();
var facesPtr = readDataPtr();
var scrap = { vertices: [], faces: [], survey: m_surveyId };
var lastFace;
var i, offset, f;
for ( i = 0; i < m_numPoints; i++ ) {
offset = dataStart + pointsPtr.position + i * 24; // 24 = 3 * sizeof( double )
f = new DataView( source, offset );
scrap.vertices.push( {
x: f.getFloat64( 0, true ),
y: f.getFloat64( 8, true ),
z: f.getFloat64( 16, true )
} );
}
// read faces from out of line data area
for ( i = 0; i < m_num3Angles; i++ ) {
offset = dataStart + facesPtr.position + i * 12; // 12 = 3 * sizeof( uint32 )
f = new DataView( source, offset );
var face = [
f.getUint32( 0, true ),
f.getUint32( 4, true ),
f.getUint32( 8, true )
];
// check for face winding order == orientation
fix_direction: { if ( lastFace !== undefined ) {
var j;
for ( j = 0; j < 3; j++ ) { // this case triggers more often than those below.
if ( face[ j ] == lastFace[ ( j + 2 ) % 3 ] && face[ ( j + 1 ) % 3 ] == lastFace[ ( j + 3 ) % 3 ] ) {
face.reverse();
break fix_direction;
}
}
for ( j = 0; j < 3; j++ ) {
if ( face[ j ] == lastFace[ j ] && face[ ( j + 1 ) % 3 ] == lastFace[ ( j + 1 ) % 3 ] ) {
face.reverse();
break fix_direction;
}
}
for ( j = 0; j < 3; j++ ) {
if ( face[ j ] == lastFace[ ( j + 1 ) % 3 ] && face[ ( j + 1 ) % 3 ] == lastFace[ ( j + 2 ) % 3 ] ) {
face.reverse();
break fix_direction;
}
}
} }
scrap.faces.push( face );
lastFace = face;
}
self.scraps.push( scrap );
}
function readSurface () {
readUint(); // m_id
var m_width = readUint();
var m_height = readUint();
var surfacePtr = readDataPtr();
var m_calib = readCalibration();
var ab = source.slice( pos, pos + surfacePtr.size ); // required for 64b alignment
var dtm = new Float64Array( ab, 0 );
// flip y direction
var data = [];
for ( var i = 0; i < m_height; i++ ) {
var offset = ( m_height - 1 - i ) * m_width;
for ( var j = 0; j < m_width; j++ ) {
data.push( dtm[ offset + j ] );
}
}
var terrain = self.terrain;
terrain.data = data;
terrain.dimensions = {};
var dimensions = terrain.dimensions;
dimensions.samples = m_width;
dimensions.lines = m_height;
dimensions.xOrigin = m_calib[ 0 ];
dimensions.yOrigin = m_calib[ 1 ];
dimensions.xDelta = m_calib[ 2 ];
dimensions.yDelta = m_calib[ 5 ];
self.hasTerrain = true;
}
function readCalibration () {
var f = new DataView( source, pos );
var m_calib = [];
m_calib[ 0 ] = f.getFloat64( 0, true );
m_calib[ 1 ] = f.getFloat64( 8, true );
m_calib[ 2 ] = f.getFloat64( 16, true );
m_calib[ 3 ] = f.getFloat64( 24, true );
m_calib[ 4 ] = f.getFloat64( 32, true );
m_calib[ 5 ] = f.getFloat64( 40, true );
pos += 48;
return m_calib;
}
function readSurfaceBMP () {
readUint(); // m_type
readUint(); // m_surfaceId
var imagePtr = readDataPtr();
readCalibration(); // m_calib
self.terrain.bitmap = extractImage( imagePtr );
}
function extractImage ( imagePtr ) {
var imgData = new Uint8Array( source, dataStart + imagePtr.position, imagePtr.size );
var type;
var b1 = imgData[ 0 ];
var b2 = imgData[ 1 ];
if ( b1 === 0xff && b2 === 0xd8 ) {
type = 'image/jpeg';
} else if ( b1 === 0x89 && b2 === 0x50 ) {
type = 'image/png';
}
if ( ! type ) return '';
var blob = new Blob( [ imgData ], { type: type } );
var blobURL = URL.createObjectURL( blob );
return blobURL;
}
}
loxHandler.prototype.constructor = loxHandler;
loxHandler.prototype.getSurvey = function () {
return {
title: this.fileName,
surveyTree: this.surveyTree,
sourceCRS: null,
targetCRS: null,
lineSegments: this.lineSegments,
crossSections: this.xGroups,
scraps: this.scraps,
hasTerrain: this.hasTerrain,
metadata: this.metadata,
terrain: this.terrain,
limits: this.limits,
offsets: this.offsets
};
};
// EOF
/**
* @author bhouston / http://clara.io
* @author mrdoob / http://mrdoob.com/
*/
function Sphere( center, radius ) {
this.center = ( center !== undefined ) ? center : new Vector3();
this.radius = ( radius !== undefined ) ? radius : 0;
}
Object.assign( Sphere.prototype, {
set: function ( center, radius ) {
this.center.copy( center );
this.radius = radius;
return this;
},
setFromPoints: function () {
var box = new Box3();
return function setFromPoints( points, optionalCenter ) {
var center = this.center;
if ( optionalCenter !== undefined ) {
center.copy( optionalCenter );
} else {
box.setFromPoints( points ).getCenter( center );
}
var maxRadiusSq = 0;
for ( var i = 0, il = points.length; i < il; i ++ ) {
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) );
}
this.radius = Math.sqrt( maxRadiusSq );
return this;
};
}(),
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( sphere ) {
this.center.copy( sphere.center );
this.radius = sphere.radius;
return this;
},
empty: function () {
return ( this.radius <= 0 );
},
containsPoint: function ( point ) {
return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) );
},
distanceToPoint: function ( point ) {
return ( point.distanceTo( this.center ) - this.radius );
},
intersectsSphere: function ( sphere ) {
var radiusSum = this.radius + sphere.radius;
return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum );
},
intersectsBox: function ( box ) {
return box.intersectsSphere( this );
},
intersectsPlane: function ( plane ) {
// We use the following equation to compute the signed distance from
// the center of the sphere to the plane.
//
// distance = q * n - d
//
// If this distance is greater than the radius of the sphere,
// then there is no intersection.
return Math.abs( this.center.dot( plane.normal ) - plane.constant ) <= this.radius;
},
clampPoint: function ( point, optionalTarget ) {
var deltaLengthSq = this.center.distanceToSquared( point );
var result = optionalTarget || new Vector3();
result.copy( point );
if ( deltaLengthSq > ( this.radius * this.radius ) ) {
result.sub( this.center ).normalize();
result.multiplyScalar( this.radius ).add( this.center );
}
return result;
},
getBoundingBox: function ( optionalTarget ) {
var box = optionalTarget || new Box3();
box.set( this.center, this.center );
box.expandByScalar( this.radius );
return box;
},
applyMatrix4: function ( matrix ) {
this.center.applyMatrix4( matrix );
this.radius = this.radius * matrix.getMaxScaleOnAxis();
return this;
},
translate: function ( offset ) {
this.center.add( offset );
return this;
},
equals: function ( sphere ) {
return sphere.center.equals( this.center ) && ( sphere.radius === this.radius );
}
} );
/**
* @author bhouston / http://clara.io
* @author WestLangley / http://github.com/WestLangley
*/
function Box3( min, max ) {
this.min = ( min !== undefined ) ? min : new Vector3( + Infinity, + Infinity, + Infinity );
this.max = ( max !== undefined ) ? max : new Vector3( - Infinity, - Infinity, - Infinity );
}
Object.assign( Box3.prototype, {
isBox3: true,
set: function ( min, max ) {
this.min.copy( min );
this.max.copy( max );
return this;
},
setFromArray: function ( array ) {
var minX = + Infinity;
var minY = + Infinity;
var minZ = + Infinity;
var maxX = - Infinity;
var maxY = - Infinity;
var maxZ = - Infinity;
for ( var i = 0, l = array.length; i < l; i += 3 ) {
var x = array[ i ];
var y = array[ i + 1 ];
var z = array[ i + 2 ];
if ( x < minX ) minX = x;
if ( y < minY ) minY = y;
if ( z < minZ ) minZ = z;
if ( x > maxX ) maxX = x;
if ( y > maxY ) maxY = y;
if ( z > maxZ ) maxZ = z;
}
this.min.set( minX, minY, minZ );
this.max.set( maxX, maxY, maxZ );
return this;
},
setFromBufferAttribute: function ( attribute ) {
var minX = + Infinity;
var minY = + Infinity;
var minZ = + Infinity;
var maxX = - Infinity;
var maxY = - Infinity;
var maxZ = - Infinity;
for ( var i = 0, l = attribute.count; i < l; i ++ ) {
var x = attribute.getX( i );
var y = attribute.getY( i );
var z = attribute.getZ( i );
if ( x < minX ) minX = x;
if ( y < minY ) minY = y;
if ( z < minZ ) minZ = z;
if ( x > maxX ) maxX = x;
if ( y > maxY ) maxY = y;
if ( z > maxZ ) maxZ = z;
}
this.min.set( minX, minY, minZ );
this.max.set( maxX, maxY, maxZ );
return this;
},
setFromPoints: function ( points ) {
this.makeEmpty();
for ( var i = 0, il = points.length; i < il; i ++ ) {
this.expandByPoint( points[ i ] );
}
return this;
},
setFromCenterAndSize: function () {
var v1 = new Vector3();
return function setFromCenterAndSize( center, size ) {
var halfSize = v1.copy( size ).multiplyScalar( 0.5 );
this.min.copy( center ).sub( halfSize );
this.max.copy( center ).add( halfSize );
return this;
};
}(),
setFromObject: function ( object ) {
this.makeEmpty();
return this.expandByObject( object );
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( box ) {
this.min.copy( box.min );
this.max.copy( box.max );
return this;
},
makeEmpty: function () {
this.min.x = this.min.y = this.min.z = + Infinity;
this.max.x = this.max.y = this.max.z = - Infinity;
return this;
},
isEmpty: function () {
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z );
},
getCenter: function ( optionalTarget ) {
var result = optionalTarget || new Vector3();
return this.isEmpty() ? result.set( 0, 0, 0 ) : result.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
},
getSize: function ( optionalTarget ) {
var result = optionalTarget || new Vector3();
return this.isEmpty() ? result.set( 0, 0, 0 ) : result.subVectors( this.max, this.min );
},
expandByPoint: function ( point ) {
this.min.min( point );
this.max.max( point );
return this;
},
expandByVector: function ( vector ) {
this.min.sub( vector );
this.max.add( vector );
return this;
},
expandByScalar: function ( scalar ) {
this.min.addScalar( - scalar );
this.max.addScalar( scalar );
return this;
},
expandByObject: function () {
// Computes the world-axis-aligned bounding box of an object (including its children),
// accounting for both the object's, and children's, world transforms
var v1 = new Vector3();
return function expandByObject( object ) {
var scope = this;
object.updateMatrixWorld( true );
object.traverse( function ( node ) {
var i, l;
var geometry = node.geometry;
if ( geometry !== undefined ) {
if ( geometry.isGeometry ) {
var vertices = geometry.vertices;
for ( i = 0, l = vertices.length; i < l; i ++ ) {
v1.copy( vertices[ i ] );
v1.applyMatrix4( node.matrixWorld );
scope.expandByPoint( v1 );
}
} else if ( geometry.isBufferGeometry ) {
var attribute = geometry.attributes.position;
if ( attribute !== undefined ) {
for ( i = 0, l = attribute.count; i < l; i ++ ) {
v1.fromBufferAttribute( attribute, i ).applyMatrix4( node.matrixWorld );
scope.expandByPoint( v1 );
}
}
}
}
} );
return this;
};
}(),
containsPoint: function ( point ) {
return point.x < this.min.x || point.x > this.max.x ||
point.y < this.min.y || point.y > this.max.y ||
point.z < this.min.z || point.z > this.max.z ? false : true;
},
containsBox: function ( box ) {
return this.min.x <= box.min.x && box.max.x <= this.max.x &&
this.min.y <= box.min.y && box.max.y <= this.max.y &&
this.min.z <= box.min.z && box.max.z <= this.max.z;
},
getParameter: function ( point, optionalTarget ) {
// This can potentially have a divide by zero if the box
// has a size dimension of 0.
var result = optionalTarget || new Vector3();
return result.set(
( point.x - this.min.x ) / ( this.max.x - this.min.x ),
( point.y - this.min.y ) / ( this.max.y - this.min.y ),
( point.z - this.min.z ) / ( this.max.z - this.min.z )
);
},
intersectsBox: function ( box ) {
// using 6 splitting planes to rule out intersections.
return box.max.x < this.min.x || box.min.x > this.max.x ||
box.max.y < this.min.y || box.min.y > this.max.y ||
box.max.z < this.min.z || box.min.z > this.max.z ? false : true;
},
intersectsSphere: ( function () {
var closestPoint = new Vector3();
return function intersectsSphere( sphere ) {
// Find the point on the AABB closest to the sphere center.
this.clampPoint( sphere.center, closestPoint );
// If that point is inside the sphere, the AABB and sphere intersect.
return closestPoint.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );
};
} )(),
intersectsPlane: function ( plane ) {
// We compute the minimum and maximum dot product values. If those values
// are on the same side (back or front) of the plane, then there is no intersection.
var min, max;
if ( plane.normal.x > 0 ) {
min = plane.normal.x * this.min.x;
max = plane.normal.x * this.max.x;
} else {
min = plane.normal.x * this.max.x;
max = plane.normal.x * this.min.x;
}
if ( plane.normal.y > 0 ) {
min += plane.normal.y * this.min.y;
max += plane.normal.y * this.max.y;
} else {
min += plane.normal.y * this.max.y;
max += plane.normal.y * this.min.y;
}
if ( plane.normal.z > 0 ) {
min += plane.normal.z * this.min.z;
max += plane.normal.z * this.max.z;
} else {
min += plane.normal.z * this.max.z;
max += plane.normal.z * this.min.z;
}
return ( min <= plane.constant && max >= plane.constant );
},
clampPoint: function ( point, optionalTarget ) {
var result = optionalTarget || new Vector3();
return result.copy( point ).clamp( this.min, this.max );
},
distanceToPoint: function () {
var v1 = new Vector3();
return function distanceToPoint( point ) {
var clampedPoint = v1.copy( point ).clamp( this.min, this.max );
return clampedPoint.sub( point ).length();
};
}(),
getBoundingSphere: function () {
var v1 = new Vector3();
return function getBoundingSphere( optionalTarget ) {
var result = optionalTarget || new Sphere();
this.getCenter( result.center );
result.radius = this.getSize( v1 ).length() * 0.5;
return result;
};
}(),
intersect: function ( box ) {
this.min.max( box.min );
this.max.min( box.max );
// ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
if( this.isEmpty() ) this.makeEmpty();
return this;
},
union: function ( box ) {
this.min.min( box.min );
this.max.max( box.max );
return this;
},
applyMatrix4: function () {
var points = [
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3()
];
return function applyMatrix4( matrix ) {
// transform of empty box is an empty box.
if( this.isEmpty() ) return this;
// NOTE: I am using a binary pattern to specify all 2^3 combinations below
points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000
points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001
points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010
points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011
points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100
points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101
points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110
points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111
this.setFromPoints( points );
return this;
};
}(),
translate: function ( offset ) {
this.min.add( offset );
this.max.add( offset );
return this;
},
equals: function ( box ) {
return box.min.equals( this.min ) && box.max.equals( this.max );
}
} );
function RegionHandler ( filename, dataStream ) {
this.isRegion = true;
this.data = dataStream;
this.box = new Box3();
var entrances = [];
var caves = this.data.caves;
var caveName;
var min = this.box.min;
var max = this.box.max;
for ( caveName in caves ) {
var i;
var e = caves[ caveName ].entrances;
for ( i = 0; i < e.length; i++ ) {
var entrance = e[ i ];
min.min( entrance.position );
max.max( entrance.position );
entrances.push( entrance );
}
}
this.data.entrances = entrances;
this.data.surveyTree = new Tree( this.data.title );
}
RegionHandler.prototype.constructor = RegionHandler;
RegionHandler.prototype.getSurvey = function () {
return this.data;
};
RegionHandler.prototype.getLimits = function () {
return this.box;
};
// EOF
// Polyfills
if ( Number.EPSILON === undefined ) {
Number.EPSILON = Math.pow( 2, - 52 );
}
if ( Number.isInteger === undefined ) {
// Missing in IE
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger
Number.isInteger = function ( value ) {
return typeof value === 'number' && isFinite( value ) && Math.floor( value ) === value;
};
}
//
if ( Math.sign === undefined ) {
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign
Math.sign = function ( x ) {
return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x;
};
}
if ( Function.prototype.name === undefined ) {
// Missing in IE
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name
Object.defineProperty( Function.prototype, 'name', {
get: function () {
return this.toString().match( /^\s*function\s*([^\(\s]*)/ )[ 1 ];
}
} );
}
if ( Object.assign === undefined ) {
// Missing in IE
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
( function () {
Object.assign = function ( target ) {
'use strict';
if ( target === undefined || target === null ) {
throw new TypeError( 'Cannot convert undefined or null to object' );
}
var output = Object( target );
for ( var index = 1; index < arguments.length; index ++ ) {
var source = arguments[ index ];
if ( source !== undefined && source !== null ) {
for ( var nextKey in source ) {
if ( Object.prototype.hasOwnProperty.call( source, nextKey ) ) {
output[ nextKey ] = source[ nextKey ];
}
}
}
}
return output;
};
} )();
}
/**
* https://github.com/mrdoob/eventdispatcher.js/
*/
function EventDispatcher() {}
Object.assign( EventDispatcher.prototype, {
addEventListener: function ( type, listener ) {
if ( this._listeners === undefined ) this._listeners = {};
var listeners = this._listeners;
if ( listeners[ type ] === undefined ) {
listeners[ type ] = [];
}
if ( listeners[ type ].indexOf( listener ) === - 1 ) {
listeners[ type ].push( listener );
}
},
hasEventListener: function ( type, listener ) {
if ( this._listeners === undefined ) return false;
var listeners = this._listeners;
return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1;
},
removeEventListener: function ( type, listener ) {
if ( this._listeners === undefined ) return;
var listeners = this._listeners;
var listenerArray = listeners[ type ];
if ( listenerArray !== undefined ) {
var index = listenerArray.indexOf( listener );
if ( index !== - 1 ) {
listenerArray.splice( index, 1 );
}
}
},
dispatchEvent: function ( event ) {
if ( this._listeners === undefined ) return;
var listeners = this._listeners;
var listenerArray = listeners[ event.type ];
if ( listenerArray !== undefined ) {
event.target = this;
var array = listenerArray.slice( 0 );
for ( var i = 0, l = array.length; i < l; i ++ ) {
array[ i ].call( this, event );
}
}
}
} );
var PCFShadowMap = 1;
var PCFSoftShadowMap = 2;
var FrontSide = 0;
var BackSide = 1;
var DoubleSide = 2;
var FlatShading = 1;
var SmoothShading = 2;
var NoColors = 0;
var FaceColors = 1;
var VertexColors = 2;
var NoBlending = 0;
var NormalBlending = 1;
var AdditiveBlending = 2;
var SubtractiveBlending = 3;
var MultiplyBlending = 4;
var CustomBlending = 5;
var AddEquation = 100;
var SrcAlphaFactor = 204;
var OneMinusSrcAlphaFactor = 205;
var LessEqualDepth = 3;
var MultiplyOperation = 0;
var MixOperation = 1;
var AddOperation = 2;
var NoToneMapping = 0;
var LinearToneMapping = 1;
var ReinhardToneMapping = 2;
var Uncharted2ToneMapping = 3;
var CineonToneMapping = 4;
var UVMapping = 300;
var CubeReflectionMapping = 301;
var CubeRefractionMapping = 302;
var EquirectangularReflectionMapping = 303;
var EquirectangularRefractionMapping = 304;
var SphericalReflectionMapping = 305;
var CubeUVReflectionMapping = 306;
var CubeUVRefractionMapping = 307;
var RepeatWrapping = 1000;
var ClampToEdgeWrapping = 1001;
var MirroredRepeatWrapping = 1002;
var NearestFilter = 1003;
var NearestMipMapNearestFilter = 1004;
var NearestMipMapLinearFilter = 1005;
var LinearFilter = 1006;
var LinearMipMapLinearFilter = 1008;
var UnsignedByteType = 1009;
var UnsignedShortType = 1012;
var UnsignedIntType = 1014;
var FloatType = 1015;
var HalfFloatType = 1016;
var UnsignedInt248Type = 1020;
var RGBFormat = 1022;
var RGBAFormat = 1023;
var DepthFormat = 1026;
var DepthStencilFormat = 1027;
var InterpolateDiscrete = 2300;
var InterpolateLinear = 2301;
var InterpolateSmooth = 2302;
var ZeroCurvatureEnding = 2400;
var ZeroSlopeEnding = 2401;
var WrapAroundEnding = 2402;
var TrianglesDrawMode = 0;
var LinearEncoding = 3000;
var sRGBEncoding = 3001;
var GammaEncoding = 3007;
var RGBEEncoding = 3002;
var RGBM7Encoding = 3004;
var RGBM16Encoding = 3005;
var RGBDEncoding = 3006;
/**
* @author mrdoob / http://mrdoob.com/
* @author philogb / http://blog.thejit.org/
* @author egraether / http://egraether.com/
* @author zz85 / http://www.lab4games.net/zz85/blog
*/
function Vector2( x, y ) {
this.x = x || 0;
this.y = y || 0;
}
Object.defineProperties( Vector2.prototype, {
"width" : {
get: function () {
return this.x;
},
set: function ( value ) {
this.x = value;
}
},
"height" : {
get: function () {
return this.y;
},
set: function ( value ) {
this.y = value;
}
}
} );
Object.assign( Vector2.prototype, {
isVector2: true,
set: function ( x, y ) {
this.x = x;
this.y = y;
return this;
},
setScalar: function ( scalar ) {
this.x = scalar;
this.y = scalar;
return this;
},
setX: function ( x ) {
this.x = x;
return this;
},
setY: function ( y ) {
this.y = y;
return this;
},
setComponent: function ( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
},
getComponent: function ( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
default: throw new Error( 'index is out of range: ' + index );
}
},
clone: function () {
return new this.constructor( this.x, this.y );
},
copy: function ( v ) {
this.x = v.x;
this.y = v.y;
return this;
},
add: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
return this.addVectors( v, w );
}
this.x += v.x;
this.y += v.y;
return this;
},
addScalar: function ( s ) {
this.x += s;
this.y += s;
return this;
},
addVectors: function ( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
return this;
},
addScaledVector: function ( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
return this;
},
sub: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
return this.subVectors( v, w );
}
this.x -= v.x;
this.y -= v.y;
return this;
},
subScalar: function ( s ) {
this.x -= s;
this.y -= s;
return this;
},
subVectors: function ( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
return this;
},
multiply: function ( v ) {
this.x *= v.x;
this.y *= v.y;
return this;
},
multiplyScalar: function ( scalar ) {
this.x *= scalar;
this.y *= scalar;
return this;
},
divide: function ( v ) {
this.x /= v.x;
this.y /= v.y;
return this;
},
divideScalar: function ( scalar ) {
return this.multiplyScalar( 1 / scalar );
},
min: function ( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
return this;
},
max: function ( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
return this;
},
clamp: function ( min, max ) {
// assumes min < max, componentwise
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
return this;
},
clampScalar: function () {
var min = new Vector2();
var max = new Vector2();
return function clampScalar( minVal, maxVal ) {
min.set( minVal, minVal );
max.set( maxVal, maxVal );
return this.clamp( min, max );
};
}(),
clampLength: function ( min, max ) {
var length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
},
floor: function () {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
return this;
},
ceil: function () {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
return this;
},
round: function () {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
return this;
},
roundToZero: function () {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
return this;
},
negate: function () {
this.x = - this.x;
this.y = - this.y;
return this;
},
dot: function ( v ) {
return this.x * v.x + this.y * v.y;
},
lengthSq: function () {
return this.x * this.x + this.y * this.y;
},
length: function () {
return Math.sqrt( this.x * this.x + this.y * this.y );
},
lengthManhattan: function() {
return Math.abs( this.x ) + Math.abs( this.y );
},
normalize: function () {
return this.divideScalar( this.length() || 1 );
},
angle: function () {
// computes the angle in radians with respect to the positive x-axis
var angle = Math.atan2( this.y, this.x );
if ( angle < 0 ) angle += 2 * Math.PI;
return angle;
},
distanceTo: function ( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
},
distanceToSquared: function ( v ) {
var dx = this.x - v.x, dy = this.y - v.y;
return dx * dx + dy * dy;
},
distanceToManhattan: function ( v ) {
return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y );
},
setLength: function ( length ) {
return this.normalize().multiplyScalar( length );
},
lerp: function ( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
return this;
},
lerpVectors: function ( v1, v2, alpha ) {
return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
},
equals: function ( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.x = array[ offset ];
this.y = array[ offset + 1 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
return array;
},
fromBufferAttribute: function ( attribute, index, offset ) {
if ( offset !== undefined ) {
console.warn( 'THREE.Vector2: offset has been removed from .fromBufferAttribute().' );
}
this.x = attribute.getX( index );
this.y = attribute.getY( index );
return this;
},
rotateAround: function ( center, angle ) {
var c = Math.cos( angle ), s = Math.sin( angle );
var x = this.x - center.x;
var y = this.y - center.y;
this.x = x * c - y * s + center.x;
this.y = x * s + y * c + center.y;
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author szimek / https://github.com/szimek/
*/
var textureId = 0;
function Texture( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {
Object.defineProperty( this, 'id', { value: textureId ++ } );
this.uuid = _Math.generateUUID();
this.name = '';
this.image = image !== undefined ? image : Texture.DEFAULT_IMAGE;
this.mipmaps = [];
this.mapping = mapping !== undefined ? mapping : Texture.DEFAULT_MAPPING;
this.wrapS = wrapS !== undefined ? wrapS : ClampToEdgeWrapping;
this.wrapT = wrapT !== undefined ? wrapT : ClampToEdgeWrapping;
this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;
this.minFilter = minFilter !== undefined ? minFilter : LinearMipMapLinearFilter;
this.anisotropy = anisotropy !== undefined ? anisotropy : 1;
this.format = format !== undefined ? format : RGBAFormat;
this.type = type !== undefined ? type : UnsignedByteType;
this.offset = new Vector2( 0, 0 );
this.repeat = new Vector2( 1, 1 );
this.generateMipmaps = true;
this.premultiplyAlpha = false;
this.flipY = true;
this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)
// Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
//
// Also changing the encoding after already used by a Material will not automatically make the Material
// update. You need to explicitly call Material.needsUpdate to trigger it to recompile.
this.encoding = encoding !== undefined ? encoding : LinearEncoding;
this.version = 0;
this.onUpdate = null;
}
Texture.DEFAULT_IMAGE = undefined;
Texture.DEFAULT_MAPPING = UVMapping;
Object.defineProperty( Texture.prototype, "needsUpdate", {
set: function ( value ) {
if ( value === true ) this.version ++;
}
} );
Object.assign( Texture.prototype, EventDispatcher.prototype, {
constructor: Texture,
isTexture: true,
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.name = source.name;
this.image = source.image;
this.mipmaps = source.mipmaps.slice( 0 );
this.mapping = source.mapping;
this.wrapS = source.wrapS;
this.wrapT = source.wrapT;
this.magFilter = source.magFilter;
this.minFilter = source.minFilter;
this.anisotropy = source.anisotropy;
this.format = source.format;
this.type = source.type;
this.offset.copy( source.offset );
this.repeat.copy( source.repeat );
this.generateMipmaps = source.generateMipmaps;
this.premultiplyAlpha = source.premultiplyAlpha;
this.flipY = source.flipY;
this.unpackAlignment = source.unpackAlignment;
this.encoding = source.encoding;
return this;
},
toJSON: function ( meta ) {
if ( meta.textures[ this.uuid ] !== undefined ) {
return meta.textures[ this.uuid ];
}
function getDataURL( image ) {
var canvas;
if ( image.toDataURL !== undefined ) {
canvas = image;
} else {
canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );
canvas.width = image.width;
canvas.height = image.height;
canvas.getContext( '2d' ).drawImage( image, 0, 0, image.width, image.height );
}
if ( canvas.width > 2048 || canvas.height > 2048 ) {
return canvas.toDataURL( 'image/jpeg', 0.6 );
} else {
return canvas.toDataURL( 'image/png' );
}
}
var output = {
metadata: {
version: 4.5,
type: 'Texture',
generator: 'Texture.toJSON'
},
uuid: this.uuid,
name: this.name,
mapping: this.mapping,
repeat: [ this.repeat.x, this.repeat.y ],
offset: [ this.offset.x, this.offset.y ],
wrap: [ this.wrapS, this.wrapT ],
minFilter: this.minFilter,
magFilter: this.magFilter,
anisotropy: this.anisotropy,
flipY: this.flipY
};
if ( this.image !== undefined ) {
// TODO: Move to THREE.Image
var image = this.image;
if ( image.uuid === undefined ) {
image.uuid = _Math.generateUUID(); // UGH
}
if ( meta.images[ image.uuid ] === undefined ) {
meta.images[ image.uuid ] = {
uuid: image.uuid,
url: getDataURL( image )
};
}
output.image = image.uuid;
}
meta.textures[ this.uuid ] = output;
return output;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
},
transformUv: function ( uv ) {
if ( this.mapping !== UVMapping ) return;
uv.multiply( this.repeat );
uv.add( this.offset );
if ( uv.x < 0 || uv.x > 1 ) {
switch ( this.wrapS ) {
case RepeatWrapping:
uv.x = uv.x - Math.floor( uv.x );
break;
case ClampToEdgeWrapping:
uv.x = uv.x < 0 ? 0 : 1;
break;
case MirroredRepeatWrapping:
if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) {
uv.x = Math.ceil( uv.x ) - uv.x;
} else {
uv.x = uv.x - Math.floor( uv.x );
}
break;
}
}
if ( uv.y < 0 || uv.y > 1 ) {
switch ( this.wrapT ) {
case RepeatWrapping:
uv.y = uv.y - Math.floor( uv.y );
break;
case ClampToEdgeWrapping:
uv.y = uv.y < 0 ? 0 : 1;
break;
case MirroredRepeatWrapping:
if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) {
uv.y = Math.ceil( uv.y ) - uv.y;
} else {
uv.y = uv.y - Math.floor( uv.y );
}
break;
}
}
if ( this.flipY ) {
uv.y = 1 - uv.y;
}
}
} );
/**
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author philogb / http://blog.thejit.org/
* @author mikael emtinger / http://gomo.se/
* @author egraether / http://egraether.com/
* @author WestLangley / http://github.com/WestLangley
*/
function Vector4( x, y, z, w ) {
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
this.w = ( w !== undefined ) ? w : 1;
}
Object.assign( Vector4.prototype, {
isVector4: true,
set: function ( x, y, z, w ) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
},
setScalar: function ( scalar ) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
this.w = scalar;
return this;
},
setX: function ( x ) {
this.x = x;
return this;
},
setY: function ( y ) {
this.y = y;
return this;
},
setZ: function ( z ) {
this.z = z;
return this;
},
setW: function ( w ) {
this.w = w;
return this;
},
setComponent: function ( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
case 3: this.w = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
},
getComponent: function ( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
case 3: return this.w;
default: throw new Error( 'index is out of range: ' + index );
}
},
clone: function () {
return new this.constructor( this.x, this.y, this.z, this.w );
},
copy: function ( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
this.w = ( v.w !== undefined ) ? v.w : 1;
return this;
},
add: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
return this.addVectors( v, w );
}
this.x += v.x;
this.y += v.y;
this.z += v.z;
this.w += v.w;
return this;
},
addScalar: function ( s ) {
this.x += s;
this.y += s;
this.z += s;
this.w += s;
return this;
},
addVectors: function ( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
this.w = a.w + b.w;
return this;
},
addScaledVector: function ( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
this.w += v.w * s;
return this;
},
sub: function ( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
return this.subVectors( v, w );
}
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
this.w -= v.w;
return this;
},
subScalar: function ( s ) {
this.x -= s;
this.y -= s;
this.z -= s;
this.w -= s;
return this;
},
subVectors: function ( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
this.w = a.w - b.w;
return this;
},
multiplyScalar: function ( scalar ) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
this.w *= scalar;
return this;
},
applyMatrix4: function ( m ) {
var x = this.x, y = this.y, z = this.z, w = this.w;
var e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w;
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w;
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w;
this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;
return this;
},
divideScalar: function ( scalar ) {
return this.multiplyScalar( 1 / scalar );
},
setAxisAngleFromQuaternion: function ( q ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
// q is assumed to be normalized
this.w = 2 * Math.acos( q.w );
var s = Math.sqrt( 1 - q.w * q.w );
if ( s < 0.0001 ) {
this.x = 1;
this.y = 0;
this.z = 0;
} else {
this.x = q.x / s;
this.y = q.y / s;
this.z = q.z / s;
}
return this;
},
setAxisAngleFromRotationMatrix: function ( m ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
var angle, x, y, z, // variables for result
epsilon = 0.01, // margin to allow for rounding errors
epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees
te = m.elements,
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
if ( ( Math.abs( m12 - m21 ) < epsilon ) &&
( Math.abs( m13 - m31 ) < epsilon ) &&
( Math.abs( m23 - m32 ) < epsilon ) ) {
// singularity found
// first check for identity matrix which must have +1 for all terms
// in leading diagonal and zero in other terms
if ( ( Math.abs( m12 + m21 ) < epsilon2 ) &&
( Math.abs( m13 + m31 ) < epsilon2 ) &&
( Math.abs( m23 + m32 ) < epsilon2 ) &&
( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {
// this singularity is identity matrix so angle = 0
this.set( 1, 0, 0, 0 );
return this; // zero angle, arbitrary axis
}
// otherwise this singularity is angle = 180
angle = Math.PI;
var xx = ( m11 + 1 ) / 2;
var yy = ( m22 + 1 ) / 2;
var zz = ( m33 + 1 ) / 2;
var xy = ( m12 + m21 ) / 4;
var xz = ( m13 + m31 ) / 4;
var yz = ( m23 + m32 ) / 4;
if ( ( xx > yy ) && ( xx > zz ) ) {
// m11 is the largest diagonal term
if ( xx < epsilon ) {
x = 0;
y = 0.707106781;
z = 0.707106781;
} else {
x = Math.sqrt( xx );
y = xy / x;
z = xz / x;
}
} else if ( yy > zz ) {
// m22 is the largest diagonal term
if ( yy < epsilon ) {
x = 0.707106781;
y = 0;
z = 0.707106781;
} else {
y = Math.sqrt( yy );
x = xy / y;
z = yz / y;
}
} else {
// m33 is the largest diagonal term so base result on this
if ( zz < epsilon ) {
x = 0.707106781;
y = 0.707106781;
z = 0;
} else {
z = Math.sqrt( zz );
x = xz / z;
y = yz / z;
}
}
this.set( x, y, z, angle );
return this; // return 180 deg rotation
}
// as we have reached here there are no singularities so we can handle normally
var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) +
( m13 - m31 ) * ( m13 - m31 ) +
( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize
if ( Math.abs( s ) < 0.001 ) s = 1;
// prevent divide by zero, should not happen if matrix is orthogonal and should be
// caught by singularity test above, but I've left it in just in case
this.x = ( m32 - m23 ) / s;
this.y = ( m13 - m31 ) / s;
this.z = ( m21 - m12 ) / s;
this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );
return this;
},
min: function ( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
this.z = Math.min( this.z, v.z );
this.w = Math.min( this.w, v.w );
return this;
},
max: function ( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
this.z = Math.max( this.z, v.z );
this.w = Math.max( this.w, v.w );
return this;
},
clamp: function ( min, max ) {
// assumes min < max, componentwise
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
this.z = Math.max( min.z, Math.min( max.z, this.z ) );
this.w = Math.max( min.w, Math.min( max.w, this.w ) );
return this;
},
clampScalar: function () {
var min, max;
return function clampScalar( minVal, maxVal ) {
if ( min === undefined ) {
min = new Vector4();
max = new Vector4();
}
min.set( minVal, minVal, minVal, minVal );
max.set( maxVal, maxVal, maxVal, maxVal );
return this.clamp( min, max );
};
}(),
clampLength: function ( min, max ) {
var length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
},
floor: function () {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
this.z = Math.floor( this.z );
this.w = Math.floor( this.w );
return this;
},
ceil: function () {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
this.z = Math.ceil( this.z );
this.w = Math.ceil( this.w );
return this;
},
round: function () {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
this.z = Math.round( this.z );
this.w = Math.round( this.w );
return this;
},
roundToZero: function () {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w );
return this;
},
negate: function () {
this.x = - this.x;
this.y = - this.y;
this.z = - this.z;
this.w = - this.w;
return this;
},
dot: function ( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
},
lengthSq: function () {
return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
},
length: function () {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
},
lengthManhattan: function () {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );
},
normalize: function () {
return this.divideScalar( this.length() || 1 );
},
setLength: function ( length ) {
return this.normalize().multiplyScalar( length );
},
lerp: function ( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
this.w += ( v.w - this.w ) * alpha;
return this;
},
lerpVectors: function ( v1, v2, alpha ) {
return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
},
equals: function ( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.x = array[ offset ];
this.y = array[ offset + 1 ];
this.z = array[ offset + 2 ];
this.w = array[ offset + 3 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
array[ offset + 2 ] = this.z;
array[ offset + 3 ] = this.w;
return array;
},
fromBufferAttribute: function ( attribute, index, offset ) {
if ( offset !== undefined ) {
console.warn( 'THREE.Vector4: offset has been removed from .fromBufferAttribute().' );
}
this.x = attribute.getX( index );
this.y = attribute.getY( index );
this.z = attribute.getZ( index );
this.w = attribute.getW( index );
return this;
}
} );
/**
* @author szimek / https://github.com/szimek/
* @author alteredq / http://alteredqualia.com/
* @author Marius Kintel / https://github.com/kintel
*/
/*
In options, we can specify:
* Texture parameters for an auto-generated target texture
* depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
*/
function WebGLRenderTarget( width, height, options ) {
this.uuid = _Math.generateUUID();
this.width = width;
this.height = height;
this.scissor = new Vector4( 0, 0, width, height );
this.scissorTest = false;
this.viewport = new Vector4( 0, 0, width, height );
options = options || {};
if ( options.minFilter === undefined ) options.minFilter = LinearFilter;
this.texture = new Texture( undefined, undefined, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding );
this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true;
this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;
}
Object.assign( WebGLRenderTarget.prototype, EventDispatcher.prototype, {
isWebGLRenderTarget: true,
setSize: function ( width, height ) {
if ( this.width !== width || this.height !== height ) {
this.width = width;
this.height = height;
this.dispose();
}
this.viewport.set( 0, 0, width, height );
this.scissor.set( 0, 0, width, height );
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.width = source.width;
this.height = source.height;
this.viewport.copy( source.viewport );
this.texture = source.texture.clone();
this.depthBuffer = source.depthBuffer;
this.stencilBuffer = source.stencilBuffer;
this.depthTexture = source.depthTexture;
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function CubeTexture( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {
images = images !== undefined ? images : [];
mapping = mapping !== undefined ? mapping : CubeReflectionMapping;
Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );
this.flipY = false;
}
CubeTexture.prototype = Object.create( Texture.prototype );
CubeTexture.prototype.constructor = CubeTexture;
CubeTexture.prototype.isCubeTexture = true;
Object.defineProperty( CubeTexture.prototype, 'images', {
get: function () {
return this.image;
},
set: function ( value ) {
this.image = value;
}
} );
/**
* @author tschw
*
* Uniforms of a program.
* Those form a tree structure with a special top-level container for the root,
* which you get by calling 'new WebGLUniforms( gl, program, renderer )'.
*
*
* Properties of inner nodes including the top-level container:
*
* .seq - array of nested uniforms
* .map - nested uniforms by name
*
*
* Methods of all nodes except the top-level container:
*
* .setValue( gl, value, [renderer] )
*
* uploads a uniform value(s)
* the 'renderer' parameter is needed for sampler uniforms
*
*
* Static methods of the top-level container (renderer factorizations):
*
* .upload( gl, seq, values, renderer )
*
* sets uniforms in 'seq' to 'values[id].value'
*
* .seqWithValue( seq, values ) : filteredSeq
*
* filters 'seq' entries with corresponding entry in values
*
*
* Methods of the top-level container (renderer factorizations):
*
* .setValue( gl, name, value )
*
* sets uniform with name 'name' to 'value'
*
* .set( gl, obj, prop )
*
* sets uniform from object and property with same name than uniform
*
* .setOptional( gl, obj, prop )
*
* like .set for an optional property of the object
*
*/
var emptyTexture = new Texture();
var emptyCubeTexture = new CubeTexture();
// --- Base for inner nodes (including the root) ---
function UniformContainer() {
this.seq = [];
this.map = {};
}
// --- Utilities ---
// Array Caches (provide typed arrays for temporary by size)
var arrayCacheF32 = [];
var arrayCacheI32 = [];
// Float32Array caches used for uploading Matrix uniforms
var mat4array = new Float32Array( 16 );
var mat3array = new Float32Array( 9 );
// Flattening for arrays of vectors and matrices
function flatten( array, nBlocks, blockSize ) {
var firstElem = array[ 0 ];
if ( firstElem <= 0 || firstElem > 0 ) return array;
// unoptimized: ! isNaN( firstElem )
// see http://jacksondunstan.com/articles/983
var n = nBlocks * blockSize,
r = arrayCacheF32[ n ];
if ( r === undefined ) {
r = new Float32Array( n );
arrayCacheF32[ n ] = r;
}
if ( nBlocks !== 0 ) {
firstElem.toArray( r, 0 );
for ( var i = 1, offset = 0; i !== nBlocks; ++ i ) {
offset += blockSize;
array[ i ].toArray( r, offset );
}
}
return r;
}
// Texture unit allocation
function allocTexUnits( renderer, n ) {
var r = arrayCacheI32[ n ];
if ( r === undefined ) {
r = new Int32Array( n );
arrayCacheI32[ n ] = r;
}
for ( var i = 0; i !== n; ++ i )
r[ i ] = renderer.allocTextureUnit();
return r;
}
// --- Setters ---
// Note: Defining these methods externally, because they come in a bunch
// and this way their names minify.
// Single scalar
function setValue1f( gl, v ) { gl.uniform1f( this.addr, v ); }
function setValue1i( gl, v ) { gl.uniform1i( this.addr, v ); }
// Single float vector (from flat array or THREE.VectorN)
function setValue2fv( gl, v ) {
if ( v.x === undefined ) gl.uniform2fv( this.addr, v );
else gl.uniform2f( this.addr, v.x, v.y );
}
function setValue3fv( gl, v ) {
if ( v.x !== undefined )
gl.uniform3f( this.addr, v.x, v.y, v.z );
else if ( v.r !== undefined )
gl.uniform3f( this.addr, v.r, v.g, v.b );
else
gl.uniform3fv( this.addr, v );
}
function setValue4fv( gl, v ) {
if ( v.x === undefined ) gl.uniform4fv( this.addr, v );
else gl.uniform4f( this.addr, v.x, v.y, v.z, v.w );
}
// Single matrix (from flat array or MatrixN)
function setValue2fm( gl, v ) {
gl.uniformMatrix2fv( this.addr, false, v.elements || v );
}
function setValue3fm( gl, v ) {
if ( v.elements === undefined ) {
gl.uniformMatrix3fv( this.addr, false, v );
} else {
mat3array.set( v.elements );
gl.uniformMatrix3fv( this.addr, false, mat3array );
}
}
function setValue4fm( gl, v ) {
if ( v.elements === undefined ) {
gl.uniformMatrix4fv( this.addr, false, v );
} else {
mat4array.set( v.elements );
gl.uniformMatrix4fv( this.addr, false, mat4array );
}
}
// Single texture (2D / Cube)
function setValueT1( gl, v, renderer ) {
var unit = renderer.allocTextureUnit();
gl.uniform1i( this.addr, unit );
renderer.setTexture2D( v || emptyTexture, unit );
}
function setValueT6( gl, v, renderer ) {
var unit = renderer.allocTextureUnit();
gl.uniform1i( this.addr, unit );
renderer.setTextureCube( v || emptyCubeTexture, unit );
}
// Integer / Boolean vectors or arrays thereof (always flat arrays)
function setValue2iv( gl, v ) { gl.uniform2iv( this.addr, v ); }
function setValue3iv( gl, v ) { gl.uniform3iv( this.addr, v ); }
function setValue4iv( gl, v ) { gl.uniform4iv( this.addr, v ); }
// Helper to pick the right setter for the singular case
function getSingularSetter( type ) {
switch ( type ) {
case 0x1406: return setValue1f; // FLOAT
case 0x8b50: return setValue2fv; // _VEC2
case 0x8b51: return setValue3fv; // _VEC3
case 0x8b52: return setValue4fv; // _VEC4
case 0x8b5a: return setValue2fm; // _MAT2
case 0x8b5b: return setValue3fm; // _MAT3
case 0x8b5c: return setValue4fm; // _MAT4
case 0x8b5e: case 0x8d66: return setValueT1; // SAMPLER_2D, SAMPLER_EXTERNAL_OES
case 0x8b60: return setValueT6; // SAMPLER_CUBE
case 0x1404: case 0x8b56: return setValue1i; // INT, BOOL
case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2
case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3
case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4
}
}
// Array of scalars
function setValue1fv( gl, v ) { gl.uniform1fv( this.addr, v ); }
function setValue1iv( gl, v ) { gl.uniform1iv( this.addr, v ); }
// Array of vectors (flat or from THREE classes)
function setValueV2a( gl, v ) {
gl.uniform2fv( this.addr, flatten( v, this.size, 2 ) );
}
function setValueV3a( gl, v ) {
gl.uniform3fv( this.addr, flatten( v, this.size, 3 ) );
}
function setValueV4a( gl, v ) {
gl.uniform4fv( this.addr, flatten( v, this.size, 4 ) );
}
// Array of matrices (flat or from THREE clases)
function setValueM2a( gl, v ) {
gl.uniformMatrix2fv( this.addr, false, flatten( v, this.size, 4 ) );
}
function setValueM3a( gl, v ) {
gl.uniformMatrix3fv( this.addr, false, flatten( v, this.size, 9 ) );
}
function setValueM4a( gl, v ) {
gl.uniformMatrix4fv( this.addr, false, flatten( v, this.size, 16 ) );
}
// Array of textures (2D / Cube)
function setValueT1a( gl, v, renderer ) {
var n = v.length,
units = allocTexUnits( renderer, n );
gl.uniform1iv( this.addr, units );
for ( var i = 0; i !== n; ++ i ) {
renderer.setTexture2D( v[ i ] || emptyTexture, units[ i ] );
}
}
function setValueT6a( gl, v, renderer ) {
var n = v.length,
units = allocTexUnits( renderer, n );
gl.uniform1iv( this.addr, units );
for ( var i = 0; i !== n; ++ i ) {
renderer.setTextureCube( v[ i ] || emptyCubeTexture, units[ i ] );
}
}
// Helper to pick the right setter for a pure (bottom-level) array
function getPureArraySetter( type ) {
switch ( type ) {
case 0x1406: return setValue1fv; // FLOAT
case 0x8b50: return setValueV2a; // _VEC2
case 0x8b51: return setValueV3a; // _VEC3
case 0x8b52: return setValueV4a; // _VEC4
case 0x8b5a: return setValueM2a; // _MAT2
case 0x8b5b: return setValueM3a; // _MAT3
case 0x8b5c: return setValueM4a; // _MAT4
case 0x8b5e: return setValueT1a; // SAMPLER_2D
case 0x8b60: return setValueT6a; // SAMPLER_CUBE
case 0x1404: case 0x8b56: return setValue1iv; // INT, BOOL
case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2
case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3
case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4
}
}
// --- Uniform Classes ---
function SingleUniform( id, activeInfo, addr ) {
this.id = id;
this.addr = addr;
this.setValue = getSingularSetter( activeInfo.type );
// this.path = activeInfo.name; // DEBUG
}
function PureArrayUniform( id, activeInfo, addr ) {
this.id = id;
this.addr = addr;
this.size = activeInfo.size;
this.setValue = getPureArraySetter( activeInfo.type );
// this.path = activeInfo.name; // DEBUG
}
function StructuredUniform( id ) {
this.id = id;
UniformContainer.call( this ); // mix-in
}
StructuredUniform.prototype.setValue = function ( gl, value ) {
// Note: Don't need an extra 'renderer' parameter, since samplers
// are not allowed in structured uniforms.
var seq = this.seq;
for ( var i = 0, n = seq.length; i !== n; ++ i ) {
var u = seq[ i ];
u.setValue( gl, value[ u.id ] );
}
};
// --- Top-level ---
// Parser - builds up the property tree from the path strings
var RePathPart = /([\w\d_]+)(\])?(\[|\.)?/g;
// extracts
// - the identifier (member name or array index)
// - followed by an optional right bracket (found when array index)
// - followed by an optional left bracket or dot (type of subscript)
//
// Note: These portions can be read in a non-overlapping fashion and
// allow straightforward parsing of the hierarchy that WebGL encodes
// in the uniform names.
function addUniform( container, uniformObject ) {
container.seq.push( uniformObject );
container.map[ uniformObject.id ] = uniformObject;
}
function parseUniform( activeInfo, addr, container ) {
var path = activeInfo.name,
pathLength = path.length;
// reset RegExp object, because of the early exit of a previous run
RePathPart.lastIndex = 0;
for ( ; ; ) {
var match = RePathPart.exec( path ),
matchEnd = RePathPart.lastIndex,
id = match[ 1 ],
idIsIndex = match[ 2 ] === ']',
subscript = match[ 3 ];
if ( idIsIndex ) id = id | 0; // convert to integer
if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) {
// bare name or "pure" bottom-level array "[0]" suffix
addUniform( container, subscript === undefined ?
new SingleUniform( id, activeInfo, addr ) :
new PureArrayUniform( id, activeInfo, addr ) );
break;
} else {
// step into inner node / create it in case it doesn't exist
var map = container.map, next = map[ id ];
if ( next === undefined ) {
next = new StructuredUniform( id );
addUniform( container, next );
}
container = next;
}
}
}
// Root Container
function WebGLUniforms( gl, program, renderer ) {
UniformContainer.call( this );
this.renderer = renderer;
var n = gl.getProgramParameter( program, gl.ACTIVE_UNIFORMS );
for ( var i = 0; i < n; ++ i ) {
var info = gl.getActiveUniform( program, i ),
path = info.name,
addr = gl.getUniformLocation( program, path );
parseUniform( info, addr, this );
}
}
WebGLUniforms.prototype.setValue = function ( gl, name, value ) {
var u = this.map[ name ];
if ( u !== undefined ) u.setValue( gl, value, this.renderer );
};
WebGLUniforms.prototype.setOptional = function ( gl, object, name ) {
var v = object[ name ];
if ( v !== undefined ) this.setValue( gl, name, v );
};
// Static interface
WebGLUniforms.upload = function ( gl, seq, values, renderer ) {
for ( var i = 0, n = seq.length; i !== n; ++ i ) {
var u = seq[ i ],
v = values[ u.id ];
if ( v.needsUpdate !== false ) {
// note: always updating when .needsUpdate is undefined
u.setValue( gl, v.value, renderer );
}
}
};
WebGLUniforms.seqWithValue = function ( seq, values ) {
var r = [];
for ( var i = 0, n = seq.length; i !== n; ++ i ) {
var u = seq[ i ];
if ( u.id in values ) r.push( u );
}
return r;
};
/**
* @author mrdoob / http://mrdoob.com/
*/
var ColorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF,
'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2,
'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50,
'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B,
'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B,
'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F,
'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3,
'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222,
'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700,
'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4,
'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00,
'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3,
'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA,
'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32,
'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3,
'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC,
'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD,
'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6,
'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9,
'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F,
'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE,
'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA,
'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0,
'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 };
function Color( r, g, b ) {
if ( g === undefined && b === undefined ) {
// r is THREE.Color, hex or string
return this.set( r );
}
return this.setRGB( r, g, b );
}
Object.assign( Color.prototype, {
isColor: true,
r: 1, g: 1, b: 1,
set: function ( value ) {
if ( value && value.isColor ) {
this.copy( value );
} else if ( typeof value === 'number' ) {
this.setHex( value );
} else if ( typeof value === 'string' ) {
this.setStyle( value );
}
return this;
},
setScalar: function ( scalar ) {
this.r = scalar;
this.g = scalar;
this.b = scalar;
return this;
},
setHex: function ( hex ) {
hex = Math.floor( hex );
this.r = ( hex >> 16 & 255 ) / 255;
this.g = ( hex >> 8 & 255 ) / 255;
this.b = ( hex & 255 ) / 255;
return this;
},
setRGB: function ( r, g, b ) {
this.r = r;
this.g = g;
this.b = b;
return this;
},
setHSL: function () {
function hue2rgb( p, q, t ) {
if ( t < 0 ) t += 1;
if ( t > 1 ) t -= 1;
if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t;
if ( t < 1 / 2 ) return q;
if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t );
return p;
}
return function setHSL( h, s, l ) {
// h,s,l ranges are in 0.0 - 1.0
h = _Math.euclideanModulo( h, 1 );
s = _Math.clamp( s, 0, 1 );
l = _Math.clamp( l, 0, 1 );
if ( s === 0 ) {
this.r = this.g = this.b = l;
} else {
var p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s );
var q = ( 2 * l ) - p;
this.r = hue2rgb( q, p, h + 1 / 3 );
this.g = hue2rgb( q, p, h );
this.b = hue2rgb( q, p, h - 1 / 3 );
}
return this;
};
}(),
setStyle: function ( style ) {
function handleAlpha( string ) {
if ( string === undefined ) return;
if ( parseFloat( string ) < 1 ) {
console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' );
}
}
var m;
if ( m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec( style ) ) {
// rgb / hsl
var color;
var name = m[ 1 ];
var components = m[ 2 ];
switch ( name ) {
case 'rgb':
case 'rgba':
if ( color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
// rgb(255,0,0) rgba(255,0,0,0.5)
this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255;
this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255;
this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255;
handleAlpha( color[ 5 ] );
return this;
}
if ( color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
// rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100;
this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100;
this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100;
handleAlpha( color[ 5 ] );
return this;
}
break;
case 'hsl':
case 'hsla':
if ( color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
// hsl(120,50%,50%) hsla(120,50%,50%,0.5)
var h = parseFloat( color[ 1 ] ) / 360;
var s = parseInt( color[ 2 ], 10 ) / 100;
var l = parseInt( color[ 3 ], 10 ) / 100;
handleAlpha( color[ 5 ] );
return this.setHSL( h, s, l );
}
break;
}
} else if ( m = /^\#([A-Fa-f0-9]+)$/.exec( style ) ) {
// hex color
var hex = m[ 1 ];
var size = hex.length;
if ( size === 3 ) {
// #ff0
this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255;
this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255;
this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255;
return this;
} else if ( size === 6 ) {
// #ff0000
this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255;
this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255;
this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255;
return this;
}
}
if ( style && style.length > 0 ) {
// color keywords
var hex = ColorKeywords[ style ];
if ( hex !== undefined ) {
// red
this.setHex( hex );
} else {
// unknown color
console.warn( 'THREE.Color: Unknown color ' + style );
}
}
return this;
},
clone: function () {
return new this.constructor( this.r, this.g, this.b );
},
copy: function ( color ) {
this.r = color.r;
this.g = color.g;
this.b = color.b;
return this;
},
copyGammaToLinear: function ( color, gammaFactor ) {
if ( gammaFactor === undefined ) gammaFactor = 2.0;
this.r = Math.pow( color.r, gammaFactor );
this.g = Math.pow( color.g, gammaFactor );
this.b = Math.pow( color.b, gammaFactor );
return this;
},
copyLinearToGamma: function ( color, gammaFactor ) {
if ( gammaFactor === undefined ) gammaFactor = 2.0;
var safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0;
this.r = Math.pow( color.r, safeInverse );
this.g = Math.pow( color.g, safeInverse );
this.b = Math.pow( color.b, safeInverse );
return this;
},
convertGammaToLinear: function () {
var r = this.r, g = this.g, b = this.b;
this.r = r * r;
this.g = g * g;
this.b = b * b;
return this;
},
convertLinearToGamma: function () {
this.r = Math.sqrt( this.r );
this.g = Math.sqrt( this.g );
this.b = Math.sqrt( this.b );
return this;
},
getHex: function () {
return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0;
},
getHexString: function () {
return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 );
},
getHSL: function ( optionalTarget ) {
// h,s,l ranges are in 0.0 - 1.0
var hsl = optionalTarget || { h: 0, s: 0, l: 0 };
var r = this.r, g = this.g, b = this.b;
var max = Math.max( r, g, b );
var min = Math.min( r, g, b );
var hue, saturation;
var lightness = ( min + max ) / 2.0;
if ( min === max ) {
hue = 0;
saturation = 0;
} else {
var delta = max - min;
saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min );
switch ( max ) {
case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break;
case g: hue = ( b - r ) / delta + 2; break;
case b: hue = ( r - g ) / delta + 4; break;
}
hue /= 6;
}
hsl.h = hue;
hsl.s = saturation;
hsl.l = lightness;
return hsl;
},
getStyle: function () {
return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')';
},
offsetHSL: function ( h, s, l ) {
var hsl = this.getHSL();
hsl.h += h; hsl.s += s; hsl.l += l;
this.setHSL( hsl.h, hsl.s, hsl.l );
return this;
},
add: function ( color ) {
this.r += color.r;
this.g += color.g;
this.b += color.b;
return this;
},
addColors: function ( color1, color2 ) {
this.r = color1.r + color2.r;
this.g = color1.g + color2.g;
this.b = color1.b + color2.b;
return this;
},
addScalar: function ( s ) {
this.r += s;
this.g += s;
this.b += s;
return this;
},
sub: function( color ) {
this.r = Math.max( 0, this.r - color.r );
this.g = Math.max( 0, this.g - color.g );
this.b = Math.max( 0, this.b - color.b );
return this;
},
multiply: function ( color ) {
this.r *= color.r;
this.g *= color.g;
this.b *= color.b;
return this;
},
multiplyScalar: function ( s ) {
this.r *= s;
this.g *= s;
this.b *= s;
return this;
},
lerp: function ( color, alpha ) {
this.r += ( color.r - this.r ) * alpha;
this.g += ( color.g - this.g ) * alpha;
this.b += ( color.b - this.b ) * alpha;
return this;
},
equals: function ( c ) {
return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b );
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
this.r = array[ offset ];
this.g = array[ offset + 1 ];
this.b = array[ offset + 2 ];
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this.r;
array[ offset + 1 ] = this.g;
array[ offset + 2 ] = this.b;
return array;
},
toJSON: function () {
return this.getHex();
}
} );
/**
* Uniforms library for shared webgl shaders
*/
var UniformsLib = {
common: {
diffuse: { value: new Color( 0xeeeeee ) },
opacity: { value: 1.0 },
map: { value: null },
offsetRepeat: { value: new Vector4( 0, 0, 1, 1 ) },
specularMap: { value: null },
alphaMap: { value: null },
envMap: { value: null },
flipEnvMap: { value: - 1 },
reflectivity: { value: 1.0 },
refractionRatio: { value: 0.98 }
},
aomap: {
aoMap: { value: null },
aoMapIntensity: { value: 1 }
},
lightmap: {
lightMap: { value: null },
lightMapIntensity: { value: 1 }
},
emissivemap: {
emissiveMap: { value: null }
},
bumpmap: {
bumpMap: { value: null },
bumpScale: { value: 1 }
},
normalmap: {
normalMap: { value: null },
normalScale: { value: new Vector2( 1, 1 ) }
},
displacementmap: {
displacementMap: { value: null },
displacementScale: { value: 1 },
displacementBias: { value: 0 }
},
roughnessmap: {
roughnessMap: { value: null }
},
metalnessmap: {
metalnessMap: { value: null }
},
gradientmap: {
gradientMap: { value: null }
},
fog: {
fogDensity: { value: 0.00025 },
fogNear: { value: 1 },
fogFar: { value: 2000 },
fogColor: { value: new Color( 0xffffff ) }
},
lights: {
ambientLightColor: { value: [] },
directionalLights: { value: [], properties: {
direction: {},
color: {},
shadow: {},
shadowBias: {},
shadowRadius: {},
shadowMapSize: {}
} },
directionalShadowMap: { value: [] },
directionalShadowMatrix: { value: [] },
spotLights: { value: [], properties: {
color: {},
position: {},
direction: {},
distance: {},
coneCos: {},
penumbraCos: {},
decay: {},
shadow: {},
shadowBias: {},
shadowRadius: {},
shadowMapSize: {}
} },
spotShadowMap: { value: [] },
spotShadowMatrix: { value: [] },
pointLights: { value: [], properties: {
color: {},
position: {},
decay: {},
distance: {},
shadow: {},
shadowBias: {},
shadowRadius: {},
shadowMapSize: {}
} },
pointShadowMap: { value: [] },
pointShadowMatrix: { value: [] },
hemisphereLights: { value: [], properties: {
direction: {},
skyColor: {},
groundColor: {}
} },
// TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src
rectAreaLights: { value: [], properties: {
color: {},
position: {},
width: {},
height: {}
} }
},
points: {
diffuse: { value: new Color( 0xeeeeee ) },
opacity: { value: 1.0 },
size: { value: 1.0 },
scale: { value: 1.0 },
map: { value: null },
offsetRepeat: { value: new Vector4( 0, 0, 1, 1 ) }
}
};
/**
* Uniform Utilities
*/
var UniformsUtils = {
merge: function ( uniforms ) {
var merged = {};
for ( var u = 0; u < uniforms.length; u ++ ) {
var tmp = this.clone( uniforms[ u ] );
for ( var p in tmp ) {
merged[ p ] = tmp[ p ];
}
}
return merged;
},
clone: function ( uniforms_src ) {
var uniforms_dst = {};
for ( var u in uniforms_src ) {
uniforms_dst[ u ] = {};
for ( var p in uniforms_src[ u ] ) {
var parameter_src = uniforms_src[ u ][ p ];
if ( parameter_src && ( parameter_src.isColor ||
parameter_src.isMatrix3 || parameter_src.isMatrix4 ||
parameter_src.isVector2 || parameter_src.isVector3 || parameter_src.isVector4 ||
parameter_src.isTexture ) ) {
uniforms_dst[ u ][ p ] = parameter_src.clone();
} else if ( Array.isArray( parameter_src ) ) {
uniforms_dst[ u ][ p ] = parameter_src.slice();
} else {
uniforms_dst[ u ][ p ] = parameter_src;
}
}
}
return uniforms_dst;
}
};
var alphamap_fragment = "#ifdef USE_ALPHAMAP\r\n\r\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\r\n\r\n#endif\r\n";
var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\r\n\r\n\tuniform sampler2D alphaMap;\r\n\r\n#endif\r\n";
var alphatest_fragment = "#ifdef ALPHATEST\r\n\r\n\tif ( diffuseColor.a < ALPHATEST ) discard;\r\n\r\n#endif\r\n";
var aomap_fragment = "#ifdef USE_AOMAP\r\n\r\n\t// reads channel R, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\r\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\r\n\r\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\r\n\r\n\t#if defined( USE_ENVMAP ) && defined( PHYSICAL )\r\n\r\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\r\n\r\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\r\n\r\n\t#endif\r\n\r\n#endif\r\n";
var aomap_pars_fragment = "#ifdef USE_AOMAP\r\n\r\n\tuniform sampler2D aoMap;\r\n\tuniform float aoMapIntensity;\r\n\r\n#endif";
var begin_vertex = "\r\nvec3 transformed = vec3( position );\r\n";
var beginnormal_vertex = "\r\nvec3 objectNormal = vec3( normal );\r\n";
var bsdfs = "float punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\r\n\r\n\tif( decayExponent > 0.0 ) {\r\n\r\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\r\n\r\n\t\t// based upon Frostbite 3 Moving to Physically-based Rendering\r\n\t\t// page 32, equation 26: E[window1]\r\n\t\t// http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr_v2.pdf\r\n\t\t// this is intended to be used on spot and point lights who are represented as luminous intensity\r\n\t\t// but who must be converted to luminous irradiance for surface lighting calculation\r\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\r\n\t\tfloat maxDistanceCutoffFactor = pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\r\n\t\treturn distanceFalloff * maxDistanceCutoffFactor;\r\n\r\n#else\r\n\r\n\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\r\n\r\n#endif\r\n\r\n\t}\r\n\r\n\treturn 1.0;\r\n\r\n}\r\n\r\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\r\n\r\n\treturn RECIPROCAL_PI * diffuseColor;\r\n\r\n} // validated\r\n\r\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\r\n\r\n\t// Original approximation by Christophe Schlick '94\r\n\t// float fresnel = pow( 1.0 - dotLH, 5.0 );\r\n\r\n\t// Optimized variant (presented by Epic at SIGGRAPH '13)\r\n\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\r\n\r\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\r\n\r\n} // validated\r\n\r\n// Microfacet Models for Refraction through Rough Surfaces - equation (34)\r\n// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html\r\n// alpha is \"roughness squared\" in Disneys reparameterization\r\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\r\n\r\n\t// geometry term = G(l)⋅G(v) / 4(n⋅l)(n⋅v)\r\n\r\n\tfloat a2 = pow2( alpha );\r\n\r\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\r\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\r\n\r\n\treturn 1.0 / ( gl * gv );\r\n\r\n} // validated\r\n\r\n// Moving Frostbite to Physically Based Rendering 2.0 - page 12, listing 2\r\n// http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr_v2.pdf\r\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\r\n\r\n\tfloat a2 = pow2( alpha );\r\n\r\n\t// dotNL and dotNV are explicitly swapped. This is not a mistake.\r\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\r\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\r\n\r\n\treturn 0.5 / max( gv + gl, EPSILON );\r\n}\r\n\r\n// Microfacet Models for Refraction through Rough Surfaces - equation (33)\r\n// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html\r\n// alpha is \"roughness squared\" in Disneys reparameterization\r\nfloat D_GGX( const in float alpha, const in float dotNH ) {\r\n\r\n\tfloat a2 = pow2( alpha );\r\n\r\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0; // avoid alpha = 0 with dotNH = 1\r\n\r\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\r\n\r\n}\r\n\r\n// GGX Distribution, Schlick Fresnel, GGX-Smith Visibility\r\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\r\n\r\n\tfloat alpha = pow2( roughness ); // UE4's roughness\r\n\r\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\r\n\r\n\tfloat dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );\r\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\r\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\r\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\r\n\r\n\tvec3 F = F_Schlick( specularColor, dotLH );\r\n\r\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\r\n\r\n\tfloat D = D_GGX( alpha, dot
var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\r\n\r\n\tuniform sampler2D bumpMap;\r\n\tuniform float bumpScale;\r\n\r\n\t// Derivative maps - bump mapping unparametrized surfaces by Morten Mikkelsen\r\n\t// http://mmikkelsen3d.blogspot.sk/2011/07/derivative-maps.html\r\n\r\n\t// Evaluate the derivative of the height w.r.t. screen-space using forward differencing (listing 2)\r\n\r\n\tvec2 dHdxy_fwd() {\r\n\r\n\t\tvec2 dSTdx = dFdx( vUv );\r\n\t\tvec2 dSTdy = dFdy( vUv );\r\n\r\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\r\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\r\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\r\n\r\n\t\treturn vec2( dBx, dBy );\r\n\r\n\t}\r\n\r\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\r\n\r\n\t\t// Workaround for Adreno 3XX dFd*( vec3 ) bug. See #9988\r\n\r\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\r\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\r\n\t\tvec3 vN = surf_norm;\t\t// normalized\r\n\r\n\t\tvec3 R1 = cross( vSigmaY, vN );\r\n\t\tvec3 R2 = cross( vN, vSigmaX );\r\n\r\n\t\tfloat fDet = dot( vSigmaX, R1 );\r\n\r\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\r\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\r\n\r\n\t}\r\n\r\n#endif\r\n";
var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\r\n\r\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; ++ i ) {\r\n\r\n\t\tvec4 plane = clippingPlanes[ i ];\r\n\t\tif ( dot( vViewPosition, plane.xyz ) > plane.w ) discard;\r\n\r\n\t}\r\n\t\t\r\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\r\n\r\n\t\tbool clipped = true;\r\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; ++ i ) {\r\n\t\t\tvec4 plane = clippingPlanes[ i ];\r\n\t\t\tclipped = ( dot( vViewPosition, plane.xyz ) > plane.w ) && clipped;\r\n\t\t}\r\n\r\n\t\tif ( clipped ) discard;\r\n\t\r\n\t#endif\r\n\r\n#endif\r\n";
var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\r\n\r\n\t#if ! defined( PHYSICAL ) && ! defined( PHONG )\r\n\t\tvarying vec3 vViewPosition;\r\n\t#endif\r\n\r\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\r\n\r\n#endif\r\n";
var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\r\n\tvarying vec3 vViewPosition;\r\n#endif\r\n";
var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\r\n\tvViewPosition = - mvPosition.xyz;\r\n#endif\r\n\r\n";
var color_fragment = "#ifdef USE_COLOR\r\n\r\n\tdiffuseColor.rgb *= vColor;\r\n\r\n#endif";
var color_pars_fragment = "#ifdef USE_COLOR\r\n\r\n\tvarying vec3 vColor;\r\n\r\n#endif\r\n";
var color_pars_vertex = "#ifdef USE_COLOR\r\n\r\n\tvarying vec3 vColor;\r\n\r\n#endif";
var color_vertex = "#ifdef USE_COLOR\r\n\r\n\tvColor.xyz = color.xyz;\r\n\r\n#endif";
var common = "#define PI 3.14159265359\r\n#define PI2 6.28318530718\r\n#define PI_HALF 1.5707963267949\r\n#define RECIPROCAL_PI 0.31830988618\r\n#define RECIPROCAL_PI2 0.15915494\r\n#define LOG2 1.442695\r\n#define EPSILON 1e-6\r\n\r\n#define saturate(a) clamp( a, 0.0, 1.0 )\r\n#define whiteCompliment(a) ( 1.0 - saturate( a ) )\r\n\r\nfloat pow2( const in float x ) { return x*x; }\r\nfloat pow3( const in float x ) { return x*x*x; }\r\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\r\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\r\n// expects values in the range of [0,1]x[0,1], returns values in the [0,1] range.\r\n// do not collapse into a single function per: http://byteblacksmith.com/improvements-to-the-canonical-one-liner-glsl-rand-for-opengl-es-2-0/\r\nhighp float rand( const in vec2 uv ) {\r\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\r\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\r\n\treturn fract(sin(sn) * c);\r\n}\r\n\r\nstruct IncidentLight {\r\n\tvec3 color;\r\n\tvec3 direction;\r\n\tbool visible;\r\n};\r\n\r\nstruct ReflectedLight {\r\n\tvec3 directDiffuse;\r\n\tvec3 directSpecular;\r\n\tvec3 indirectDiffuse;\r\n\tvec3 indirectSpecular;\r\n};\r\n\r\nstruct GeometricContext {\r\n\tvec3 position;\r\n\tvec3 normal;\r\n\tvec3 viewDir;\r\n};\r\n\r\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\r\n\r\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\r\n\r\n}\r\n\r\n// http://en.wikibooks.org/wiki/GLSL_Programming/Applying_Matrix_Transformations\r\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\r\n\r\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\r\n\r\n}\r\n\r\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\r\n\r\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\r\n\r\n\treturn - distance * planeNormal + point;\r\n\r\n}\r\n\r\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\r\n\r\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\r\n\r\n}\r\n\r\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\r\n\r\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\r\n\r\n}\r\n\r\nmat3 transpose( const in mat3 v ) {\r\n\r\n\tmat3 tmp;\r\n\ttmp[0] = vec3(v[0].x, v[1].x, v[2].x);\r\n\ttmp[1] = vec3(v[0].y, v[1].y, v[2].y);\r\n\ttmp[2] = vec3(v[0].z, v[1].z, v[2].z);\r\n\r\n\treturn tmp;\r\n\r\n}\r\n";
var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\r\n\r\n#define cubeUV_textureSize (1024.0)\r\n\r\nint getFaceFromDirection(vec3 direction) {\r\n\tvec3 absDirection = abs(direction);\r\n\tint face = -1;\r\n\tif( absDirection.x > absDirection.z ) {\r\n\t\tif(absDirection.x > absDirection.y )\r\n\t\t\tface = direction.x > 0.0 ? 0 : 3;\r\n\t\telse\r\n\t\t\tface = direction.y > 0.0 ? 1 : 4;\r\n\t}\r\n\telse {\r\n\t\tif(absDirection.z > absDirection.y )\r\n\t\t\tface = direction.z > 0.0 ? 2 : 5;\r\n\t\telse\r\n\t\t\tface = direction.y > 0.0 ? 1 : 4;\r\n\t}\r\n\treturn face;\r\n}\r\n#define cubeUV_maxLods1 (log2(cubeUV_textureSize*0.25) - 1.0)\r\n#define cubeUV_rangeClamp (exp2((6.0 - 1.0) * 2.0))\r\n\r\nvec2 MipLevelInfo( vec3 vec, float roughnessLevel, float roughness ) {\r\n\tfloat scale = exp2(cubeUV_maxLods1 - roughnessLevel);\r\n\tfloat dxRoughness = dFdx(roughness);\r\n\tfloat dyRoughness = dFdy(roughness);\r\n\tvec3 dx = dFdx( vec * scale * dxRoughness );\r\n\tvec3 dy = dFdy( vec * scale * dyRoughness );\r\n\tfloat d = max( dot( dx, dx ), dot( dy, dy ) );\r\n\t// Clamp the value to the max mip level counts. hard coded to 6 mips\r\n\td = clamp(d, 1.0, cubeUV_rangeClamp);\r\n\tfloat mipLevel = 0.5 * log2(d);\r\n\treturn vec2(floor(mipLevel), fract(mipLevel));\r\n}\r\n\r\n#define cubeUV_maxLods2 (log2(cubeUV_textureSize*0.25) - 2.0)\r\n#define cubeUV_rcpTextureSize (1.0 / cubeUV_textureSize)\r\n\r\nvec2 getCubeUV(vec3 direction, float roughnessLevel, float mipLevel) {\r\n\tmipLevel = roughnessLevel > cubeUV_maxLods2 - 3.0 ? 0.0 : mipLevel;\r\n\tfloat a = 16.0 * cubeUV_rcpTextureSize;\r\n\r\n\tvec2 exp2_packed = exp2( vec2( roughnessLevel, mipLevel ) );\r\n\tvec2 rcp_exp2_packed = vec2( 1.0 ) / exp2_packed;\r\n\t// float powScale = exp2(roughnessLevel + mipLevel);\r\n\tfloat powScale = exp2_packed.x * exp2_packed.y;\r\n\t// float scale = 1.0 / exp2(roughnessLevel + 2.0 + mipLevel);\r\n\tfloat scale = rcp_exp2_packed.x * rcp_exp2_packed.y * 0.25;\r\n\t// float mipOffset = 0.75*(1.0 - 1.0/exp2(mipLevel))/exp2(roughnessLevel);\r\n\tfloat mipOffset = 0.75*(1.0 - rcp_exp2_packed.y) * rcp_exp2_packed.x;\r\n\r\n\tbool bRes = mipLevel == 0.0;\r\n\tscale = bRes && (scale < a) ? a : scale;\r\n\r\n\tvec3 r;\r\n\tvec2 offset;\r\n\tint face = getFaceFromDirection(direction);\r\n\r\n\tfloat rcpPowScale = 1.0 / powScale;\r\n\r\n\tif( face == 0) {\r\n\t\tr = vec3(direction.x, -direction.z, direction.y);\r\n\t\toffset = vec2(0.0+mipOffset,0.75 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\r\n\t}\r\n\telse if( face == 1) {\r\n\t\tr = vec3(direction.y, direction.x, direction.z);\r\n\t\toffset = vec2(scale+mipOffset, 0.75 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\r\n\t}\r\n\telse if( face == 2) {\r\n\t\tr = vec3(direction.z, direction.x, direction.y);\r\n\t\toffset = vec2(2.0*scale+mipOffset, 0.75 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\r\n\t}\r\n\telse if( face == 3) {\r\n\t\tr = vec3(direction.x, direction.z, direction.y);\r\n\t\toffset = vec2(0.0+mipOffset,0.5 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\r\n\t}\r\n\telse if( face == 4) {\r\n\t\tr = vec3(direction.y, direction.x, -direction.z);\r\n\t\toffset = vec2(scale+mipOffset, 0.5 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\r\n\t}\r\n\telse {\r\n\t\tr = vec3(direction.z, -direction.x, direction.y);\r\n\t\toffset = vec2(2.0*scale+mipOffset, 0.5 * rcpPowScale);\r\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\r\n\t}\r\n\tr = normalize(r);\r\n\tfloat texelOffset = 0.5 * cubeUV_rcpTextureSize;\r\n\tvec2 s = ( r.yz / abs( r.x ) + vec2( 1.0 ) ) * 0.5;\r\n\tvec2 base = offset + vec2( texelOffset );\r\n\treturn base + s * ( scale - 2.0 * texelOffset );\r\n}\r\n\r\n#define cubeUV_maxLods3 (log2(cubeUV_textureSize*0.25) - 3.0)\r\n\r\nvec4 textureCubeUV(vec3 reflectedDirection, float roughness ) {\r\n\tfloat roughnessVal = roughness* cubeUV_maxLods3;\r\n\tfloat r1 = floor(roughnessVal);\r\n\tfloat
var defaultnormal_vertex = "vec3 transformedNormal = normalMatrix * objectNormal;\r\n\r\n#ifdef FLIP_SIDED\r\n\r\n\ttransformedNormal = - transformedNormal;\r\n\r\n#endif\r\n";
var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\r\n\r\n\tuniform sampler2D displacementMap;\r\n\tuniform float displacementScale;\r\n\tuniform float displacementBias;\r\n\r\n#endif\r\n";
var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\r\n\r\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, uv ).x * displacementScale + displacementBias );\r\n\r\n#endif\r\n";
var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\r\n\r\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\r\n\r\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\r\n\r\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\r\n\r\n#endif\r\n";
var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\r\n\r\n\tuniform sampler2D emissiveMap;\r\n\r\n#endif\r\n";
var encodings_fragment = " gl_FragColor = linearToOutputTexel( gl_FragColor );\r\n";
var encodings_pars_fragment = "// For a discussion of what this is, please read this: http://lousodrome.net/blog/light/2013/05/26/gamma-correct-and-hdr-rendering-in-a-32-bits-buffer/\r\n\r\nvec4 LinearToLinear( in vec4 value ) {\r\n\treturn value;\r\n}\r\n\r\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\r\n\treturn vec4( pow( value.xyz, vec3( gammaFactor ) ), value.w );\r\n}\r\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\r\n\treturn vec4( pow( value.xyz, vec3( 1.0 / gammaFactor ) ), value.w );\r\n}\r\n\r\nvec4 sRGBToLinear( in vec4 value ) {\r\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.w );\r\n}\r\nvec4 LinearTosRGB( in vec4 value ) {\r\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.w );\r\n}\r\n\r\nvec4 RGBEToLinear( in vec4 value ) {\r\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\r\n}\r\nvec4 LinearToRGBE( in vec4 value ) {\r\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\r\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\r\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\r\n// return vec4( value.brg, ( 3.0 + 128.0 ) / 256.0 );\r\n}\r\n\r\n// reference: http://iwasbeingirony.blogspot.ca/2010/06/difference-between-rgbm-and-rgbd.html\r\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\r\n\treturn vec4( value.xyz * value.w * maxRange, 1.0 );\r\n}\r\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\r\n\tfloat maxRGB = max( value.x, max( value.g, value.b ) );\r\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\r\n\tM = ceil( M * 255.0 ) / 255.0;\r\n\treturn vec4( value.rgb / ( M * maxRange ), M );\r\n}\r\n\r\n// reference: http://iwasbeingirony.blogspot.ca/2010/06/difference-between-rgbm-and-rgbd.html\r\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\r\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\r\n}\r\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\r\n\tfloat maxRGB = max( value.x, max( value.g, value.b ) );\r\n\tfloat D = max( maxRange / maxRGB, 1.0 );\r\n\tD = min( floor( D ) / 255.0, 1.0 );\r\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\r\n}\r\n\r\n// LogLuv reference: http://graphicrants.blogspot.ca/2009/04/rgbm-color-encoding.html\r\n\r\n// M matrix, for encoding\r\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\r\nvec4 LinearToLogLuv( in vec4 value ) {\r\n\tvec3 Xp_Y_XYZp = value.rgb * cLogLuvM;\r\n\tXp_Y_XYZp = max(Xp_Y_XYZp, vec3(1e-6, 1e-6, 1e-6));\r\n\tvec4 vResult;\r\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\r\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\r\n\tvResult.w = fract(Le);\r\n\tvResult.z = (Le - (floor(vResult.w*255.0))/255.0)/255.0;\r\n\treturn vResult;\r\n}\r\n\r\n// Inverse M matrix, for decoding\r\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\r\nvec4 LogLuvToLinear( in vec4 value ) {\r\n\tfloat Le = value.z * 255.0 + value.w;\r\n\tvec3 Xp_Y_XYZp;\r\n\tXp_Y_XYZp.y = exp2((Le - 127.0) / 2.0);\r\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\r\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\r\n\tvec3 vRGB = Xp_Y_XYZp.rgb * cLogLuvInverseM;\r\n\treturn vec4( max(vRGB, 0.0), 1.0 );\r\n}\r\n";
var envmap_fragment = "#ifdef USE_ENVMAP\r\n\r\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\r\n\r\n\t\tvec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );\r\n\r\n\t\t// Transforming Normal Vectors with the Inverse Transformation\r\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\r\n\r\n\t\t#ifdef ENVMAP_MODE_REFLECTION\r\n\r\n\t\t\tvec3 reflectVec = reflect( cameraToVertex, worldNormal );\r\n\r\n\t\t#else\r\n\r\n\t\t\tvec3 reflectVec = refract( cameraToVertex, worldNormal, refractionRatio );\r\n\r\n\t\t#endif\r\n\r\n\t#else\r\n\r\n\t\tvec3 reflectVec = vReflect;\r\n\r\n\t#endif\r\n\r\n\t#ifdef ENVMAP_TYPE_CUBE\r\n\r\n\t\tvec4 envColor = textureCube( envMap, flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\r\n\r\n\t#elif defined( ENVMAP_TYPE_EQUIREC )\r\n\r\n\t\tvec2 sampleUV;\r\n\t\tsampleUV.y = asin( flipNormal * reflectVec.y ) * RECIPROCAL_PI + 0.5;\r\n\t\tsampleUV.x = atan( flipNormal * reflectVec.z, flipNormal * reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\r\n\t\tvec4 envColor = texture2D( envMap, sampleUV );\r\n\r\n\t#elif defined( ENVMAP_TYPE_SPHERE )\r\n\r\n\t\tvec3 reflectView = flipNormal * normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0, 0.0, 1.0 ) );\r\n\t\tvec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );\r\n\r\n\t#else\r\n\r\n\t\tvec4 envColor = vec4( 0.0 );\r\n\r\n\t#endif\r\n\r\n\tenvColor = envMapTexelToLinear( envColor );\r\n\r\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\r\n\r\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\r\n\r\n\t#elif defined( ENVMAP_BLENDING_MIX )\r\n\r\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\r\n\r\n\t#elif defined( ENVMAP_BLENDING_ADD )\r\n\r\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\r\n\r\n\t#endif\r\n\r\n#endif\r\n";
var envmap_pars_fragment = "#if defined( USE_ENVMAP ) || defined( PHYSICAL )\r\n\tuniform float reflectivity;\r\n\tuniform float envMapIntensity;\r\n#endif\r\n\r\n#ifdef USE_ENVMAP\r\n\r\n\t#if ! defined( PHYSICAL ) && ( defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) )\r\n\t\tvarying vec3 vWorldPosition;\r\n\t#endif\r\n\r\n\t#ifdef ENVMAP_TYPE_CUBE\r\n\t\tuniform samplerCube envMap;\r\n\t#else\r\n\t\tuniform sampler2D envMap;\r\n\t#endif\r\n\tuniform float flipEnvMap;\r\n\r\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( PHYSICAL )\r\n\t\tuniform float refractionRatio;\r\n\t#else\r\n\t\tvarying vec3 vReflect;\r\n\t#endif\r\n\r\n#endif\r\n";
var envmap_pars_vertex = "#ifdef USE_ENVMAP\r\n\r\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\r\n\t\tvarying vec3 vWorldPosition;\r\n\r\n\t#else\r\n\r\n\t\tvarying vec3 vReflect;\r\n\t\tuniform float refractionRatio;\r\n\r\n\t#endif\r\n\r\n#endif\r\n";
var envmap_vertex = "#ifdef USE_ENVMAP\r\n\r\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\r\n\r\n\t\tvWorldPosition = worldPosition.xyz;\r\n\r\n\t#else\r\n\r\n\t\tvec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );\r\n\r\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\r\n\r\n\t\t#ifdef ENVMAP_MODE_REFLECTION\r\n\r\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\r\n\r\n\t\t#else\r\n\r\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\r\n\r\n\t\t#endif\r\n\r\n\t#endif\r\n\r\n#endif\r\n";
var fog_vertex = "\r\n#ifdef USE_FOG\r\nfogDepth = -mvPosition.z;\r\n#endif";
var fog_pars_vertex = "#ifdef USE_FOG\r\n\r\n varying float fogDepth;\r\n\r\n#endif\r\n";
var fog_fragment = "#ifdef USE_FOG\r\n\r\n\t#ifdef FOG_EXP2\r\n\r\n\t\tfloat fogFactor = whiteCompliment( exp2( - fogDensity * fogDensity * fogDepth * fogDepth * LOG2 ) );\r\n\r\n\t#else\r\n\r\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\r\n\r\n\t#endif\r\n\r\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\r\n\r\n#endif\r\n";
var fog_pars_fragment = "#ifdef USE_FOG\r\n\r\n\tuniform vec3 fogColor;\r\n\tvarying float fogDepth;\r\n\r\n\t#ifdef FOG_EXP2\r\n\r\n\t\tuniform float fogDensity;\r\n\r\n\t#else\r\n\r\n\t\tuniform float fogNear;\r\n\t\tuniform float fogFar;\r\n\r\n\t#endif\r\n\r\n#endif\r\n";
var gradientmap_pars_fragment = "#ifdef TOON\r\n\r\n\tuniform sampler2D gradientMap;\r\n\r\n\tvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\r\n\r\n\t\t// dotNL will be from -1.0 to 1.0\r\n\t\tfloat dotNL = dot( normal, lightDirection );\r\n\t\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\r\n\r\n\t\t#ifdef USE_GRADIENTMAP\r\n\r\n\t\t\treturn texture2D( gradientMap, coord ).rgb;\r\n\r\n\t\t#else\r\n\r\n\t\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\r\n\r\n\t\t#endif\r\n\r\n\r\n\t}\r\n\r\n#endif\r\n";
var lightmap_fragment = "#ifdef USE_LIGHTMAP\r\n\r\n\treflectedLight.indirectDiffuse += PI * texture2D( lightMap, vUv2 ).xyz * lightMapIntensity; // factor of PI should not be present; included here to prevent breakage\r\n\r\n#endif\r\n";
var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\r\n\r\n\tuniform sampler2D lightMap;\r\n\tuniform float lightMapIntensity;\r\n\r\n#endif";
var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\r\n\r\nGeometricContext geometry;\r\ngeometry.position = mvPosition.xyz;\r\ngeometry.normal = normalize( transformedNormal );\r\ngeometry.viewDir = normalize( -mvPosition.xyz );\r\n\r\nGeometricContext backGeometry;\r\nbackGeometry.position = geometry.position;\r\nbackGeometry.normal = -geometry.normal;\r\nbackGeometry.viewDir = geometry.viewDir;\r\n\r\nvLightFront = vec3( 0.0 );\r\n\r\n#ifdef DOUBLE_SIDED\r\n\tvLightBack = vec3( 0.0 );\r\n#endif\r\n\r\nIncidentLight directLight;\r\nfloat dotNL;\r\nvec3 directLightColor_Diffuse;\r\n\r\n#if NUM_POINT_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\r\n\r\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\r\n\r\n\t\tdotNL = dot( geometry.normal, directLight.direction );\r\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\r\n\r\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#ifdef DOUBLE_SIDED\r\n\r\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#endif\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if NUM_SPOT_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\r\n\r\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\r\n\r\n\t\tdotNL = dot( geometry.normal, directLight.direction );\r\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\r\n\r\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#ifdef DOUBLE_SIDED\r\n\r\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#endif\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n\r\n#if NUM_DIR_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\r\n\r\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\r\n\r\n\t\tdotNL = dot( geometry.normal, directLight.direction );\r\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\r\n\r\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#ifdef DOUBLE_SIDED\r\n\r\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\r\n\r\n\t\t#endif\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if NUM_HEMI_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\r\n\r\n\t\tvLightFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\r\n\r\n\t\t#ifdef DOUBLE_SIDED\r\n\r\n\t\t\tvLightBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\r\n\r\n\t\t#endif\r\n\r\n\t}\r\n\r\n#endif\r\n";
var lights_pars = "uniform vec3 ambientLightColor;\r\n\r\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\r\n\r\n\tvec3 irradiance = ambientLightColor;\r\n\r\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\tirradiance *= PI;\r\n\r\n\t#endif\r\n\r\n\treturn irradiance;\r\n\r\n}\r\n\r\n#if NUM_DIR_LIGHTS > 0\r\n\r\n\tstruct DirectionalLight {\r\n\t\tvec3 direction;\r\n\t\tvec3 color;\r\n\r\n\t\tint shadow;\r\n\t\tfloat shadowBias;\r\n\t\tfloat shadowRadius;\r\n\t\tvec2 shadowMapSize;\r\n\t};\r\n\r\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\r\n\r\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\r\n\r\n\t\tdirectLight.color = directionalLight.color;\r\n\t\tdirectLight.direction = directionalLight.direction;\r\n\t\tdirectLight.visible = true;\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n#if NUM_POINT_LIGHTS > 0\r\n\r\n\tstruct PointLight {\r\n\t\tvec3 position;\r\n\t\tvec3 color;\r\n\t\tfloat distance;\r\n\t\tfloat decay;\r\n\r\n\t\tint shadow;\r\n\t\tfloat shadowBias;\r\n\t\tfloat shadowRadius;\r\n\t\tvec2 shadowMapSize;\r\n\t};\r\n\r\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\r\n\r\n\t// directLight is an out parameter as having it as a return value caused compiler errors on some devices\r\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\r\n\r\n\t\tvec3 lVector = pointLight.position - geometry.position;\r\n\t\tdirectLight.direction = normalize( lVector );\r\n\r\n\t\tfloat lightDistance = length( lVector );\r\n\r\n\t\tdirectLight.color = pointLight.color;\r\n\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\r\n\t\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n#if NUM_SPOT_LIGHTS > 0\r\n\r\n\tstruct SpotLight {\r\n\t\tvec3 position;\r\n\t\tvec3 direction;\r\n\t\tvec3 color;\r\n\t\tfloat distance;\r\n\t\tfloat decay;\r\n\t\tfloat coneCos;\r\n\t\tfloat penumbraCos;\r\n\r\n\t\tint shadow;\r\n\t\tfloat shadowBias;\r\n\t\tfloat shadowRadius;\r\n\t\tvec2 shadowMapSize;\r\n\t};\r\n\r\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\r\n\r\n\t// directLight is an out parameter as having it as a return value caused compiler errors on some devices\r\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) {\r\n\r\n\t\tvec3 lVector = spotLight.position - geometry.position;\r\n\t\tdirectLight.direction = normalize( lVector );\r\n\r\n\t\tfloat lightDistance = length( lVector );\r\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\r\n\r\n\t\tif ( angleCos > spotLight.coneCos ) {\r\n\r\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\r\n\r\n\t\t\tdirectLight.color = spotLight.color;\r\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\r\n\t\t\tdirectLight.visible = true;\r\n\r\n\t\t} else {\r\n\r\n\t\t\tdirectLight.color = vec3( 0.0 );\r\n\t\t\tdirectLight.visible = false;\r\n\r\n\t\t}\r\n\t}\r\n\r\n#endif\r\n\r\n\r\n#if NUM_RECT_AREA_LIGHTS > 0\r\n\r\n\tstruct RectAreaLight {\r\n\t\tvec3 color;\r\n\t\tvec3 position;\r\n\t\tvec3 halfWidth;\r\n\t\tvec3 halfHeight;\r\n\t};\r\n\r\n\t// Pre-computed values of LinearTransformedCosine approximation of BRDF\r\n\t// BRDF approximation Texture is 64x64\r\n\tuniform sampler2D ltcMat; // RGBA Float\r\n\tuniform sampler2D ltcMag; // Alpha Float (only has w component)\r\n\r\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\r\n\r\n#endif\r\n\r\n\r\n#if NUM_HEMI_LIGHTS > 0\r\n\r\n\tstruct HemisphereLight {\r\n\t\tvec3 direction;\r\n\t\tvec3 skyColor;\r\n\t\tvec3 groundColor;\r\n\t};\r\n\r\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\r\n\r\n\tvec3 getHemisphereLightIrradiance( cons
var lights_phong_fragment = "BlinnPhongMaterial material;\r\nmaterial.diffuseColor = diffuseColor.rgb;\r\nmaterial.specularColor = specular;\r\nmaterial.specularShininess = shininess;\r\nmaterial.specularStrength = specularStrength;\r\n";
var lights_phong_pars_fragment = "varying vec3 vViewPosition;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n\r\nstruct BlinnPhongMaterial {\r\n\r\n\tvec3\tdiffuseColor;\r\n\tvec3\tspecularColor;\r\n\tfloat\tspecularShininess;\r\n\tfloat\tspecularStrength;\r\n\r\n};\r\n\r\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\t#ifdef TOON\r\n\r\n\t\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\r\n\r\n\t#else\r\n\r\n\t\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\r\n\t\tvec3 irradiance = dotNL * directLight.color;\r\n\r\n\t#endif\r\n\r\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\tirradiance *= PI; // punctual light\r\n\r\n\t#endif\r\n\r\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\r\n\r\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\r\n\r\n}\r\n\r\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\r\n\r\n}\r\n\r\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\r\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\r\n\r\n#define Material_LightProbeLOD( material )\t(0)\r\n";
var lights_physical_fragment = "PhysicalMaterial material;\r\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\r\nmaterial.specularRoughness = clamp( roughnessFactor, 0.04, 1.0 );\r\n#ifdef STANDARD\r\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\r\n#else\r\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\r\n\tmaterial.clearCoat = saturate( clearCoat ); // Burley clearcoat model\r\n\tmaterial.clearCoatRoughness = clamp( clearCoatRoughness, 0.04, 1.0 );\r\n#endif\r\n";
var lights_physical_pars_fragment = "struct PhysicalMaterial {\r\n\r\n\tvec3\tdiffuseColor;\r\n\tfloat\tspecularRoughness;\r\n\tvec3\tspecularColor;\r\n\r\n\t#ifndef STANDARD\r\n\t\tfloat clearCoat;\r\n\t\tfloat clearCoatRoughness;\r\n\t#endif\r\n\r\n};\r\n\r\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\r\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\r\n\r\n// Clear coat directional hemishperical reflectance (this approximation should be improved)\r\nfloat clearCoatDHRApprox( const in float roughness, const in float dotNL ) {\r\n\r\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\r\n\r\n}\r\n\r\n#if NUM_RECT_AREA_LIGHTS > 0\r\n\r\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\t\tvec3 normal = geometry.normal;\r\n\t\tvec3 viewDir = geometry.viewDir;\r\n\t\tvec3 position = geometry.position;\r\n\t\tvec3 lightPos = rectAreaLight.position;\r\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\r\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\r\n\t\tvec3 lightColor = rectAreaLight.color;\r\n\t\tfloat roughness = material.specularRoughness;\r\n\r\n\t\tvec3 rectCoords[ 4 ];\r\n\t\trectCoords[ 0 ] = lightPos - halfWidth - halfHeight; // counterclockwise\r\n\t\trectCoords[ 1 ] = lightPos + halfWidth - halfHeight;\r\n\t\trectCoords[ 2 ] = lightPos + halfWidth + halfHeight;\r\n\t\trectCoords[ 3 ] = lightPos - halfWidth + halfHeight;\r\n\r\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\r\n\r\n\t\tfloat norm = texture2D( ltcMag, uv ).a;\r\n\r\n\t\tvec4 t = texture2D( ltcMat, uv );\r\n\r\n\t\tmat3 mInv = mat3(\r\n\t\t\tvec3( 1, 0, t.y ),\r\n\t\t\tvec3( 0, t.z, 0 ),\r\n\t\t\tvec3( t.w, 0, t.x )\r\n\t\t);\r\n\r\n\t\treflectedLight.directSpecular += lightColor * material.specularColor * norm * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords ); // no fresnel\r\n\r\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1 ), rectCoords );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\r\n\r\n\tvec3 irradiance = dotNL * directLight.color;\r\n\r\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\tirradiance *= PI; // punctual light\r\n\r\n\t#endif\r\n\r\n\t#ifndef STANDARD\r\n\t\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\r\n\t#else\r\n\t\tfloat clearCoatDHR = 0.0;\r\n\t#endif\r\n\r\n\treflectedLight.directSpecular += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry, material.specularColor, material.specularRoughness );\r\n\r\n\treflectedLight.directDiffuse += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\r\n\r\n\t#ifndef STANDARD\r\n\r\n\t\treflectedLight.directSpecular += irradiance * material.clearCoat * BRDF_Specular_GGX( directLight, geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\r\n\r\n\t#endif\r\n\r\n}\r\n\r\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\r\n\r\n}\r\n\r\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 clearCoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\r\n\r\n\t#ifndef STANDARD\r\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\r\n\t\tfloat dotNL = dotNV;\r\n\t\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\r\n\t
var lights_template = "\r\n\r\nGeometricContext geometry;\r\n\r\ngeometry.position = - vViewPosition;\r\ngeometry.normal = normal;\r\ngeometry.viewDir = normalize( vViewPosition );\r\n\r\nIncidentLight directLight;\r\n\r\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\r\n\r\n\tPointLight pointLight;\r\n\r\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\r\n\r\n\t\tpointLight = pointLights[ i ];\r\n\r\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\r\n\r\n\t\t#ifdef USE_SHADOWMAP\r\n\t\tdirectLight.color *= all( bvec2( pointLight.shadow, directLight.visible ) ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\r\n\t\t#endif\r\n\r\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\r\n\r\n\tSpotLight spotLight;\r\n\r\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\r\n\r\n\t\tspotLight = spotLights[ i ];\r\n\r\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\r\n\r\n\t\t#ifdef USE_SHADOWMAP\r\n\t\tdirectLight.color *= all( bvec2( spotLight.shadow, directLight.visible ) ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\r\n\t\t#endif\r\n\r\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\r\n\r\n\tDirectionalLight directionalLight;\r\n\r\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\r\n\r\n\t\tdirectionalLight = directionalLights[ i ];\r\n\r\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\r\n\r\n\t\t#ifdef USE_SHADOWMAP\r\n\t\tdirectLight.color *= all( bvec2( directionalLight.shadow, directLight.visible ) ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\r\n\t\t#endif\r\n\r\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\r\n\r\n\tRectAreaLight rectAreaLight;\r\n\r\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\r\n\r\n\t\trectAreaLight = rectAreaLights[ i ];\r\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\r\n\r\n\t}\r\n\r\n#endif\r\n\r\n#if defined( RE_IndirectDiffuse )\r\n\r\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\r\n\r\n\t#ifdef USE_LIGHTMAP\r\n\r\n\t\tvec3 lightMapIrradiance = texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\r\n\r\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\r\n\r\n\t\t\tlightMapIrradiance *= PI; // factor of PI should not be present; included here to prevent breakage\r\n\r\n\t\t#endif\r\n\r\n\t\tirradiance += lightMapIrradiance;\r\n\r\n\t#endif\r\n\r\n\t#if ( NUM_HEMI_LIGHTS > 0 )\r\n\r\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\r\n\r\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\r\n\r\n\t\t}\r\n\r\n\t#endif\r\n\r\n\t#if defined( USE_ENVMAP ) && defined( PHYSICAL ) && defined( ENVMAP_TYPE_CUBE_UV )\r\n\r\n\t\t// TODO, replace 8 with the real maxMIPLevel\r\n\t\tirradiance += getLightProbeIndirectIrradiance( geometry, 8 );\r\n\r\n\t#endif\r\n\r\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\r\n\r\n#endif\r\n\r\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\r\n\r\n\t// TODO, replace 8 with the real maxMIPLevel\r\n\tvec3 radiance = getLightProbeIndirectRadiance( geometry, Material_BlinnShininessExponent( material ), 8 );\r\n\r\n\t#ifndef STANDARD\r\n\t\tvec3 clearCoatRadiance = getLightProbeIndirectRadiance( geometry, Material_ClearCoat_BlinnShininessExponent( material ), 8 );\r\n\t#else\r\n\t\tvec3 clearCoatRadiance = vec3( 0.0 );\r\n\t#endif\r\n\r\n\tRE_IndirectSpecular( radiance, clearCoatRadiance, geometry, material, reflectedLight );\r\n\r\n#endif\r
var logdepthbuf_fragment = "#if defined(USE_LOGDEPTHBUF) && defined(USE_LOGDEPTHBUF_EXT)\r\n\r\n\tgl_FragDepthEXT = log2(vFragDepth) * logDepthBufFC * 0.5;\r\n\r\n#endif";
var logdepthbuf_pars_fragment = "#ifdef USE_LOGDEPTHBUF\r\n\r\n\tuniform float logDepthBufFC;\r\n\r\n\t#ifdef USE_LOGDEPTHBUF_EXT\r\n\r\n\t\tvarying float vFragDepth;\r\n\r\n\t#endif\r\n\r\n#endif\r\n";
var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\r\n\r\n\t#ifdef USE_LOGDEPTHBUF_EXT\r\n\r\n\t\tvarying float vFragDepth;\r\n\r\n\t#endif\r\n\r\n\tuniform float logDepthBufFC;\r\n\r\n#endif";
var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\r\n\r\n\tgl_Position.z = log2(max( EPSILON, gl_Position.w + 1.0 )) * logDepthBufFC;\r\n\r\n\t#ifdef USE_LOGDEPTHBUF_EXT\r\n\r\n\t\tvFragDepth = 1.0 + gl_Position.w;\r\n\r\n\t#else\r\n\r\n\t\tgl_Position.z = (gl_Position.z - 1.0) * gl_Position.w;\r\n\r\n\t#endif\r\n\r\n#endif\r\n";
var map_fragment = "#ifdef USE_MAP\r\n\r\n\tvec4 texelColor = texture2D( map, vUv );\r\n\r\n\ttexelColor = mapTexelToLinear( texelColor );\r\n\tdiffuseColor *= texelColor;\r\n\r\n#endif\r\n";
var map_pars_fragment = "#ifdef USE_MAP\r\n\r\n\tuniform sampler2D map;\r\n\r\n#endif\r\n";
var map_particle_fragment = "#ifdef USE_MAP\r\n\r\n\tvec4 mapTexel = texture2D( map, vec2( gl_PointCoord.x, 1.0 - gl_PointCoord.y ) * offsetRepeat.zw + offsetRepeat.xy );\r\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\r\n\r\n#endif\r\n";
var map_particle_pars_fragment = "#ifdef USE_MAP\r\n\r\n\tuniform vec4 offsetRepeat;\r\n\tuniform sampler2D map;\r\n\r\n#endif\r\n";
var metalnessmap_fragment = "float metalnessFactor = metalness;\r\n\r\n#ifdef USE_METALNESSMAP\r\n\r\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\r\n\r\n\t// reads channel B, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\r\n\tmetalnessFactor *= texelMetalness.b;\r\n\r\n#endif\r\n";
var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\r\n\r\n\tuniform sampler2D metalnessMap;\r\n\r\n#endif";
var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\r\n\r\n\tobjectNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];\r\n\tobjectNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];\r\n\tobjectNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];\r\n\tobjectNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];\r\n\r\n#endif\r\n";
var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\r\n\r\n\t#ifndef USE_MORPHNORMALS\r\n\r\n\tuniform float morphTargetInfluences[ 8 ];\r\n\r\n\t#else\r\n\r\n\tuniform float morphTargetInfluences[ 4 ];\r\n\r\n\t#endif\r\n\r\n#endif";
var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\r\n\r\n\ttransformed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];\r\n\ttransformed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];\r\n\ttransformed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];\r\n\ttransformed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];\r\n\r\n\t#ifndef USE_MORPHNORMALS\r\n\r\n\ttransformed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];\r\n\ttransformed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];\r\n\ttransformed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];\r\n\ttransformed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];\r\n\r\n\t#endif\r\n\r\n#endif\r\n";
var normal_flip = "#ifdef DOUBLE_SIDED\r\n\tfloat flipNormal = ( float( gl_FrontFacing ) * 2.0 - 1.0 );\r\n#else\r\n\tfloat flipNormal = 1.0;\r\n#endif\r\n";
var normal_fragment = "#ifdef FLAT_SHADED\r\n\r\n\t// Workaround for Adreno/Nexus5 not able able to do dFdx( vViewPosition ) ...\r\n\r\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\r\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\r\n\tvec3 normal = normalize( cross( fdx, fdy ) );\r\n\r\n#else\r\n\r\n\tvec3 normal = normalize( vNormal ) * flipNormal;\r\n\r\n#endif\r\n\r\n#ifdef USE_NORMALMAP\r\n\r\n\tnormal = perturbNormal2Arb( -vViewPosition, normal );\r\n\r\n#elif defined( USE_BUMPMAP )\r\n\r\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\r\n\r\n#endif\r\n";
var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\r\n\r\n\tuniform sampler2D normalMap;\r\n\tuniform vec2 normalScale;\r\n\r\n\t// Per-Pixel Tangent Space Normal Mapping\r\n\t// http://hacksoflife.blogspot.ch/2009/11/per-pixel-tangent-space-normal-mapping.html\r\n\r\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm ) {\r\n\r\n\t\t// Workaround for Adreno 3XX dFd*( vec3 ) bug. See #9988\r\n\r\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\r\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\r\n\t\tvec2 st0 = dFdx( vUv.st );\r\n\t\tvec2 st1 = dFdy( vUv.st );\r\n\r\n\t\tvec3 S = normalize( q0 * st1.t - q1 * st0.t );\r\n\t\tvec3 T = normalize( -q0 * st1.s + q1 * st0.s );\r\n\t\tvec3 N = normalize( surf_norm );\r\n\r\n\t\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\r\n\t\tmapN.xy = normalScale * mapN.xy;\r\n\t\tmat3 tsn = mat3( S, T, N );\r\n\t\treturn normalize( tsn * mapN );\r\n\r\n\t}\r\n\r\n#endif\r\n";
var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\r\n\treturn normalize( normal ) * 0.5 + 0.5;\r\n}\r\n\r\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\r\n\treturn 1.0 - 2.0 * rgb.xyz;\r\n}\r\n\r\nconst float PackUpscale = 256. / 255.; // fraction -> 0..1 (including 1)\r\nconst float UnpackDownscale = 255. / 256.; // 0..1 -> fraction (excluding 1)\r\n\r\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\r\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\r\n\r\nconst float ShiftRight8 = 1. / 256.;\r\n\r\nvec4 packDepthToRGBA( const in float v ) {\r\n\tvec4 r = vec4( fract( v * PackFactors ), v );\r\n\tr.yzw -= r.xyz * ShiftRight8; // tidy overflow\r\n\treturn r * PackUpscale;\r\n}\r\n\r\nfloat unpackRGBAToDepth( const in vec4 v ) {\r\n\treturn dot( v, UnpackFactors );\r\n}\r\n\r\n// NOTE: viewZ/eyeZ is < 0 when in front of the camera per OpenGL conventions\r\n\r\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\r\n\treturn ( viewZ + near ) / ( near - far );\r\n}\r\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\r\n\treturn linearClipZ * ( near - far ) - near;\r\n}\r\n\r\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\r\n\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\r\n}\r\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\r\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\r\n}\r\n";
var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\r\n\r\n\t// Get get normal blending with premultipled, use with CustomBlending, OneFactor, OneMinusSrcAlphaFactor, AddEquation.\r\n\tgl_FragColor.rgb *= gl_FragColor.a;\r\n\r\n#endif\r\n";
var project_vertex = "vec4 mvPosition = modelViewMatrix * vec4( transformed, 1.0 );\r\n\r\ngl_Position = projectionMatrix * mvPosition;\r\n";
var dithering_fragment = "#if defined( DITHERING )\r\n\r\n gl_FragColor.rgb = dithering( gl_FragColor.rgb );\r\n\r\n#endif\r\n";
var dithering_pars_fragment = "#if defined( DITHERING )\r\n\r\n\t// based on https://www.shadertoy.com/view/MslGR8\r\n\tvec3 dithering( vec3 color ) {\r\n\t\t//Calculate grid position\r\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\r\n\r\n\t\t//Shift the individual colors differently, thus making it even harder to see the dithering pattern\r\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\r\n\r\n\t\t//modify shift acording to grid position.\r\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\r\n\r\n\t\t//shift the color by dither_shift\r\n\t\treturn color + dither_shift_RGB;\r\n\t}\r\n\r\n#endif\r\n";
var roughnessmap_fragment = "float roughnessFactor = roughness;\r\n\r\n#ifdef USE_ROUGHNESSMAP\r\n\r\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\r\n\r\n\t// reads channel G, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\r\n\troughnessFactor *= texelRoughness.g;\r\n\r\n#endif\r\n";
var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\r\n\r\n\tuniform sampler2D roughnessMap;\r\n\r\n#endif";
var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\r\n\r\n\t#if NUM_DIR_LIGHTS > 0\r\n\r\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHTS ];\r\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\t#if NUM_SPOT_LIGHTS > 0\r\n\r\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHTS ];\r\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\t#if NUM_POINT_LIGHTS > 0\r\n\r\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHTS ];\r\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\r\n\r\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\r\n\r\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\r\n\r\n\t}\r\n\r\n\tfloat texture2DShadowLerp( sampler2D depths, vec2 size, vec2 uv, float compare ) {\r\n\r\n\t\tconst vec2 offset = vec2( 0.0, 1.0 );\r\n\r\n\t\tvec2 texelSize = vec2( 1.0 ) / size;\r\n\t\tvec2 centroidUV = floor( uv * size + 0.5 ) / size;\r\n\r\n\t\tfloat lb = texture2DCompare( depths, centroidUV + texelSize * offset.xx, compare );\r\n\t\tfloat lt = texture2DCompare( depths, centroidUV + texelSize * offset.xy, compare );\r\n\t\tfloat rb = texture2DCompare( depths, centroidUV + texelSize * offset.yx, compare );\r\n\t\tfloat rt = texture2DCompare( depths, centroidUV + texelSize * offset.yy, compare );\r\n\r\n\t\tvec2 f = fract( uv * size + 0.5 );\r\n\r\n\t\tfloat a = mix( lb, lt, f.y );\r\n\t\tfloat b = mix( rb, rt, f.y );\r\n\t\tfloat c = mix( a, b, f.x );\r\n\r\n\t\treturn c;\r\n\r\n\t}\r\n\r\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\r\n\r\n\t\tfloat shadow = 1.0;\r\n\r\n\t\tshadowCoord.xyz /= shadowCoord.w;\r\n\t\tshadowCoord.z += shadowBias;\r\n\r\n\t\t// if ( something && something ) breaks ATI OpenGL shader compiler\r\n\t\t// if ( all( something, something ) ) using this instead\r\n\r\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\r\n\t\tbool inFrustum = all( inFrustumVec );\r\n\r\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\r\n\r\n\t\tbool frustumTest = all( frustumTestVec );\r\n\r\n\t\tif ( frustumTest ) {\r\n\r\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\r\n\r\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\r\n\r\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\r\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\r\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\r\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\r\n\r\n\t\t\tshadow = (\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\r\n\t\t\t) * ( 1.0 / 9.0 );\r\n\r\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\r\n\r\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\r\n\r\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\r\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\r\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\r\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\r\n\r\n\t\t\tshadow = (\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\r\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy +
var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\r\n\r\n\t#if NUM_DIR_LIGHTS > 0\r\n\r\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHTS ];\r\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\t#if NUM_SPOT_LIGHTS > 0\r\n\r\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHTS ];\r\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\t#if NUM_POINT_LIGHTS > 0\r\n\r\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHTS ];\r\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\r\n\r\n\t#endif\r\n\r\n\r\n\r\n#endif\r\n";
var shadowmap_vertex = "#ifdef USE_SHADOWMAP\r\n\r\n\t#if NUM_DIR_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\r\n\r\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * worldPosition;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\t#if NUM_SPOT_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\r\n\r\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * worldPosition;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\t#if NUM_POINT_LIGHTS > 0\r\n\r\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\r\n\r\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * worldPosition;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\r\n\r\n#endif\r\n";
var shadowmask_pars_fragment = "float getShadowMask() {\r\n\r\n\tfloat shadow = 1.0;\r\n\r\n\t#ifdef USE_SHADOWMAP\r\n\r\n\t#if NUM_DIR_LIGHTS > 0\r\n\r\n\tDirectionalLight directionalLight;\r\n\r\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\r\n\r\n\t\tdirectionalLight = directionalLights[ i ];\r\n\t\tshadow *= bool( directionalLight.shadow ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\t#if NUM_SPOT_LIGHTS > 0\r\n\r\n\tSpotLight spotLight;\r\n\r\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\r\n\r\n\t\tspotLight = spotLights[ i ];\r\n\t\tshadow *= bool( spotLight.shadow ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\t#if NUM_POINT_LIGHTS > 0\r\n\r\n\tPointLight pointLight;\r\n\r\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\r\n\r\n\t\tpointLight = pointLights[ i ];\r\n\t\tshadow *= bool( pointLight.shadow ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\r\n\r\n\t}\r\n\r\n\t#endif\r\n\r\n\r\n\r\n\t#endif\r\n\r\n\treturn shadow;\r\n\r\n}\r\n";
var skinbase_vertex = "#ifdef USE_SKINNING\r\n\r\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\r\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\r\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\r\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\r\n\r\n#endif";
var skinning_pars_vertex = "#ifdef USE_SKINNING\r\n\r\n\tuniform mat4 bindMatrix;\r\n\tuniform mat4 bindMatrixInverse;\r\n\r\n\t#ifdef BONE_TEXTURE\r\n\r\n\t\tuniform sampler2D boneTexture;\r\n\t\tuniform int boneTextureSize;\r\n\r\n\t\tmat4 getBoneMatrix( const in float i ) {\r\n\r\n\t\t\tfloat j = i * 4.0;\r\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\r\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\r\n\r\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\r\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\r\n\r\n\t\t\ty = dy * ( y + 0.5 );\r\n\r\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\r\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\r\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\r\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\r\n\r\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\r\n\r\n\t\t\treturn bone;\r\n\r\n\t\t}\r\n\r\n\t#else\r\n\r\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\r\n\r\n\t\tmat4 getBoneMatrix( const in float i ) {\r\n\r\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\r\n\t\t\treturn bone;\r\n\r\n\t\t}\r\n\r\n\t#endif\r\n\r\n#endif\r\n";
var skinning_vertex = "#ifdef USE_SKINNING\r\n\r\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\r\n\r\n\tvec4 skinned = vec4( 0.0 );\r\n\tskinned += boneMatX * skinVertex * skinWeight.x;\r\n\tskinned += boneMatY * skinVertex * skinWeight.y;\r\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\r\n\tskinned += boneMatW * skinVertex * skinWeight.w;\r\n\r\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\r\n\r\n#endif\r\n";
var skinnormal_vertex = "#ifdef USE_SKINNING\r\n\r\n\tmat4 skinMatrix = mat4( 0.0 );\r\n\tskinMatrix += skinWeight.x * boneMatX;\r\n\tskinMatrix += skinWeight.y * boneMatY;\r\n\tskinMatrix += skinWeight.z * boneMatZ;\r\n\tskinMatrix += skinWeight.w * boneMatW;\r\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\r\n\r\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\r\n\r\n#endif\r\n";
var specularmap_fragment = "float specularStrength;\r\n\r\n#ifdef USE_SPECULARMAP\r\n\r\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\r\n\tspecularStrength = texelSpecular.r;\r\n\r\n#else\r\n\r\n\tspecularStrength = 1.0;\r\n\r\n#endif";
var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\r\n\r\n\tuniform sampler2D specularMap;\r\n\r\n#endif";
var tonemapping_fragment = "#if defined( TONE_MAPPING )\r\n\r\n gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\r\n\r\n#endif\r\n";
var tonemapping_pars_fragment = "#define saturate(a) clamp( a, 0.0, 1.0 )\r\n\r\nuniform float toneMappingExposure;\r\nuniform float toneMappingWhitePoint;\r\n\r\n// exposure only\r\nvec3 LinearToneMapping( vec3 color ) {\r\n\r\n\treturn toneMappingExposure * color;\r\n\r\n}\r\n\r\n// source: https://www.cs.utah.edu/~reinhard/cdrom/\r\nvec3 ReinhardToneMapping( vec3 color ) {\r\n\r\n\tcolor *= toneMappingExposure;\r\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\r\n\r\n}\r\n\r\n// source: http://filmicgames.com/archives/75\r\n#define Uncharted2Helper( x ) max( ( ( x * ( 0.15 * x + 0.10 * 0.50 ) + 0.20 * 0.02 ) / ( x * ( 0.15 * x + 0.50 ) + 0.20 * 0.30 ) ) - 0.02 / 0.30, vec3( 0.0 ) )\r\nvec3 Uncharted2ToneMapping( vec3 color ) {\r\n\r\n\t// John Hable's filmic operator from Uncharted 2 video game\r\n\tcolor *= toneMappingExposure;\r\n\treturn saturate( Uncharted2Helper( color ) / Uncharted2Helper( vec3( toneMappingWhitePoint ) ) );\r\n\r\n}\r\n\r\n// source: http://filmicgames.com/archives/75\r\nvec3 OptimizedCineonToneMapping( vec3 color ) {\r\n\r\n\t// optimized filmic operator by Jim Hejl and Richard Burgess-Dawson\r\n\tcolor *= toneMappingExposure;\r\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\r\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\r\n\r\n}\r\n";
var uv_pars_fragment = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\r\n\r\n\tvarying vec2 vUv;\r\n\r\n#endif";
var uv_pars_vertex = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\r\n\r\n\tvarying vec2 vUv;\r\n\tuniform vec4 offsetRepeat;\r\n\r\n#endif\r\n";
var uv_vertex = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\r\n\r\n\tvUv = uv * offsetRepeat.zw + offsetRepeat.xy;\r\n\r\n#endif";
var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\r\n\r\n\tvarying vec2 vUv2;\r\n\r\n#endif";
var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\r\n\r\n\tattribute vec2 uv2;\r\n\tvarying vec2 vUv2;\r\n\r\n#endif";
var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\r\n\r\n\tvUv2 = uv2;\r\n\r\n#endif";
var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( PHONG ) || defined( PHYSICAL ) || defined( LAMBERT ) || defined ( USE_SHADOWMAP )\r\n\r\n\tvec4 worldPosition = modelMatrix * vec4( transformed, 1.0 );\r\n\r\n#endif\r\n";
var cube_frag = "uniform samplerCube tCube;\r\nuniform float tFlip;\r\nuniform float opacity;\r\n\r\nvarying vec3 vWorldPosition;\r\n\r\n#include <common>\r\n\r\nvoid main() {\r\n\r\n\tgl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );\r\n\tgl_FragColor.a *= opacity;\r\n\r\n}\r\n";
var cube_vert = "varying vec3 vWorldPosition;\r\n\r\n#include <common>\r\n\r\nvoid main() {\r\n\r\n\tvWorldPosition = transformDirection( position, modelMatrix );\r\n\r\n\t#include <begin_vertex>\r\n\t#include <project_vertex>\r\n\r\n}\r\n";
var depth_frag = "#if DEPTH_PACKING == 3200\r\n\r\n\tuniform float opacity;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <uv_pars_fragment>\r\n#include <map_pars_fragment>\r\n#include <alphamap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec4 diffuseColor = vec4( 1.0 );\r\n\r\n\t#if DEPTH_PACKING == 3200\r\n\r\n\t\tdiffuseColor.a = opacity;\r\n\r\n\t#endif\r\n\r\n\t#include <map_fragment>\r\n\t#include <alphamap_fragment>\r\n\t#include <alphatest_fragment>\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\r\n\t#if DEPTH_PACKING == 3200\r\n\r\n\t\tgl_FragColor = vec4( vec3( gl_FragCoord.z ), opacity );\r\n\r\n\t#elif DEPTH_PACKING == 3201\r\n\r\n\t\tgl_FragColor = packDepthToRGBA( gl_FragCoord.z );\r\n\r\n\t#endif\r\n\r\n}\r\n";
var depth_vert = "#include <common>\r\n#include <uv_pars_vertex>\r\n#include <displacementmap_pars_vertex>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <uv_vertex>\r\n\r\n\t#include <skinbase_vertex>\r\n\r\n\t#ifdef USE_DISPLACEMENTMAP\r\n\r\n\t\t#include <beginnormal_vertex>\r\n\t\t#include <morphnormal_vertex>\r\n\t\t#include <skinnormal_vertex>\r\n\r\n\t#endif\r\n\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <displacementmap_vertex>\r\n\t#include <project_vertex>\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\r\n}\r\n";
var distanceRGBA_frag = "uniform vec3 lightPos;\r\nvarying vec4 vWorldPosition;\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main () {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tgl_FragColor = packDepthToRGBA( length( vWorldPosition.xyz - lightPos.xyz ) / 1000.0 );\r\n\r\n}\r\n";
var distanceRGBA_vert = "varying vec4 vWorldPosition;\r\n\r\n#include <common>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <skinbase_vertex>\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <project_vertex>\r\n\t#include <worldpos_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\r\n\tvWorldPosition = worldPosition;\r\n\r\n}\r\n";
var equirect_frag = "uniform sampler2D tEquirect;\r\nuniform float tFlip;\r\n\r\nvarying vec3 vWorldPosition;\r\n\r\n#include <common>\r\n\r\nvoid main() {\r\n\r\n\t// \tgl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );\r\n\tvec3 direction = normalize( vWorldPosition );\r\n\tvec2 sampleUV;\r\n\tsampleUV.y = saturate( tFlip * direction.y * -0.5 + 0.5 );\r\n\tsampleUV.x = atan( direction.z, direction.x ) * RECIPROCAL_PI2 + 0.5;\r\n\tgl_FragColor = texture2D( tEquirect, sampleUV );\r\n\r\n}\r\n";
var equirect_vert = "varying vec3 vWorldPosition;\r\n\r\n#include <common>\r\n\r\nvoid main() {\r\n\r\n\tvWorldPosition = transformDirection( position, modelMatrix );\r\n\r\n\t#include <begin_vertex>\r\n\t#include <project_vertex>\r\n\r\n}\r\n";
var linedashed_frag = "uniform vec3 diffuse;\r\nuniform float opacity;\r\n\r\nuniform float dashSize;\r\nuniform float totalSize;\r\n\r\nvarying float vLineDistance;\r\n\r\n#include <common>\r\n#include <color_pars_fragment>\r\n#include <fog_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\r\n\r\n\t\tdiscard;\r\n\r\n\t}\r\n\r\n\tvec3 outgoingLight = vec3( 0.0 );\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <color_fragment>\r\n\r\n\toutgoingLight = diffuseColor.rgb; // simple shader\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\r\n}\r\n";
var linedashed_vert = "uniform float scale;\r\nattribute float lineDistance;\r\n\r\nvarying float vLineDistance;\r\n\r\n#include <common>\r\n#include <color_pars_vertex>\r\n#include <fog_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <color_vertex>\r\n\r\n\tvLineDistance = scale * lineDistance;\r\n\r\n\tvec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );\r\n\tgl_Position = projectionMatrix * mvPosition;\r\n\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\t#include <fog_vertex>\r\n\r\n}\r\n";
var meshbasic_frag = "uniform vec3 diffuse;\r\nuniform float opacity;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <color_pars_fragment>\r\n#include <uv_pars_fragment>\r\n#include <uv2_pars_fragment>\r\n#include <map_pars_fragment>\r\n#include <alphamap_pars_fragment>\r\n#include <aomap_pars_fragment>\r\n#include <lightmap_pars_fragment>\r\n#include <envmap_pars_fragment>\r\n#include <fog_pars_fragment>\r\n#include <specularmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <map_fragment>\r\n\t#include <color_fragment>\r\n\t#include <alphamap_fragment>\r\n\t#include <alphatest_fragment>\r\n\t#include <specularmap_fragment>\r\n\r\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\r\n\r\n\t// accumulation (baked indirect lighting only)\r\n\t#ifdef USE_LIGHTMAP\r\n\r\n\t\treflectedLight.indirectDiffuse += texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\r\n\r\n\t#else\r\n\r\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\r\n\r\n\t#endif\r\n\r\n\t// modulation\r\n\t#include <aomap_fragment>\r\n\r\n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\r\n\r\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\r\n\r\n\t#include <normal_flip>\r\n\t#include <envmap_fragment>\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\r\n}\r\n";
var meshbasic_vert = "#include <common>\r\n#include <uv_pars_vertex>\r\n#include <uv2_pars_vertex>\r\n#include <envmap_pars_vertex>\r\n#include <color_pars_vertex>\r\n#include <fog_pars_vertex>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <uv_vertex>\r\n\t#include <uv2_vertex>\r\n\t#include <color_vertex>\r\n\t#include <skinbase_vertex>\r\n\r\n\t#ifdef USE_ENVMAP\r\n\r\n\t#include <beginnormal_vertex>\r\n\t#include <morphnormal_vertex>\r\n\t#include <skinnormal_vertex>\r\n\t#include <defaultnormal_vertex>\r\n\r\n\t#endif\r\n\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <project_vertex>\r\n\t#include <logdepthbuf_vertex>\r\n\r\n\t#include <worldpos_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\t#include <envmap_vertex>\r\n\t#include <fog_vertex>\r\n\r\n}\r\n";
var meshlambert_frag = "uniform vec3 diffuse;\r\nuniform vec3 emissive;\r\nuniform float opacity;\r\n\r\nvarying vec3 vLightFront;\r\n\r\n#ifdef DOUBLE_SIDED\r\n\r\n\tvarying vec3 vLightBack;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <dithering_pars_fragment>\r\n#include <color_pars_fragment>\r\n#include <uv_pars_fragment>\r\n#include <uv2_pars_fragment>\r\n#include <map_pars_fragment>\r\n#include <alphamap_pars_fragment>\r\n#include <aomap_pars_fragment>\r\n#include <lightmap_pars_fragment>\r\n#include <emissivemap_pars_fragment>\r\n#include <envmap_pars_fragment>\r\n#include <bsdfs>\r\n#include <lights_pars>\r\n#include <fog_pars_fragment>\r\n#include <shadowmap_pars_fragment>\r\n#include <shadowmask_pars_fragment>\r\n#include <specularmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\r\n\tvec3 totalEmissiveRadiance = emissive;\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <map_fragment>\r\n\t#include <color_fragment>\r\n\t#include <alphamap_fragment>\r\n\t#include <alphatest_fragment>\r\n\t#include <specularmap_fragment>\r\n\t#include <emissivemap_fragment>\r\n\r\n\t// accumulation\r\n\treflectedLight.indirectDiffuse = getAmbientLightIrradiance( ambientLightColor );\r\n\r\n\t#include <lightmap_fragment>\r\n\r\n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\r\n\r\n\t#ifdef DOUBLE_SIDED\r\n\r\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\r\n\r\n\t#else\r\n\r\n\t\treflectedLight.directDiffuse = vLightFront;\r\n\r\n\t#endif\r\n\r\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\r\n\r\n\t// modulation\r\n\t#include <aomap_fragment>\r\n\r\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\r\n\r\n\t#include <normal_flip>\r\n\t#include <envmap_fragment>\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <dithering_fragment>\r\n\r\n}\r\n";
var meshlambert_vert = "#define LAMBERT\r\n\r\nvarying vec3 vLightFront;\r\n\r\n#ifdef DOUBLE_SIDED\r\n\r\n\tvarying vec3 vLightBack;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <uv_pars_vertex>\r\n#include <uv2_pars_vertex>\r\n#include <envmap_pars_vertex>\r\n#include <bsdfs>\r\n#include <lights_pars>\r\n#include <color_pars_vertex>\r\n#include <fog_pars_vertex>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <shadowmap_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <uv_vertex>\r\n\t#include <uv2_vertex>\r\n\t#include <color_vertex>\r\n\r\n\t#include <beginnormal_vertex>\r\n\t#include <morphnormal_vertex>\r\n\t#include <skinbase_vertex>\r\n\t#include <skinnormal_vertex>\r\n\t#include <defaultnormal_vertex>\r\n\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <project_vertex>\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\r\n\t#include <worldpos_vertex>\r\n\t#include <envmap_vertex>\r\n\t#include <lights_lambert_vertex>\r\n\t#include <shadowmap_vertex>\r\n\t#include <fog_vertex>\r\n\r\n}\r\n";
var meshphong_frag = "#define PHONG\r\n\r\nuniform vec3 diffuse;\r\nuniform vec3 emissive;\r\nuniform vec3 specular;\r\nuniform float shininess;\r\nuniform float opacity;\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <dithering_pars_fragment>\r\n#include <color_pars_fragment>\r\n#include <uv_pars_fragment>\r\n#include <uv2_pars_fragment>\r\n#include <map_pars_fragment>\r\n#include <alphamap_pars_fragment>\r\n#include <aomap_pars_fragment>\r\n#include <lightmap_pars_fragment>\r\n#include <emissivemap_pars_fragment>\r\n#include <envmap_pars_fragment>\r\n#include <gradientmap_pars_fragment>\r\n#include <fog_pars_fragment>\r\n#include <bsdfs>\r\n#include <lights_pars>\r\n#include <lights_phong_pars_fragment>\r\n#include <shadowmap_pars_fragment>\r\n#include <bumpmap_pars_fragment>\r\n#include <normalmap_pars_fragment>\r\n#include <specularmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\r\n\tvec3 totalEmissiveRadiance = emissive;\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <map_fragment>\r\n\t#include <color_fragment>\r\n\t#include <alphamap_fragment>\r\n\t#include <alphatest_fragment>\r\n\t#include <specularmap_fragment>\r\n\t#include <normal_flip>\r\n\t#include <normal_fragment>\r\n\t#include <emissivemap_fragment>\r\n\r\n\t// accumulation\r\n\t#include <lights_phong_fragment>\r\n\t#include <lights_template>\r\n\r\n\t// modulation\r\n\t#include <aomap_fragment>\r\n\r\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\r\n\r\n\t#include <envmap_fragment>\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <dithering_fragment>\r\n\r\n}\r\n";
var meshphong_vert = "#define PHONG\r\n\r\nvarying vec3 vViewPosition;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <uv_pars_vertex>\r\n#include <uv2_pars_vertex>\r\n#include <displacementmap_pars_vertex>\r\n#include <envmap_pars_vertex>\r\n#include <color_pars_vertex>\r\n#include <fog_pars_vertex>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <shadowmap_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <uv_vertex>\r\n\t#include <uv2_vertex>\r\n\t#include <color_vertex>\r\n\r\n\t#include <beginnormal_vertex>\r\n\t#include <morphnormal_vertex>\r\n\t#include <skinbase_vertex>\r\n\t#include <skinnormal_vertex>\r\n\t#include <defaultnormal_vertex>\r\n\r\n#ifndef FLAT_SHADED // Normal computed with derivatives when FLAT_SHADED\r\n\r\n\tvNormal = normalize( transformedNormal );\r\n\r\n#endif\r\n\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <displacementmap_vertex>\r\n\t#include <project_vertex>\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\r\n\tvViewPosition = - mvPosition.xyz;\r\n\r\n\t#include <worldpos_vertex>\r\n\t#include <envmap_vertex>\r\n\t#include <shadowmap_vertex>\r\n\t#include <fog_vertex>\r\n\r\n}\r\n";
var meshphysical_frag = "#define PHYSICAL\r\n\r\nuniform vec3 diffuse;\r\nuniform vec3 emissive;\r\nuniform float roughness;\r\nuniform float metalness;\r\nuniform float opacity;\r\n\r\n#ifndef STANDARD\r\n\tuniform float clearCoat;\r\n\tuniform float clearCoatRoughness;\r\n#endif\r\n\r\nvarying vec3 vViewPosition;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <dithering_pars_fragment>\r\n#include <color_pars_fragment>\r\n#include <uv_pars_fragment>\r\n#include <uv2_pars_fragment>\r\n#include <map_pars_fragment>\r\n#include <alphamap_pars_fragment>\r\n#include <aomap_pars_fragment>\r\n#include <lightmap_pars_fragment>\r\n#include <emissivemap_pars_fragment>\r\n#include <envmap_pars_fragment>\r\n#include <fog_pars_fragment>\r\n#include <bsdfs>\r\n#include <cube_uv_reflection_fragment>\r\n#include <lights_pars>\r\n#include <lights_physical_pars_fragment>\r\n#include <shadowmap_pars_fragment>\r\n#include <bumpmap_pars_fragment>\r\n#include <normalmap_pars_fragment>\r\n#include <roughnessmap_pars_fragment>\r\n#include <metalnessmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\r\n\tvec3 totalEmissiveRadiance = emissive;\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <map_fragment>\r\n\t#include <color_fragment>\r\n\t#include <alphamap_fragment>\r\n\t#include <alphatest_fragment>\r\n\t#include <roughnessmap_fragment>\r\n\t#include <metalnessmap_fragment>\r\n\t#include <normal_flip>\r\n\t#include <normal_fragment>\r\n\t#include <emissivemap_fragment>\r\n\r\n\t// accumulation\r\n\t#include <lights_physical_fragment>\r\n\t#include <lights_template>\r\n\r\n\t// modulation\r\n\t#include <aomap_fragment>\r\n\r\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <dithering_fragment>\r\n\r\n}\r\n";
var meshphysical_vert = "#define PHYSICAL\r\n\r\nvarying vec3 vViewPosition;\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include <common>\r\n#include <uv_pars_vertex>\r\n#include <uv2_pars_vertex>\r\n#include <displacementmap_pars_vertex>\r\n#include <color_pars_vertex>\r\n#include <fog_pars_vertex>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <shadowmap_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <uv_vertex>\r\n\t#include <uv2_vertex>\r\n\t#include <color_vertex>\r\n\r\n\t#include <beginnormal_vertex>\r\n\t#include <morphnormal_vertex>\r\n\t#include <skinbase_vertex>\r\n\t#include <skinnormal_vertex>\r\n\t#include <defaultnormal_vertex>\r\n\r\n#ifndef FLAT_SHADED // Normal computed with derivatives when FLAT_SHADED\r\n\r\n\tvNormal = normalize( transformedNormal );\r\n\r\n#endif\r\n\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <displacementmap_vertex>\r\n\t#include <project_vertex>\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\r\n\tvViewPosition = - mvPosition.xyz;\r\n\r\n\t#include <worldpos_vertex>\r\n\t#include <shadowmap_vertex>\r\n\t#include <fog_vertex>\r\n\r\n}\r\n";
var normal_frag = "#define NORMAL\r\n\r\nuniform float opacity;\r\n\r\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\r\n\r\n\tvarying vec3 vViewPosition;\r\n\r\n#endif\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include <packing>\r\n#include <uv_pars_fragment>\r\n#include <bumpmap_pars_fragment>\r\n#include <normalmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <normal_flip>\r\n\t#include <normal_fragment>\r\n\r\n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\r\n\r\n}\r\n";
var normal_vert = "#define NORMAL\r\n\r\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\r\n\r\n\tvarying vec3 vViewPosition;\r\n\r\n#endif\r\n\r\n#ifndef FLAT_SHADED\r\n\r\n\tvarying vec3 vNormal;\r\n\r\n#endif\r\n\r\n#include <uv_pars_vertex>\r\n#include <displacementmap_pars_vertex>\r\n#include <morphtarget_pars_vertex>\r\n#include <skinning_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <uv_vertex>\r\n\r\n\t#include <beginnormal_vertex>\r\n\t#include <morphnormal_vertex>\r\n\t#include <skinbase_vertex>\r\n\t#include <skinnormal_vertex>\r\n\t#include <defaultnormal_vertex>\r\n\r\n#ifndef FLAT_SHADED // Normal computed with derivatives when FLAT_SHADED\r\n\r\n\tvNormal = normalize( transformedNormal );\r\n\r\n#endif\r\n\r\n\t#include <begin_vertex>\r\n\t#include <morphtarget_vertex>\r\n\t#include <skinning_vertex>\r\n\t#include <displacementmap_vertex>\r\n\t#include <project_vertex>\r\n\t#include <logdepthbuf_vertex>\r\n\r\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\r\n\r\n\tvViewPosition = - mvPosition.xyz;\r\n\r\n#endif\r\n\r\n}\r\n";
var points_frag = "uniform vec3 diffuse;\r\nuniform float opacity;\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <color_pars_fragment>\r\n#include <map_particle_pars_fragment>\r\n#include <fog_pars_fragment>\r\n#include <shadowmap_pars_fragment>\r\n#include <logdepthbuf_pars_fragment>\r\n#include <clipping_planes_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\t#include <clipping_planes_fragment>\r\n\r\n\tvec3 outgoingLight = vec3( 0.0 );\r\n\tvec4 diffuseColor = vec4( diffuse, opacity );\r\n\r\n\t#include <logdepthbuf_fragment>\r\n\t#include <map_particle_fragment>\r\n\t#include <color_fragment>\r\n\t#include <alphatest_fragment>\r\n\r\n\toutgoingLight = diffuseColor.rgb;\r\n\r\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\r\n\r\n\t#include <premultiplied_alpha_fragment>\r\n\t#include <tonemapping_fragment>\r\n\t#include <encodings_fragment>\r\n\t#include <fog_fragment>\r\n\r\n}\r\n";
var points_vert = "uniform float size;\r\nuniform float scale;\r\n\r\n#include <common>\r\n#include <color_pars_vertex>\r\n#include <fog_pars_vertex>\r\n#include <shadowmap_pars_vertex>\r\n#include <logdepthbuf_pars_vertex>\r\n#include <clipping_planes_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <color_vertex>\r\n\t#include <begin_vertex>\r\n\t#include <project_vertex>\r\n\r\n\t#ifdef USE_SIZEATTENUATION\r\n\t\tgl_PointSize = size * ( scale / - mvPosition.z );\r\n\t#else\r\n\t\tgl_PointSize = size;\r\n\t#endif\r\n\r\n\t#include <logdepthbuf_vertex>\r\n\t#include <clipping_planes_vertex>\r\n\t#include <worldpos_vertex>\r\n\t#include <shadowmap_vertex>\r\n\t#include <fog_vertex>\r\n\r\n}\r\n";
var shadow_frag = "uniform float opacity;\r\n\r\n#include <common>\r\n#include <packing>\r\n#include <bsdfs>\r\n#include <lights_pars>\r\n#include <shadowmap_pars_fragment>\r\n#include <shadowmask_pars_fragment>\r\n\r\nvoid main() {\r\n\r\n\tgl_FragColor = vec4( 0.0, 0.0, 0.0, opacity * ( 1.0 - getShadowMask() ) );\r\n\r\n}\r\n";
var shadow_vert = "#include <shadowmap_pars_vertex>\r\n\r\nvoid main() {\r\n\r\n\t#include <begin_vertex>\r\n\t#include <project_vertex>\r\n\t#include <worldpos_vertex>\r\n\t#include <shadowmap_vertex>\r\n\r\n}\r\n";
var ShaderChunk = {
alphamap_fragment: alphamap_fragment,
alphamap_pars_fragment: alphamap_pars_fragment,
alphatest_fragment: alphatest_fragment,
aomap_fragment: aomap_fragment,
aomap_pars_fragment: aomap_pars_fragment,
begin_vertex: begin_vertex,
beginnormal_vertex: beginnormal_vertex,
bsdfs: bsdfs,
bumpmap_pars_fragment: bumpmap_pars_fragment,
clipping_planes_fragment: clipping_planes_fragment,
clipping_planes_pars_fragment: clipping_planes_pars_fragment,
clipping_planes_pars_vertex: clipping_planes_pars_vertex,
clipping_planes_vertex: clipping_planes_vertex,
color_fragment: color_fragment,
color_pars_fragment: color_pars_fragment,
color_pars_vertex: color_pars_vertex,
color_vertex: color_vertex,
common: common,
cube_uv_reflection_fragment: cube_uv_reflection_fragment,
defaultnormal_vertex: defaultnormal_vertex,
displacementmap_pars_vertex: displacementmap_pars_vertex,
displacementmap_vertex: displacementmap_vertex,
emissivemap_fragment: emissivemap_fragment,
emissivemap_pars_fragment: emissivemap_pars_fragment,
encodings_fragment: encodings_fragment,
encodings_pars_fragment: encodings_pars_fragment,
envmap_fragment: envmap_fragment,
envmap_pars_fragment: envmap_pars_fragment,
envmap_pars_vertex: envmap_pars_vertex,
envmap_vertex: envmap_vertex,
fog_vertex: fog_vertex,
fog_pars_vertex: fog_pars_vertex,
fog_fragment: fog_fragment,
fog_pars_fragment: fog_pars_fragment,
gradientmap_pars_fragment: gradientmap_pars_fragment,
lightmap_fragment: lightmap_fragment,
lightmap_pars_fragment: lightmap_pars_fragment,
lights_lambert_vertex: lights_lambert_vertex,
lights_pars: lights_pars,
lights_phong_fragment: lights_phong_fragment,
lights_phong_pars_fragment: lights_phong_pars_fragment,
lights_physical_fragment: lights_physical_fragment,
lights_physical_pars_fragment: lights_physical_pars_fragment,
lights_template: lights_template,
logdepthbuf_fragment: logdepthbuf_fragment,
logdepthbuf_pars_fragment: logdepthbuf_pars_fragment,
logdepthbuf_pars_vertex: logdepthbuf_pars_vertex,
logdepthbuf_vertex: logdepthbuf_vertex,
map_fragment: map_fragment,
map_pars_fragment: map_pars_fragment,
map_particle_fragment: map_particle_fragment,
map_particle_pars_fragment: map_particle_pars_fragment,
metalnessmap_fragment: metalnessmap_fragment,
metalnessmap_pars_fragment: metalnessmap_pars_fragment,
morphnormal_vertex: morphnormal_vertex,
morphtarget_pars_vertex: morphtarget_pars_vertex,
morphtarget_vertex: morphtarget_vertex,
normal_flip: normal_flip,
normal_fragment: normal_fragment,
normalmap_pars_fragment: normalmap_pars_fragment,
packing: packing,
premultiplied_alpha_fragment: premultiplied_alpha_fragment,
project_vertex: project_vertex,
dithering_fragment: dithering_fragment,
dithering_pars_fragment: dithering_pars_fragment,
roughnessmap_fragment: roughnessmap_fragment,
roughnessmap_pars_fragment: roughnessmap_pars_fragment,
shadowmap_pars_fragment: shadowmap_pars_fragment,
shadowmap_pars_vertex: shadowmap_pars_vertex,
shadowmap_vertex: shadowmap_vertex,
shadowmask_pars_fragment: shadowmask_pars_fragment,
skinbase_vertex: skinbase_vertex,
skinning_pars_vertex: skinning_pars_vertex,
skinning_vertex: skinning_vertex,
skinnormal_vertex: skinnormal_vertex,
specularmap_fragment: specularmap_fragment,
specularmap_pars_fragment: specularmap_pars_fragment,
tonemapping_fragment: tonemapping_fragment,
tonemapping_pars_fragment: tonemapping_pars_fragment,
uv_pars_fragment: uv_pars_fragment,
uv_pars_vertex: uv_pars_vertex,
uv_vertex: uv_vertex,
uv2_pars_fragment: uv2_pars_fragment,
uv2_pars_vertex: uv2_pars_vertex,
uv2_vertex: uv2_vertex,
worldpos_vertex: worldpos_vertex,
cube_frag: cube_frag,
cube_vert: cube_vert,
depth_frag: depth_frag,
depth_vert: depth_vert,
distanceRGBA_frag: distanceRGBA_frag,
distanceRGBA_vert: distanceRGBA_vert,
equirect_frag: equirect_frag,
equirect_vert: equirect_vert,
linedashed_frag: linedashed_frag,
linedashed_vert: linedashed_vert,
meshbasic_frag: meshbasic_frag,
meshbasic_vert: meshbasic_vert,
meshlambert_frag: meshlambert_frag,
meshlambert_vert: meshlambert_vert,
meshphong_frag: meshphong_frag,
meshphong_vert: meshphong_vert,
meshphysical_frag: meshphysical_frag,
meshphysical_vert: meshphysical_vert,
normal_frag: normal_frag,
normal_vert: normal_vert,
points_frag: points_frag,
points_vert: points_vert,
shadow_frag: shadow_frag,
shadow_vert: shadow_vert
};
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
* @author mikael emtinger / http://gomo.se/
*/
var ShaderLib = {
basic: {
uniforms: UniformsUtils.merge( [
UniformsLib.common,
UniformsLib.aomap,
UniformsLib.lightmap,
UniformsLib.fog
] ),
vertexShader: ShaderChunk.meshbasic_vert,
fragmentShader: ShaderChunk.meshbasic_frag
},
lambert: {
uniforms: UniformsUtils.merge( [
UniformsLib.common,
UniformsLib.aomap,
UniformsLib.lightmap,
UniformsLib.emissivemap,
UniformsLib.fog,
UniformsLib.lights,
{
emissive: { value: new Color( 0x000000 ) }
}
] ),
vertexShader: ShaderChunk.meshlambert_vert,
fragmentShader: ShaderChunk.meshlambert_frag
},
phong: {
uniforms: UniformsUtils.merge( [
UniformsLib.common,
UniformsLib.aomap,
UniformsLib.lightmap,
UniformsLib.emissivemap,
UniformsLib.bumpmap,
UniformsLib.normalmap,
UniformsLib.displacementmap,
UniformsLib.gradientmap,
UniformsLib.fog,
UniformsLib.lights,
{
emissive: { value: new Color( 0x000000 ) },
specular: { value: new Color( 0x111111 ) },
shininess: { value: 30 }
}
] ),
vertexShader: ShaderChunk.meshphong_vert,
fragmentShader: ShaderChunk.meshphong_frag
},
standard: {
uniforms: UniformsUtils.merge( [
UniformsLib.common,
UniformsLib.aomap,
UniformsLib.lightmap,
UniformsLib.emissivemap,
UniformsLib.bumpmap,
UniformsLib.normalmap,
UniformsLib.displacementmap,
UniformsLib.roughnessmap,
UniformsLib.metalnessmap,
UniformsLib.fog,
UniformsLib.lights,
{
emissive: { value: new Color( 0x000000 ) },
roughness: { value: 0.5 },
metalness: { value: 0.5 },
envMapIntensity: { value: 1 } // temporary
}
] ),
vertexShader: ShaderChunk.meshphysical_vert,
fragmentShader: ShaderChunk.meshphysical_frag
},
points: {
uniforms: UniformsUtils.merge( [
UniformsLib.points,
UniformsLib.fog
] ),
vertexShader: ShaderChunk.points_vert,
fragmentShader: ShaderChunk.points_frag
},
dashed: {
uniforms: UniformsUtils.merge( [
UniformsLib.common,
UniformsLib.fog,
{
scale: { value: 1 },
dashSize: { value: 1 },
totalSize: { value: 2 }
}
] ),
vertexShader: ShaderChunk.linedashed_vert,
fragmentShader: ShaderChunk.linedashed_frag
},
depth: {
uniforms: UniformsUtils.merge( [
UniformsLib.common,
UniformsLib.displacementmap
] ),
vertexShader: ShaderChunk.depth_vert,
fragmentShader: ShaderChunk.depth_frag
},
normal: {
uniforms: UniformsUtils.merge( [
UniformsLib.common,
UniformsLib.bumpmap,
UniformsLib.normalmap,
UniformsLib.displacementmap,
{
opacity: { value: 1.0 }
}
] ),
vertexShader: ShaderChunk.normal_vert,
fragmentShader: ShaderChunk.normal_frag
},
/* -------------------------------------------------------------------------
// Cube map shader
------------------------------------------------------------------------- */
cube: {
uniforms: {
tCube: { value: null },
tFlip: { value: - 1 },
opacity: { value: 1.0 }
},
vertexShader: ShaderChunk.cube_vert,
fragmentShader: ShaderChunk.cube_frag
},
/* -------------------------------------------------------------------------
// Cube map shader
------------------------------------------------------------------------- */
equirect: {
uniforms: {
tEquirect: { value: null },
tFlip: { value: - 1 }
},
vertexShader: ShaderChunk.equirect_vert,
fragmentShader: ShaderChunk.equirect_frag
},
distanceRGBA: {
uniforms: {
lightPos: { value: new Vector3() }
},
vertexShader: ShaderChunk.distanceRGBA_vert,
fragmentShader: ShaderChunk.distanceRGBA_frag
}
};
ShaderLib.physical = {
uniforms: UniformsUtils.merge( [
ShaderLib.standard.uniforms,
{
clearCoat: { value: 0 },
clearCoatRoughness: { value: 0 }
}
] ),
vertexShader: ShaderChunk.meshphysical_vert,
fragmentShader: ShaderChunk.meshphysical_frag
};
/**
* @author bhouston / http://clara.io
*/
function Box2( min, max ) {
this.min = ( min !== undefined ) ? min : new Vector2( + Infinity, + Infinity );
this.max = ( max !== undefined ) ? max : new Vector2( - Infinity, - Infinity );
}
Object.assign( Box2.prototype, {
set: function ( min, max ) {
this.min.copy( min );
this.max.copy( max );
return this;
},
setFromPoints: function ( points ) {
this.makeEmpty();
for ( var i = 0, il = points.length; i < il; i ++ ) {
this.expandByPoint( points[ i ] );
}
return this;
},
setFromCenterAndSize: function () {
var v1 = new Vector2();
return function setFromCenterAndSize( center, size ) {
var halfSize = v1.copy( size ).multiplyScalar( 0.5 );
this.min.copy( center ).sub( halfSize );
this.max.copy( center ).add( halfSize );
return this;
};
}(),
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( box ) {
this.min.copy( box.min );
this.max.copy( box.max );
return this;
},
makeEmpty: function () {
this.min.x = this.min.y = + Infinity;
this.max.x = this.max.y = - Infinity;
return this;
},
isEmpty: function () {
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y );
},
getCenter: function ( optionalTarget ) {
var result = optionalTarget || new Vector2();
return this.isEmpty() ? result.set( 0, 0 ) : result.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
},
getSize: function ( optionalTarget ) {
var result = optionalTarget || new Vector2();
return this.isEmpty() ? result.set( 0, 0 ) : result.subVectors( this.max, this.min );
},
expandByPoint: function ( point ) {
this.min.min( point );
this.max.max( point );
return this;
},
expandByVector: function ( vector ) {
this.min.sub( vector );
this.max.add( vector );
return this;
},
expandByScalar: function ( scalar ) {
this.min.addScalar( - scalar );
this.max.addScalar( scalar );
return this;
},
containsPoint: function ( point ) {
return point.x < this.min.x || point.x > this.max.x ||
point.y < this.min.y || point.y > this.max.y ? false : true;
},
containsBox: function ( box ) {
return this.min.x <= box.min.x && box.max.x <= this.max.x &&
this.min.y <= box.min.y && box.max.y <= this.max.y;
},
getParameter: function ( point, optionalTarget ) {
// This can potentially have a divide by zero if the box
// has a size dimension of 0.
var result = optionalTarget || new Vector2();
return result.set(
( point.x - this.min.x ) / ( this.max.x - this.min.x ),
( point.y - this.min.y ) / ( this.max.y - this.min.y )
);
},
intersectsBox: function ( box ) {
// using 4 splitting planes to rule out intersections
return box.max.x < this.min.x || box.min.x > this.max.x ||
box.max.y < this.min.y || box.min.y > this.max.y ? false : true;
},
clampPoint: function ( point, optionalTarget ) {
var result = optionalTarget || new Vector2();
return result.copy( point ).clamp( this.min, this.max );
},
distanceToPoint: function () {
var v1 = new Vector2();
return function distanceToPoint( point ) {
var clampedPoint = v1.copy( point ).clamp( this.min, this.max );
return clampedPoint.sub( point ).length();
};
}(),
intersect: function ( box ) {
this.min.max( box.min );
this.max.min( box.max );
return this;
},
union: function ( box ) {
this.min.min( box.min );
this.max.max( box.max );
return this;
},
translate: function ( offset ) {
this.min.add( offset );
this.max.add( offset );
return this;
},
equals: function ( box ) {
return box.min.equals( this.min ) && box.max.equals( this.max );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
var materialId = 0;
function Material() {
Object.defineProperty( this, 'id', { value: materialId ++ } );
this.uuid = _Math.generateUUID();
this.name = '';
this.type = 'Material';
this.fog = true;
this.lights = true;
this.blending = NormalBlending;
this.side = FrontSide;
this.shading = SmoothShading; // THREE.FlatShading, THREE.SmoothShading
this.vertexColors = NoColors; // THREE.NoColors, THREE.VertexColors, THREE.FaceColors
this.opacity = 1;
this.transparent = false;
this.blendSrc = SrcAlphaFactor;
this.blendDst = OneMinusSrcAlphaFactor;
this.blendEquation = AddEquation;
this.blendSrcAlpha = null;
this.blendDstAlpha = null;
this.blendEquationAlpha = null;
this.depthFunc = LessEqualDepth;
this.depthTest = true;
this.depthWrite = true;
this.clippingPlanes = null;
this.clipIntersection = false;
this.clipShadows = false;
this.colorWrite = true;
this.precision = null; // override the renderer's default precision for this material
this.polygonOffset = false;
this.polygonOffsetFactor = 0;
this.polygonOffsetUnits = 0;
this.dithering = false;
this.alphaTest = 0;
this.premultipliedAlpha = false;
this.overdraw = 0; // Overdrawn pixels (typically between 0 and 1) for fixing antialiasing gaps in CanvasRenderer
this.visible = true;
this.needsUpdate = true;
}
Object.assign( Material.prototype, EventDispatcher.prototype, {
isMaterial: true,
onBeforeCompile: function () {},
setValues: function ( values ) {
if ( values === undefined ) return;
for ( var key in values ) {
var newValue = values[ key ];
if ( newValue === undefined ) {
console.warn( "THREE.Material: '" + key + "' parameter is undefined." );
continue;
}
var currentValue = this[ key ];
if ( currentValue === undefined ) {
console.warn( "THREE." + this.type + ": '" + key + "' is not a property of this material." );
continue;
}
if ( currentValue && currentValue.isColor ) {
currentValue.set( newValue );
} else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) {
currentValue.copy( newValue );
} else if ( key === 'overdraw' ) {
// ensure overdraw is backwards-compatible with legacy boolean type
this[ key ] = Number( newValue );
} else {
this[ key ] = newValue;
}
}
},
toJSON: function ( meta ) {
var isRoot = meta === undefined;
if ( isRoot ) {
meta = {
textures: {},
images: {}
};
}
var data = {
metadata: {
version: 4.5,
type: 'Material',
generator: 'Material.toJSON'
}
};
// standard Material serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( this.color && this.color.isColor ) data.color = this.color.getHex();
if ( this.roughness !== undefined ) data.roughness = this.roughness;
if ( this.metalness !== undefined ) data.metalness = this.metalness;
if ( this.emissive && this.emissive.isColor ) data.emissive = this.emissive.getHex();
if ( this.specular && this.specular.isColor ) data.specular = this.specular.getHex();
if ( this.shininess !== undefined ) data.shininess = this.shininess;
if ( this.clearCoat !== undefined ) data.clearCoat = this.clearCoat;
if ( this.clearCoatRoughness !== undefined ) data.clearCoatRoughness = this.clearCoatRoughness;
if ( this.map && this.map.isTexture ) data.map = this.map.toJSON( meta ).uuid;
if ( this.alphaMap && this.alphaMap.isTexture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid;
if ( this.lightMap && this.lightMap.isTexture ) data.lightMap = this.lightMap.toJSON( meta ).uuid;
if ( this.bumpMap && this.bumpMap.isTexture ) {
data.bumpMap = this.bumpMap.toJSON( meta ).uuid;
data.bumpScale = this.bumpScale;
}
if ( this.normalMap && this.normalMap.isTexture ) {
data.normalMap = this.normalMap.toJSON( meta ).uuid;
data.normalScale = this.normalScale.toArray();
}
if ( this.displacementMap && this.displacementMap.isTexture ) {
data.displacementMap = this.displacementMap.toJSON( meta ).uuid;
data.displacementScale = this.displacementScale;
data.displacementBias = this.displacementBias;
}
if ( this.roughnessMap && this.roughnessMap.isTexture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid;
if ( this.metalnessMap && this.metalnessMap.isTexture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid;
if ( this.emissiveMap && this.emissiveMap.isTexture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid;
if ( this.specularMap && this.specularMap.isTexture ) data.specularMap = this.specularMap.toJSON( meta ).uuid;
if ( this.envMap && this.envMap.isTexture ) {
data.envMap = this.envMap.toJSON( meta ).uuid;
data.reflectivity = this.reflectivity; // Scale behind envMap
}
if ( this.gradientMap && this.gradientMap.isTexture ) {
data.gradientMap = this.gradientMap.toJSON( meta ).uuid;
}
if ( this.size !== undefined ) data.size = this.size;
if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation;
if ( this.blending !== NormalBlending ) data.blending = this.blending;
if ( this.shading !== SmoothShading ) data.shading = this.shading;
if ( this.side !== FrontSide ) data.side = this.side;
if ( this.vertexColors !== NoColors ) data.vertexColors = this.vertexColors;
if ( this.opacity < 1 ) data.opacity = this.opacity;
if ( this.transparent === true ) data.transparent = this.transparent;
data.depthFunc = this.depthFunc;
data.depthTest = this.depthTest;
data.depthWrite = this.depthWrite;
if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest;
if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = this.premultipliedAlpha;
if ( this.wireframe === true ) data.wireframe = this.wireframe;
if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth;
if ( this.wireframeLinecap !== 'round' ) data.wireframeLinecap = this.wireframeLinecap;
if ( this.wireframeLinejoin !== 'round' ) data.wireframeLinejoin = this.wireframeLinejoin;
data.skinning = this.skinning;
data.morphTargets = this.morphTargets;
data.dithering = this.dithering;
// TODO: Copied from Object3D.toJSON
function extractFromCache( cache ) {
var values = [];
for ( var key in cache ) {
var data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
if ( isRoot ) {
var textures = extractFromCache( meta.textures );
var images = extractFromCache( meta.images );
if ( textures.length > 0 ) data.textures = textures;
if ( images.length > 0 ) data.images = images;
}
return data;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.name = source.name;
this.fog = source.fog;
this.lights = source.lights;
this.blending = source.blending;
this.side = source.side;
this.shading = source.shading;
this.vertexColors = source.vertexColors;
this.opacity = source.opacity;
this.transparent = source.transparent;
this.blendSrc = source.blendSrc;
this.blendDst = source.blendDst;
this.blendEquation = source.blendEquation;
this.blendSrcAlpha = source.blendSrcAlpha;
this.blendDstAlpha = source.blendDstAlpha;
this.blendEquationAlpha = source.blendEquationAlpha;
this.depthFunc = source.depthFunc;
this.depthTest = source.depthTest;
this.depthWrite = source.depthWrite;
this.colorWrite = source.colorWrite;
this.precision = source.precision;
this.polygonOffset = source.polygonOffset;
this.polygonOffsetFactor = source.polygonOffsetFactor;
this.polygonOffsetUnits = source.polygonOffsetUnits;
this.dithering = source.dithering;
this.alphaTest = source.alphaTest;
this.premultipliedAlpha = source.premultipliedAlpha;
this.overdraw = source.overdraw;
this.visible = source.visible;
this.clipShadows = source.clipShadows;
this.clipIntersection = source.clipIntersection;
var srcPlanes = source.clippingPlanes,
dstPlanes = null;
if ( srcPlanes !== null ) {
var n = srcPlanes.length;
dstPlanes = new Array( n );
for ( var i = 0; i !== n; ++ i )
dstPlanes[ i ] = srcPlanes[ i ].clone();
}
this.clippingPlanes = dstPlanes;
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
} );
/**
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* defines: { "label" : "value" },
* uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } },
*
* fragmentShader: <string>,
* vertexShader: <string>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* lights: <bool>,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>
* }
*/
function ShaderMaterial( parameters ) {
Material.call( this );
this.type = 'ShaderMaterial';
this.defines = {};
this.uniforms = {};
this.vertexShader = 'void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}';
this.fragmentShader = 'void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}';
this.linewidth = 1;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.fog = false; // set to use scene fog
this.lights = false; // set to use scene lights
this.clipping = false; // set to use user-defined clipping planes
this.skinning = false; // set to use skinning attribute streams
this.morphTargets = false; // set to use morph targets
this.morphNormals = false; // set to use morph normals
this.extensions = {
derivatives: false, // set to use derivatives
fragDepth: false, // set to use fragment depth values
drawBuffers: false, // set to use draw buffers
shaderTextureLOD: false // set to use shader texture LOD
};
// When rendered geometry doesn't include these attributes but the material does,
// use these default values in WebGL. This avoids errors when buffer data is missing.
this.defaultAttributeValues = {
'color': [ 1, 1, 1 ],
'uv': [ 0, 0 ],
'uv2': [ 0, 0 ]
};
this.index0AttributeName = undefined;
if ( parameters !== undefined ) {
if ( parameters.attributes !== undefined ) {
console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' );
}
this.setValues( parameters );
}
}
ShaderMaterial.prototype = Object.create( Material.prototype );
ShaderMaterial.prototype.constructor = ShaderMaterial;
ShaderMaterial.prototype.isShaderMaterial = true;
ShaderMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.fragmentShader = source.fragmentShader;
this.vertexShader = source.vertexShader;
this.uniforms = UniformsUtils.clone( source.uniforms );
this.defines = source.defines;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.lights = source.lights;
this.clipping = source.clipping;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
this.extensions = source.extensions;
return this;
};
ShaderMaterial.prototype.toJSON = function ( meta ) {
var data = Material.prototype.toJSON.call( this, meta );
data.uniforms = this.uniforms;
data.vertexShader = this.vertexShader;
data.fragmentShader = this.fragmentShader;
return data;
};
/**
* @author alteredq / http://alteredqualia.com/
* @author WestLangley / http://github.com/WestLangley
* @author bhouston / http://clara.io
* @author tschw
*/
function Matrix3() {
this.elements = [
1, 0, 0,
0, 1, 0,
0, 0, 1
];
if ( arguments.length > 0 ) {
console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' );
}
}
Object.assign( Matrix3.prototype, {
isMatrix3: true,
set: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {
var te = this.elements;
te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31;
te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32;
te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33;
return this;
},
identity: function () {
this.set(
1, 0, 0,
0, 1, 0,
0, 0, 1
);
return this;
},
clone: function () {
return new this.constructor().fromArray( this.elements );
},
copy: function ( m ) {
var te = this.elements;
var me = m.elements;
te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ];
te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ];
te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ];
return this;
},
setFromMatrix4: function ( m ) {
var me = m.elements;
this.set(
me[ 0 ], me[ 4 ], me[ 8 ],
me[ 1 ], me[ 5 ], me[ 9 ],
me[ 2 ], me[ 6 ], me[ 10 ]
);
return this;
},
applyToBufferAttribute: function () {
var v1 = new Vector3();
return function applyToBufferAttribute( attribute ) {
for ( var i = 0, l = attribute.count; i < l; i ++ ) {
v1.x = attribute.getX( i );
v1.y = attribute.getY( i );
v1.z = attribute.getZ( i );
v1.applyMatrix3( this );
attribute.setXYZ( i, v1.x, v1.y, v1.z );
}
return attribute;
};
}(),
multiply: function ( m ) {
return this.multiplyMatrices( this, m );
},
premultiply: function ( m ) {
return this.multiplyMatrices( m, this );
},
multiplyMatrices: function ( a, b ) {
var ae = a.elements;
var be = b.elements;
var te = this.elements;
var a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ];
var a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ];
var a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ];
var b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ];
var b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ];
var b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ];
te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31;
te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32;
te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33;
te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31;
te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32;
te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33;
te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31;
te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32;
te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33;
return this;
},
multiplyScalar: function ( s ) {
var te = this.elements;
te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s;
te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s;
te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s;
return this;
},
determinant: function () {
var te = this.elements;
var a = te[ 0 ], b = te[ 1 ], c = te[ 2 ],
d = te[ 3 ], e = te[ 4 ], f = te[ 5 ],
g = te[ 6 ], h = te[ 7 ], i = te[ 8 ];
return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;
},
getInverse: function ( matrix, throwOnDegenerate ) {
if ( matrix && matrix.isMatrix4 ) {
console.error( "THREE.Matrix3.getInverse no longer takes a Matrix4 argument." );
}
var me = matrix.elements,
te = this.elements,
n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ],
n12 = me[ 3 ], n22 = me[ 4 ], n32 = me[ 5 ],
n13 = me[ 6 ], n23 = me[ 7 ], n33 = me[ 8 ],
t11 = n33 * n22 - n32 * n23,
t12 = n32 * n13 - n33 * n12,
t13 = n23 * n12 - n22 * n13,
det = n11 * t11 + n21 * t12 + n31 * t13;
if ( det === 0 ) {
var msg = "THREE.Matrix3.getInverse(): can't invert matrix, determinant is 0";
if ( throwOnDegenerate === true ) {
throw new Error( msg );
} else {
console.warn( msg );
}
return this.identity();
}
var detInv = 1 / det;
te[ 0 ] = t11 * detInv;
te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv;
te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv;
te[ 3 ] = t12 * detInv;
te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv;
te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv;
te[ 6 ] = t13 * detInv;
te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv;
te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv;
return this;
},
transpose: function () {
var tmp, m = this.elements;
tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp;
tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp;
tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp;
return this;
},
getNormalMatrix: function ( matrix4 ) {
return this.setFromMatrix4( matrix4 ).getInverse( this ).transpose();
},
transposeIntoArray: function ( r ) {
var m = this.elements;
r[ 0 ] = m[ 0 ];
r[ 1 ] = m[ 3 ];
r[ 2 ] = m[ 6 ];
r[ 3 ] = m[ 1 ];
r[ 4 ] = m[ 4 ];
r[ 5 ] = m[ 7 ];
r[ 6 ] = m[ 2 ];
r[ 7 ] = m[ 5 ];
r[ 8 ] = m[ 8 ];
return this;
},
equals: function ( matrix ) {
var te = this.elements;
var me = matrix.elements;
for ( var i = 0; i < 9; i ++ ) {
if ( te[ i ] !== me[ i ] ) return false;
}
return true;
},
fromArray: function ( array, offset ) {
if ( offset === undefined ) offset = 0;
for ( var i = 0; i < 9; i ++ ) {
this.elements[ i ] = array[ i + offset ];
}
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
var te = this.elements;
array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ];
array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ];
array[ offset + 8 ] = te[ 8 ];
return array;
}
} );
/**
* @author bhouston / http://clara.io
*/
function Plane( normal, constant ) {
this.normal = ( normal !== undefined ) ? normal : new Vector3( 1, 0, 0 );
this.constant = ( constant !== undefined ) ? constant : 0;
}
Object.assign( Plane.prototype, {
set: function ( normal, constant ) {
this.normal.copy( normal );
this.constant = constant;
return this;
},
setComponents: function ( x, y, z, w ) {
this.normal.set( x, y, z );
this.constant = w;
return this;
},
setFromNormalAndCoplanarPoint: function ( normal, point ) {
this.normal.copy( normal );
this.constant = - point.dot( this.normal ); // must be this.normal, not normal, as this.normal is normalized
return this;
},
setFromCoplanarPoints: function () {
var v1 = new Vector3();
var v2 = new Vector3();
return function setFromCoplanarPoints( a, b, c ) {
var normal = v1.subVectors( c, b ).cross( v2.subVectors( a, b ) ).normalize();
// Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
this.setFromNormalAndCoplanarPoint( normal, a );
return this;
};
}(),
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( plane ) {
this.normal.copy( plane.normal );
this.constant = plane.constant;
return this;
},
normalize: function () {
// Note: will lead to a divide by zero if the plane is invalid.
var inverseNormalLength = 1.0 / this.normal.length();
this.normal.multiplyScalar( inverseNormalLength );
this.constant *= inverseNormalLength;
return this;
},
negate: function () {
this.constant *= - 1;
this.normal.negate();
return this;
},
distanceToPoint: function ( point ) {
return this.normal.dot( point ) + this.constant;
},
distanceToSphere: function ( sphere ) {
return this.distanceToPoint( sphere.center ) - sphere.radius;
},
projectPoint: function ( point, optionalTarget ) {
return this.orthoPoint( point, optionalTarget ).sub( point ).negate();
},
orthoPoint: function ( point, optionalTarget ) {
var perpendicularMagnitude = this.distanceToPoint( point );
var result = optionalTarget || new Vector3();
return result.copy( this.normal ).multiplyScalar( perpendicularMagnitude );
},
intersectLine: function () {
var v1 = new Vector3();
return function intersectLine( line, optionalTarget ) {
var result = optionalTarget || new Vector3();
var direction = line.delta( v1 );
var denominator = this.normal.dot( direction );
if ( denominator === 0 ) {
// line is coplanar, return origin
if ( this.distanceToPoint( line.start ) === 0 ) {
return result.copy( line.start );
}
// Unsure if this is the correct method to handle this case.
return undefined;
}
var t = - ( line.start.dot( this.normal ) + this.constant ) / denominator;
if ( t < 0 || t > 1 ) {
return undefined;
}
return result.copy( direction ).multiplyScalar( t ).add( line.start );
};
}(),
intersectsLine: function ( line ) {
// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.
var startSign = this.distanceToPoint( line.start );
var endSign = this.distanceToPoint( line.end );
return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 );
},
intersectsBox: function ( box ) {
return box.intersectsPlane( this );
},
intersectsSphere: function ( sphere ) {
return sphere.intersectsPlane( this );
},
coplanarPoint: function ( optionalTarget ) {
var result = optionalTarget || new Vector3();
return result.copy( this.normal ).multiplyScalar( - this.constant );
},
applyMatrix4: function () {
var v1 = new Vector3();
var m1 = new Matrix3();
return function applyMatrix4( matrix, optionalNormalMatrix ) {
var referencePoint = this.coplanarPoint( v1 ).applyMatrix4( matrix );
// transform normal based on theory here:
// http://www.songho.ca/opengl/gl_normaltransform.html
var normalMatrix = optionalNormalMatrix || m1.getNormalMatrix( matrix );
var normal = this.normal.applyMatrix3( normalMatrix ).normalize();
// recalculate constant (like in setFromNormalAndCoplanarPoint)
this.constant = - referencePoint.dot( normal );
return this;
};
}(),
translate: function ( offset ) {
this.constant = this.constant - offset.dot( this.normal );
return this;
},
equals: function ( plane ) {
return plane.normal.equals( this.normal ) && ( plane.constant === this.constant );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author bhouston / http://clara.io
*/
function Frustum( p0, p1, p2, p3, p4, p5 ) {
this.planes = [
( p0 !== undefined ) ? p0 : new Plane(),
( p1 !== undefined ) ? p1 : new Plane(),
( p2 !== undefined ) ? p2 : new Plane(),
( p3 !== undefined ) ? p3 : new Plane(),
( p4 !== undefined ) ? p4 : new Plane(),
( p5 !== undefined ) ? p5 : new Plane()
];
}
Object.assign( Frustum.prototype, {
set: function ( p0, p1, p2, p3, p4, p5 ) {
var planes = this.planes;
planes[ 0 ].copy( p0 );
planes[ 1 ].copy( p1 );
planes[ 2 ].copy( p2 );
planes[ 3 ].copy( p3 );
planes[ 4 ].copy( p4 );
planes[ 5 ].copy( p5 );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( frustum ) {
var planes = this.planes;
for ( var i = 0; i < 6; i ++ ) {
planes[ i ].copy( frustum.planes[ i ] );
}
return this;
},
setFromMatrix: function ( m ) {
var planes = this.planes;
var me = m.elements;
var me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ];
var me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ];
var me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ];
var me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ];
planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize();
planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize();
planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize();
planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize();
planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize();
planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize();
return this;
},
intersectsObject: function () {
var sphere = new Sphere();
return function intersectsObject( object ) {
var geometry = object.geometry;
if ( geometry.boundingSphere === null )
geometry.computeBoundingSphere();
sphere.copy( geometry.boundingSphere )
.applyMatrix4( object.matrixWorld );
return this.intersectsSphere( sphere );
};
}(),
intersectsSprite: function () {
var sphere = new Sphere();
return function intersectsSprite( sprite ) {
sphere.center.set( 0, 0, 0 );
sphere.radius = 0.7071067811865476;
sphere.applyMatrix4( sprite.matrixWorld );
return this.intersectsSphere( sphere );
};
}(),
intersectsSphere: function ( sphere ) {
var planes = this.planes;
var center = sphere.center;
var negRadius = - sphere.radius;
for ( var i = 0; i < 6; i ++ ) {
var distance = planes[ i ].distanceToPoint( center );
if ( distance < negRadius ) {
return false;
}
}
return true;
},
intersectsBox: function () {
var p1 = new Vector3(),
p2 = new Vector3();
return function intersectsBox( box ) {
var planes = this.planes;
for ( var i = 0; i < 6; i ++ ) {
var plane = planes[ i ];
p1.x = plane.normal.x > 0 ? box.min.x : box.max.x;
p2.x = plane.normal.x > 0 ? box.max.x : box.min.x;
p1.y = plane.normal.y > 0 ? box.min.y : box.max.y;
p2.y = plane.normal.y > 0 ? box.max.y : box.min.y;
p1.z = plane.normal.z > 0 ? box.min.z : box.max.z;
p2.z = plane.normal.z > 0 ? box.max.z : box.min.z;
var d1 = plane.distanceToPoint( p1 );
var d2 = plane.distanceToPoint( p2 );
// if both outside plane, no intersection
if ( d1 < 0 && d2 < 0 ) {
return false;
}
}
return true;
};
}(),
containsPoint: function ( point ) {
var planes = this.planes;
for ( var i = 0; i < 6; i ++ ) {
if ( planes[ i ].distanceToPoint( point ) < 0 ) {
return false;
}
}
return true;
}
} );
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
* @author WestLangley / http://github.com/WestLangley
* @author bhouston / http://clara.io
*/
function Euler( x, y, z, order ) {
this._x = x || 0;
this._y = y || 0;
this._z = z || 0;
this._order = order || Euler.DefaultOrder;
}
Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ];
Euler.DefaultOrder = 'XYZ';
Object.defineProperties( Euler.prototype, {
x: {
get: function () {
return this._x;
},
set: function ( value ) {
this._x = value;
this.onChangeCallback();
}
},
y: {
get: function () {
return this._y;
},
set: function ( value ) {
this._y = value;
this.onChangeCallback();
}
},
z: {
get: function () {
return this._z;
},
set: function ( value ) {
this._z = value;
this.onChangeCallback();
}
},
order: {
get: function () {
return this._order;
},
set: function ( value ) {
this._order = value;
this.onChangeCallback();
}
}
} );
Object.assign( Euler.prototype, {
isEuler: true,
set: function ( x, y, z, order ) {
this._x = x;
this._y = y;
this._z = z;
this._order = order || this._order;
this.onChangeCallback();
return this;
},
clone: function () {
return new this.constructor( this._x, this._y, this._z, this._order );
},
copy: function ( euler ) {
this._x = euler._x;
this._y = euler._y;
this._z = euler._z;
this._order = euler._order;
this.onChangeCallback();
return this;
},
setFromRotationMatrix: function ( m, order, update ) {
var clamp = _Math.clamp;
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
var te = m.elements;
var m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ];
var m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ];
var m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
order = order || this._order;
if ( order === 'XYZ' ) {
this._y = Math.asin( clamp( m13, - 1, 1 ) );
if ( Math.abs( m13 ) < 0.99999 ) {
this._x = Math.atan2( - m23, m33 );
this._z = Math.atan2( - m12, m11 );
} else {
this._x = Math.atan2( m32, m22 );
this._z = 0;
}
} else if ( order === 'YXZ' ) {
this._x = Math.asin( - clamp( m23, - 1, 1 ) );
if ( Math.abs( m23 ) < 0.99999 ) {
this._y = Math.atan2( m13, m33 );
this._z = Math.atan2( m21, m22 );
} else {
this._y = Math.atan2( - m31, m11 );
this._z = 0;
}
} else if ( order === 'ZXY' ) {
this._x = Math.asin( clamp( m32, - 1, 1 ) );
if ( Math.abs( m32 ) < 0.99999 ) {
this._y = Math.atan2( - m31, m33 );
this._z = Math.atan2( - m12, m22 );
} else {
this._y = 0;
this._z = Math.atan2( m21, m11 );
}
} else if ( order === 'ZYX' ) {
this._y = Math.asin( - clamp( m31, - 1, 1 ) );
if ( Math.abs( m31 ) < 0.99999 ) {
this._x = Math.atan2( m32, m33 );
this._z = Math.atan2( m21, m11 );
} else {
this._x = 0;
this._z = Math.atan2( - m12, m22 );
}
} else if ( order === 'YZX' ) {
this._z = Math.asin( clamp( m21, - 1, 1 ) );
if ( Math.abs( m21 ) < 0.99999 ) {
this._x = Math.atan2( - m23, m22 );
this._y = Math.atan2( - m31, m11 );
} else {
this._x = 0;
this._y = Math.atan2( m13, m33 );
}
} else if ( order === 'XZY' ) {
this._z = Math.asin( - clamp( m12, - 1, 1 ) );
if ( Math.abs( m12 ) < 0.99999 ) {
this._x = Math.atan2( m32, m22 );
this._y = Math.atan2( m13, m11 );
} else {
this._x = Math.atan2( - m23, m33 );
this._y = 0;
}
} else {
console.warn( 'THREE.Euler: .setFromRotationMatrix() given unsupported order: ' + order );
}
this._order = order;
if ( update !== false ) this.onChangeCallback();
return this;
},
setFromQuaternion: function () {
var matrix = new Matrix4();
return function setFromQuaternion( q, order, update ) {
matrix.makeRotationFromQuaternion( q );
return this.setFromRotationMatrix( matrix, order, update );
};
}(),
setFromVector3: function ( v, order ) {
return this.set( v.x, v.y, v.z, order || this._order );
},
reorder: function () {
// WARNING: this discards revolution information -bhouston
var q = new Quaternion();
return function reorder( newOrder ) {
q.setFromEuler( this );
return this.setFromQuaternion( q, newOrder );
};
}(),
equals: function ( euler ) {
return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order );
},
fromArray: function ( array ) {
this._x = array[ 0 ];
this._y = array[ 1 ];
this._z = array[ 2 ];
if ( array[ 3 ] !== undefined ) this._order = array[ 3 ];
this.onChangeCallback();
return this;
},
toArray: function ( array, offset ) {
if ( array === undefined ) array = [];
if ( offset === undefined ) offset = 0;
array[ offset ] = this._x;
array[ offset + 1 ] = this._y;
array[ offset + 2 ] = this._z;
array[ offset + 3 ] = this._order;
return array;
},
toVector3: function ( optionalResult ) {
if ( optionalResult ) {
return optionalResult.set( this._x, this._y, this._z );
} else {
return new Vector3( this._x, this._y, this._z );
}
},
onChange: function ( callback ) {
this.onChangeCallback = callback;
return this;
},
onChangeCallback: function () {}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function Layers() {
this.mask = 1 | 0;
}
Object.assign( Layers.prototype, {
set: function ( channel ) {
this.mask = 1 << channel | 0;
},
enable: function ( channel ) {
this.mask |= 1 << channel | 0;
},
toggle: function ( channel ) {
this.mask ^= 1 << channel | 0;
},
disable: function ( channel ) {
this.mask &= ~ ( 1 << channel | 0 );
},
test: function ( layers ) {
return ( this.mask & layers.mask ) !== 0;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author mikael emtinger / http://gomo.se/
* @author alteredq / http://alteredqualia.com/
* @author WestLangley / http://github.com/WestLangley
* @author elephantatwork / www.elephantatwork.ch
*/
var object3DId = 0;
function Object3D() {
Object.defineProperty( this, 'id', { value: object3DId ++ } );
this.uuid = _Math.generateUUID();
this.name = '';
this.type = 'Object3D';
this.parent = null;
this.children = [];
this.up = Object3D.DefaultUp.clone();
var position = new Vector3();
var rotation = new Euler();
var quaternion = new Quaternion();
var scale = new Vector3( 1, 1, 1 );
function onRotationChange() {
quaternion.setFromEuler( rotation, false );
}
function onQuaternionChange() {
rotation.setFromQuaternion( quaternion, undefined, false );
}
rotation.onChange( onRotationChange );
quaternion.onChange( onQuaternionChange );
Object.defineProperties( this, {
position: {
enumerable: true,
value: position
},
rotation: {
enumerable: true,
value: rotation
},
quaternion: {
enumerable: true,
value: quaternion
},
scale: {
enumerable: true,
value: scale
},
modelViewMatrix: {
value: new Matrix4()
},
normalMatrix: {
value: new Matrix3()
}
} );
this.matrix = new Matrix4();
this.matrixWorld = new Matrix4();
this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate;
this.matrixWorldNeedsUpdate = false;
this.layers = new Layers();
this.visible = true;
this.castShadow = false;
this.receiveShadow = false;
this.frustumCulled = true;
this.renderOrder = 0;
this.userData = {};
}
Object3D.DefaultUp = new Vector3( 0, 1, 0 );
Object3D.DefaultMatrixAutoUpdate = true;
Object.assign( Object3D.prototype, EventDispatcher.prototype, {
isObject3D: true,
onBeforeRender: function () {},
onAfterRender: function () {},
applyMatrix: function ( matrix ) {
this.matrix.multiplyMatrices( matrix, this.matrix );
this.matrix.decompose( this.position, this.quaternion, this.scale );
},
applyQuaternion: function ( q ) {
this.quaternion.premultiply( q );
return this;
},
setRotationFromAxisAngle: function ( axis, angle ) {
// assumes axis is normalized
this.quaternion.setFromAxisAngle( axis, angle );
},
setRotationFromEuler: function ( euler ) {
this.quaternion.setFromEuler( euler, true );
},
setRotationFromMatrix: function ( m ) {
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
this.quaternion.setFromRotationMatrix( m );
},
setRotationFromQuaternion: function ( q ) {
// assumes q is normalized
this.quaternion.copy( q );
},
rotateOnAxis: function () {
// rotate object on axis in object space
// axis is assumed to be normalized
var q1 = new Quaternion();
return function rotateOnAxis( axis, angle ) {
q1.setFromAxisAngle( axis, angle );
this.quaternion.multiply( q1 );
return this;
};
}(),
rotateX: function () {
var v1 = new Vector3( 1, 0, 0 );
return function rotateX( angle ) {
return this.rotateOnAxis( v1, angle );
};
}(),
rotateY: function () {
var v1 = new Vector3( 0, 1, 0 );
return function rotateY( angle ) {
return this.rotateOnAxis( v1, angle );
};
}(),
rotateZ: function () {
var v1 = new Vector3( 0, 0, 1 );
return function rotateZ( angle ) {
return this.rotateOnAxis( v1, angle );
};
}(),
translateOnAxis: function () {
// translate object by distance along axis in object space
// axis is assumed to be normalized
var v1 = new Vector3();
return function translateOnAxis( axis, distance ) {
v1.copy( axis ).applyQuaternion( this.quaternion );
this.position.add( v1.multiplyScalar( distance ) );
return this;
};
}(),
translateX: function () {
var v1 = new Vector3( 1, 0, 0 );
return function translateX( distance ) {
return this.translateOnAxis( v1, distance );
};
}(),
translateY: function () {
var v1 = new Vector3( 0, 1, 0 );
return function translateY( distance ) {
return this.translateOnAxis( v1, distance );
};
}(),
translateZ: function () {
var v1 = new Vector3( 0, 0, 1 );
return function translateZ( distance ) {
return this.translateOnAxis( v1, distance );
};
}(),
localToWorld: function ( vector ) {
return vector.applyMatrix4( this.matrixWorld );
},
worldToLocal: function () {
var m1 = new Matrix4();
return function worldToLocal( vector ) {
return vector.applyMatrix4( m1.getInverse( this.matrixWorld ) );
};
}(),
lookAt: function () {
// This method does not support objects with rotated and/or translated parent(s)
var m1 = new Matrix4();
return function lookAt( vector ) {
if ( this.isCamera ) {
m1.lookAt( this.position, vector, this.up );
} else {
m1.lookAt( vector, this.position, this.up );
}
this.quaternion.setFromRotationMatrix( m1 );
};
}(),
add: function ( object ) {
if ( arguments.length > 1 ) {
for ( var i = 0; i < arguments.length; i ++ ) {
this.add( arguments[ i ] );
}
return this;
}
if ( object === this ) {
console.error( "THREE.Object3D.add: object can't be added as a child of itself.", object );
return this;
}
if ( ( object && object.isObject3D ) ) {
if ( object.parent !== null ) {
object.parent.remove( object );
}
object.parent = this;
object.dispatchEvent( { type: 'added' } );
this.children.push( object );
} else {
console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object );
}
return this;
},
remove: function ( object ) {
if ( arguments.length > 1 ) {
for ( var i = 0; i < arguments.length; i ++ ) {
this.remove( arguments[ i ] );
}
return this;
}
var index = this.children.indexOf( object );
if ( index !== - 1 ) {
object.parent = null;
object.dispatchEvent( { type: 'removed' } );
this.children.splice( index, 1 );
}
return this;
},
getObjectById: function ( id ) {
return this.getObjectByProperty( 'id', id );
},
getObjectByName: function ( name ) {
return this.getObjectByProperty( 'name', name );
},
getObjectByProperty: function ( name, value ) {
if ( this[ name ] === value ) return this;
for ( var i = 0, l = this.children.length; i < l; i ++ ) {
var child = this.children[ i ];
var object = child.getObjectByProperty( name, value );
if ( object !== undefined ) {
return object;
}
}
return undefined;
},
getWorldPosition: function ( optionalTarget ) {
var result = optionalTarget || new Vector3();
this.updateMatrixWorld( true );
return result.setFromMatrixPosition( this.matrixWorld );
},
getWorldQuaternion: function () {
var position = new Vector3();
var scale = new Vector3();
return function getWorldQuaternion( optionalTarget ) {
var result = optionalTarget || new Quaternion();
this.updateMatrixWorld( true );
this.matrixWorld.decompose( position, result, scale );
return result;
};
}(),
getWorldRotation: function () {
var quaternion = new Quaternion();
return function getWorldRotation( optionalTarget ) {
var result = optionalTarget || new Euler();
this.getWorldQuaternion( quaternion );
return result.setFromQuaternion( quaternion, this.rotation.order, false );
};
}(),
getWorldScale: function () {
var position = new Vector3();
var quaternion = new Quaternion();
return function getWorldScale( optionalTarget ) {
var result = optionalTarget || new Vector3();
this.updateMatrixWorld( true );
this.matrixWorld.decompose( position, quaternion, result );
return result;
};
}(),
getWorldDirection: function () {
var quaternion = new Quaternion();
return function getWorldDirection( optionalTarget ) {
var result = optionalTarget || new Vector3();
this.getWorldQuaternion( quaternion );
return result.set( 0, 0, 1 ).applyQuaternion( quaternion );
};
}(),
raycast: function () {},
traverse: function ( callback ) {
callback( this );
var children = this.children;
for ( var i = 0, l = children.length; i < l; i ++ ) {
children[ i ].traverse( callback );
}
},
traverseVisible: function ( callback ) {
if ( this.visible === false ) return;
callback( this );
var children = this.children;
for ( var i = 0, l = children.length; i < l; i ++ ) {
children[ i ].traverseVisible( callback );
}
},
traverseAncestors: function ( callback ) {
var parent = this.parent;
if ( parent !== null ) {
callback( parent );
parent.traverseAncestors( callback );
}
},
updateMatrix: function () {
this.matrix.compose( this.position, this.quaternion, this.scale );
this.matrixWorldNeedsUpdate = true;
},
updateMatrixWorld: function ( force ) {
if ( this.matrixAutoUpdate ) this.updateMatrix();
if ( this.matrixWorldNeedsUpdate || force ) {
if ( this.parent === null ) {
this.matrixWorld.copy( this.matrix );
} else {
this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );
}
this.matrixWorldNeedsUpdate = false;
force = true;
}
// update children
var children = this.children;
for ( var i = 0, l = children.length; i < l; i ++ ) {
children[ i ].updateMatrixWorld( force );
}
},
toJSON: function ( meta ) {
// meta is '' when called from JSON.stringify
var isRootObject = ( meta === undefined || meta === '' );
var output = {};
// meta is a hash used to collect geometries, materials.
// not providing it implies that this is the root object
// being serialized.
if ( isRootObject ) {
// initialize meta obj
meta = {
geometries: {},
materials: {},
textures: {},
images: {}
};
output.metadata = {
version: 4.5,
type: 'Object',
generator: 'Object3D.toJSON'
};
}
// standard Object3D serialization
var object = {};
object.uuid = this.uuid;
object.type = this.type;
if ( this.name !== '' ) object.name = this.name;
if ( JSON.stringify( this.userData ) !== '{}' ) object.userData = this.userData;
if ( this.castShadow === true ) object.castShadow = true;
if ( this.receiveShadow === true ) object.receiveShadow = true;
if ( this.visible === false ) object.visible = false;
object.matrix = this.matrix.toArray();
//
function serialize( library, element ) {
if ( library[ element.uuid ] === undefined ) {
library[ element.uuid ] = element.toJSON( meta );
}
return element.uuid;
}
if ( this.geometry !== undefined ) {
object.geometry = serialize( meta.geometries, this.geometry );
}
if ( this.material !== undefined ) {
if ( Array.isArray( this.material ) ) {
var uuids = [];
for ( var i = 0, l = this.material.length; i < l; i ++ ) {
uuids.push( serialize( meta.materials, this.material[ i ] ) );
}
object.material = uuids;
} else {
object.material = serialize( meta.materials, this.material );
}
}
//
if ( this.children.length > 0 ) {
object.children = [];
for ( var i = 0; i < this.children.length; i ++ ) {
object.children.push( this.children[ i ].toJSON( meta ).object );
}
}
if ( isRootObject ) {
var geometries = extractFromCache( meta.geometries );
var materials = extractFromCache( meta.materials );
var textures = extractFromCache( meta.textures );
var images = extractFromCache( meta.images );
if ( geometries.length > 0 ) output.geometries = geometries;
if ( materials.length > 0 ) output.materials = materials;
if ( textures.length > 0 ) output.textures = textures;
if ( images.length > 0 ) output.images = images;
}
output.object = object;
return output;
// extract data from the cache hash
// remove metadata on each item
// and return as array
function extractFromCache( cache ) {
var values = [];
for ( var key in cache ) {
var data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
},
clone: function ( recursive ) {
return new this.constructor().copy( this, recursive );
},
copy: function ( source, recursive ) {
if ( recursive === undefined ) recursive = true;
this.name = source.name;
this.up.copy( source.up );
this.position.copy( source.position );
this.quaternion.copy( source.quaternion );
this.scale.copy( source.scale );
this.matrix.copy( source.matrix );
this.matrixWorld.copy( source.matrixWorld );
this.matrixAutoUpdate = source.matrixAutoUpdate;
this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;
this.layers.mask = source.layers.mask;
this.visible = source.visible;
this.castShadow = source.castShadow;
this.receiveShadow = source.receiveShadow;
this.frustumCulled = source.frustumCulled;
this.renderOrder = source.renderOrder;
this.userData = JSON.parse( JSON.stringify( source.userData ) );
if ( recursive === true ) {
for ( var i = 0; i < source.children.length; i ++ ) {
var child = source.children[ i ];
this.add( child.clone() );
}
}
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author mikael emtinger / http://gomo.se/
* @author WestLangley / http://github.com/WestLangley
*/
function Camera() {
Object3D.call( this );
this.type = 'Camera';
this.matrixWorldInverse = new Matrix4();
this.projectionMatrix = new Matrix4();
}
Camera.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Camera,
isCamera: true,
copy: function ( source, recursive ) {
Object3D.prototype.copy.call( this, source, recursive );
this.matrixWorldInverse.copy( source.matrixWorldInverse );
this.projectionMatrix.copy( source.projectionMatrix );
return this;
},
getWorldDirection: function () {
var quaternion = new Quaternion();
return function getWorldDirection( optionalTarget ) {
var result = optionalTarget || new Vector3();
this.getWorldQuaternion( quaternion );
return result.set( 0, 0, - 1 ).applyQuaternion( quaternion );
};
}(),
updateMatrixWorld: function ( force ) {
Object3D.prototype.updateMatrixWorld.call( this, force );
this.matrixWorldInverse.getInverse( this.matrixWorld );
},
clone: function () {
return new this.constructor().copy( this );
}
} );
/**
* @author alteredq / http://alteredqualia.com/
* @author arose / http://github.com/arose
*/
function OrthographicCamera( left, right, top, bottom, near, far ) {
Camera.call( this );
this.type = 'OrthographicCamera';
this.zoom = 1;
this.view = null;
this.left = left;
this.right = right;
this.top = top;
this.bottom = bottom;
this.near = ( near !== undefined ) ? near : 0.1;
this.far = ( far !== undefined ) ? far : 2000;
this.updateProjectionMatrix();
}
OrthographicCamera.prototype = Object.assign( Object.create( Camera.prototype ), {
constructor: OrthographicCamera,
isOrthographicCamera: true,
copy: function ( source, recursive ) {
Camera.prototype.copy.call( this, source, recursive );
this.left = source.left;
this.right = source.right;
this.top = source.top;
this.bottom = source.bottom;
this.near = source.near;
this.far = source.far;
this.zoom = source.zoom;
this.view = source.view === null ? null : Object.assign( {}, source.view );
return this;
},
setViewOffset: function( fullWidth, fullHeight, x, y, width, height ) {
this.view = {
fullWidth: fullWidth,
fullHeight: fullHeight,
offsetX: x,
offsetY: y,
width: width,
height: height
};
this.updateProjectionMatrix();
},
clearViewOffset: function() {
this.view = null;
this.updateProjectionMatrix();
},
updateProjectionMatrix: function () {
var dx = ( this.right - this.left ) / ( 2 * this.zoom );
var dy = ( this.top - this.bottom ) / ( 2 * this.zoom );
var cx = ( this.right + this.left ) / 2;
var cy = ( this.top + this.bottom ) / 2;
var left = cx - dx;
var right = cx + dx;
var top = cy + dy;
var bottom = cy - dy;
if ( this.view !== null ) {
var zoomW = this.zoom / ( this.view.width / this.view.fullWidth );
var zoomH = this.zoom / ( this.view.height / this.view.fullHeight );
var scaleW = ( this.right - this.left ) / this.view.width;
var scaleH = ( this.top - this.bottom ) / this.view.height;
left += scaleW * ( this.view.offsetX / zoomW );
right = left + scaleW * ( this.view.width / zoomW );
top -= scaleH * ( this.view.offsetY / zoomH );
bottom = top - scaleH * ( this.view.height / zoomH );
}
this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far );
},
toJSON: function ( meta ) {
var data = Object3D.prototype.toJSON.call( this, meta );
data.object.zoom = this.zoom;
data.object.left = this.left;
data.object.right = this.right;
data.object.top = this.top;
data.object.bottom = this.bottom;
data.object.near = this.near;
data.object.far = this.far;
if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );
return data;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author greggman / http://games.greggman.com/
* @author zz85 / http://www.lab4games.net/zz85/blog
* @author tschw
*/
function PerspectiveCamera( fov, aspect, near, far ) {
Camera.call( this );
this.type = 'PerspectiveCamera';
this.fov = fov !== undefined ? fov : 50;
this.zoom = 1;
this.near = near !== undefined ? near : 0.1;
this.far = far !== undefined ? far : 2000;
this.focus = 10;
this.aspect = aspect !== undefined ? aspect : 1;
this.view = null;
this.filmGauge = 35; // width of the film (default in millimeters)
this.filmOffset = 0; // horizontal film offset (same unit as gauge)
this.updateProjectionMatrix();
}
PerspectiveCamera.prototype = Object.assign( Object.create( Camera.prototype ), {
constructor: PerspectiveCamera,
isPerspectiveCamera: true,
copy: function ( source, recursive ) {
Camera.prototype.copy.call( this, source, recursive );
this.fov = source.fov;
this.zoom = source.zoom;
this.near = source.near;
this.far = source.far;
this.focus = source.focus;
this.aspect = source.aspect;
this.view = source.view === null ? null : Object.assign( {}, source.view );
this.filmGauge = source.filmGauge;
this.filmOffset = source.filmOffset;
return this;
},
/**
* Sets the FOV by focal length in respect to the current .filmGauge.
*
* The default film gauge is 35, so that the focal length can be specified for
* a 35mm (full frame) camera.
*
* Values for focal length and film gauge must have the same unit.
*/
setFocalLength: function ( focalLength ) {
// see http://www.bobatkins.com/photography/technical/field_of_view.html
var vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;
this.fov = _Math.RAD2DEG * 2 * Math.atan( vExtentSlope );
this.updateProjectionMatrix();
},
/**
* Calculates the focal length from the current .fov and .filmGauge.
*/
getFocalLength: function () {
var vExtentSlope = Math.tan( _Math.DEG2RAD * 0.5 * this.fov );
return 0.5 * this.getFilmHeight() / vExtentSlope;
},
getEffectiveFOV: function () {
return _Math.RAD2DEG * 2 * Math.atan(
Math.tan( _Math.DEG2RAD * 0.5 * this.fov ) / this.zoom );
},
getFilmWidth: function () {
// film not completely covered in portrait format (aspect < 1)
return this.filmGauge * Math.min( this.aspect, 1 );
},
getFilmHeight: function () {
// film not completely covered in landscape format (aspect > 1)
return this.filmGauge / Math.max( this.aspect, 1 );
},
/**
* Sets an offset in a larger frustum. This is useful for multi-window or
* multi-monitor/multi-machine setups.
*
* For example, if you have 3x2 monitors and each monitor is 1920x1080 and
* the monitors are in grid like this
*
* +---+---+---+
* | A | B | C |
* +---+---+---+
* | D | E | F |
* +---+---+---+
*
* then for each monitor you would call it like this
*
* var w = 1920;
* var h = 1080;
* var fullWidth = w * 3;
* var fullHeight = h * 2;
*
* --A--
* camera.setOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
* --B--
* camera.setOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
* --C--
* camera.setOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
* --D--
* camera.setOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
* --E--
* camera.setOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
* --F--
* camera.setOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
*
* Note there is no reason monitors have to be the same size or in a grid.
*/
setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) {
this.aspect = fullWidth / fullHeight;
this.view = {
fullWidth: fullWidth,
fullHeight: fullHeight,
offsetX: x,
offsetY: y,
width: width,
height: height
};
this.updateProjectionMatrix();
},
clearViewOffset: function () {
this.view = null;
this.updateProjectionMatrix();
},
updateProjectionMatrix: function () {
var near = this.near,
top = near * Math.tan(
_Math.DEG2RAD * 0.5 * this.fov ) / this.zoom,
height = 2 * top,
width = this.aspect * height,
left = - 0.5 * width,
view = this.view;
if ( view !== null ) {
var fullWidth = view.fullWidth,
fullHeight = view.fullHeight;
left += view.offsetX * width / fullWidth;
top -= view.offsetY * height / fullHeight;
width *= view.width / fullWidth;
height *= view.height / fullHeight;
}
var skew = this.filmOffset;
if ( skew !== 0 ) left += near * skew / this.getFilmWidth();
this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far );
},
toJSON: function ( meta ) {
var data = Object3D.prototype.toJSON.call( this, meta );
data.object.fov = this.fov;
data.object.zoom = this.zoom;
data.object.near = this.near;
data.object.far = this.far;
data.object.focus = this.focus;
data.object.aspect = this.aspect;
if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );
data.object.filmGauge = this.filmGauge;
data.object.filmOffset = this.filmOffset;
return data;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
function Face3( a, b, c, normal, color, materialIndex ) {
this.a = a;
this.b = b;
this.c = c;
this.normal = ( normal && normal.isVector3 ) ? normal : new Vector3();
this.vertexNormals = Array.isArray( normal ) ? normal : [];
this.color = ( color && color.isColor ) ? color : new Color();
this.vertexColors = Array.isArray( color ) ? color : [];
this.materialIndex = materialIndex !== undefined ? materialIndex : 0;
}
Object.assign( Face3.prototype, {
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( source ) {
this.a = source.a;
this.b = source.b;
this.c = source.c;
this.normal.copy( source.normal );
this.color.copy( source.color );
this.materialIndex = source.materialIndex;
for ( var i = 0, il = source.vertexNormals.length; i < il; i ++ ) {
this.vertexNormals[ i ] = source.vertexNormals[ i ].clone();
}
for ( var i = 0, il = source.vertexColors.length; i < il; i ++ ) {
this.vertexColors[ i ] = source.vertexColors[ i ].clone();
}
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author kile / http://kile.stravaganza.org/
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author zz85 / http://www.lab4games.net/zz85/blog
* @author bhouston / http://clara.io
*/
var count = 0;
function GeometryIdCount() { return count++; }
function Geometry() {
Object.defineProperty( this, 'id', { value: GeometryIdCount() } );
this.uuid = _Math.generateUUID();
this.name = '';
this.type = 'Geometry';
this.vertices = [];
this.colors = [];
this.faces = [];
this.faceVertexUvs = [[]];
this.morphTargets = [];
this.morphNormals = [];
this.skinWeights = [];
this.skinIndices = [];
this.lineDistances = [];
this.boundingBox = null;
this.boundingSphere = null;
// update flags
this.elementsNeedUpdate = false;
this.verticesNeedUpdate = false;
this.uvsNeedUpdate = false;
this.normalsNeedUpdate = false;
this.colorsNeedUpdate = false;
this.lineDistancesNeedUpdate = false;
this.groupsNeedUpdate = false;
}
Object.assign( Geometry.prototype, EventDispatcher.prototype, {
isGeometry: true,
applyMatrix: function ( matrix ) {
var normalMatrix = new Matrix3().getNormalMatrix( matrix );
for ( var i = 0, il = this.vertices.length; i < il; i ++ ) {
var vertex = this.vertices[ i ];
vertex.applyMatrix4( matrix );
}
for ( var i = 0, il = this.faces.length; i < il; i ++ ) {
var face = this.faces[ i ];
face.normal.applyMatrix3( normalMatrix ).normalize();
for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {
face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize();
}
}
if ( this.boundingBox !== null ) {
this.computeBoundingBox();
}
if ( this.boundingSphere !== null ) {
this.computeBoundingSphere();
}
this.verticesNeedUpdate = true;
this.normalsNeedUpdate = true;
return this;
},
rotateX: function () {
// rotate geometry around world x-axis
var m1 = new Matrix4();
return function rotateX( angle ) {
m1.makeRotationX( angle );
this.applyMatrix( m1 );
return this;
};
}(),
rotateY: function () {
// rotate geometry around world y-axis
var m1 = new Matrix4();
return function rotateY( angle ) {
m1.makeRotationY( angle );
this.applyMatrix( m1 );
return this;
};
}(),
rotateZ: function () {
// rotate geometry around world z-axis
var m1 = new Matrix4();
return function rotateZ( angle ) {
m1.makeRotationZ( angle );
this.applyMatrix( m1 );
return this;
};
}(),
translate: function () {
// translate geometry
var m1 = new Matrix4();
return function translate( x, y, z ) {
m1.makeTranslation( x, y, z );
this.applyMatrix( m1 );
return this;
};
}(),
scale: function () {
// scale geometry
var m1 = new Matrix4();
return function scale( x, y, z ) {
m1.makeScale( x, y, z );
this.applyMatrix( m1 );
return this;
};
}(),
lookAt: function () {
var obj = new Object3D();
return function lookAt( vector ) {
obj.lookAt( vector );
obj.updateMatrix();
this.applyMatrix( obj.matrix );
};
}(),
fromBufferGeometry: function ( geometry ) {
var scope = this;
var indices = geometry.index !== null ? geometry.index.array : undefined;
var attributes = geometry.attributes;
var positions = attributes.position.array;
var normals = attributes.normal !== undefined ? attributes.normal.array : undefined;
var colors = attributes.color !== undefined ? attributes.color.array : undefined;
var uvs = attributes.uv !== undefined ? attributes.uv.array : undefined;
var uvs2 = attributes.uv2 !== undefined ? attributes.uv2.array : undefined;
if ( uvs2 !== undefined ) this.faceVertexUvs[ 1 ] = [];
var tempNormals = [];
var tempUVs = [];
var tempUVs2 = [];
for ( var i = 0, j = 0; i < positions.length; i += 3, j += 2 ) {
scope.vertices.push( new Vector3( positions[ i ], positions[ i + 1 ], positions[ i + 2 ] ) );
if ( normals !== undefined ) {
tempNormals.push( new Vector3( normals[ i ], normals[ i + 1 ], normals[ i + 2 ] ) );
}
if ( colors !== undefined ) {
scope.colors.push( new Color( colors[ i ], colors[ i + 1 ], colors[ i + 2 ] ) );
}
if ( uvs !== undefined ) {
tempUVs.push( new Vector2( uvs[ j ], uvs[ j + 1 ] ) );
}
if ( uvs2 !== undefined ) {
tempUVs2.push( new Vector2( uvs2[ j ], uvs2[ j + 1 ] ) );
}
}
function addFace( a, b, c, materialIndex ) {
var vertexNormals = normals !== undefined ? [ tempNormals[ a ].clone(), tempNormals[ b ].clone(), tempNormals[ c ].clone() ] : [];
var vertexColors = colors !== undefined ? [ scope.colors[ a ].clone(), scope.colors[ b ].clone(), scope.colors[ c ].clone() ] : [];
var face = new Face3( a, b, c, vertexNormals, vertexColors, materialIndex );
scope.faces.push( face );
if ( uvs !== undefined ) {
scope.faceVertexUvs[ 0 ].push( [ tempUVs[ a ].clone(), tempUVs[ b ].clone(), tempUVs[ c ].clone() ] );
}
if ( uvs2 !== undefined ) {
scope.faceVertexUvs[ 1 ].push( [ tempUVs2[ a ].clone(), tempUVs2[ b ].clone(), tempUVs2[ c ].clone() ] );
}
}
var groups = geometry.groups;
if ( groups.length > 0 ) {
for ( var i = 0; i < groups.length; i ++ ) {
var group = groups[ i ];
var start = group.start;
var count = group.count;
for ( var j = start, jl = start + count; j < jl; j += 3 ) {
if ( indices !== undefined ) {
addFace( indices[ j ], indices[ j + 1 ], indices[ j + 2 ], group.materialIndex );
} else {
addFace( j, j + 1, j + 2, group.materialIndex );
}
}
}
} else {
if ( indices !== undefined ) {
for ( var i = 0; i < indices.length; i += 3 ) {
addFace( indices[ i ], indices[ i + 1 ], indices[ i + 2 ] );
}
} else {
for ( var i = 0; i < positions.length / 3; i += 3 ) {
addFace( i, i + 1, i + 2 );
}
}
}
this.computeFaceNormals();
if ( geometry.boundingBox !== null ) {
this.boundingBox = geometry.boundingBox.clone();
}
if ( geometry.boundingSphere !== null ) {
this.boundingSphere = geometry.boundingSphere.clone();
}
return this;
},
center: function () {
this.computeBoundingBox();
var offset = this.boundingBox.getCenter().negate();
this.translate( offset.x, offset.y, offset.z );
return offset;
},
normalize: function () {
this.computeBoundingSphere();
var center = this.boundingSphere.center;
var radius = this.boundingSphere.radius;
var s = radius === 0 ? 1 : 1.0 / radius;
var matrix = new Matrix4();
matrix.set(
s, 0, 0, - s * center.x,
0, s, 0, - s * center.y,
0, 0, s, - s * center.z,
0, 0, 0, 1
);
this.applyMatrix( matrix );
return this;
},
computeFaceNormals: function () {
var cb = new Vector3(), ab = new Vector3();
for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) {
var face = this.faces[ f ];
var vA = this.vertices[ face.a ];
var vB = this.vertices[ face.b ];
var vC = this.vertices[ face.c ];
cb.subVectors( vC, vB );
ab.subVectors( vA, vB );
cb.cross( ab );
cb.normalize();
face.normal.copy( cb );
}
},
computeVertexNormals: function ( areaWeighted ) {
if ( areaWeighted === undefined ) areaWeighted = true;
var v, vl, f, fl, face, vertices;
vertices = new Array( this.vertices.length );
for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {
vertices[ v ] = new Vector3();
}
if ( areaWeighted ) {
// vertex normals weighted by triangle areas
// http://www.iquilezles.org/www/articles/normals/normals.htm
var vA, vB, vC;
var cb = new Vector3(), ab = new Vector3();
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
vA = this.vertices[ face.a ];
vB = this.vertices[ face.b ];
vC = this.vertices[ face.c ];
cb.subVectors( vC, vB );
ab.subVectors( vA, vB );
cb.cross( ab );
vertices[ face.a ].add( cb );
vertices[ face.b ].add( cb );
vertices[ face.c ].add( cb );
}
} else {
this.computeFaceNormals();
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
vertices[ face.a ].add( face.normal );
vertices[ face.b ].add( face.normal );
vertices[ face.c ].add( face.normal );
}
}
for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {
vertices[ v ].normalize();
}
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
var vertexNormals = face.vertexNormals;
if ( vertexNormals.length === 3 ) {
vertexNormals[ 0 ].copy( vertices[ face.a ] );
vertexNormals[ 1 ].copy( vertices[ face.b ] );
vertexNormals[ 2 ].copy( vertices[ face.c ] );
} else {
vertexNormals[ 0 ] = vertices[ face.a ].clone();
vertexNormals[ 1 ] = vertices[ face.b ].clone();
vertexNormals[ 2 ] = vertices[ face.c ].clone();
}
}
if ( this.faces.length > 0 ) {
this.normalsNeedUpdate = true;
}
},
computeFlatVertexNormals: function () {
var f, fl, face;
this.computeFaceNormals();
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
var vertexNormals = face.vertexNormals;
if ( vertexNormals.length === 3 ) {
vertexNormals[ 0 ].copy( face.normal );
vertexNormals[ 1 ].copy( face.normal );
vertexNormals[ 2 ].copy( face.normal );
} else {
vertexNormals[ 0 ] = face.normal.clone();
vertexNormals[ 1 ] = face.normal.clone();
vertexNormals[ 2 ] = face.normal.clone();
}
}
if ( this.faces.length > 0 ) {
this.normalsNeedUpdate = true;
}
},
computeMorphNormals: function () {
var i, il, f, fl, face;
// save original normals
// - create temp variables on first access
// otherwise just copy (for faster repeated calls)
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
if ( ! face.__originalFaceNormal ) {
face.__originalFaceNormal = face.normal.clone();
} else {
face.__originalFaceNormal.copy( face.normal );
}
if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = [];
for ( i = 0, il = face.vertexNormals.length; i < il; i ++ ) {
if ( ! face.__originalVertexNormals[ i ] ) {
face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone();
} else {
face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] );
}
}
}
// use temp geometry to compute face and vertex normals for each morph
var tmpGeo = new Geometry();
tmpGeo.faces = this.faces;
for ( i = 0, il = this.morphTargets.length; i < il; i ++ ) {
// create on first access
if ( ! this.morphNormals[ i ] ) {
this.morphNormals[ i ] = {};
this.morphNormals[ i ].faceNormals = [];
this.morphNormals[ i ].vertexNormals = [];
var dstNormalsFace = this.morphNormals[ i ].faceNormals;
var dstNormalsVertex = this.morphNormals[ i ].vertexNormals;
var faceNormal, vertexNormals;
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
faceNormal = new Vector3();
vertexNormals = { a: new Vector3(), b: new Vector3(), c: new Vector3() };
dstNormalsFace.push( faceNormal );
dstNormalsVertex.push( vertexNormals );
}
}
var morphNormals = this.morphNormals[ i ];
// set vertices to morph target
tmpGeo.vertices = this.morphTargets[ i ].vertices;
// compute morph normals
tmpGeo.computeFaceNormals();
tmpGeo.computeVertexNormals();
// store morph normals
var faceNormal, vertexNormals;
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
faceNormal = morphNormals.faceNormals[ f ];
vertexNormals = morphNormals.vertexNormals[ f ];
faceNormal.copy( face.normal );
vertexNormals.a.copy( face.vertexNormals[ 0 ] );
vertexNormals.b.copy( face.vertexNormals[ 1 ] );
vertexNormals.c.copy( face.vertexNormals[ 2 ] );
}
}
// restore original normals
for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
face = this.faces[ f ];
face.normal = face.__originalFaceNormal;
face.vertexNormals = face.__originalVertexNormals;
}
},
computeLineDistances: function () {
var d = 0;
var vertices = this.vertices;
for ( var i = 0, il = vertices.length; i < il; i ++ ) {
if ( i > 0 ) {
d += vertices[ i ].distanceTo( vertices[ i - 1 ] );
}
this.lineDistances[ i ] = d;
}
},
computeBoundingBox: function () {
if ( this.boundingBox === null ) {
this.boundingBox = new Box3();
}
this.boundingBox.setFromPoints( this.vertices );
},
computeBoundingSphere: function () {
if ( this.boundingSphere === null ) {
this.boundingSphere = new Sphere();
}
this.boundingSphere.setFromPoints( this.vertices );
},
merge: function ( geometry, matrix, materialIndexOffset ) {
if ( ! ( geometry && geometry.isGeometry ) ) {
console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry );
return;
}
var normalMatrix,
vertexOffset = this.vertices.length,
vertices1 = this.vertices,
vertices2 = geometry.vertices,
faces1 = this.faces,
faces2 = geometry.faces,
uvs1 = this.faceVertexUvs[ 0 ],
uvs2 = geometry.faceVertexUvs[ 0 ],
colors1 = this.colors,
colors2 = geometry.colors;
if ( materialIndexOffset === undefined ) materialIndexOffset = 0;
if ( matrix !== undefined ) {
normalMatrix = new Matrix3().getNormalMatrix( matrix );
}
// vertices
for ( var i = 0, il = vertices2.length; i < il; i ++ ) {
var vertex = vertices2[ i ];
var vertexCopy = vertex.clone();
if ( matrix !== undefined ) vertexCopy.applyMatrix4( matrix );
vertices1.push( vertexCopy );
}
// colors
for ( var i = 0, il = colors2.length; i < il; i ++ ) {
colors1.push( colors2[ i ].clone() );
}
// faces
for ( i = 0, il = faces2.length; i < il; i ++ ) {
var face = faces2[ i ], faceCopy, normal, color,
faceVertexNormals = face.vertexNormals,
faceVertexColors = face.vertexColors;
faceCopy = new Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset );
faceCopy.normal.copy( face.normal );
if ( normalMatrix !== undefined ) {
faceCopy.normal.applyMatrix3( normalMatrix ).normalize();
}
for ( var j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) {
normal = faceVertexNormals[ j ].clone();
if ( normalMatrix !== undefined ) {
normal.applyMatrix3( normalMatrix ).normalize();
}
faceCopy.vertexNormals.push( normal );
}
faceCopy.color.copy( face.color );
for ( var j = 0, jl = faceVertexColors.length; j < jl; j ++ ) {
color = faceVertexColors[ j ];
faceCopy.vertexColors.push( color.clone() );
}
faceCopy.materialIndex = face.materialIndex + materialIndexOffset;
faces1.push( faceCopy );
}
// uvs
for ( i = 0, il = uvs2.length; i < il; i ++ ) {
var uv = uvs2[ i ], uvCopy = [];
if ( uv === undefined ) {
continue;
}
for ( var j = 0, jl = uv.length; j < jl; j ++ ) {
uvCopy.push( uv[ j ].clone() );
}
uvs1.push( uvCopy );
}
},
mergeMesh: function ( mesh ) {
if ( ! ( mesh && mesh.isMesh ) ) {
console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh );
return;
}
mesh.matrixAutoUpdate && mesh.updateMatrix();
this.merge( mesh.geometry, mesh.matrix );
},
/*
* Checks for duplicate vertices with hashmap.
* Duplicated vertices are removed
* and faces' vertices are updated.
*/
mergeVertices: function () {
var verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique)
var unique = [], changes = [];
var v, key;
var precisionPoints = 4; // number of decimal points, e.g. 4 for epsilon of 0.0001
var precision = Math.pow( 10, precisionPoints );
var i, il, face;
var indices, j, jl;
for ( i = 0, il = this.vertices.length; i < il; i ++ ) {
v = this.vertices[ i ];
key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision );
if ( verticesMap[ key ] === undefined ) {
verticesMap[ key ] = i;
unique.push( this.vertices[ i ] );
changes[ i ] = unique.length - 1;
} else {
//console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]);
changes[ i ] = changes[ verticesMap[ key ] ];
}
}
// if faces are completely degenerate after merging vertices, we
// have to remove them from the geometry.
var faceIndicesToRemove = [];
for ( i = 0, il = this.faces.length; i < il; i ++ ) {
face = this.faces[ i ];
face.a = changes[ face.a ];
face.b = changes[ face.b ];
face.c = changes[ face.c ];
indices = [ face.a, face.b, face.c ];
// if any duplicate vertices are found in a Face3
// we have to remove the face as nothing can be saved
for ( var n = 0; n < 3; n ++ ) {
if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) {
faceIndicesToRemove.push( i );
break;
}
}
}
for ( i = faceIndicesToRemove.length - 1; i >= 0; i -- ) {
var idx = faceIndicesToRemove[ i ];
this.faces.splice( idx, 1 );
for ( j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) {
this.faceVertexUvs[ j ].splice( idx, 1 );
}
}
// Use unique set of vertices
var diff = this.vertices.length - unique.length;
this.vertices = unique;
return diff;
},
sortFacesByMaterialIndex: function () {
var faces = this.faces;
var length = faces.length;
// tag faces
for ( var i = 0; i < length; i ++ ) {
faces[ i ]._id = i;
}
// sort faces
function materialIndexSort( a, b ) {
return a.materialIndex - b.materialIndex;
}
faces.sort( materialIndexSort );
// sort uvs
var uvs1 = this.faceVertexUvs[ 0 ];
var uvs2 = this.faceVertexUvs[ 1 ];
var newUvs1, newUvs2;
if ( uvs1 && uvs1.length === length ) newUvs1 = [];
if ( uvs2 && uvs2.length === length ) newUvs2 = [];
for ( var i = 0; i < length; i ++ ) {
var id = faces[ i ]._id;
if ( newUvs1 ) newUvs1.push( uvs1[ id ] );
if ( newUvs2 ) newUvs2.push( uvs2[ id ] );
}
if ( newUvs1 ) this.faceVertexUvs[ 0 ] = newUvs1;
if ( newUvs2 ) this.faceVertexUvs[ 1 ] = newUvs2;
},
toJSON: function () {
var data = {
metadata: {
version: 4.5,
type: 'Geometry',
generator: 'Geometry.toJSON'
}
};
// standard Geometry serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( this.parameters !== undefined ) {
var parameters = this.parameters;
for ( var key in parameters ) {
if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];
}
return data;
}
var vertices = [];
for ( var i = 0; i < this.vertices.length; i ++ ) {
var vertex = this.vertices[ i ];
vertices.push( vertex.x, vertex.y, vertex.z );
}
var faces = [];
var normals = [];
var normalsHash = {};
var colors = [];
var colorsHash = {};
var uvs = [];
var uvsHash = {};
for ( var i = 0; i < this.faces.length; i ++ ) {
var face = this.faces[ i ];
var hasMaterial = true;
var hasFaceUv = false; // deprecated
var hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i ] !== undefined;
var hasFaceNormal = face.normal.length() > 0;
var hasFaceVertexNormal = face.vertexNormals.length > 0;
var hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1;
var hasFaceVertexColor = face.vertexColors.length > 0;
var faceType = 0;
faceType = setBit( faceType, 0, 0 ); // isQuad
faceType = setBit( faceType, 1, hasMaterial );
faceType = setBit( faceType, 2, hasFaceUv );
faceType = setBit( faceType, 3, hasFaceVertexUv );
faceType = setBit( faceType, 4, hasFaceNormal );
faceType = setBit( faceType, 5, hasFaceVertexNormal );
faceType = setBit( faceType, 6, hasFaceColor );
faceType = setBit( faceType, 7, hasFaceVertexColor );
faces.push( faceType );
faces.push( face.a, face.b, face.c );
faces.push( face.materialIndex );
if ( hasFaceVertexUv ) {
var faceVertexUvs = this.faceVertexUvs[ 0 ][ i ];
faces.push(
getUvIndex( faceVertexUvs[ 0 ] ),
getUvIndex( faceVertexUvs[ 1 ] ),
getUvIndex( faceVertexUvs[ 2 ] )
);
}
if ( hasFaceNormal ) {
faces.push( getNormalIndex( face.normal ) );
}
if ( hasFaceVertexNormal ) {
var vertexNormals = face.vertexNormals;
faces.push(
getNormalIndex( vertexNormals[ 0 ] ),
getNormalIndex( vertexNormals[ 1 ] ),
getNormalIndex( vertexNormals[ 2 ] )
);
}
if ( hasFaceColor ) {
faces.push( getColorIndex( face.color ) );
}
if ( hasFaceVertexColor ) {
var vertexColors = face.vertexColors;
faces.push(
getColorIndex( vertexColors[ 0 ] ),
getColorIndex( vertexColors[ 1 ] ),
getColorIndex( vertexColors[ 2 ] )
);
}
}
function setBit( value, position, enabled ) {
return enabled ? value | ( 1 << position ) : value & ( ~ ( 1 << position ) );
}
function getNormalIndex( normal ) {
var hash = normal.x.toString() + normal.y.toString() + normal.z.toString();
if ( normalsHash[ hash ] !== undefined ) {
return normalsHash[ hash ];
}
normalsHash[ hash ] = normals.length / 3;
normals.push( normal.x, normal.y, normal.z );
return normalsHash[ hash ];
}
function getColorIndex( color ) {
var hash = color.r.toString() + color.g.toString() + color.b.toString();
if ( colorsHash[ hash ] !== undefined ) {
return colorsHash[ hash ];
}
colorsHash[ hash ] = colors.length;
colors.push( color.getHex() );
return colorsHash[ hash ];
}
function getUvIndex( uv ) {
var hash = uv.x.toString() + uv.y.toString();
if ( uvsHash[ hash ] !== undefined ) {
return uvsHash[ hash ];
}
uvsHash[ hash ] = uvs.length / 2;
uvs.push( uv.x, uv.y );
return uvsHash[ hash ];
}
data.data = {};
data.data.vertices = vertices;
data.data.normals = normals;
if ( colors.length > 0 ) data.data.colors = colors;
if ( uvs.length > 0 ) data.data.uvs = [ uvs ]; // temporal backward compatibility
data.data.faces = faces;
return data;
},
clone: function () {
/*
// Handle primitives
var parameters = this.parameters;
if ( parameters !== undefined ) {
var values = [];
for ( var key in parameters ) {
values.push( parameters[ key ] );
}
var geometry = Object.create( this.constructor.prototype );
this.constructor.apply( geometry, values );
return geometry;
}
return new this.constructor().copy( this );
*/
return new Geometry().copy( this );
},
copy: function ( source ) {
var i, il, j, jl, k, kl;
// reset
this.vertices = [];
this.colors = [];
this.faces = [];
this.faceVertexUvs = [[]];
this.morphTargets = [];
this.morphNormals = [];
this.skinWeights = [];
this.skinIndices = [];
this.lineDistances = [];
this.boundingBox = null;
this.boundingSphere = null;
// name
this.name = source.name;
// vertices
var vertices = source.vertices;
for ( i = 0, il = vertices.length; i < il; i ++ ) {
this.vertices.push( vertices[ i ].clone() );
}
// colors
var colors = source.colors;
for ( i = 0, il = colors.length; i < il; i ++ ) {
this.colors.push( colors[ i ].clone() );
}
// faces
var faces = source.faces;
for ( i = 0, il = faces.length; i < il; i ++ ) {
this.faces.push( faces[ i ].clone() );
}
// face vertex uvs
for ( i = 0, il = source.faceVertexUvs.length; i < il; i ++ ) {
var faceVertexUvs = source.faceVertexUvs[ i ];
if ( this.faceVertexUvs[ i ] === undefined ) {
this.faceVertexUvs[ i ] = [];
}
for ( j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) {
var uvs = faceVertexUvs[ j ], uvsCopy = [];
for ( k = 0, kl = uvs.length; k < kl; k ++ ) {
var uv = uvs[ k ];
uvsCopy.push( uv.clone() );
}
this.faceVertexUvs[ i ].push( uvsCopy );
}
}
// morph targets
var morphTargets = source.morphTargets;
for ( i = 0, il = morphTargets.length; i < il; i ++ ) {
var morphTarget = {};
morphTarget.name = morphTargets[ i ].name;
// vertices
if ( morphTargets[ i ].vertices !== undefined ) {
morphTarget.vertices = [];
for ( j = 0, jl = morphTargets[ i ].vertices.length; j < jl; j ++ ) {
morphTarget.vertices.push( morphTargets[ i ].vertices[ j ].clone() );
}
}
// normals
if ( morphTargets[ i ].normals !== undefined ) {
morphTarget.normals = [];
for ( j = 0, jl = morphTargets[ i ].normals.length; j < jl; j ++ ) {
morphTarget.normals.push( morphTargets[ i ].normals[ j ].clone() );
}
}
this.morphTargets.push( morphTarget );
}
// morph normals
var morphNormals = source.morphNormals;
for ( i = 0, il = morphNormals.length; i < il; i ++ ) {
var morphNormal = {};
// vertex normals
if ( morphNormals[ i ].vertexNormals !== undefined ) {
morphNormal.vertexNormals = [];
for ( j = 0, jl = morphNormals[ i ].vertexNormals.length; j < jl; j ++ ) {
var srcVertexNormal = morphNormals[ i ].vertexNormals[ j ];
var destVertexNormal = {};
destVertexNormal.a = srcVertexNormal.a.clone();
destVertexNormal.b = srcVertexNormal.b.clone();
destVertexNormal.c = srcVertexNormal.c.clone();
morphNormal.vertexNormals.push( destVertexNormal );
}
}
// face normals
if ( morphNormals[ i ].faceNormals !== undefined ) {
morphNormal.faceNormals = [];
for ( j = 0, jl = morphNormals[ i ].faceNormals.length; j < jl; j ++ ) {
morphNormal.faceNormals.push( morphNormals[ i ].faceNormals[ j ].clone() );
}
}
this.morphNormals.push( morphNormal );
}
// skin weights
var skinWeights = source.skinWeights;
for ( i = 0, il = skinWeights.length; i < il; i ++ ) {
this.skinWeights.push( skinWeights[ i ].clone() );
}
// skin indices
var skinIndices = source.skinIndices;
for ( i = 0, il = skinIndices.length; i < il; i ++ ) {
this.skinIndices.push( skinIndices[ i ].clone() );
}
// line distances
var lineDistances = source.lineDistances;
for ( i = 0, il = lineDistances.length; i < il; i ++ ) {
this.lineDistances.push( lineDistances[ i ] );
}
// bounding box
var boundingBox = source.boundingBox;
if ( boundingBox !== null ) {
this.boundingBox = boundingBox.clone();
}
// bounding sphere
var boundingSphere = source.boundingSphere;
if ( boundingSphere !== null ) {
this.boundingSphere = boundingSphere.clone();
}
// update flags
this.elementsNeedUpdate = source.elementsNeedUpdate;
this.verticesNeedUpdate = source.verticesNeedUpdate;
this.uvsNeedUpdate = source.uvsNeedUpdate;
this.normalsNeedUpdate = source.normalsNeedUpdate;
this.colorsNeedUpdate = source.colorsNeedUpdate;
this.lineDistancesNeedUpdate = source.lineDistancesNeedUpdate;
this.groupsNeedUpdate = source.groupsNeedUpdate;
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function BufferAttribute( array, itemSize, normalized ) {
if ( Array.isArray( array ) ) {
throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );
}
this.uuid = _Math.generateUUID();
this.name = '';
this.array = array;
this.itemSize = itemSize;
this.count = array !== undefined ? array.length / itemSize : 0;
this.normalized = normalized === true;
this.dynamic = false;
this.updateRange = { offset: 0, count: - 1 };
this.onUploadCallback = function () {};
this.version = 0;
}
Object.defineProperty( BufferAttribute.prototype, 'needsUpdate', {
set: function ( value ) {
if ( value === true ) this.version ++;
}
} );
Object.assign( BufferAttribute.prototype, {
isBufferAttribute: true,
setArray: function ( array ) {
if ( Array.isArray( array ) ) {
throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );
}
this.count = array !== undefined ? array.length / this.itemSize : 0;
this.array = array;
},
setDynamic: function ( value ) {
this.dynamic = value;
return this;
},
copy: function ( source ) {
this.array = new source.array.constructor( source.array );
this.itemSize = source.itemSize;
this.count = source.count;
this.normalized = source.normalized;
this.dynamic = source.dynamic;
return this;
},
copyAt: function ( index1, attribute, index2 ) {
index1 *= this.itemSize;
index2 *= attribute.itemSize;
for ( var i = 0, l = this.itemSize; i < l; i ++ ) {
this.array[ index1 + i ] = attribute.array[ index2 + i ];
}
return this;
},
copyArray: function ( array ) {
this.array.set( array );
return this;
},
copyColorsArray: function ( colors ) {
var array = this.array, offset = 0;
for ( var i = 0, l = colors.length; i < l; i ++ ) {
var color = colors[ i ];
if ( color === undefined ) {
console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i );
color = new Color();
}
array[ offset ++ ] = color.r;
array[ offset ++ ] = color.g;
array[ offset ++ ] = color.b;
}
return this;
},
copyIndicesArray: function ( indices ) {
var array = this.array, offset = 0;
for ( var i = 0, l = indices.length; i < l; i ++ ) {
var index = indices[ i ];
array[ offset ++ ] = index.a;
array[ offset ++ ] = index.b;
array[ offset ++ ] = index.c;
}
return this;
},
copyVector2sArray: function ( vectors ) {
var array = this.array, offset = 0;
for ( var i = 0, l = vectors.length; i < l; i ++ ) {
var vector = vectors[ i ];
if ( vector === undefined ) {
console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i );
vector = new Vector2();
}
array[ offset ++ ] = vector.x;
array[ offset ++ ] = vector.y;
}
return this;
},
copyVector3sArray: function ( vectors ) {
var array = this.array, offset = 0;
for ( var i = 0, l = vectors.length; i < l; i ++ ) {
var vector = vectors[ i ];
if ( vector === undefined ) {
console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i );
vector = new Vector3();
}
array[ offset ++ ] = vector.x;
array[ offset ++ ] = vector.y;
array[ offset ++ ] = vector.z;
}
return this;
},
copyVector4sArray: function ( vectors ) {
var array = this.array, offset = 0;
for ( var i = 0, l = vectors.length; i < l; i ++ ) {
var vector = vectors[ i ];
if ( vector === undefined ) {
console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i );
vector = new Vector4();
}
array[ offset ++ ] = vector.x;
array[ offset ++ ] = vector.y;
array[ offset ++ ] = vector.z;
array[ offset ++ ] = vector.w;
}
return this;
},
set: function ( value, offset ) {
if ( offset === undefined ) offset = 0;
this.array.set( value, offset );
return this;
},
getX: function ( index ) {
return this.array[ index * this.itemSize ];
},
setX: function ( index, x ) {
this.array[ index * this.itemSize ] = x;
return this;
},
getY: function ( index ) {
return this.array[ index * this.itemSize + 1 ];
},
setY: function ( index, y ) {
this.array[ index * this.itemSize + 1 ] = y;
return this;
},
getZ: function ( index ) {
return this.array[ index * this.itemSize + 2 ];
},
setZ: function ( index, z ) {
this.array[ index * this.itemSize + 2 ] = z;
return this;
},
getW: function ( index ) {
return this.array[ index * this.itemSize + 3 ];
},
setW: function ( index, w ) {
this.array[ index * this.itemSize + 3 ] = w;
return this;
},
setXY: function ( index, x, y ) {
index *= this.itemSize;
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
return this;
},
setXYZ: function ( index, x, y, z ) {
index *= this.itemSize;
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
this.array[ index + 2 ] = z;
return this;
},
setXYZW: function ( index, x, y, z, w ) {
index *= this.itemSize;
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
this.array[ index + 2 ] = z;
this.array[ index + 3 ] = w;
return this;
},
onUpload: function ( callback ) {
this.onUploadCallback = callback;
return this;
},
clone: function () {
return new this.constructor( this.array, this.itemSize ).copy( this );
}
} );
function Uint16BufferAttribute( array, itemSize ) {
BufferAttribute.call( this, new Uint16Array( array ), itemSize );
}
Uint16BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
Uint16BufferAttribute.prototype.constructor = Uint16BufferAttribute;
function Uint32BufferAttribute( array, itemSize ) {
BufferAttribute.call( this, new Uint32Array( array ), itemSize );
}
Uint32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
Uint32BufferAttribute.prototype.constructor = Uint32BufferAttribute;
function Float32BufferAttribute( array, itemSize ) {
BufferAttribute.call( this, new Float32Array( array ), itemSize );
}
Float32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
Float32BufferAttribute.prototype.constructor = Float32BufferAttribute;
/**
* @author mrdoob / http://mrdoob.com/
*/
function DirectGeometry() {
this.indices = [];
this.vertices = [];
this.normals = [];
this.colors = [];
this.uvs = [];
this.uvs2 = [];
this.groups = [];
this.morphTargets = {};
this.skinWeights = [];
this.skinIndices = [];
// this.lineDistances = [];
this.boundingBox = null;
this.boundingSphere = null;
// update flags
this.verticesNeedUpdate = false;
this.normalsNeedUpdate = false;
this.colorsNeedUpdate = false;
this.uvsNeedUpdate = false;
this.groupsNeedUpdate = false;
}
Object.assign( DirectGeometry.prototype, {
computeGroups: function ( geometry ) {
var group;
var groups = [];
var materialIndex = undefined;
var faces = geometry.faces;
for ( var i = 0; i < faces.length; i ++ ) {
var face = faces[ i ];
// materials
if ( face.materialIndex !== materialIndex ) {
materialIndex = face.materialIndex;
if ( group !== undefined ) {
group.count = ( i * 3 ) - group.start;
groups.push( group );
}
group = {
start: i * 3,
materialIndex: materialIndex
};
}
}
if ( group !== undefined ) {
group.count = ( i * 3 ) - group.start;
groups.push( group );
}
this.groups = groups;
},
fromGeometry: function ( geometry ) {
var faces = geometry.faces;
var vertices = geometry.vertices;
var faceVertexUvs = geometry.faceVertexUvs;
var hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0;
var hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0;
// morphs
var morphTargets = geometry.morphTargets;
var morphTargetsLength = morphTargets.length;
var morphTargetsPosition;
if ( morphTargetsLength > 0 ) {
morphTargetsPosition = [];
for ( var i = 0; i < morphTargetsLength; i ++ ) {
morphTargetsPosition[ i ] = [];
}
this.morphTargets.position = morphTargetsPosition;
}
var morphNormals = geometry.morphNormals;
var morphNormalsLength = morphNormals.length;
var morphTargetsNormal;
if ( morphNormalsLength > 0 ) {
morphTargetsNormal = [];
for ( var i = 0; i < morphNormalsLength; i ++ ) {
morphTargetsNormal[ i ] = [];
}
this.morphTargets.normal = morphTargetsNormal;
}
// skins
var skinIndices = geometry.skinIndices;
var skinWeights = geometry.skinWeights;
var hasSkinIndices = skinIndices.length === vertices.length;
var hasSkinWeights = skinWeights.length === vertices.length;
//
for ( var i = 0; i < faces.length; i ++ ) {
var face = faces[ i ];
this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] );
var vertexNormals = face.vertexNormals;
if ( vertexNormals.length === 3 ) {
this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] );
} else {
var normal = face.normal;
this.normals.push( normal, normal, normal );
}
var vertexColors = face.vertexColors;
if ( vertexColors.length === 3 ) {
this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] );
} else {
var color = face.color;
this.colors.push( color, color, color );
}
if ( hasFaceVertexUv === true ) {
var vertexUvs = faceVertexUvs[ 0 ][ i ];
if ( vertexUvs !== undefined ) {
this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );
} else {
console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i );
this.uvs.push( new Vector2(), new Vector2(), new Vector2() );
}
}
if ( hasFaceVertexUv2 === true ) {
var vertexUvs = faceVertexUvs[ 1 ][ i ];
if ( vertexUvs !== undefined ) {
this.uvs2.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );
} else {
console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i );
this.uvs2.push( new Vector2(), new Vector2(), new Vector2() );
}
}
// morphs
for ( var j = 0; j < morphTargetsLength; j ++ ) {
var morphTarget = morphTargets[ j ].vertices;
morphTargetsPosition[ j ].push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] );
}
for ( var j = 0; j < morphNormalsLength; j ++ ) {
var morphNormal = morphNormals[ j ].vertexNormals[ i ];
morphTargetsNormal[ j ].push( morphNormal.a, morphNormal.b, morphNormal.c );
}
// skins
if ( hasSkinIndices ) {
this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] );
}
if ( hasSkinWeights ) {
this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] );
}
}
this.computeGroups( geometry );
this.verticesNeedUpdate = geometry.verticesNeedUpdate;
this.normalsNeedUpdate = geometry.normalsNeedUpdate;
this.colorsNeedUpdate = geometry.colorsNeedUpdate;
this.uvsNeedUpdate = geometry.uvsNeedUpdate;
this.groupsNeedUpdate = geometry.groupsNeedUpdate;
return this;
}
} );
function arrayMax( array ) {
if ( array.length === 0 ) return - Infinity;
var max = array[ 0 ];
for ( var i = 1, l = array.length; i < l; ++ i ) {
if ( array[ i ] > max ) max = array[ i ];
}
return max;
}
/**
* @author alteredq / http://alteredqualia.com/
* @author mrdoob / http://mrdoob.com/
*/
function BufferGeometry() {
Object.defineProperty( this, 'id', { value: GeometryIdCount() } );
this.uuid = _Math.generateUUID();
this.name = '';
this.type = 'BufferGeometry';
this.index = null;
this.attributes = {};
this.morphAttributes = {};
this.groups = [];
this.boundingBox = null;
this.boundingSphere = null;
this.drawRange = { start: 0, count: Infinity };
}
BufferGeometry.MaxIndex = 65535;
Object.assign( BufferGeometry.prototype, EventDispatcher.prototype, {
isBufferGeometry: true,
getIndex: function () {
return this.index;
},
setIndex: function ( index ) {
if ( Array.isArray( index ) ) {
this.index = new ( arrayMax( index ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 );
} else {
this.index = index;
}
},
addAttribute: function ( name, attribute ) {
if ( ! ( attribute && attribute.isBufferAttribute ) && ! ( attribute && attribute.isInterleavedBufferAttribute ) ) {
console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' );
this.addAttribute( name, new BufferAttribute( arguments[ 1 ], arguments[ 2 ] ) );
return;
}
if ( name === 'index' ) {
console.warn( 'THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.' );
this.setIndex( attribute );
return;
}
this.attributes[ name ] = attribute;
return this;
},
getAttribute: function ( name ) {
return this.attributes[ name ];
},
removeAttribute: function ( name ) {
delete this.attributes[ name ];
return this;
},
addGroup: function ( start, count, materialIndex ) {
this.groups.push( {
start: start,
count: count,
materialIndex: materialIndex !== undefined ? materialIndex : 0
} );
},
clearGroups: function () {
this.groups = [];
},
setDrawRange: function ( start, count ) {
this.drawRange.start = start;
this.drawRange.count = count;
},
applyMatrix: function ( matrix ) {
var position = this.attributes.position;
if ( position !== undefined ) {
matrix.applyToBufferAttribute( position );
position.needsUpdate = true;
}
var normal = this.attributes.normal;
if ( normal !== undefined ) {
var normalMatrix = new Matrix3().getNormalMatrix( matrix );
normalMatrix.applyToBufferAttribute( normal );
normal.needsUpdate = true;
}
if ( this.boundingBox !== null ) {
this.computeBoundingBox();
}
if ( this.boundingSphere !== null ) {
this.computeBoundingSphere();
}
return this;
},
rotateX: function () {
// rotate geometry around world x-axis
var m1 = new Matrix4();
return function rotateX( angle ) {
m1.makeRotationX( angle );
this.applyMatrix( m1 );
return this;
};
}(),
rotateY: function () {
// rotate geometry around world y-axis
var m1 = new Matrix4();
return function rotateY( angle ) {
m1.makeRotationY( angle );
this.applyMatrix( m1 );
return this;
};
}(),
rotateZ: function () {
// rotate geometry around world z-axis
var m1 = new Matrix4();
return function rotateZ( angle ) {
m1.makeRotationZ( angle );
this.applyMatrix( m1 );
return this;
};
}(),
translate: function () {
// translate geometry
var m1 = new Matrix4();
return function translate( x, y, z ) {
m1.makeTranslation( x, y, z );
this.applyMatrix( m1 );
return this;
};
}(),
scale: function () {
// scale geometry
var m1 = new Matrix4();
return function scale( x, y, z ) {
m1.makeScale( x, y, z );
this.applyMatrix( m1 );
return this;
};
}(),
lookAt: function () {
var obj = new Object3D();
return function lookAt( vector ) {
obj.lookAt( vector );
obj.updateMatrix();
this.applyMatrix( obj.matrix );
};
}(),
center: function () {
this.computeBoundingBox();
var offset = this.boundingBox.getCenter().negate();
this.translate( offset.x, offset.y, offset.z );
return offset;
},
setFromObject: function ( object ) {
// console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this );
var geometry = object.geometry;
if ( object.isPoints || object.isLine ) {
var positions = new Float32BufferAttribute( geometry.vertices.length * 3, 3 );
var colors = new Float32BufferAttribute( geometry.colors.length * 3, 3 );
this.addAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) );
this.addAttribute( 'color', colors.copyColorsArray( geometry.colors ) );
if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) {
var lineDistances = new Float32BufferAttribute( geometry.lineDistances.length, 1 );
this.addAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) );
}
if ( geometry.boundingSphere !== null ) {
this.boundingSphere = geometry.boundingSphere.clone();
}
if ( geometry.boundingBox !== null ) {
this.boundingBox = geometry.boundingBox.clone();
}
} else if ( object.isMesh ) {
if ( geometry && geometry.isGeometry ) {
this.fromGeometry( geometry );
}
}
return this;
},
updateFromObject: function ( object ) {
var geometry = object.geometry;
if ( object.isMesh ) {
var direct = geometry.__directGeometry;
if ( geometry.elementsNeedUpdate === true ) {
direct = undefined;
geometry.elementsNeedUpdate = false;
}
if ( direct === undefined ) {
return this.fromGeometry( geometry );
}
direct.verticesNeedUpdate = geometry.verticesNeedUpdate;
direct.normalsNeedUpdate = geometry.normalsNeedUpdate;
direct.colorsNeedUpdate = geometry.colorsNeedUpdate;
direct.uvsNeedUpdate = geometry.uvsNeedUpdate;
direct.groupsNeedUpdate = geometry.groupsNeedUpdate;
geometry.verticesNeedUpdate = false;
geometry.normalsNeedUpdate = false;
geometry.colorsNeedUpdate = false;
geometry.uvsNeedUpdate = false;
geometry.groupsNeedUpdate = false;
geometry = direct;
}
var attribute;
if ( geometry.verticesNeedUpdate === true ) {
attribute = this.attributes.position;
if ( attribute !== undefined ) {
attribute.copyVector3sArray( geometry.vertices );
attribute.needsUpdate = true;
}
geometry.verticesNeedUpdate = false;
}
if ( geometry.normalsNeedUpdate === true ) {
attribute = this.attributes.normal;
if ( attribute !== undefined ) {
attribute.copyVector3sArray( geometry.normals );
attribute.needsUpdate = true;
}
geometry.normalsNeedUpdate = false;
}
if ( geometry.colorsNeedUpdate === true ) {
attribute = this.attributes.color;
if ( attribute !== undefined ) {
attribute.copyColorsArray( geometry.colors );
attribute.needsUpdate = true;
}
geometry.colorsNeedUpdate = false;
}
if ( geometry.uvsNeedUpdate ) {
attribute = this.attributes.uv;
if ( attribute !== undefined ) {
attribute.copyVector2sArray( geometry.uvs );
attribute.needsUpdate = true;
}
geometry.uvsNeedUpdate = false;
}
if ( geometry.lineDistancesNeedUpdate ) {
attribute = this.attributes.lineDistance;
if ( attribute !== undefined ) {
attribute.copyArray( geometry.lineDistances );
attribute.needsUpdate = true;
}
geometry.lineDistancesNeedUpdate = false;
}
if ( geometry.groupsNeedUpdate ) {
geometry.computeGroups( object.geometry );
this.groups = geometry.groups;
geometry.groupsNeedUpdate = false;
}
return this;
},
fromGeometry: function ( geometry ) {
geometry.__directGeometry = new DirectGeometry().fromGeometry( geometry );
return this.fromDirectGeometry( geometry.__directGeometry );
},
fromDirectGeometry: function ( geometry ) {
var positions = new Float32Array( geometry.vertices.length * 3 );
this.addAttribute( 'position', new BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) );
if ( geometry.normals.length > 0 ) {
var normals = new Float32Array( geometry.normals.length * 3 );
this.addAttribute( 'normal', new BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) );
}
if ( geometry.colors.length > 0 ) {
var colors = new Float32Array( geometry.colors.length * 3 );
this.addAttribute( 'color', new BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) );
}
if ( geometry.uvs.length > 0 ) {
var uvs = new Float32Array( geometry.uvs.length * 2 );
this.addAttribute( 'uv', new BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) );
}
if ( geometry.uvs2.length > 0 ) {
var uvs2 = new Float32Array( geometry.uvs2.length * 2 );
this.addAttribute( 'uv2', new BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) );
}
if ( geometry.indices.length > 0 ) {
var TypeArray = arrayMax( geometry.indices ) > 65535 ? Uint32Array : Uint16Array;
var indices = new TypeArray( geometry.indices.length * 3 );
this.setIndex( new BufferAttribute( indices, 1 ).copyIndicesArray( geometry.indices ) );
}
// groups
this.groups = geometry.groups;
// morphs
for ( var name in geometry.morphTargets ) {
var array = [];
var morphTargets = geometry.morphTargets[ name ];
for ( var i = 0, l = morphTargets.length; i < l; i ++ ) {
var morphTarget = morphTargets[ i ];
var attribute = new Float32BufferAttribute( morphTarget.length * 3, 3 );
array.push( attribute.copyVector3sArray( morphTarget ) );
}
this.morphAttributes[ name ] = array;
}
// skinning
if ( geometry.skinIndices.length > 0 ) {
var skinIndices = new Float32BufferAttribute( geometry.skinIndices.length * 4, 4 );
this.addAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) );
}
if ( geometry.skinWeights.length > 0 ) {
var skinWeights = new Float32BufferAttribute( geometry.skinWeights.length * 4, 4 );
this.addAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) );
}
//
if ( geometry.boundingSphere !== null ) {
this.boundingSphere = geometry.boundingSphere.clone();
}
if ( geometry.boundingBox !== null ) {
this.boundingBox = geometry.boundingBox.clone();
}
return this;
},
computeBoundingBox: function () {
if ( this.boundingBox === null ) {
this.boundingBox = new Box3();
}
var position = this.attributes.position;
if ( position !== undefined ) {
this.boundingBox.setFromBufferAttribute( position );
} else {
this.boundingBox.makeEmpty();
}
if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) {
console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this );
}
},
computeBoundingSphere: function () {
var box = new Box3();
var vector = new Vector3();
return function computeBoundingSphere() {
if ( this.boundingSphere === null ) {
this.boundingSphere = new Sphere();
}
var position = this.attributes.position;
if ( position ) {
var center = this.boundingSphere.center;
box.setFromBufferAttribute( position );
box.getCenter( center );
// hoping to find a boundingSphere with a radius smaller than the
// boundingSphere of the boundingBox: sqrt(3) smaller in the best case
var maxRadiusSq = 0;
for ( var i = 0, il = position.count; i < il; i ++ ) {
vector.x = position.getX( i );
vector.y = position.getY( i );
vector.z = position.getZ( i );
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( vector ) );
}
this.boundingSphere.radius = Math.sqrt( maxRadiusSq );
if ( isNaN( this.boundingSphere.radius ) ) {
console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this );
}
}
};
}(),
computeFaceNormals: function () {
// backwards compatibility
},
computeVertexNormals: function () {
var index = this.index;
var attributes = this.attributes;
var groups = this.groups;
if ( attributes.position ) {
var positions = attributes.position.array;
if ( attributes.normal === undefined ) {
this.addAttribute( 'normal', new BufferAttribute( new Float32Array( positions.length ), 3 ) );
} else {
// reset existing normals to zero
var array = attributes.normal.array;
for ( var i = 0, il = array.length; i < il; i ++ ) {
array[ i ] = 0;
}
}
var normals = attributes.normal.array;
var vA, vB, vC;
var pA = new Vector3(), pB = new Vector3(), pC = new Vector3();
var cb = new Vector3(), ab = new Vector3();
// indexed elements
if ( index ) {
var indices = index.array;
if ( groups.length === 0 ) {
this.addGroup( 0, indices.length );
}
for ( var j = 0, jl = groups.length; j < jl; ++ j ) {
var group = groups[ j ];
var start = group.start;
var count = group.count;
for ( var i = start, il = start + count; i < il; i += 3 ) {
vA = indices[ i + 0 ] * 3;
vB = indices[ i + 1 ] * 3;
vC = indices[ i + 2 ] * 3;
pA.fromArray( positions, vA );
pB.fromArray( positions, vB );
pC.fromArray( positions, vC );
cb.subVectors( pC, pB );
ab.subVectors( pA, pB );
cb.cross( ab );
normals[ vA ] += cb.x;
normals[ vA + 1 ] += cb.y;
normals[ vA + 2 ] += cb.z;
normals[ vB ] += cb.x;
normals[ vB + 1 ] += cb.y;
normals[ vB + 2 ] += cb.z;
normals[ vC ] += cb.x;
normals[ vC + 1 ] += cb.y;
normals[ vC + 2 ] += cb.z;
}
}
} else {
// non-indexed elements (unconnected triangle soup)
for ( var i = 0, il = positions.length; i < il; i += 9 ) {
pA.fromArray( positions, i );
pB.fromArray( positions, i + 3 );
pC.fromArray( positions, i + 6 );
cb.subVectors( pC, pB );
ab.subVectors( pA, pB );
cb.cross( ab );
normals[ i ] = cb.x;
normals[ i + 1 ] = cb.y;
normals[ i + 2 ] = cb.z;
normals[ i + 3 ] = cb.x;
normals[ i + 4 ] = cb.y;
normals[ i + 5 ] = cb.z;
normals[ i + 6 ] = cb.x;
normals[ i + 7 ] = cb.y;
normals[ i + 8 ] = cb.z;
}
}
this.normalizeNormals();
attributes.normal.needsUpdate = true;
}
},
merge: function ( geometry, offset ) {
if ( ! ( geometry && geometry.isBufferGeometry ) ) {
console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry );
return;
}
if ( offset === undefined ) offset = 0;
var attributes = this.attributes;
for ( var key in attributes ) {
if ( geometry.attributes[ key ] === undefined ) continue;
var attribute1 = attributes[ key ];
var attributeArray1 = attribute1.array;
var attribute2 = geometry.attributes[ key ];
var attributeArray2 = attribute2.array;
var attributeSize = attribute2.itemSize;
for ( var i = 0, j = attributeSize * offset; i < attributeArray2.length; i ++, j ++ ) {
attributeArray1[ j ] = attributeArray2[ i ];
}
}
return this;
},
normalizeNormals: function () {
var normals = this.attributes.normal;
var x, y, z, n;
for ( var i = 0, il = normals.count; i < il; i ++ ) {
x = normals.getX( i );
y = normals.getY( i );
z = normals.getZ( i );
n = 1.0 / Math.sqrt( x * x + y * y + z * z );
normals.setXYZ( i, x * n, y * n, z * n );
}
},
toNonIndexed: function () {
if ( this.index === null ) {
console.warn( 'THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.' );
return this;
}
var geometry2 = new BufferGeometry();
var indices = this.index.array;
var attributes = this.attributes;
for ( var name in attributes ) {
var attribute = attributes[ name ];
var array = attribute.array;
var itemSize = attribute.itemSize;
var array2 = new array.constructor( indices.length * itemSize );
var index = 0, index2 = 0;
for ( var i = 0, l = indices.length; i < l; i ++ ) {
index = indices[ i ] * itemSize;
for ( var j = 0; j < itemSize; j ++ ) {
array2[ index2 ++ ] = array[ index ++ ];
}
}
geometry2.addAttribute( name, new BufferAttribute( array2, itemSize ) );
}
return geometry2;
},
toJSON: function () {
var data = {
metadata: {
version: 4.5,
type: 'BufferGeometry',
generator: 'BufferGeometry.toJSON'
}
};
// standard BufferGeometry serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( this.parameters !== undefined ) {
var parameters = this.parameters;
for ( var key in parameters ) {
if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];
}
return data;
}
data.data = { attributes: {} };
var index = this.index;
if ( index !== null ) {
var array = Array.prototype.slice.call( index.array );
data.data.index = {
type: index.array.constructor.name,
array: array
};
}
var attributes = this.attributes;
for ( var key in attributes ) {
var attribute = attributes[ key ];
var array = Array.prototype.slice.call( attribute.array );
data.data.attributes[ key ] = {
itemSize: attribute.itemSize,
type: attribute.array.constructor.name,
array: array,
normalized: attribute.normalized
};
}
var groups = this.groups;
if ( groups.length > 0 ) {
data.data.groups = JSON.parse( JSON.stringify( groups ) );
}
var boundingSphere = this.boundingSphere;
if ( boundingSphere !== null ) {
data.data.boundingSphere = {
center: boundingSphere.center.toArray(),
radius: boundingSphere.radius
};
}
return data;
},
clone: function () {
/*
// Handle primitives
var parameters = this.parameters;
if ( parameters !== undefined ) {
var values = [];
for ( var key in parameters ) {
values.push( parameters[ key ] );
}
var geometry = Object.create( this.constructor.prototype );
this.constructor.apply( geometry, values );
return geometry;
}
return new this.constructor().copy( this );
*/
return new BufferGeometry().copy( this );
},
copy: function ( source ) {
var name, i, l;
// reset
this.index = null;
this.attributes = {};
this.morphAttributes = {};
this.groups = [];
this.boundingBox = null;
this.boundingSphere = null;
// name
this.name = source.name;
// index
var index = source.index;
if ( index !== null ) {
this.setIndex( index.clone() );
}
// attributes
var attributes = source.attributes;
for ( name in attributes ) {
var attribute = attributes[ name ];
this.addAttribute( name, attribute.clone() );
}
// morph attributes
var morphAttributes = source.morphAttributes;
for ( name in morphAttributes ) {
var array = [];
var morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes
for ( i = 0, l = morphAttribute.length; i < l; i ++ ) {
array.push( morphAttribute[ i ].clone() );
}
this.morphAttributes[ name ] = array;
}
// groups
var groups = source.groups;
for ( i = 0, l = groups.length; i < l; i ++ ) {
var group = groups[ i ];
this.addGroup( group.start, group.count, group.materialIndex );
}
// bounding box
var boundingBox = source.boundingBox;
if ( boundingBox !== null ) {
this.boundingBox = boundingBox.clone();
}
// bounding sphere
var boundingSphere = source.boundingSphere;
if ( boundingSphere !== null ) {
this.boundingSphere = boundingSphere.clone();
}
// draw range
this.drawRange.start = source.drawRange.start;
this.drawRange.count = source.drawRange.count;
return this;
},
dispose: function () {
this.dispatchEvent( { type: 'dispose' } );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author Mugen87 / https://github.com/Mugen87
*/
/**
* @author mrdoob / http://mrdoob.com/
* @author Mugen87 / https://github.com/Mugen87
*/
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* specularMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* shading: THREE.SmoothShading,
* depthTest: <bool>,
* depthWrite: <bool>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* skinning: <bool>,
* morphTargets: <bool>
* }
*/
function MeshBasicMaterial( parameters ) {
Material.call( this );
this.type = 'MeshBasicMaterial';
this.color = new Color( 0xffffff ); // emissive
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.skinning = false;
this.morphTargets = false;
this.lights = false;
this.setValues( parameters );
}
MeshBasicMaterial.prototype = Object.create( Material.prototype );
MeshBasicMaterial.prototype.constructor = MeshBasicMaterial;
MeshBasicMaterial.prototype.isMeshBasicMaterial = true;
MeshBasicMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
return this;
};
/**
* @author bhouston / http://clara.io
*/
function Ray( origin, direction ) {
this.origin = ( origin !== undefined ) ? origin : new Vector3();
this.direction = ( direction !== undefined ) ? direction : new Vector3();
}
Object.assign( Ray.prototype, {
set: function ( origin, direction ) {
this.origin.copy( origin );
this.direction.copy( direction );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( ray ) {
this.origin.copy( ray.origin );
this.direction.copy( ray.direction );
return this;
},
at: function ( t, optionalTarget ) {
var result = optionalTarget || new Vector3();
return result.copy( this.direction ).multiplyScalar( t ).add( this.origin );
},
lookAt: function ( v ) {
this.direction.copy( v ).sub( this.origin ).normalize();
return this;
},
recast: function () {
var v1 = new Vector3();
return function recast( t ) {
this.origin.copy( this.at( t, v1 ) );
return this;
};
}(),
closestPointToPoint: function ( point, optionalTarget ) {
var result = optionalTarget || new Vector3();
result.subVectors( point, this.origin );
var directionDistance = result.dot( this.direction );
if ( directionDistance < 0 ) {
return result.copy( this.origin );
}
return result.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );
},
distanceToPoint: function ( point ) {
return Math.sqrt( this.distanceSqToPoint( point ) );
},
distanceSqToPoint: function () {
var v1 = new Vector3();
return function distanceSqToPoint( point ) {
var directionDistance = v1.subVectors( point, this.origin ).dot( this.direction );
// point behind the ray
if ( directionDistance < 0 ) {
return this.origin.distanceToSquared( point );
}
v1.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );
return v1.distanceToSquared( point );
};
}(),
distanceSqToSegment: function () {
var segCenter = new Vector3();
var segDir = new Vector3();
var diff = new Vector3();
return function distanceSqToSegment( v0, v1, optionalPointOnRay, optionalPointOnSegment ) {
// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h
// It returns the min distance between the ray and the segment
// defined by v0 and v1
// It can also set two optional targets :
// - The closest point on the ray
// - The closest point on the segment
segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 );
segDir.copy( v1 ).sub( v0 ).normalize();
diff.copy( this.origin ).sub( segCenter );
var segExtent = v0.distanceTo( v1 ) * 0.5;
var a01 = - this.direction.dot( segDir );
var b0 = diff.dot( this.direction );
var b1 = - diff.dot( segDir );
var c = diff.lengthSq();
var det = Math.abs( 1 - a01 * a01 );
var s0, s1, sqrDist, extDet;
if ( det > 0 ) {
// The ray and segment are not parallel.
s0 = a01 * b1 - b0;
s1 = a01 * b0 - b1;
extDet = segExtent * det;
if ( s0 >= 0 ) {
if ( s1 >= - extDet ) {
if ( s1 <= extDet ) {
// region 0
// Minimum at interior points of ray and segment.
var invDet = 1 / det;
s0 *= invDet;
s1 *= invDet;
sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c;
} else {
// region 1
s1 = segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
} else {
// region 5
s1 = - segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
} else {
if ( s1 <= - extDet ) {
// region 4
s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) );
s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
} else if ( s1 <= extDet ) {
// region 3
s0 = 0;
s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = s1 * ( s1 + 2 * b1 ) + c;
} else {
// region 2
s0 = Math.max( 0, - ( a01 * segExtent + b0 ) );
s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
}
} else {
// Ray and segment are parallel.
s1 = ( a01 > 0 ) ? - segExtent : segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
if ( optionalPointOnRay ) {
optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin );
}
if ( optionalPointOnSegment ) {
optionalPointOnSegment.copy( segDir ).multiplyScalar( s1 ).add( segCenter );
}
return sqrDist;
};
}(),
intersectSphere: function () {
var v1 = new Vector3();
return function intersectSphere( sphere, optionalTarget ) {
v1.subVectors( sphere.center, this.origin );
var tca = v1.dot( this.direction );
var d2 = v1.dot( v1 ) - tca * tca;
var radius2 = sphere.radius * sphere.radius;
if ( d2 > radius2 ) return null;
var thc = Math.sqrt( radius2 - d2 );
// t0 = first intersect point - entrance on front of sphere
var t0 = tca - thc;
// t1 = second intersect point - exit point on back of sphere
var t1 = tca + thc;
// test to see if both t0 and t1 are behind the ray - if so, return null
if ( t0 < 0 && t1 < 0 ) return null;
// test to see if t0 is behind the ray:
// if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
// in order to always return an intersect point that is in front of the ray.
if ( t0 < 0 ) return this.at( t1, optionalTarget );
// else t0 is in front of the ray, so return the first collision point scaled by t0
return this.at( t0, optionalTarget );
};
}(),
intersectsSphere: function ( sphere ) {
return this.distanceToPoint( sphere.center ) <= sphere.radius;
},
distanceToPlane: function ( plane ) {
var denominator = plane.normal.dot( this.direction );
if ( denominator === 0 ) {
// line is coplanar, return origin
if ( plane.distanceToPoint( this.origin ) === 0 ) {
return 0;
}
// Null is preferable to undefined since undefined means.... it is undefined
return null;
}
var t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator;
// Return if the ray never intersects the plane
return t >= 0 ? t : null;
},
intersectPlane: function ( plane, optionalTarget ) {
var t = this.distanceToPlane( plane );
if ( t === null ) {
return null;
}
return this.at( t, optionalTarget );
},
intersectsPlane: function ( plane ) {
// check if the ray lies on the plane first
var distToPoint = plane.distanceToPoint( this.origin );
if ( distToPoint === 0 ) {
return true;
}
var denominator = plane.normal.dot( this.direction );
if ( denominator * distToPoint < 0 ) {
return true;
}
// ray origin is behind the plane (and is pointing behind it)
return false;
},
intersectBox: function ( box, optionalTarget ) {
var tmin, tmax, tymin, tymax, tzmin, tzmax;
var invdirx = 1 / this.direction.x,
invdiry = 1 / this.direction.y,
invdirz = 1 / this.direction.z;
var origin = this.origin;
if ( invdirx >= 0 ) {
tmin = ( box.min.x - origin.x ) * invdirx;
tmax = ( box.max.x - origin.x ) * invdirx;
} else {
tmin = ( box.max.x - origin.x ) * invdirx;
tmax = ( box.min.x - origin.x ) * invdirx;
}
if ( invdiry >= 0 ) {
tymin = ( box.min.y - origin.y ) * invdiry;
tymax = ( box.max.y - origin.y ) * invdiry;
} else {
tymin = ( box.max.y - origin.y ) * invdiry;
tymax = ( box.min.y - origin.y ) * invdiry;
}
if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null;
// These lines also handle the case where tmin or tmax is NaN
// (result of 0 * Infinity). x !== x returns true if x is NaN
if ( tymin > tmin || tmin !== tmin ) tmin = tymin;
if ( tymax < tmax || tmax !== tmax ) tmax = tymax;
if ( invdirz >= 0 ) {
tzmin = ( box.min.z - origin.z ) * invdirz;
tzmax = ( box.max.z - origin.z ) * invdirz;
} else {
tzmin = ( box.max.z - origin.z ) * invdirz;
tzmax = ( box.min.z - origin.z ) * invdirz;
}
if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null;
if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin;
if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax;
//return point closest to the ray (positive side)
if ( tmax < 0 ) return null;
return this.at( tmin >= 0 ? tmin : tmax, optionalTarget );
},
intersectsBox: ( function () {
var v = new Vector3();
return function intersectsBox( box ) {
return this.intersectBox( box, v ) !== null;
};
} )(),
intersectTriangle: function () {
// Compute the offset origin, edges, and normal.
var diff = new Vector3();
var edge1 = new Vector3();
var edge2 = new Vector3();
var normal = new Vector3();
return function intersectTriangle( a, b, c, backfaceCulling, optionalTarget ) {
// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h
edge1.subVectors( b, a );
edge2.subVectors( c, a );
normal.crossVectors( edge1, edge2 );
// Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
// |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
// |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
// |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
var DdN = this.direction.dot( normal );
var sign;
if ( DdN > 0 ) {
if ( backfaceCulling ) return null;
sign = 1;
} else if ( DdN < 0 ) {
sign = - 1;
DdN = - DdN;
} else {
return null;
}
diff.subVectors( this.origin, a );
var DdQxE2 = sign * this.direction.dot( edge2.crossVectors( diff, edge2 ) );
// b1 < 0, no intersection
if ( DdQxE2 < 0 ) {
return null;
}
var DdE1xQ = sign * this.direction.dot( edge1.cross( diff ) );
// b2 < 0, no intersection
if ( DdE1xQ < 0 ) {
return null;
}
// b1+b2 > 1, no intersection
if ( DdQxE2 + DdE1xQ > DdN ) {
return null;
}
// Line intersects triangle, check if ray does.
var QdN = - sign * diff.dot( normal );
// t < 0, no intersection
if ( QdN < 0 ) {
return null;
}
// Ray intersects triangle.
return this.at( QdN / DdN, optionalTarget );
};
}(),
applyMatrix4: function ( matrix4 ) {
this.origin.applyMatrix4( matrix4 );
this.direction.transformDirection( matrix4 );
return this;
},
equals: function ( ray ) {
return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction );
}
} );
/**
* @author bhouston / http://clara.io
*/
function Line3( start, end ) {
this.start = ( start !== undefined ) ? start : new Vector3();
this.end = ( end !== undefined ) ? end : new Vector3();
}
Object.assign( Line3.prototype, {
set: function ( start, end ) {
this.start.copy( start );
this.end.copy( end );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( line ) {
this.start.copy( line.start );
this.end.copy( line.end );
return this;
},
getCenter: function ( optionalTarget ) {
var result = optionalTarget || new Vector3();
return result.addVectors( this.start, this.end ).multiplyScalar( 0.5 );
},
delta: function ( optionalTarget ) {
var result = optionalTarget || new Vector3();
return result.subVectors( this.end, this.start );
},
distanceSq: function () {
return this.start.distanceToSquared( this.end );
},
distance: function () {
return this.start.distanceTo( this.end );
},
at: function ( t, optionalTarget ) {
var result = optionalTarget || new Vector3();
return this.delta( result ).multiplyScalar( t ).add( this.start );
},
closestPointToPointParameter: function () {
var startP = new Vector3();
var startEnd = new Vector3();
return function closestPointToPointParameter( point, clampToLine ) {
startP.subVectors( point, this.start );
startEnd.subVectors( this.end, this.start );
var startEnd2 = startEnd.dot( startEnd );
var startEnd_startP = startEnd.dot( startP );
var t = startEnd_startP / startEnd2;
if ( clampToLine ) {
t = _Math.clamp( t, 0, 1 );
}
return t;
};
}(),
closestPointToPoint: function ( point, clampToLine, optionalTarget ) {
var t = this.closestPointToPointParameter( point, clampToLine );
var result = optionalTarget || new Vector3();
return this.delta( result ).multiplyScalar( t ).add( this.start );
},
applyMatrix4: function ( matrix ) {
this.start.applyMatrix4( matrix );
this.end.applyMatrix4( matrix );
return this;
},
equals: function ( line ) {
return line.start.equals( this.start ) && line.end.equals( this.end );
}
} );
/**
* @author bhouston / http://clara.io
* @author mrdoob / http://mrdoob.com/
*/
function Triangle( a, b, c ) {
this.a = ( a !== undefined ) ? a : new Vector3();
this.b = ( b !== undefined ) ? b : new Vector3();
this.c = ( c !== undefined ) ? c : new Vector3();
}
Object.assign( Triangle, {
normal: function () {
var v0 = new Vector3();
return function normal( a, b, c, optionalTarget ) {
var result = optionalTarget || new Vector3();
result.subVectors( c, b );
v0.subVectors( a, b );
result.cross( v0 );
var resultLengthSq = result.lengthSq();
if ( resultLengthSq > 0 ) {
return result.multiplyScalar( 1 / Math.sqrt( resultLengthSq ) );
}
return result.set( 0, 0, 0 );
};
}(),
// static/instance method to calculate barycentric coordinates
// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
barycoordFromPoint: function () {
var v0 = new Vector3();
var v1 = new Vector3();
var v2 = new Vector3();
return function barycoordFromPoint( point, a, b, c, optionalTarget ) {
v0.subVectors( c, a );
v1.subVectors( b, a );
v2.subVectors( point, a );
var dot00 = v0.dot( v0 );
var dot01 = v0.dot( v1 );
var dot02 = v0.dot( v2 );
var dot11 = v1.dot( v1 );
var dot12 = v1.dot( v2 );
var denom = ( dot00 * dot11 - dot01 * dot01 );
var result = optionalTarget || new Vector3();
// collinear or singular triangle
if ( denom === 0 ) {
// arbitrary location outside of triangle?
// not sure if this is the best idea, maybe should be returning undefined
return result.set( - 2, - 1, - 1 );
}
var invDenom = 1 / denom;
var u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom;
var v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom;
// barycentric coordinates must always sum to 1
return result.set( 1 - u - v, v, u );
};
}(),
containsPoint: function () {
var v1 = new Vector3();
return function containsPoint( point, a, b, c ) {
var result = Triangle.barycoordFromPoint( point, a, b, c, v1 );
return ( result.x >= 0 ) && ( result.y >= 0 ) && ( ( result.x + result.y ) <= 1 );
};
}()
} );
Object.assign( Triangle.prototype, {
set: function ( a, b, c ) {
this.a.copy( a );
this.b.copy( b );
this.c.copy( c );
return this;
},
setFromPointsAndIndices: function ( points, i0, i1, i2 ) {
this.a.copy( points[ i0 ] );
this.b.copy( points[ i1 ] );
this.c.copy( points[ i2 ] );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( triangle ) {
this.a.copy( triangle.a );
this.b.copy( triangle.b );
this.c.copy( triangle.c );
return this;
},
area: function () {
var v0 = new Vector3();
var v1 = new Vector3();
return function area() {
v0.subVectors( this.c, this.b );
v1.subVectors( this.a, this.b );
return v0.cross( v1 ).length() * 0.5;
};
}(),
midpoint: function ( optionalTarget ) {
var result = optionalTarget || new Vector3();
return result.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 );
},
normal: function ( optionalTarget ) {
return Triangle.normal( this.a, this.b, this.c, optionalTarget );
},
plane: function ( optionalTarget ) {
var result = optionalTarget || new Plane();
return result.setFromCoplanarPoints( this.a, this.b, this.c );
},
barycoordFromPoint: function ( point, optionalTarget ) {
return Triangle.barycoordFromPoint( point, this.a, this.b, this.c, optionalTarget );
},
containsPoint: function ( point ) {
return Triangle.containsPoint( point, this.a, this.b, this.c );
},
closestPointToPoint: function () {
var plane = new Plane();
var edgeList = [ new Line3(), new Line3(), new Line3() ];
var projectedPoint = new Vector3();
var closestPoint = new Vector3();
return function closestPointToPoint( point, optionalTarget ) {
var result = optionalTarget || new Vector3();
var minDistance = Infinity;
// project the point onto the plane of the triangle
plane.setFromCoplanarPoints( this.a, this.b, this.c );
plane.projectPoint( point, projectedPoint );
// check if the projection lies within the triangle
if( this.containsPoint( projectedPoint ) === true ) {
// if so, this is the closest point
result.copy( projectedPoint );
} else {
// if not, the point falls outside the triangle. the result is the closest point to the triangle's edges or vertices
edgeList[ 0 ].set( this.a, this.b );
edgeList[ 1 ].set( this.b, this.c );
edgeList[ 2 ].set( this.c, this.a );
for( var i = 0; i < edgeList.length; i ++ ) {
edgeList[ i ].closestPointToPoint( projectedPoint, true, closestPoint );
var distance = projectedPoint.distanceToSquared( closestPoint );
if( distance < minDistance ) {
minDistance = distance;
result.copy( closestPoint );
}
}
}
return result;
};
}(),
equals: function ( triangle ) {
return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author jonobr1 / http://jonobr1.com/
*/
function Mesh( geometry, material ) {
Object3D.call( this );
this.type = 'Mesh';
this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
this.material = material !== undefined ? material : new MeshBasicMaterial( { color: Math.random() * 0xffffff } );
this.drawMode = TrianglesDrawMode;
this.updateMorphTargets();
}
Mesh.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Mesh,
isMesh: true,
setDrawMode: function ( value ) {
this.drawMode = value;
},
copy: function ( source ) {
Object3D.prototype.copy.call( this, source );
this.drawMode = source.drawMode;
return this;
},
updateMorphTargets: function () {
var geometry = this.geometry;
var m, ml, name;
if ( geometry.isBufferGeometry ) {
var morphAttributes = geometry.morphAttributes;
var keys = Object.keys( morphAttributes );
if ( keys.length > 0 ) {
var morphAttribute = morphAttributes[ keys[ 0 ] ];
if ( morphAttribute !== undefined ) {
this.morphTargetInfluences = [];
this.morphTargetDictionary = {};
for ( m = 0, ml = morphAttribute.length; m < ml; m ++ ) {
name = morphAttribute[ m ].name || String( m );
this.morphTargetInfluences.push( 0 );
this.morphTargetDictionary[ name ] = m;
}
}
}
} else {
var morphTargets = geometry.morphTargets;
if ( morphTargets !== undefined && morphTargets.length > 0 ) {
this.morphTargetInfluences = [];
this.morphTargetDictionary = {};
for ( m = 0, ml = morphTargets.length; m < ml; m ++ ) {
name = morphTargets[ m ].name || String( m );
this.morphTargetInfluences.push( 0 );
this.morphTargetDictionary[ name ] = m;
}
}
}
},
raycast: ( function () {
var inverseMatrix = new Matrix4();
var ray = new Ray();
var sphere = new Sphere();
var vA = new Vector3();
var vB = new Vector3();
var vC = new Vector3();
var tempA = new Vector3();
var tempB = new Vector3();
var tempC = new Vector3();
var uvA = new Vector2();
var uvB = new Vector2();
var uvC = new Vector2();
var barycoord = new Vector3();
var intersectionPoint = new Vector3();
var intersectionPointWorld = new Vector3();
function uvIntersection( point, p1, p2, p3, uv1, uv2, uv3 ) {
Triangle.barycoordFromPoint( point, p1, p2, p3, barycoord );
uv1.multiplyScalar( barycoord.x );
uv2.multiplyScalar( barycoord.y );
uv3.multiplyScalar( barycoord.z );
uv1.add( uv2 ).add( uv3 );
return uv1.clone();
}
function checkIntersection( object, raycaster, ray, pA, pB, pC, point ) {
var intersect;
var material = object.material;
if ( material.side === BackSide ) {
intersect = ray.intersectTriangle( pC, pB, pA, true, point );
} else {
intersect = ray.intersectTriangle( pA, pB, pC, material.side !== DoubleSide, point );
}
if ( intersect === null ) return null;
intersectionPointWorld.copy( point );
intersectionPointWorld.applyMatrix4( object.matrixWorld );
var distance = raycaster.ray.origin.distanceTo( intersectionPointWorld );
if ( distance < raycaster.near || distance > raycaster.far ) return null;
return {
distance: distance,
point: intersectionPointWorld.clone(),
object: object
};
}
function checkBufferGeometryIntersection( object, raycaster, ray, position, uv, a, b, c ) {
vA.fromBufferAttribute( position, a );
vB.fromBufferAttribute( position, b );
vC.fromBufferAttribute( position, c );
var intersection = checkIntersection( object, raycaster, ray, vA, vB, vC, intersectionPoint );
if ( intersection ) {
if ( uv ) {
uvA.fromBufferAttribute( uv, a );
uvB.fromBufferAttribute( uv, b );
uvC.fromBufferAttribute( uv, c );
intersection.uv = uvIntersection( intersectionPoint, vA, vB, vC, uvA, uvB, uvC );
}
intersection.face = new Face3( a, b, c, Triangle.normal( vA, vB, vC ) );
intersection.faceIndex = a;
}
return intersection;
}
return function raycast( raycaster, intersects ) {
var geometry = this.geometry;
var material = this.material;
var matrixWorld = this.matrixWorld;
if ( material === undefined ) return;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
sphere.copy( geometry.boundingSphere );
sphere.applyMatrix4( matrixWorld );
if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;
//
inverseMatrix.getInverse( matrixWorld );
ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );
// Check boundingBox before continuing
if ( geometry.boundingBox !== null ) {
if ( ray.intersectsBox( geometry.boundingBox ) === false ) return;
}
var intersection;
if ( geometry.isBufferGeometry ) {
var a, b, c;
var index = geometry.index;
var position = geometry.attributes.position;
var uv = geometry.attributes.uv;
var i, l;
if ( index !== null ) {
// indexed buffer geometry
for ( i = 0, l = index.count; i < l; i += 3 ) {
a = index.getX( i );
b = index.getX( i + 1 );
c = index.getX( i + 2 );
intersection = checkBufferGeometryIntersection( this, raycaster, ray, position, uv, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indices buffer semantics
intersects.push( intersection );
}
}
} else {
// non-indexed buffer geometry
for ( i = 0, l = position.count; i < l; i += 3 ) {
a = i;
b = i + 1;
c = i + 2;
intersection = checkBufferGeometryIntersection( this, raycaster, ray, position, uv, a, b, c );
if ( intersection ) {
intersection.index = a; // triangle number in positions buffer semantics
intersects.push( intersection );
}
}
}
} else if ( geometry.isGeometry ) {
var fvA, fvB, fvC;
var isMultiMaterial = Array.isArray( material );
var vertices = geometry.vertices;
var faces = geometry.faces;
var uvs;
var faceVertexUvs = geometry.faceVertexUvs[ 0 ];
if ( faceVertexUvs.length > 0 ) uvs = faceVertexUvs;
for ( var f = 0, fl = faces.length; f < fl; f ++ ) {
var face = faces[ f ];
var faceMaterial = isMultiMaterial ? material[ face.materialIndex ] : material;
if ( faceMaterial === undefined ) continue;
fvA = vertices[ face.a ];
fvB = vertices[ face.b ];
fvC = vertices[ face.c ];
if ( faceMaterial.morphTargets === true ) {
var morphTargets = geometry.morphTargets;
var morphInfluences = this.morphTargetInfluences;
vA.set( 0, 0, 0 );
vB.set( 0, 0, 0 );
vC.set( 0, 0, 0 );
for ( var t = 0, tl = morphTargets.length; t < tl; t ++ ) {
var influence = morphInfluences[ t ];
if ( influence === 0 ) continue;
var targets = morphTargets[ t ].vertices;
vA.addScaledVector( tempA.subVectors( targets[ face.a ], fvA ), influence );
vB.addScaledVector( tempB.subVectors( targets[ face.b ], fvB ), influence );
vC.addScaledVector( tempC.subVectors( targets[ face.c ], fvC ), influence );
}
vA.add( fvA );
vB.add( fvB );
vC.add( fvC );
fvA = vA;
fvB = vB;
fvC = vC;
}
intersection = checkIntersection( this, raycaster, ray, fvA, fvB, fvC, intersectionPoint );
if ( intersection ) {
if ( uvs && uvs[ f ] ) {
var uvs_f = uvs[ f ];
uvA.copy( uvs_f[ 0 ] );
uvB.copy( uvs_f[ 1 ] );
uvC.copy( uvs_f[ 2 ] );
intersection.uv = uvIntersection( intersectionPoint, fvA, fvB, fvC, uvA, uvB, uvC );
}
intersection.face = face;
intersection.faceIndex = f;
intersects.push( intersection );
}
}
}
};
}() ),
clone: function () {
return new this.constructor( this.geometry, this.material ).copy( this );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
function addLineNumbers( string ) {
var lines = string.split( '\n' );
for ( var i = 0; i < lines.length; i ++ ) {
lines[ i ] = ( i + 1 ) + ': ' + lines[ i ];
}
return lines.join( '\n' );
}
function WebGLShader( gl, type, string ) {
var shader = gl.createShader( type );
gl.shaderSource( shader, string );
gl.compileShader( shader );
if ( gl.getShaderParameter( shader, gl.COMPILE_STATUS ) === false ) {
console.error( 'THREE.WebGLShader: Shader couldn\'t compile.' );
}
if ( gl.getShaderInfoLog( shader ) !== '' ) {
console.warn( 'THREE.WebGLShader: gl.getShaderInfoLog()', type === gl.VERTEX_SHADER ? 'vertex' : 'fragment', gl.getShaderInfoLog( shader ), addLineNumbers( string ) );
}
// --enable-privileged-webgl-extension
// console.log( type, gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );
return shader;
}
/**
* @author mrdoob / http://mrdoob.com/
*/
var programIdCount = 0;
function getEncodingComponents( encoding ) {
switch ( encoding ) {
case LinearEncoding:
return [ 'Linear','( value )' ];
case sRGBEncoding:
return [ 'sRGB','( value )' ];
case RGBEEncoding:
return [ 'RGBE','( value )' ];
case RGBM7Encoding:
return [ 'RGBM','( value, 7.0 )' ];
case RGBM16Encoding:
return [ 'RGBM','( value, 16.0 )' ];
case RGBDEncoding:
return [ 'RGBD','( value, 256.0 )' ];
case GammaEncoding:
return [ 'Gamma','( value, float( GAMMA_FACTOR ) )' ];
default:
throw new Error( 'unsupported encoding: ' + encoding );
}
}
function getTexelDecodingFunction( functionName, encoding ) {
var components = getEncodingComponents( encoding );
return "vec4 " + functionName + "( vec4 value ) { return " + components[ 0 ] + "ToLinear" + components[ 1 ] + "; }";
}
function getTexelEncodingFunction( functionName, encoding ) {
var components = getEncodingComponents( encoding );
return "vec4 " + functionName + "( vec4 value ) { return LinearTo" + components[ 0 ] + components[ 1 ] + "; }";
}
function getToneMappingFunction( functionName, toneMapping ) {
var toneMappingName;
switch ( toneMapping ) {
case LinearToneMapping:
toneMappingName = "Linear";
break;
case ReinhardToneMapping:
toneMappingName = "Reinhard";
break;
case Uncharted2ToneMapping:
toneMappingName = "Uncharted2";
break;
case CineonToneMapping:
toneMappingName = "OptimizedCineon";
break;
default:
throw new Error( 'unsupported toneMapping: ' + toneMapping );
}
return "vec3 " + functionName + "( vec3 color ) { return " + toneMappingName + "ToneMapping( color ); }";
}
function generateExtensions( extensions, parameters, rendererExtensions ) {
extensions = extensions || {};
var chunks = [
( extensions.derivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.normalMap || parameters.flatShading ) ? '#extension GL_OES_standard_derivatives : enable' : '',
( extensions.fragDepth || parameters.logarithmicDepthBuffer ) && rendererExtensions.get( 'EXT_frag_depth' ) ? '#extension GL_EXT_frag_depth : enable' : '',
( extensions.drawBuffers ) && rendererExtensions.get( 'WEBGL_draw_buffers' ) ? '#extension GL_EXT_draw_buffers : require' : '',
( extensions.shaderTextureLOD || parameters.envMap ) && rendererExtensions.get( 'EXT_shader_texture_lod' ) ? '#extension GL_EXT_shader_texture_lod : enable' : ''
];
return chunks.filter( filterEmptyLine ).join( '\n' );
}
function generateDefines( defines ) {
var chunks = [];
for ( var name in defines ) {
var value = defines[ name ];
if ( value === false ) continue;
chunks.push( '#define ' + name + ' ' + value );
}
return chunks.join( '\n' );
}
function fetchAttributeLocations( gl, program, identifiers ) {
var attributes = {};
var n = gl.getProgramParameter( program, gl.ACTIVE_ATTRIBUTES );
for ( var i = 0; i < n; i ++ ) {
var info = gl.getActiveAttrib( program, i );
var name = info.name;
// console.log("THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:", name, i );
attributes[ name ] = gl.getAttribLocation( program, name );
}
return attributes;
}
function filterEmptyLine( string ) {
return string !== '';
}
function replaceLightNums( string, parameters ) {
return string
.replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights )
.replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights )
.replace( /NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights )
.replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights )
.replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights );
}
function parseIncludes( string ) {
var pattern = /^[ \t]*#include +<([\w\d.]+)>/gm;
function replace( match, include ) {
var replace = ShaderChunk[ include ];
if ( replace === undefined ) {
throw new Error( 'Can not resolve #include <' + include + '>' );
}
return parseIncludes( replace );
}
return string.replace( pattern, replace );
}
function unrollLoops( string ) {
var pattern = /for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;
function replace( match, start, end, snippet ) {
var unroll = '';
for ( var i = parseInt( start ); i < parseInt( end ); i ++ ) {
unroll += snippet.replace( /\[ i \]/g, '[ ' + i + ' ]' );
}
return unroll;
}
return string.replace( pattern, replace );
}
function WebGLProgram( renderer, code, material, shader, parameters ) {
var gl = renderer.context;
var extensions = material.extensions;
var defines = material.defines;
var vertexShader = shader.vertexShader;
var fragmentShader = shader.fragmentShader;
var shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';
if ( parameters.shadowMapType === PCFShadowMap ) {
shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';
} else if ( parameters.shadowMapType === PCFSoftShadowMap ) {
shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';
}
var envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
var envMapModeDefine = 'ENVMAP_MODE_REFLECTION';
var envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
if ( parameters.envMap ) {
switch ( material.envMap.mapping ) {
case CubeReflectionMapping:
case CubeRefractionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
break;
case CubeUVReflectionMapping:
case CubeUVRefractionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV';
break;
case EquirectangularReflectionMapping:
case EquirectangularRefractionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_EQUIREC';
break;
case SphericalReflectionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_SPHERE';
break;
}
switch ( material.envMap.mapping ) {
case CubeRefractionMapping:
case EquirectangularRefractionMapping:
envMapModeDefine = 'ENVMAP_MODE_REFRACTION';
break;
}
switch ( material.combine ) {
case MultiplyOperation:
envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
break;
case MixOperation:
envMapBlendingDefine = 'ENVMAP_BLENDING_MIX';
break;
case AddOperation:
envMapBlendingDefine = 'ENVMAP_BLENDING_ADD';
break;
}
}
var gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0;
// console.log( 'building new program ' );
//
var customExtensions = generateExtensions( extensions, parameters, renderer.extensions );
var customDefines = generateDefines( defines );
//
var program = gl.createProgram();
var prefixVertex, prefixFragment;
if ( material.isRawShaderMaterial ) {
prefixVertex = [
customDefines,
'\n'
].filter( filterEmptyLine ).join( '\n' );
prefixFragment = [
customExtensions,
customDefines,
'\n'
].filter( filterEmptyLine ).join( '\n' );
} else {
prefixVertex = [
'precision ' + parameters.precision + ' float;',
'precision ' + parameters.precision + ' int;',
'#define SHADER_NAME ' + shader.name,
customDefines,
parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '',
'#define GAMMA_FACTOR ' + gammaFactorDefine,
'#define MAX_BONES ' + parameters.maxBones,
( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : '',
parameters.map ? '#define USE_MAP' : '',
parameters.envMap ? '#define USE_ENVMAP' : '',
parameters.envMap ? '#define ' + envMapModeDefine : '',
parameters.lightMap ? '#define USE_LIGHTMAP' : '',
parameters.aoMap ? '#define USE_AOMAP' : '',
parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
parameters.bumpMap ? '#define USE_BUMPMAP' : '',
parameters.normalMap ? '#define USE_NORMALMAP' : '',
parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '',
parameters.specularMap ? '#define USE_SPECULARMAP' : '',
parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
parameters.alphaMap ? '#define USE_ALPHAMAP' : '',
parameters.vertexColors ? '#define USE_COLOR' : '',
parameters.flatShading ? '#define FLAT_SHADED' : '',
parameters.skinning ? '#define USE_SKINNING' : '',
parameters.useVertexTexture ? '#define BONE_TEXTURE' : '',
parameters.morphTargets ? '#define USE_MORPHTARGETS' : '',
parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '',
parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
parameters.flipSided ? '#define FLIP_SIDED' : '',
'#define NUM_CLIPPING_PLANES ' + parameters.numClippingPlanes,
parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',
parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '',
parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '',
'uniform mat4 modelMatrix;',
'uniform mat4 modelViewMatrix;',
'uniform mat4 projectionMatrix;',
'uniform mat4 viewMatrix;',
'uniform mat3 normalMatrix;',
'uniform vec3 cameraPosition;',
'attribute vec3 position;',
'attribute vec3 normal;',
'attribute vec2 uv;',
'#ifdef USE_COLOR',
' attribute vec3 color;',
'#endif',
'#ifdef USE_MORPHTARGETS',
' attribute vec3 morphTarget0;',
' attribute vec3 morphTarget1;',
' attribute vec3 morphTarget2;',
' attribute vec3 morphTarget3;',
' #ifdef USE_MORPHNORMALS',
' attribute vec3 morphNormal0;',
' attribute vec3 morphNormal1;',
' attribute vec3 morphNormal2;',
' attribute vec3 morphNormal3;',
' #else',
' attribute vec3 morphTarget4;',
' attribute vec3 morphTarget5;',
' attribute vec3 morphTarget6;',
' attribute vec3 morphTarget7;',
' #endif',
'#endif',
'#ifdef USE_SKINNING',
' attribute vec4 skinIndex;',
' attribute vec4 skinWeight;',
'#endif',
'\n'
].filter( filterEmptyLine ).join( '\n' );
prefixFragment = [
customExtensions,
'precision ' + parameters.precision + ' float;',
'precision ' + parameters.precision + ' int;',
'#define SHADER_NAME ' + shader.name,
customDefines,
parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest : '',
'#define GAMMA_FACTOR ' + gammaFactorDefine,
( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : '',
parameters.map ? '#define USE_MAP' : '',
parameters.envMap ? '#define USE_ENVMAP' : '',
parameters.envMap ? '#define ' + envMapTypeDefine : '',
parameters.envMap ? '#define ' + envMapModeDefine : '',
parameters.envMap ? '#define ' + envMapBlendingDefine : '',
parameters.lightMap ? '#define USE_LIGHTMAP' : '',
parameters.aoMap ? '#define USE_AOMAP' : '',
parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
parameters.bumpMap ? '#define USE_BUMPMAP' : '',
parameters.normalMap ? '#define USE_NORMALMAP' : '',
parameters.specularMap ? '#define USE_SPECULARMAP' : '',
parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
parameters.alphaMap ? '#define USE_ALPHAMAP' : '',
parameters.vertexColors ? '#define USE_COLOR' : '',
parameters.gradientMap ? '#define USE_GRADIENTMAP' : '',
parameters.flatShading ? '#define FLAT_SHADED' : '',
parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
parameters.flipSided ? '#define FLIP_SIDED' : '',
'#define NUM_CLIPPING_PLANES ' + parameters.numClippingPlanes,
'#define UNION_CLIPPING_PLANES ' + (parameters.numClippingPlanes - parameters.numClipIntersection),
parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',
parameters.premultipliedAlpha ? "#define PREMULTIPLIED_ALPHA" : '',
parameters.physicallyCorrectLights ? "#define PHYSICALLY_CORRECT_LIGHTS" : '',
parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '',
parameters.envMap && renderer.extensions.get( 'EXT_shader_texture_lod' ) ? '#define TEXTURE_LOD_EXT' : '',
'uniform mat4 viewMatrix;',
'uniform vec3 cameraPosition;',
( parameters.toneMapping !== NoToneMapping ) ? "#define TONE_MAPPING" : '',
( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below
( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( "toneMapping", parameters.toneMapping ) : '',
parameters.dithering ? '#define DITHERING' : '',
( parameters.outputEncoding || parameters.mapEncoding || parameters.envMapEncoding || parameters.emissiveMapEncoding ) ? ShaderChunk[ 'encodings_pars_fragment' ] : '', // this code is required here because it is used by the various encoding/decoding function defined below
parameters.mapEncoding ? getTexelDecodingFunction( 'mapTexelToLinear', parameters.mapEncoding ) : '',
parameters.envMapEncoding ? getTexelDecodingFunction( 'envMapTexelToLinear', parameters.envMapEncoding ) : '',
parameters.emissiveMapEncoding ? getTexelDecodingFunction( 'emissiveMapTexelToLinear', parameters.emissiveMapEncoding ) : '',
parameters.outputEncoding ? getTexelEncodingFunction( "linearToOutputTexel", parameters.outputEncoding ) : '',
parameters.depthPacking ? "#define DEPTH_PACKING " + material.depthPacking : '',
'\n'
].filter( filterEmptyLine ).join( '\n' );
}
vertexShader = parseIncludes( vertexShader );
vertexShader = replaceLightNums( vertexShader, parameters );
fragmentShader = parseIncludes( fragmentShader );
fragmentShader = replaceLightNums( fragmentShader, parameters );
if ( ! material.isShaderMaterial ) {
vertexShader = unrollLoops( vertexShader );
fragmentShader = unrollLoops( fragmentShader );
}
var vertexGlsl = prefixVertex + vertexShader;
var fragmentGlsl = prefixFragment + fragmentShader;
// console.log( '*VERTEX*', vertexGlsl );
// console.log( '*FRAGMENT*', fragmentGlsl );
var glVertexShader = WebGLShader( gl, gl.VERTEX_SHADER, vertexGlsl );
var glFragmentShader = WebGLShader( gl, gl.FRAGMENT_SHADER, fragmentGlsl );
gl.attachShader( program, glVertexShader );
gl.attachShader( program, glFragmentShader );
// Force a particular attribute to index 0.
if ( material.index0AttributeName !== undefined ) {
gl.bindAttribLocation( program, 0, material.index0AttributeName );
} else if ( parameters.morphTargets === true ) {
// programs with morphTargets displace position out of attribute 0
gl.bindAttribLocation( program, 0, 'position' );
}
gl.linkProgram( program );
var programLog = gl.getProgramInfoLog( program );
var vertexLog = gl.getShaderInfoLog( glVertexShader );
var fragmentLog = gl.getShaderInfoLog( glFragmentShader );
var runnable = true;
var haveDiagnostics = true;
// console.log( '**VERTEX**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glVertexShader ) );
// console.log( '**FRAGMENT**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glFragmentShader ) );
if ( gl.getProgramParameter( program, gl.LINK_STATUS ) === false ) {
runnable = false;
console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), 'gl.VALIDATE_STATUS', gl.getProgramParameter( program, gl.VALIDATE_STATUS ), 'gl.getProgramInfoLog', programLog, vertexLog, fragmentLog );
} else if ( programLog !== '' ) {
console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', programLog );
} else if ( vertexLog === '' || fragmentLog === '' ) {
haveDiagnostics = false;
}
if ( haveDiagnostics ) {
this.diagnostics = {
runnable: runnable,
material: material,
programLog: programLog,
vertexShader: {
log: vertexLog,
prefix: prefixVertex
},
fragmentShader: {
log: fragmentLog,
prefix: prefixFragment
}
};
}
// clean up
gl.deleteShader( glVertexShader );
gl.deleteShader( glFragmentShader );
// set up caching for uniform locations
var cachedUniforms;
this.getUniforms = function() {
if ( cachedUniforms === undefined ) {
cachedUniforms =
new WebGLUniforms( gl, program, renderer );
}
return cachedUniforms;
};
// set up caching for attribute locations
var cachedAttributes;
this.getAttributes = function() {
if ( cachedAttributes === undefined ) {
cachedAttributes = fetchAttributeLocations( gl, program );
}
return cachedAttributes;
};
// free resource
this.destroy = function() {
gl.deleteProgram( program );
this.program = undefined;
};
// DEPRECATED
Object.defineProperties( this, {
uniforms: {
get: function() {
console.warn( 'THREE.WebGLProgram: .uniforms is now .getUniforms().' );
return this.getUniforms();
}
},
attributes: {
get: function() {
console.warn( 'THREE.WebGLProgram: .attributes is now .getAttributes().' );
return this.getAttributes();
}
}
} );
//
this.id = programIdCount ++;
this.code = code;
this.usedTimes = 1;
this.program = program;
this.vertexShader = glVertexShader;
this.fragmentShader = glFragmentShader;
return this;
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLPrograms( renderer, capabilities ) {
var programs = [];
var shaderIDs = {
MeshDepthMaterial: 'depth',
MeshNormalMaterial: 'normal',
MeshBasicMaterial: 'basic',
MeshLambertMaterial: 'lambert',
MeshPhongMaterial: 'phong',
MeshToonMaterial: 'phong',
MeshStandardMaterial: 'physical',
MeshPhysicalMaterial: 'physical',
LineBasicMaterial: 'basic',
LineDashedMaterial: 'dashed',
PointsMaterial: 'points'
};
var parameterNames = [
"precision", "supportsVertexTextures", "map", "mapEncoding", "envMap", "envMapMode", "envMapEncoding",
"lightMap", "aoMap", "emissiveMap", "emissiveMapEncoding", "bumpMap", "normalMap", "displacementMap", "specularMap",
"roughnessMap", "metalnessMap", "gradientMap",
"alphaMap", "combine", "vertexColors", "fog", "useFog", "fogExp",
"flatShading", "sizeAttenuation", "logarithmicDepthBuffer", "skinning",
"maxBones", "useVertexTexture", "morphTargets", "morphNormals",
"maxMorphTargets", "maxMorphNormals", "premultipliedAlpha",
"numDirLights", "numPointLights", "numSpotLights", "numHemiLights", "numRectAreaLights",
"shadowMapEnabled", "shadowMapType", "toneMapping", 'physicallyCorrectLights',
"alphaTest", "doubleSided", "flipSided", "numClippingPlanes", "numClipIntersection", "depthPacking", "dithering"
];
function allocateBones( object ) {
var skeleton = object.skeleton;
var bones = skeleton.bones;
if ( capabilities.floatVertexTextures ) {
return 1024;
} else {
// default for when object is not specified
// ( for example when prebuilding shader to be used with multiple objects )
//
// - leave some extra space for other uniforms
// - limit here is ANGLE's 254 max uniform vectors
// (up to 54 should be safe)
var nVertexUniforms = capabilities.maxVertexUniforms;
var nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 );
var maxBones = Math.min( nVertexMatrices, bones.length );
if ( maxBones < bones.length ) {
console.warn( 'THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.' );
return 0;
}
return maxBones;
}
}
function getTextureEncodingFromMap( map, gammaOverrideLinear ) {
var encoding;
if ( ! map ) {
encoding = LinearEncoding;
} else if ( map.isTexture ) {
encoding = map.encoding;
} else if ( map.isWebGLRenderTarget ) {
console.warn( "THREE.WebGLPrograms.getTextureEncodingFromMap: don't use render targets as textures. Use their .texture property instead." );
encoding = map.texture.encoding;
}
// add backwards compatibility for WebGLRenderer.gammaInput/gammaOutput parameter, should probably be removed at some point.
if ( encoding === LinearEncoding && gammaOverrideLinear ) {
encoding = GammaEncoding;
}
return encoding;
}
this.getParameters = function ( material, lights, fog, nClipPlanes, nClipIntersection, object ) {
var shaderID = shaderIDs[ material.type ];
// heuristics to create shader parameters according to lights in the scene
// (not to blow over maxLights budget)
var maxBones = object.isSkinnedMesh ? allocateBones( object ) : 0;
var precision = renderer.getPrecision();
if ( material.precision !== null ) {
precision = capabilities.getMaxPrecision( material.precision );
if ( precision !== material.precision ) {
console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' );
}
}
var currentRenderTarget = renderer.getRenderTarget();
var parameters = {
shaderID: shaderID,
precision: precision,
supportsVertexTextures: capabilities.vertexTextures,
outputEncoding: getTextureEncodingFromMap( ( ! currentRenderTarget ) ? null : currentRenderTarget.texture, renderer.gammaOutput ),
map: !! material.map,
mapEncoding: getTextureEncodingFromMap( material.map, renderer.gammaInput ),
envMap: !! material.envMap,
envMapMode: material.envMap && material.envMap.mapping,
envMapEncoding: getTextureEncodingFromMap( material.envMap, renderer.gammaInput ),
envMapCubeUV: ( !! material.envMap ) && ( ( material.envMap.mapping === CubeUVReflectionMapping ) || ( material.envMap.mapping === CubeUVRefractionMapping ) ),
lightMap: !! material.lightMap,
aoMap: !! material.aoMap,
emissiveMap: !! material.emissiveMap,
emissiveMapEncoding: getTextureEncodingFromMap( material.emissiveMap, renderer.gammaInput ),
bumpMap: !! material.bumpMap,
normalMap: !! material.normalMap,
displacementMap: !! material.displacementMap,
roughnessMap: !! material.roughnessMap,
metalnessMap: !! material.metalnessMap,
specularMap: !! material.specularMap,
alphaMap: !! material.alphaMap,
gradientMap: !! material.gradientMap,
combine: material.combine,
vertexColors: material.vertexColors,
fog: !! fog,
useFog: material.fog,
fogExp: ( fog && fog.isFogExp2 ),
flatShading: material.shading === FlatShading,
sizeAttenuation: material.sizeAttenuation,
logarithmicDepthBuffer: capabilities.logarithmicDepthBuffer,
skinning: material.skinning && maxBones > 0,
maxBones: maxBones,
useVertexTexture: capabilities.floatVertexTextures,
morphTargets: material.morphTargets,
morphNormals: material.morphNormals,
maxMorphTargets: renderer.maxMorphTargets,
maxMorphNormals: renderer.maxMorphNormals,
numDirLights: lights.directional.length,
numPointLights: lights.point.length,
numSpotLights: lights.spot.length,
numRectAreaLights: lights.rectArea.length,
numHemiLights: lights.hemi.length,
numClippingPlanes: nClipPlanes,
numClipIntersection: nClipIntersection,
dithering: material.dithering,
shadowMapEnabled: renderer.shadowMap.enabled && object.receiveShadow && lights.shadows.length > 0,
shadowMapType: renderer.shadowMap.type,
toneMapping: renderer.toneMapping,
physicallyCorrectLights: renderer.physicallyCorrectLights,
premultipliedAlpha: material.premultipliedAlpha,
alphaTest: material.alphaTest,
doubleSided: material.side === DoubleSide,
flipSided: material.side === BackSide,
depthPacking: ( material.depthPacking !== undefined ) ? material.depthPacking : false
};
return parameters;
};
this.getProgramCode = function ( material, parameters ) {
var array = [];
if ( parameters.shaderID ) {
array.push( parameters.shaderID );
} else {
array.push( material.fragmentShader );
array.push( material.vertexShader );
}
if ( material.defines !== undefined ) {
for ( var name in material.defines ) {
array.push( name );
array.push( material.defines[ name ] );
}
}
for ( var i = 0; i < parameterNames.length; i ++ ) {
array.push( parameters[ parameterNames[ i ] ] );
}
array.push( material.onBeforeCompile.toString() );
array.push( renderer.gammaOutput );
return array.join();
};
this.acquireProgram = function ( material, shader, parameters, code ) {
var program;
// Check if code has been already compiled
for ( var p = 0, pl = programs.length; p < pl; p ++ ) {
var programInfo = programs[ p ];
if ( programInfo.code === code ) {
program = programInfo;
++ program.usedTimes;
break;
}
}
if ( program === undefined ) {
program = new WebGLProgram( renderer, code, material, shader, parameters );
programs.push( program );
}
return program;
};
this.releaseProgram = function ( program ) {
if ( -- program.usedTimes === 0 ) {
// Remove from unordered set
var i = programs.indexOf( program );
programs[ i ] = programs[ programs.length - 1 ];
programs.pop();
// Free WebGL resources
program.destroy();
}
};
// Exposed for resource monitoring & error feedback via renderer.info:
this.programs = programs;
}
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author fordacious / fordacious.github.io
*/
function WebGLProperties() {
var properties = {};
function get( object ) {
var uuid = object.uuid;
var map = properties[ uuid ];
if ( map === undefined ) {
map = {};
properties[ uuid ] = map;
}
return map;
}
function remove( object ) {
delete properties[ object.uuid ];
}
function clear() {
properties = {};
}
return {
get: get,
remove: remove,
clear: clear
};
}
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLCapabilities( gl, extensions, parameters ) {
var maxAnisotropy;
function getMaxAnisotropy() {
if ( maxAnisotropy !== undefined ) return maxAnisotropy;
var extension = extensions.get( 'EXT_texture_filter_anisotropic' );
if ( extension !== null ) {
maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT );
} else {
maxAnisotropy = 0;
}
return maxAnisotropy;
}
function getMaxPrecision( precision ) {
if ( precision === 'highp' ) {
if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.HIGH_FLOAT ).precision > 0 &&
gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.HIGH_FLOAT ).precision > 0 ) {
return 'highp';
}
precision = 'mediump';
}
if ( precision === 'mediump' ) {
if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.MEDIUM_FLOAT ).precision > 0 &&
gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT ).precision > 0 ) {
return 'mediump';
}
}
return 'lowp';
}
var precision = parameters.precision !== undefined ? parameters.precision : 'highp';
var maxPrecision = getMaxPrecision( precision );
if ( maxPrecision !== precision ) {
console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' );
precision = maxPrecision;
}
var logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true && !! extensions.get( 'EXT_frag_depth' );
var maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS );
var maxVertexTextures = gl.getParameter( gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS );
var maxTextureSize = gl.getParameter( gl.MAX_TEXTURE_SIZE );
var maxCubemapSize = gl.getParameter( gl.MAX_CUBE_MAP_TEXTURE_SIZE );
var maxAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS );
var maxVertexUniforms = gl.getParameter( gl.MAX_VERTEX_UNIFORM_VECTORS );
var maxVaryings = gl.getParameter( gl.MAX_VARYING_VECTORS );
var maxFragmentUniforms = gl.getParameter( gl.MAX_FRAGMENT_UNIFORM_VECTORS );
var vertexTextures = maxVertexTextures > 0;
var floatFragmentTextures = !! extensions.get( 'OES_texture_float' );
var floatVertexTextures = vertexTextures && floatFragmentTextures;
return {
getMaxAnisotropy: getMaxAnisotropy,
getMaxPrecision: getMaxPrecision,
precision: precision,
logarithmicDepthBuffer: logarithmicDepthBuffer,
maxTextures: maxTextures,
maxVertexTextures: maxVertexTextures,
maxTextureSize: maxTextureSize,
maxCubemapSize: maxCubemapSize,
maxAttributes: maxAttributes,
maxVertexUniforms: maxVertexUniforms,
maxVaryings: maxVaryings,
maxFragmentUniforms: maxFragmentUniforms,
vertexTextures: vertexTextures,
floatFragmentTextures: floatFragmentTextures,
floatVertexTextures: floatVertexTextures
};
}
/**
* @author mrdoob / http://mrdoob.com/
*/
function ArrayCamera( array ) {
PerspectiveCamera.call( this );
this.cameras = array || [];
}
ArrayCamera.prototype = Object.assign( Object.create( PerspectiveCamera.prototype ), {
constructor: ArrayCamera,
isArrayCamera: true
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author mrdoob / http://mrdoob.com/
*/
function WebGLExtensions( gl ) {
var extensions = {};
return {
get: function ( name ) {
if ( extensions[ name ] !== undefined ) {
return extensions[ name ];
}
var extension;
switch ( name ) {
case 'WEBGL_depth_texture':
extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' );
break;
case 'EXT_texture_filter_anisotropic':
extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' );
break;
case 'WEBGL_compressed_texture_s3tc':
extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' );
break;
case 'WEBGL_compressed_texture_pvrtc':
extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' );
break;
case 'WEBGL_compressed_texture_etc1':
extension = gl.getExtension( 'WEBGL_compressed_texture_etc1' );
break;
default:
extension = gl.getExtension( name );
}
if ( extension === null ) {
console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' );
}
extensions[ name ] = extension;
return extension;
}
};
}
/**
* @author tschw
*/
function WebGLClipping() {
var scope = this,
globalState = null,
numGlobalPlanes = 0,
localClippingEnabled = false,
renderingShadows = false,
plane = new Plane(),
viewNormalMatrix = new Matrix3(),
uniform = { value: null, needsUpdate: false };
this.uniform = uniform;
this.numPlanes = 0;
this.numIntersection = 0;
this.init = function( planes, enableLocalClipping, camera ) {
var enabled =
planes.length !== 0 ||
enableLocalClipping ||
// enable state of previous frame - the clipping code has to
// run another frame in order to reset the state:
numGlobalPlanes !== 0 ||
localClippingEnabled;
localClippingEnabled = enableLocalClipping;
globalState = projectPlanes( planes, camera, 0 );
numGlobalPlanes = planes.length;
return enabled;
};
this.beginShadows = function() {
renderingShadows = true;
projectPlanes( null );
};
this.endShadows = function() {
renderingShadows = false;
resetGlobalState();
};
this.setState = function( planes, clipIntersection, clipShadows, camera, cache, fromCache ) {
if ( ! localClippingEnabled ||
planes === null || planes.length === 0 ||
renderingShadows && ! clipShadows ) {
// there's no local clipping
if ( renderingShadows ) {
// there's no global clipping
projectPlanes( null );
} else {
resetGlobalState();
}
} else {
var nGlobal = renderingShadows ? 0 : numGlobalPlanes,
lGlobal = nGlobal * 4,
dstArray = cache.clippingState || null;
uniform.value = dstArray; // ensure unique state
dstArray = projectPlanes( planes, camera, lGlobal, fromCache );
for ( var i = 0; i !== lGlobal; ++ i ) {
dstArray[ i ] = globalState[ i ];
}
cache.clippingState = dstArray;
this.numIntersection = clipIntersection ? this.numPlanes : 0;
this.numPlanes += nGlobal;
}
};
function resetGlobalState() {
if ( uniform.value !== globalState ) {
uniform.value = globalState;
uniform.needsUpdate = numGlobalPlanes > 0;
}
scope.numPlanes = numGlobalPlanes;
scope.numIntersection = 0;
}
function projectPlanes( planes, camera, dstOffset, skipTransform ) {
var nPlanes = planes !== null ? planes.length : 0,
dstArray = null;
if ( nPlanes !== 0 ) {
dstArray = uniform.value;
if ( skipTransform !== true || dstArray === null ) {
var flatSize = dstOffset + nPlanes * 4,
viewMatrix = camera.matrixWorldInverse;
viewNormalMatrix.getNormalMatrix( viewMatrix );
if ( dstArray === null || dstArray.length < flatSize ) {
dstArray = new Float32Array( flatSize );
}
for ( var i = 0, i4 = dstOffset;
i !== nPlanes; ++ i, i4 += 4 ) {
plane.copy( planes[ i ] ).
applyMatrix4( viewMatrix, viewNormalMatrix );
plane.normal.toArray( dstArray, i4 );
dstArray[ i4 + 3 ] = plane.constant;
}
}
uniform.value = dstArray;
uniform.needsUpdate = true;
}
scope.numPlanes = nPlanes;
return dstArray;
}
}
// import { Sphere } from '../math/Sphere';
/**
* @author mrdoob / http://mrdoob.com/
*/
function Scene () {
Object3D.call( this );
this.type = 'Scene';
this.background = null;
this.fog = null;
this.overrideMaterial = null;
this.autoUpdate = true; // checked by the renderer
}
Scene.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Scene,
copy: function ( source, recursive ) {
Object3D.prototype.copy.call( this, source, recursive );
if ( source.background !== null ) this.background = source.background.clone();
if ( source.fog !== null ) this.fog = source.fog.clone();
if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone();
this.autoUpdate = source.autoUpdate;
this.matrixAutoUpdate = source.matrixAutoUpdate;
return this;
},
toJSON: function ( meta ) {
var data = Object3D.prototype.toJSON.call( this, meta );
if ( this.background !== null ) data.object.background = this.background.toJSON( meta );
if ( this.fog !== null ) data.object.fog = this.fog.toJSON();
return data;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* linewidth: <float>,
* linecap: "round",
* linejoin: "round"
* }
*/
function LineBasicMaterial( parameters ) {
Material.call( this );
this.type = 'LineBasicMaterial';
this.color = new Color( 0xffffff );
this.linewidth = 1;
this.linecap = 'round';
this.linejoin = 'round';
this.lights = false;
this.setValues( parameters );
}
LineBasicMaterial.prototype = Object.create( Material.prototype );
LineBasicMaterial.prototype.constructor = LineBasicMaterial;
LineBasicMaterial.prototype.isLineBasicMaterial = true;
LineBasicMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.linewidth = source.linewidth;
this.linecap = source.linecap;
this.linejoin = source.linejoin;
return this;
};
/**
* @author mrdoob / http://mrdoob.com/
*/
function Line( geometry, material, mode ) {
if ( mode === 1 ) {
console.warn( 'THREE.Line: parameter THREE.LinePieces no longer supported. Created THREE.LineSegments instead.' );
return new LineSegments( geometry, material );
}
Object3D.call( this );
this.type = 'Line';
this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
this.material = material !== undefined ? material : new LineBasicMaterial( { color: Math.random() * 0xffffff } );
}
Line.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Line,
isLine: true,
raycast: ( function () {
var inverseMatrix = new Matrix4();
var ray = new Ray();
var sphere = new Sphere();
return function raycast( raycaster, intersects ) {
var precision = raycaster.linePrecision;
var precisionSq = precision * precision;
var geometry = this.geometry;
var matrixWorld = this.matrixWorld;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
sphere.copy( geometry.boundingSphere );
sphere.applyMatrix4( matrixWorld );
if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;
//
inverseMatrix.getInverse( matrixWorld );
ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );
var vStart = new Vector3();
var vEnd = new Vector3();
var interSegment = new Vector3();
var interRay = new Vector3();
var step = (this && this.isLineSegments) ? 2 : 1;
if ( geometry.isBufferGeometry ) {
var index = geometry.index;
var attributes = geometry.attributes;
var positions = attributes.position.array;
if ( index !== null ) {
var indices = index.array;
for ( var i = 0, l = indices.length - 1; i < l; i += step ) {
var a = indices[ i ];
var b = indices[ i + 1 ];
vStart.fromArray( positions, a * 3 );
vEnd.fromArray( positions, b * 3 );
var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment );
if ( distSq > precisionSq ) continue;
interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
var distance = raycaster.ray.origin.distanceTo( interRay );
if ( distance < raycaster.near || distance > raycaster.far ) continue;
intersects.push( {
distance: distance,
// What do we want? intersection point on the ray or on the segment??
// point: raycaster.ray.at( distance ),
point: interSegment.clone().applyMatrix4( this.matrixWorld ),
index: i,
face: null,
faceIndex: null,
object: this
} );
}
} else {
for ( var i = 0, l = positions.length / 3 - 1; i < l; i += step ) {
vStart.fromArray( positions, 3 * i );
vEnd.fromArray( positions, 3 * i + 3 );
var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment );
if ( distSq > precisionSq ) continue;
interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
var distance = raycaster.ray.origin.distanceTo( interRay );
if ( distance < raycaster.near || distance > raycaster.far ) continue;
intersects.push( {
distance: distance,
// What do we want? intersection point on the ray or on the segment??
// point: raycaster.ray.at( distance ),
point: interSegment.clone().applyMatrix4( this.matrixWorld ),
index: i,
face: null,
faceIndex: null,
object: this
} );
}
}
} else if ( geometry.isGeometry ) {
var vertices = geometry.vertices;
var nbVertices = vertices.length;
for ( var i = 0; i < nbVertices - 1; i += step ) {
var distSq = ray.distanceSqToSegment( vertices[ i ], vertices[ i + 1 ], interRay, interSegment );
if ( distSq > precisionSq ) continue;
interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
var distance = raycaster.ray.origin.distanceTo( interRay );
if ( distance < raycaster.near || distance > raycaster.far ) continue;
intersects.push( {
distance: distance,
// What do we want? intersection point on the ray or on the segment??
// point: raycaster.ray.at( distance ),
point: interSegment.clone().applyMatrix4( this.matrixWorld ),
index: i,
face: null,
faceIndex: null,
object: this
} );
}
}
};
}() ),
clone: function () {
return new this.constructor( this.geometry, this.material ).copy( this );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function LineSegments( geometry, material ) {
Line.call( this, geometry, material );
this.type = 'LineSegments';
}
LineSegments.prototype = Object.assign( Object.create( Line.prototype ), {
constructor: LineSegments,
isLineSegments: true
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
* map: new THREE.Texture( <Image> ),
*
* size: <float>,
* sizeAttenuation: <bool>
* }
*/
function PointsMaterial( parameters ) {
Material.call( this );
this.type = 'PointsMaterial';
this.color = new Color( 0xffffff );
this.map = null;
this.size = 1;
this.sizeAttenuation = true;
this.lights = false;
this.setValues( parameters );
}
PointsMaterial.prototype = Object.create( Material.prototype );
PointsMaterial.prototype.constructor = PointsMaterial;
PointsMaterial.prototype.isPointsMaterial = true;
PointsMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.size = source.size;
this.sizeAttenuation = source.sizeAttenuation;
return this;
};
/**
* @author alteredq / http://alteredqualia.com/
*/
function Points( geometry, material ) {
Object3D.call( this );
this.type = 'Points';
this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
this.material = material !== undefined ? material : new PointsMaterial( { color: Math.random() * 0xffffff } );
}
Points.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Points,
isPoints: true,
raycast: ( function () {
var inverseMatrix = new Matrix4();
var ray = new Ray();
var sphere = new Sphere();
return function raycast( raycaster, intersects ) {
var object = this;
var geometry = this.geometry;
var matrixWorld = this.matrixWorld;
var threshold = raycaster.params.Points.threshold;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
sphere.copy( geometry.boundingSphere );
sphere.applyMatrix4( matrixWorld );
sphere.radius += threshold;
if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;
//
inverseMatrix.getInverse( matrixWorld );
ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );
var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 );
var localThresholdSq = localThreshold * localThreshold;
var position = new Vector3();
function testPoint( point, index ) {
var rayPointDistanceSq = ray.distanceSqToPoint( point );
if ( rayPointDistanceSq < localThresholdSq ) {
var intersectPoint = ray.closestPointToPoint( point );
intersectPoint.applyMatrix4( matrixWorld );
var distance = raycaster.ray.origin.distanceTo( intersectPoint );
if ( distance < raycaster.near || distance > raycaster.far ) return;
intersects.push( {
distance: distance,
distanceToRay: Math.sqrt( rayPointDistanceSq ),
point: intersectPoint.clone(),
index: index,
face: null,
object: object
} );
}
}
if ( geometry.isBufferGeometry ) {
var index = geometry.index;
var attributes = geometry.attributes;
var positions = attributes.position.array;
if ( index !== null ) {
var indices = index.array;
for ( var i = 0, il = indices.length; i < il; i ++ ) {
var a = indices[ i ];
position.fromArray( positions, a * 3 );
testPoint( position, a );
}
} else {
for ( var i = 0, l = positions.length / 3; i < l; i ++ ) {
position.fromArray( positions, i * 3 );
testPoint( position, i );
}
}
} else {
var vertices = geometry.vertices;
for ( var i = 0, l = vertices.length; i < l; i ++ ) {
testPoint( vertices[ i ], i );
}
}
};
}() ),
clone: function () {
return new this.constructor( this.geometry, this.material ).copy( this );
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function Group() {
Object3D.call( this );
this.type = 'Group';
}
Group.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Group
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author benaadams / https://twitter.com/ben_a_adams
* @author Mugen87 / https://github.com/Mugen87
*/
/**
* @author Kaleb Murphy
* @author Mugen87 / https://github.com/Mugen87
*/
/**
* @author mrdoob / http://mrdoob.com/
* @author Mugen87 / https://github.com/Mugen87
*/
/**
* @author benaadams / https://twitter.com/ben_a_adams
* @author Mugen87 / https://github.com/Mugen87
* @author hughes
*/
//export { WireframeGeometry } from './WireframeGeometry.js';
//export { ParametricGeometry, ParametricBufferGeometry } from './ParametricGeometry.js';
//export { TetrahedronGeometry, TetrahedronBufferGeometry } from './TetrahedronGeometry.js';
//export { OctahedronGeometry, OctahedronBufferGeometry } from './OctahedronGeometry.js';
//export { IcosahedronGeometry, IcosahedronBufferGeometry } from './IcosahedronGeometry.js';
//export { DodecahedronGeometry, DodecahedronBufferGeometry } from './DodecahedronGeometry.js';
//export { PolyhedronGeometry, PolyhedronBufferGeometry } from './PolyhedronGeometry.js';
//export { TubeGeometry, TubeBufferGeometry } from './TubeGeometry.js';
//export { TorusKnotGeometry, TorusKnotBufferGeometry } from './TorusKnotGeometry.js';
//export { TorusGeometry, TorusBufferGeometry } from './TorusGeometry.js';
//export { TextGeometry, TextBufferGeometry } from './TextGeometry.js';
//export { BoxGeometry, BoxBufferGeometry } from './BoxGeometry.js';
/**
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
* map: new THREE.Texture( <Image> ),
*
* uvOffset: new THREE.Vector2(),
* uvScale: new THREE.Vector2()
* }
*/
function SpriteMaterial( parameters ) {
Material.call( this );
this.type = 'SpriteMaterial';
this.color = new Color( 0xffffff );
this.map = null;
this.rotation = 0;
this.fog = false;
this.lights = false;
this.setValues( parameters );
}
SpriteMaterial.prototype = Object.create( Material.prototype );
SpriteMaterial.prototype.constructor = SpriteMaterial;
SpriteMaterial.prototype.isSpriteMaterial = true;
SpriteMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.rotation = source.rotation;
return this;
};
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* specular: <hex>,
* shininess: <float>,
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* emissive: <hex>,
* emissiveIntensity: <float>
* emissiveMap: new THREE.Texture( <Image> ),
*
* bumpMap: new THREE.Texture( <Image> ),
* bumpScale: <float>,
*
* normalMap: new THREE.Texture( <Image> ),
* normalScale: <Vector2>,
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* specularMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>
* }
*/
function MeshPhongMaterial( parameters ) {
Material.call( this );
this.type = 'MeshPhongMaterial';
this.color = new Color( 0xffffff ); // diffuse
this.specular = new Color( 0x111111 );
this.shininess = 30;
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new Color( 0x000000 );
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalScale = new Vector2( 1, 1 );
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.skinning = false;
this.morphTargets = false;
this.morphNormals = false;
this.setValues( parameters );
}
MeshPhongMaterial.prototype = Object.create( Material.prototype );
MeshPhongMaterial.prototype.constructor = MeshPhongMaterial;
MeshPhongMaterial.prototype.isMeshPhongMaterial = true;
MeshPhongMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.specular.copy( source.specular );
this.shininess = source.shininess;
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy( source.emissive );
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalScale.copy( source.normalScale );
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
return this;
};
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* emissive: <hex>,
* emissiveIntensity: <float>
* emissiveMap: new THREE.Texture( <Image> ),
*
* specularMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* skinning: <bool>,
* morphTargets: <bool>,
* morphNormals: <bool>
* }
*/
function MeshLambertMaterial( parameters ) {
Material.call( this );
this.type = 'MeshLambertMaterial';
this.color = new Color( 0xffffff ); // diffuse
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new Color( 0x000000 );
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.skinning = false;
this.morphTargets = false;
this.morphNormals = false;
this.setValues( parameters );
}
MeshLambertMaterial.prototype = Object.create( Material.prototype );
MeshLambertMaterial.prototype.constructor = MeshLambertMaterial;
MeshLambertMaterial.prototype.isMeshLambertMaterial = true;
MeshLambertMaterial.prototype.copy = function ( source ) {
Material.prototype.copy.call( this, source );
this.color.copy( source.color );
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy( source.emissive );
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.skinning = source.skinning;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
return this;
};
//export { ShadowMaterial } from './ShadowMaterial.js';
var Materials = Object.freeze({
SpriteMaterial: SpriteMaterial,
ShaderMaterial: ShaderMaterial,
PointsMaterial: PointsMaterial,
MeshPhongMaterial: MeshPhongMaterial,
MeshLambertMaterial: MeshLambertMaterial,
MeshBasicMaterial: MeshBasicMaterial,
LineBasicMaterial: LineBasicMaterial,
Material: Material
});
/**
* @author mrdoob / http://mrdoob.com/
*/
var Cache = {
enabled: false,
files: {},
add: function ( key, file ) {
if ( this.enabled === false ) return;
// console.log( 'THREE.Cache', 'Adding key:', key );
this.files[ key ] = file;
},
get: function ( key ) {
if ( this.enabled === false ) return;
// console.log( 'THREE.Cache', 'Checking key:', key );
return this.files[ key ];
},
remove: function ( key ) {
delete this.files[ key ];
},
clear: function () {
this.files = {};
}
};
/**
* @author mrdoob / http://mrdoob.com/
*/
function LoadingManager( onLoad, onProgress, onError ) {
var scope = this;
var isLoading = false, itemsLoaded = 0, itemsTotal = 0;
this.onStart = undefined;
this.onLoad = onLoad;
this.onProgress = onProgress;
this.onError = onError;
this.itemStart = function ( url ) {
itemsTotal ++;
if ( isLoading === false ) {
if ( scope.onStart !== undefined ) {
scope.onStart( url, itemsLoaded, itemsTotal );
}
}
isLoading = true;
};
this.itemEnd = function ( url ) {
itemsLoaded ++;
if ( scope.onProgress !== undefined ) {
scope.onProgress( url, itemsLoaded, itemsTotal );
}
if ( itemsLoaded === itemsTotal ) {
isLoading = false;
if ( scope.onLoad !== undefined ) {
scope.onLoad();
}
}
};
this.itemError = function ( url ) {
if ( scope.onError !== undefined ) {
scope.onError( url );
}
};
}
var DefaultLoadingManager = new LoadingManager();
/**
* @author mrdoob / http://mrdoob.com/
*/
function ImageLoader( manager ) {
this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
}
Object.assign( ImageLoader.prototype, {
load: function ( url, onLoad, onProgress, onError ) {
if ( url === undefined ) url = '';
if ( this.path !== undefined ) url = this.path + url;
var scope = this;
var cached = Cache.get( url );
if ( cached !== undefined ) {
scope.manager.itemStart( url );
setTimeout( function () {
if ( onLoad ) onLoad( cached );
scope.manager.itemEnd( url );
}, 0 );
return cached;
}
var image = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'img' );
image.addEventListener( 'load', function () {
Cache.add( url, this );
if ( onLoad ) onLoad( this );
scope.manager.itemEnd( url );
}, false );
/*
image.addEventListener( 'progress', function ( event ) {
if ( onProgress ) onProgress( event );
}, false );
*/
image.addEventListener( 'error', function ( event ) {
if ( onError ) onError( event );
scope.manager.itemEnd( url );
scope.manager.itemError( url );
}, false );
if ( url.substr( 0, 5 ) !== 'data:' ) {
if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin;
}
scope.manager.itemStart( url );
image.src = url;
return image;
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
return this;
},
setPath: function ( value ) {
this.path = value;
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function TextureLoader( manager ) {
this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
}
Object.assign( TextureLoader.prototype, {
load: function ( url, onLoad, onProgress, onError ) {
var loader = new ImageLoader( this.manager );
loader.setCrossOrigin( this.crossOrigin );
loader.setPath( this.path );
var texture = new Texture();
texture.image = loader.load( url, function () {
// JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB.
var isJPEG = url.search( /\.(jpg|jpeg)$/ ) > 0 || url.search( /^data\:image\/jpeg/ ) === 0;
texture.format = isJPEG ? RGBFormat : RGBAFormat;
texture.needsUpdate = true;
if ( onLoad !== undefined ) {
onLoad( texture );
}
}, onProgress, onError );
return texture;
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
return this;
},
setPath: function ( value ) {
this.path = value;
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function FileLoader( manager ) {
this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
}
Object.assign( FileLoader.prototype, {
load: function ( url, onLoad, onProgress, onError ) {
if ( url === undefined ) url = '';
if ( this.path !== undefined ) url = this.path + url;
var scope = this;
var cached = Cache.get( url );
if ( cached !== undefined ) {
scope.manager.itemStart( url );
setTimeout( function () {
if ( onLoad ) onLoad( cached );
scope.manager.itemEnd( url );
}, 0 );
return cached;
}
// Check for data: URI
var dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/;
var dataUriRegexResult = url.match( dataUriRegex );
// Safari can not handle Data URIs through XMLHttpRequest so process manually
if ( dataUriRegexResult ) {
var mimeType = dataUriRegexResult[ 1 ];
var isBase64 = !! dataUriRegexResult[ 2 ];
var data = dataUriRegexResult[ 3 ];
data = window.decodeURIComponent( data );
if ( isBase64 ) data = window.atob( data );
try {
var response;
var responseType = ( this.responseType || '' ).toLowerCase();
switch ( responseType ) {
case 'arraybuffer':
case 'blob':
response = new ArrayBuffer( data.length );
var view = new Uint8Array( response );
for ( var i = 0; i < data.length; i ++ ) {
view[ i ] = data.charCodeAt( i );
}
if ( responseType === 'blob' ) {
response = new Blob( [ response ], { type: mimeType } );
}
break;
case 'document':
var parser = new DOMParser();
response = parser.parseFromString( data, mimeType );
break;
case 'json':
response = JSON.parse( data );
break;
default: // 'text' or other
response = data;
break;
}
// Wait for next browser tick
window.setTimeout( function () {
if ( onLoad ) onLoad( response );
scope.manager.itemEnd( url );
}, 0 );
} catch ( error ) {
// Wait for next browser tick
window.setTimeout( function () {
if ( onError ) onError( error );
scope.manager.itemEnd( url );
scope.manager.itemError( url );
}, 0 );
}
} else {
var request = new XMLHttpRequest();
request.open( 'GET', url, true );
request.addEventListener( 'load', function ( event ) {
var response = event.target.response;
Cache.add( url, response );
if ( this.status === 200 ) {
if ( onLoad ) onLoad( response );
scope.manager.itemEnd( url );
} else if ( this.status === 0 ) {
// Some browsers return HTTP Status 0 when using non-http protocol
// e.g. 'file://' or 'data://'. Handle as success.
console.warn( 'THREE.FileLoader: HTTP Status 0 received.' );
if ( onLoad ) onLoad( response );
scope.manager.itemEnd( url );
} else {
if ( onError ) onError( event );
scope.manager.itemEnd( url );
scope.manager.itemError( url );
}
}, false );
if ( onProgress !== undefined ) {
request.addEventListener( 'progress', function ( event ) {
onProgress( event );
}, false );
}
request.addEventListener( 'error', function ( event ) {
if ( onError ) onError( event );
scope.manager.itemEnd( url );
scope.manager.itemError( url );
}, false );
if ( this.responseType !== undefined ) request.responseType = this.responseType;
if ( this.withCredentials !== undefined ) request.withCredentials = this.withCredentials;
if ( request.overrideMimeType ) request.overrideMimeType( this.mimeType !== undefined ? this.mimeType : 'text/plain' );
for ( var header in this.requestHeader ) {
request.setRequestHeader( header, this.requestHeader[ header ] );
}
request.send( null );
}
scope.manager.itemStart( url );
return request;
},
setPath: function ( value ) {
this.path = value;
return this;
},
setResponseType: function ( value ) {
this.responseType = value;
return this;
},
setWithCredentials: function ( value ) {
this.withCredentials = value;
return this;
},
setMimeType: function ( value ) {
this.mimeType = value;
return this;
},
setRequestHeader: function ( value ) {
this.requestHeader = value;
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function MaterialLoader( manager ) {
this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
this.textures = {};
}
Object.assign( MaterialLoader.prototype, {
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var loader = new FileLoader( scope.manager );
loader.load( url, function ( text ) {
onLoad( scope.parse( JSON.parse( text ) ) );
}, onProgress, onError );
},
setTextures: function ( value ) {
this.textures = value;
},
parse: function ( json ) {
var textures = this.textures;
function getTexture( name ) {
if ( textures[ name ] === undefined ) {
console.warn( 'THREE.MaterialLoader: Undefined texture', name );
}
return textures[ name ];
}
var material = new Materials[ json.type ]();
if ( json.uuid !== undefined ) material.uuid = json.uuid;
if ( json.name !== undefined ) material.name = json.name;
if ( json.color !== undefined ) material.color.setHex( json.color );
if ( json.roughness !== undefined ) material.roughness = json.roughness;
if ( json.metalness !== undefined ) material.metalness = json.metalness;
if ( json.emissive !== undefined ) material.emissive.setHex( json.emissive );
if ( json.specular !== undefined ) material.specular.setHex( json.specular );
if ( json.shininess !== undefined ) material.shininess = json.shininess;
if ( json.clearCoat !== undefined ) material.clearCoat = json.clearCoat;
if ( json.clearCoatRoughness !== undefined ) material.clearCoatRoughness = json.clearCoatRoughness;
if ( json.uniforms !== undefined ) material.uniforms = json.uniforms;
if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader;
if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader;
if ( json.vertexColors !== undefined ) material.vertexColors = json.vertexColors;
if ( json.fog !== undefined ) material.fog = json.fog;
if ( json.shading !== undefined ) material.shading = json.shading;
if ( json.blending !== undefined ) material.blending = json.blending;
if ( json.side !== undefined ) material.side = json.side;
if ( json.opacity !== undefined ) material.opacity = json.opacity;
if ( json.transparent !== undefined ) material.transparent = json.transparent;
if ( json.alphaTest !== undefined ) material.alphaTest = json.alphaTest;
if ( json.depthTest !== undefined ) material.depthTest = json.depthTest;
if ( json.depthWrite !== undefined ) material.depthWrite = json.depthWrite;
if ( json.colorWrite !== undefined ) material.colorWrite = json.colorWrite;
if ( json.wireframe !== undefined ) material.wireframe = json.wireframe;
if ( json.wireframeLinewidth !== undefined ) material.wireframeLinewidth = json.wireframeLinewidth;
if ( json.wireframeLinecap !== undefined ) material.wireframeLinecap = json.wireframeLinecap;
if ( json.wireframeLinejoin !== undefined ) material.wireframeLinejoin = json.wireframeLinejoin;
if ( json.skinning !== undefined ) material.skinning = json.skinning;
if ( json.morphTargets !== undefined ) material.morphTargets = json.morphTargets;
// for PointsMaterial
if ( json.size !== undefined ) material.size = json.size;
if ( json.sizeAttenuation !== undefined ) material.sizeAttenuation = json.sizeAttenuation;
// maps
if ( json.map !== undefined ) material.map = getTexture( json.map );
if ( json.alphaMap !== undefined ) {
material.alphaMap = getTexture( json.alphaMap );
material.transparent = true;
}
if ( json.bumpMap !== undefined ) material.bumpMap = getTexture( json.bumpMap );
if ( json.bumpScale !== undefined ) material.bumpScale = json.bumpScale;
if ( json.normalMap !== undefined ) material.normalMap = getTexture( json.normalMap );
if ( json.normalScale !== undefined ) {
var normalScale = json.normalScale;
if ( Array.isArray( normalScale ) === false ) {
// Blender exporter used to export a scalar. See #7459
normalScale = [ normalScale, normalScale ];
}
material.normalScale = new Vector2().fromArray( normalScale );
}
if ( json.displacementMap !== undefined ) material.displacementMap = getTexture( json.displacementMap );
if ( json.displacementScale !== undefined ) material.displacementScale = json.displacementScale;
if ( json.displacementBias !== undefined ) material.displacementBias = json.displacementBias;
if ( json.roughnessMap !== undefined ) material.roughnessMap = getTexture( json.roughnessMap );
if ( json.metalnessMap !== undefined ) material.metalnessMap = getTexture( json.metalnessMap );
if ( json.emissiveMap !== undefined ) material.emissiveMap = getTexture( json.emissiveMap );
if ( json.emissiveIntensity !== undefined ) material.emissiveIntensity = json.emissiveIntensity;
if ( json.specularMap !== undefined ) material.specularMap = getTexture( json.specularMap );
if ( json.envMap !== undefined ) material.envMap = getTexture( json.envMap );
if ( json.reflectivity !== undefined ) material.reflectivity = json.reflectivity;
if ( json.lightMap !== undefined ) material.lightMap = getTexture( json.lightMap );
if ( json.lightMapIntensity !== undefined ) material.lightMapIntensity = json.lightMapIntensity;
if ( json.aoMap !== undefined ) material.aoMap = getTexture( json.aoMap );
if ( json.aoMapIntensity !== undefined ) material.aoMapIntensity = json.aoMapIntensity;
if ( json.gradientMap !== undefined ) material.gradientMap = getTexture( json.gradientMap );
return material;
}
} );
/**
* @author alteredq / http://alteredqualia.com/
*/
function Loader() {
this.onLoadStart = function () {};
this.onLoadProgress = function () {};
this.onLoadComplete = function () {};
}
Loader.Handlers = {
handlers: [],
add: function ( regex, loader ) {
this.handlers.push( regex, loader );
},
get: function ( file ) {
var handlers = this.handlers;
for ( var i = 0, l = handlers.length; i < l; i += 2 ) {
var regex = handlers[ i ];
var loader = handlers[ i + 1 ];
if ( regex.test( file ) ) {
return loader;
}
}
return null;
}
};
Object.assign( Loader.prototype, {
crossOrigin: undefined,
extractUrlBase: function ( url ) {
var parts = url.split( '/' );
if ( parts.length === 1 ) return './';
parts.pop();
return parts.join( '/' ) + '/';
},
initMaterials: function ( materials, texturePath, crossOrigin ) {
var array = [];
for ( var i = 0; i < materials.length; ++ i ) {
array[ i ] = this.createMaterial( materials[ i ], texturePath, crossOrigin );
}
return array;
},
createMaterial: ( function () {
var BlendingMode = {
NoBlending: NoBlending,
NormalBlending: NormalBlending,
AdditiveBlending: AdditiveBlending,
SubtractiveBlending: SubtractiveBlending,
MultiplyBlending: MultiplyBlending,
CustomBlending: CustomBlending
};
var color = new Color();
var textureLoader = new TextureLoader();
var materialLoader = new MaterialLoader();
return function createMaterial( m, texturePath, crossOrigin ) {
// convert from old material format
var textures = {};
function loadTexture( path, repeat, offset, wrap, anisotropy ) {
var fullPath = texturePath + path;
var loader = Loader.Handlers.get( fullPath );
var texture;
if ( loader !== null ) {
texture = loader.load( fullPath );
} else {
textureLoader.setCrossOrigin( crossOrigin );
texture = textureLoader.load( fullPath );
}
if ( repeat !== undefined ) {
texture.repeat.fromArray( repeat );
if ( repeat[ 0 ] !== 1 ) texture.wrapS = RepeatWrapping;
if ( repeat[ 1 ] !== 1 ) texture.wrapT = RepeatWrapping;
}
if ( offset !== undefined ) {
texture.offset.fromArray( offset );
}
if ( wrap !== undefined ) {
if ( wrap[ 0 ] === 'repeat' ) texture.wrapS = RepeatWrapping;
if ( wrap[ 0 ] === 'mirror' ) texture.wrapS = MirroredRepeatWrapping;
if ( wrap[ 1 ] === 'repeat' ) texture.wrapT = RepeatWrapping;
if ( wrap[ 1 ] === 'mirror' ) texture.wrapT = MirroredRepeatWrapping;
}
if ( anisotropy !== undefined ) {
texture.anisotropy = anisotropy;
}
var uuid = _Math.generateUUID();
textures[ uuid ] = texture;
return uuid;
}
//
var json = {
uuid: _Math.generateUUID(),
type: 'MeshLambertMaterial'
};
for ( var name in m ) {
var value = m[ name ];
switch ( name ) {
case 'DbgColor':
case 'DbgIndex':
case 'opticalDensity':
case 'illumination':
break;
case 'DbgName':
json.name = value;
break;
case 'blending':
json.blending = BlendingMode[ value ];
break;
case 'colorAmbient':
case 'mapAmbient':
console.warn( 'THREE.Loader.createMaterial:', name, 'is no longer supported.' );
break;
case 'colorDiffuse':
json.color = color.fromArray( value ).getHex();
break;
case 'colorSpecular':
json.specular = color.fromArray( value ).getHex();
break;
case 'colorEmissive':
json.emissive = color.fromArray( value ).getHex();
break;
case 'specularCoef':
json.shininess = value;
break;
case 'shading':
if ( value.toLowerCase() === 'basic' ) json.type = 'MeshBasicMaterial';
if ( value.toLowerCase() === 'phong' ) json.type = 'MeshPhongMaterial';
if ( value.toLowerCase() === 'standard' ) json.type = 'MeshStandardMaterial';
break;
case 'mapDiffuse':
json.map = loadTexture( value, m.mapDiffuseRepeat, m.mapDiffuseOffset, m.mapDiffuseWrap, m.mapDiffuseAnisotropy );
break;
case 'mapDiffuseRepeat':
case 'mapDiffuseOffset':
case 'mapDiffuseWrap':
case 'mapDiffuseAnisotropy':
break;
case 'mapEmissive':
json.emissiveMap = loadTexture( value, m.mapEmissiveRepeat, m.mapEmissiveOffset, m.mapEmissiveWrap, m.mapEmissiveAnisotropy );
break;
case 'mapEmissiveRepeat':
case 'mapEmissiveOffset':
case 'mapEmissiveWrap':
case 'mapEmissiveAnisotropy':
break;
case 'mapLight':
json.lightMap = loadTexture( value, m.mapLightRepeat, m.mapLightOffset, m.mapLightWrap, m.mapLightAnisotropy );
break;
case 'mapLightRepeat':
case 'mapLightOffset':
case 'mapLightWrap':
case 'mapLightAnisotropy':
break;
case 'mapAO':
json.aoMap = loadTexture( value, m.mapAORepeat, m.mapAOOffset, m.mapAOWrap, m.mapAOAnisotropy );
break;
case 'mapAORepeat':
case 'mapAOOffset':
case 'mapAOWrap':
case 'mapAOAnisotropy':
break;
case 'mapBump':
json.bumpMap = loadTexture( value, m.mapBumpRepeat, m.mapBumpOffset, m.mapBumpWrap, m.mapBumpAnisotropy );
break;
case 'mapBumpScale':
json.bumpScale = value;
break;
case 'mapBumpRepeat':
case 'mapBumpOffset':
case 'mapBumpWrap':
case 'mapBumpAnisotropy':
break;
case 'mapNormal':
json.normalMap = loadTexture( value, m.mapNormalRepeat, m.mapNormalOffset, m.mapNormalWrap, m.mapNormalAnisotropy );
break;
case 'mapNormalFactor':
json.normalScale = [ value, value ];
break;
case 'mapNormalRepeat':
case 'mapNormalOffset':
case 'mapNormalWrap':
case 'mapNormalAnisotropy':
break;
case 'mapSpecular':
json.specularMap = loadTexture( value, m.mapSpecularRepeat, m.mapSpecularOffset, m.mapSpecularWrap, m.mapSpecularAnisotropy );
break;
case 'mapSpecularRepeat':
case 'mapSpecularOffset':
case 'mapSpecularWrap':
case 'mapSpecularAnisotropy':
break;
case 'mapMetalness':
json.metalnessMap = loadTexture( value, m.mapMetalnessRepeat, m.mapMetalnessOffset, m.mapMetalnessWrap, m.mapMetalnessAnisotropy );
break;
case 'mapMetalnessRepeat':
case 'mapMetalnessOffset':
case 'mapMetalnessWrap':
case 'mapMetalnessAnisotropy':
break;
case 'mapRoughness':
json.roughnessMap = loadTexture( value, m.mapRoughnessRepeat, m.mapRoughnessOffset, m.mapRoughnessWrap, m.mapRoughnessAnisotropy );
break;
case 'mapRoughnessRepeat':
case 'mapRoughnessOffset':
case 'mapRoughnessWrap':
case 'mapRoughnessAnisotropy':
break;
case 'mapAlpha':
json.alphaMap = loadTexture( value, m.mapAlphaRepeat, m.mapAlphaOffset, m.mapAlphaWrap, m.mapAlphaAnisotropy );
break;
case 'mapAlphaRepeat':
case 'mapAlphaOffset':
case 'mapAlphaWrap':
case 'mapAlphaAnisotropy':
break;
case 'flipSided':
json.side = BackSide;
break;
case 'doubleSided':
json.side = DoubleSide;
break;
case 'transparency':
console.warn( 'THREE.Loader.createMaterial: transparency has been renamed to opacity' );
json.opacity = value;
break;
case 'depthTest':
case 'depthWrite':
case 'colorWrite':
case 'opacity':
case 'reflectivity':
case 'transparent':
case 'visible':
case 'wireframe':
json[ name ] = value;
break;
case 'vertexColors':
if ( value === true ) json.vertexColors = VertexColors;
if ( value === 'face' ) json.vertexColors = FaceColors;
break;
default:
console.error( 'THREE.Loader.createMaterial: Unsupported', name, value );
break;
}
}
if ( json.type === 'MeshBasicMaterial' ) delete json.emissive;
if ( json.type !== 'MeshPhongMaterial' ) delete json.specular;
if ( json.opacity < 1 ) json.transparent = true;
materialLoader.setTextures( textures );
return materialLoader.parse( json );
};
} )()
} );
/**
* @author tschw
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
*/
var AnimationUtils = {
// same as Array.prototype.slice, but also works on typed arrays
arraySlice: function ( array, from, to ) {
if ( AnimationUtils.isTypedArray( array ) ) {
// in ios9 array.subarray(from, undefined) will return empty array
// but array.subarray(from) or array.subarray(from, len) is correct
return new array.constructor( array.subarray( from, to !== undefined ? to : array.length ) );
}
return array.slice( from, to );
},
// converts an array to a specific type
convertArray: function ( array, type, forceClone ) {
if ( ! array || // let 'undefined' and 'null' pass
! forceClone && array.constructor === type ) return array;
if ( typeof type.BYTES_PER_ELEMENT === 'number' ) {
return new type( array ); // create typed array
}
return Array.prototype.slice.call( array ); // create Array
},
isTypedArray: function ( object ) {
return ArrayBuffer.isView( object ) &&
! ( object instanceof DataView );
},
// returns an array by which times and values can be sorted
getKeyframeOrder: function ( times ) {
function compareTime( i, j ) {
return times[ i ] - times[ j ];
}
var n = times.length;
var result = new Array( n );
for ( var i = 0; i !== n; ++ i ) result[ i ] = i;
result.sort( compareTime );
return result;
},
// uses the array previously returned by 'getKeyframeOrder' to sort data
sortedArray: function ( values, stride, order ) {
var nValues = values.length;
var result = new values.constructor( nValues );
for ( var i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) {
var srcOffset = order[ i ] * stride;
for ( var j = 0; j !== stride; ++ j ) {
result[ dstOffset ++ ] = values[ srcOffset + j ];
}
}
return result;
},
// function for parsing AOS keyframe formats
flattenJSON: function ( jsonKeys, times, values, valuePropertyName ) {
var i = 1, key = jsonKeys[ 0 ];
while ( key !== undefined && key[ valuePropertyName ] === undefined ) {
key = jsonKeys[ i ++ ];
}
if ( key === undefined ) return; // no data
var value = key[ valuePropertyName ];
if ( value === undefined ) return; // no data
if ( Array.isArray( value ) ) {
do {
value = key[ valuePropertyName ];
if ( value !== undefined ) {
times.push( key.time );
values.push.apply( values, value ); // push all elements
}
key = jsonKeys[ i ++ ];
} while ( key !== undefined );
} else if ( value.toArray !== undefined ) {
// ...assume THREE.Math-ish
do {
value = key[ valuePropertyName ];
if ( value !== undefined ) {
times.push( key.time );
value.toArray( values, values.length );
}
key = jsonKeys[ i ++ ];
} while ( key !== undefined );
} else {
// otherwise push as-is
do {
value = key[ valuePropertyName ];
if ( value !== undefined ) {
times.push( key.time );
values.push( value );
}
key = jsonKeys[ i ++ ];
} while ( key !== undefined );
}
}
};
/**
* Abstract base class of interpolants over parametric samples.
*
* The parameter domain is one dimensional, typically the time or a path
* along a curve defined by the data.
*
* The sample values can have any dimensionality and derived classes may
* apply special interpretations to the data.
*
* This class provides the interval seek in a Template Method, deferring
* the actual interpolation to derived classes.
*
* Time complexity is O(1) for linear access crossing at most two points
* and O(log N) for random access, where N is the number of positions.
*
* References:
*
* http://www.oodesign.com/template-method-pattern.html
*
* @author tschw
*/
function Interpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
this.parameterPositions = parameterPositions;
this._cachedIndex = 0;
this.resultBuffer = resultBuffer !== undefined ?
resultBuffer : new sampleValues.constructor( sampleSize );
this.sampleValues = sampleValues;
this.valueSize = sampleSize;
}
Object.assign( Interpolant.prototype, {
evaluate: function( t ) {
var pp = this.parameterPositions,
i1 = this._cachedIndex,
t1 = pp[ i1 ],
t0 = pp[ i1 - 1 ];
validate_interval: {
seek: {
var right;
linear_scan: {
//- See http://jsperf.com/comparison-to-undefined/3
//- slower code:
//-
//- if ( t >= t1 || t1 === undefined ) {
forward_scan: if ( ! ( t < t1 ) ) {
for ( var giveUpAt = i1 + 2; ;) {
if ( t1 === undefined ) {
if ( t < t0 ) break forward_scan;
// after end
i1 = pp.length;
this._cachedIndex = i1;
return this.afterEnd_( i1 - 1, t, t0 );
}
if ( i1 === giveUpAt ) break; // this loop
t0 = t1;
t1 = pp[ ++ i1 ];
if ( t < t1 ) {
// we have arrived at the sought interval
break seek;
}
}
// prepare binary search on the right side of the index
right = pp.length;
break linear_scan;
}
//- slower code:
//- if ( t < t0 || t0 === undefined ) {
if ( ! ( t >= t0 ) ) {
// looping?
var t1global = pp[ 1 ];
if ( t < t1global ) {
i1 = 2; // + 1, using the scan for the details
t0 = t1global;
}
// linear reverse scan
for ( var giveUpAt = i1 - 2; ;) {
if ( t0 === undefined ) {
// before start
this._cachedIndex = 0;
return this.beforeStart_( 0, t, t1 );
}
if ( i1 === giveUpAt ) break; // this loop
t1 = t0;
t0 = pp[ -- i1 - 1 ];
if ( t >= t0 ) {
// we have arrived at the sought interval
break seek;
}
}
// prepare binary search on the left side of the index
right = i1;
i1 = 0;
break linear_scan;
}
// the interval is valid
break validate_interval;
} // linear scan
// binary search
while ( i1 < right ) {
var mid = ( i1 + right ) >>> 1;
if ( t < pp[ mid ] ) {
right = mid;
} else {
i1 = mid + 1;
}
}
t1 = pp[ i1 ];
t0 = pp[ i1 - 1 ];
// check boundary cases, again
if ( t0 === undefined ) {
this._cachedIndex = 0;
return this.beforeStart_( 0, t, t1 );
}
if ( t1 === undefined ) {
i1 = pp.length;
this._cachedIndex = i1;
return this.afterEnd_( i1 - 1, t0, t );
}
} // seek
this._cachedIndex = i1;
this.intervalChanged_( i1, t0, t1 );
} // validate_interval
return this.interpolate_( i1, t0, t, t1 );
},
settings: null, // optional, subclass-specific settings structure
// Note: The indirection allows central control of many interpolants.
// --- Protected interface
DefaultSettings_: {},
getSettings_: function() {
return this.settings || this.DefaultSettings_;
},
copySampleValue_: function( index ) {
// copies a sample value to the result buffer
var result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset = index * stride;
for ( var i = 0; i !== stride; ++ i ) {
result[ i ] = values[ offset + i ];
}
return result;
},
// Template methods for derived classes:
interpolate_: function( i1, t0, t, t1 ) {
throw new Error( "call to abstract method" );
// implementations shall return this.resultBuffer
},
intervalChanged_: function( i1, t0, t1 ) {
// empty
}
} );
//!\ DECLARE ALIAS AFTER assign prototype !
Object.assign( Interpolant.prototype, {
//( 0, t, t0 ), returns this.resultBuffer
beforeStart_: Interpolant.prototype.copySampleValue_,
//( N-1, tN-1, t ), returns this.resultBuffer
afterEnd_: Interpolant.prototype.copySampleValue_,
} );
/**
* Fast and simple cubic spline interpolant.
*
* It was derived from a Hermitian construction setting the first derivative
* at each sample position to the linear slope between neighboring positions
* over their parameter interval.
*
* @author tschw
*/
function CubicInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
Interpolant.call(
this, parameterPositions, sampleValues, sampleSize, resultBuffer );
this._weightPrev = -0;
this._offsetPrev = -0;
this._weightNext = -0;
this._offsetNext = -0;
}
CubicInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
constructor: CubicInterpolant,
DefaultSettings_: {
endingStart: ZeroCurvatureEnding,
endingEnd: ZeroCurvatureEnding
},
intervalChanged_: function( i1, t0, t1 ) {
var pp = this.parameterPositions,
iPrev = i1 - 2,
iNext = i1 + 1,
tPrev = pp[ iPrev ],
tNext = pp[ iNext ];
if ( tPrev === undefined ) {
switch ( this.getSettings_().endingStart ) {
case ZeroSlopeEnding:
// f'(t0) = 0
iPrev = i1;
tPrev = 2 * t0 - t1;
break;
case WrapAroundEnding:
// use the other end of the curve
iPrev = pp.length - 2;
tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ];
break;
default: // ZeroCurvatureEnding
// f''(t0) = 0 a.k.a. Natural Spline
iPrev = i1;
tPrev = t1;
}
}
if ( tNext === undefined ) {
switch ( this.getSettings_().endingEnd ) {
case ZeroSlopeEnding:
// f'(tN) = 0
iNext = i1;
tNext = 2 * t1 - t0;
break;
case WrapAroundEnding:
// use the other end of the curve
iNext = 1;
tNext = t1 + pp[ 1 ] - pp[ 0 ];
break;
default: // ZeroCurvatureEnding
// f''(tN) = 0, a.k.a. Natural Spline
iNext = i1 - 1;
tNext = t0;
}
}
var halfDt = ( t1 - t0 ) * 0.5,
stride = this.valueSize;
this._weightPrev = halfDt / ( t0 - tPrev );
this._weightNext = halfDt / ( tNext - t1 );
this._offsetPrev = iPrev * stride;
this._offsetNext = iNext * stride;
},
interpolate_: function( i1, t0, t, t1 ) {
var result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
o1 = i1 * stride, o0 = o1 - stride,
oP = this._offsetPrev, oN = this._offsetNext,
wP = this._weightPrev, wN = this._weightNext,
p = ( t - t0 ) / ( t1 - t0 ),
pp = p * p,
ppp = pp * p;
// evaluate polynomials
var sP = - wP * ppp + 2 * wP * pp - wP * p;
var s0 = ( 1 + wP ) * ppp + (-1.5 - 2 * wP ) * pp + ( -0.5 + wP ) * p + 1;
var s1 = (-1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p;
var sN = wN * ppp - wN * pp;
// combine data linearly
for ( var i = 0; i !== stride; ++ i ) {
result[ i ] =
sP * values[ oP + i ] +
s0 * values[ o0 + i ] +
s1 * values[ o1 + i ] +
sN * values[ oN + i ];
}
return result;
}
} );
/**
* @author tschw
*/
function LinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
}
LinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
constructor: LinearInterpolant,
interpolate_: function( i1, t0, t, t1 ) {
var result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset1 = i1 * stride,
offset0 = offset1 - stride,
weight1 = ( t - t0 ) / ( t1 - t0 ),
weight0 = 1 - weight1;
for ( var i = 0; i !== stride; ++ i ) {
result[ i ] =
values[ offset0 + i ] * weight0 +
values[ offset1 + i ] * weight1;
}
return result;
}
} );
/**
*
* Interpolant that evaluates to the sample value at the position preceeding
* the parameter.
*
* @author tschw
*/
function DiscreteInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
}
DiscreteInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
constructor: DiscreteInterpolant,
interpolate_: function( i1, t0, t, t1 ) {
return this.copySampleValue_( i1 - 1 );
}
} );
var KeyframeTrackPrototype;
KeyframeTrackPrototype = {
TimeBufferType: Float32Array,
ValueBufferType: Float32Array,
DefaultInterpolation: InterpolateLinear,
InterpolantFactoryMethodDiscrete: function ( result ) {
return new DiscreteInterpolant(
this.times, this.values, this.getValueSize(), result );
},
InterpolantFactoryMethodLinear: function ( result ) {
return new LinearInterpolant(
this.times, this.values, this.getValueSize(), result );
},
InterpolantFactoryMethodSmooth: function ( result ) {
return new CubicInterpolant(
this.times, this.values, this.getValueSize(), result );
},
setInterpolation: function ( interpolation ) {
var factoryMethod;
switch ( interpolation ) {
case InterpolateDiscrete:
factoryMethod = this.InterpolantFactoryMethodDiscrete;
break;
case InterpolateLinear:
factoryMethod = this.InterpolantFactoryMethodLinear;
break;
case InterpolateSmooth:
factoryMethod = this.InterpolantFactoryMethodSmooth;
break;
}
if ( factoryMethod === undefined ) {
var message = "unsupported interpolation for " +
this.ValueTypeName + " keyframe track named " + this.name;
if ( this.createInterpolant === undefined ) {
// fall back to default, unless the default itself is messed up
if ( interpolation !== this.DefaultInterpolation ) {
this.setInterpolation( this.DefaultInterpolation );
} else {
throw new Error( message ); // fatal, in this case
}
}
console.warn( 'THREE.KeyframeTrackPrototype:', message );
return;
}
this.createInterpolant = factoryMethod;
},
getInterpolation: function () {
switch ( this.createInterpolant ) {
case this.InterpolantFactoryMethodDiscrete:
return InterpolateDiscrete;
case this.InterpolantFactoryMethodLinear:
return InterpolateLinear;
case this.InterpolantFactoryMethodSmooth:
return InterpolateSmooth;
}
},
getValueSize: function () {
return this.values.length / this.times.length;
},
// move all keyframes either forwards or backwards in time
shift: function ( timeOffset ) {
if ( timeOffset !== 0.0 ) {
var times = this.times;
for ( var i = 0, n = times.length; i !== n; ++ i ) {
times[ i ] += timeOffset;
}
}
return this;
},
// scale all keyframe times by a factor (useful for frame <-> seconds conversions)
scale: function ( timeScale ) {
if ( timeScale !== 1.0 ) {
var times = this.times;
for ( var i = 0, n = times.length; i !== n; ++ i ) {
times[ i ] *= timeScale;
}
}
return this;
},
// removes keyframes before and after animation without changing any values within the range [startTime, endTime].
// IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values
trim: function ( startTime, endTime ) {
var times = this.times,
nKeys = times.length,
from = 0,
to = nKeys - 1;
while ( from !== nKeys && times[ from ] < startTime ) ++ from;
while ( to !== - 1 && times[ to ] > endTime ) -- to;
++ to; // inclusive -> exclusive bound
if ( from !== 0 || to !== nKeys ) {
// empty tracks are forbidden, so keep at least one keyframe
if ( from >= to ) to = Math.max( to, 1 ), from = to - 1;
var stride = this.getValueSize();
this.times = AnimationUtils.arraySlice( times, from, to );
this.values = AnimationUtils.
arraySlice( this.values, from * stride, to * stride );
}
return this;
},
// ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable
validate: function () {
var valid = true;
var valueSize = this.getValueSize();
if ( valueSize - Math.floor( valueSize ) !== 0 ) {
console.error( 'THREE.KeyframeTrackPrototype: Invalid value size in track.', this );
valid = false;
}
var times = this.times,
values = this.values,
nKeys = times.length;
if ( nKeys === 0 ) {
console.error( 'THREE.KeyframeTrackPrototype: Track is empty.', this );
valid = false;
}
var prevTime = null;
for ( var i = 0; i !== nKeys; i ++ ) {
var currTime = times[ i ];
if ( typeof currTime === 'number' && isNaN( currTime ) ) {
console.error( 'THREE.KeyframeTrackPrototype: Time is not a valid number.', this, i, currTime );
valid = false;
break;
}
if ( prevTime !== null && prevTime > currTime ) {
console.error( 'THREE.KeyframeTrackPrototype: Out of order keys.', this, i, currTime, prevTime );
valid = false;
break;
}
prevTime = currTime;
}
if ( values !== undefined ) {
if ( AnimationUtils.isTypedArray( values ) ) {
for ( var i = 0, n = values.length; i !== n; ++ i ) {
var value = values[ i ];
if ( isNaN( value ) ) {
console.error( 'THREE.KeyframeTrackPrototype: Value is not a valid number.', this, i, value );
valid = false;
break;
}
}
}
}
return valid;
},
// removes equivalent sequential keys as common in morph target sequences
// (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)
optimize: function () {
var times = this.times,
values = this.values,
stride = this.getValueSize(),
smoothInterpolation = this.getInterpolation() === InterpolateSmooth,
writeIndex = 1,
lastIndex = times.length - 1;
for ( var i = 1; i < lastIndex; ++ i ) {
var keep = false;
var time = times[ i ];
var timeNext = times[ i + 1 ];
// remove adjacent keyframes scheduled at the same time
if ( time !== timeNext && ( i !== 1 || time !== time[ 0 ] ) ) {
if ( ! smoothInterpolation ) {
// remove unnecessary keyframes same as their neighbors
var offset = i * stride,
offsetP = offset - stride,
offsetN = offset + stride;
for ( var j = 0; j !== stride; ++ j ) {
var value = values[ offset + j ];
if ( value !== values[ offsetP + j ] ||
value !== values[ offsetN + j ] ) {
keep = true;
break;
}
}
} else keep = true;
}
// in-place compaction
if ( keep ) {
if ( i !== writeIndex ) {
times[ writeIndex ] = times[ i ];
var readOffset = i * stride,
writeOffset = writeIndex * stride;
for ( var j = 0; j !== stride; ++ j )
values[ writeOffset + j ] = values[ readOffset + j ];
}
++ writeIndex;
}
}
// flush last keyframe (compaction looks ahead)
if ( lastIndex > 0 ) {
times[ writeIndex ] = times[ lastIndex ];
for ( var readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++ j )
values[ writeOffset + j ] = values[ readOffset + j ];
++ writeIndex;
}
if ( writeIndex !== times.length ) {
this.times = AnimationUtils.arraySlice( times, 0, writeIndex );
this.values = AnimationUtils.arraySlice( values, 0, writeIndex * stride );
}
return this;
}
};
function KeyframeTrackConstructor( name, times, values, interpolation ) {
if ( name === undefined ) throw new Error( "track name is undefined" );
if ( times === undefined || times.length === 0 ) {
throw new Error( "no keyframes in track named " + name );
}
this.name = name;
this.times = AnimationUtils.convertArray( times, this.TimeBufferType );
this.values = AnimationUtils.convertArray( values, this.ValueBufferType );
this.setInterpolation( interpolation || this.DefaultInterpolation );
this.validate();
this.optimize();
}
/**
*
* A Track of vectored keyframe values.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function VectorKeyframeTrack( name, times, values, interpolation ) {
KeyframeTrackConstructor.call( this, name, times, values, interpolation );
}
VectorKeyframeTrack.prototype =
Object.assign( Object.create( KeyframeTrackPrototype ), {
constructor: VectorKeyframeTrack,
ValueTypeName: 'vector'
// ValueBufferType is inherited
// DefaultInterpolation is inherited
} );
/**
* Spherical linear unit quaternion interpolant.
*
* @author tschw
*/
function QuaternionLinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
}
QuaternionLinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
constructor: QuaternionLinearInterpolant,
interpolate_: function( i1, t0, t, t1 ) {
var result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset = i1 * stride,
alpha = ( t - t0 ) / ( t1 - t0 );
for ( var end = offset + stride; offset !== end; offset += 4 ) {
Quaternion.slerpFlat( result, 0,
values, offset - stride, values, offset, alpha );
}
return result;
}
} );
/**
*
* A Track of quaternion keyframe values.
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function QuaternionKeyframeTrack( name, times, values, interpolation ) {
KeyframeTrackConstructor.call( this, name, times, values, interpolation );
}
QuaternionKeyframeTrack.prototype =
Object.assign( Object.create( KeyframeTrackPrototype ), {
constructor: QuaternionKeyframeTrack,
ValueTypeName: 'quaternion',
// ValueBufferType is inherited
DefaultInterpolation: InterpolateLinear,
InterpolantFactoryMethodLinear: function( result ) {
return new QuaternionLinearInterpolant(
this.times, this.values, this.getValueSize(), result );
},
InterpolantFactoryMethodSmooth: undefined // not yet implemented
} );
/**
*
* A Track of numeric keyframe values.
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function NumberKeyframeTrack( name, times, values, interpolation ) {
KeyframeTrackConstructor.call( this, name, times, values, interpolation );
}
NumberKeyframeTrack.prototype =
Object.assign( Object.create( KeyframeTrackPrototype ), {
constructor: NumberKeyframeTrack,
ValueTypeName: 'number'
// ValueBufferType is inherited
// DefaultInterpolation is inherited
} );
/**
*
* A Track that interpolates Strings
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function StringKeyframeTrack( name, times, values, interpolation ) {
KeyframeTrackConstructor.call( this, name, times, values, interpolation );
}
StringKeyframeTrack.prototype =
Object.assign( Object.create( KeyframeTrackPrototype ), {
constructor: StringKeyframeTrack,
ValueTypeName: 'string',
ValueBufferType: Array,
DefaultInterpolation: InterpolateDiscrete,
InterpolantFactoryMethodLinear: undefined,
InterpolantFactoryMethodSmooth: undefined
} );
/**
*
* A Track of Boolean keyframe values.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function BooleanKeyframeTrack( name, times, values ) {
KeyframeTrackConstructor.call( this, name, times, values );
}
BooleanKeyframeTrack.prototype =
Object.assign( Object.create( KeyframeTrackPrototype ), {
constructor: BooleanKeyframeTrack,
ValueTypeName: 'bool',
ValueBufferType: Array,
DefaultInterpolation: InterpolateDiscrete,
InterpolantFactoryMethodLinear: undefined,
InterpolantFactoryMethodSmooth: undefined
// Note: Actually this track could have a optimized / compressed
// representation of a single value and a custom interpolant that
// computes "firstValue ^ isOdd( index )".
} );
/**
*
* A Track of keyframe values that represent color.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function ColorKeyframeTrack( name, times, values, interpolation ) {
KeyframeTrackConstructor.call( this, name, times, values, interpolation );
}
ColorKeyframeTrack.prototype =
Object.assign( Object.create( KeyframeTrackPrototype ), {
constructor: ColorKeyframeTrack,
ValueTypeName: 'color'
// ValueBufferType is inherited
// DefaultInterpolation is inherited
// Note: Very basic implementation and nothing special yet.
// However, this is the place for color space parameterization.
} );
/**
*
* A timed sequence of keyframes for a specific property.
*
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
* @author tschw
*/
function KeyframeTrack( name, times, values, interpolation ) {
KeyframeTrackConstructor.apply( this, arguments );
}
KeyframeTrack.prototype = KeyframeTrackPrototype;
KeyframeTrackPrototype.constructor = KeyframeTrack;
// Static methods:
Object.assign( KeyframeTrack, {
// Serialization (in static context, because of constructor invocation
// and automatic invocation of .toJSON):
parse: function( json ) {
if( json.type === undefined ) {
throw new Error( "track type undefined, can not parse" );
}
var trackType = KeyframeTrack._getTrackTypeForValueTypeName( json.type );
if ( json.times === undefined ) {
var times = [], values = [];
AnimationUtils.flattenJSON( json.keys, times, values, 'value' );
json.times = times;
json.values = values;
}
// derived classes can define a static parse method
if ( trackType.parse !== undefined ) {
return trackType.parse( json );
} else {
// by default, we asssume a constructor compatible with the base
return new trackType(
json.name, json.times, json.values, json.interpolation );
}
},
toJSON: function( track ) {
var trackType = track.constructor;
var json;
// derived classes can define a static toJSON method
if ( trackType.toJSON !== undefined ) {
json = trackType.toJSON( track );
} else {
// by default, we assume the data can be serialized as-is
json = {
'name': track.name,
'times': AnimationUtils.convertArray( track.times, Array ),
'values': AnimationUtils.convertArray( track.values, Array )
};
var interpolation = track.getInterpolation();
if ( interpolation !== track.DefaultInterpolation ) {
json.interpolation = interpolation;
}
}
json.type = track.ValueTypeName; // mandatory
return json;
},
_getTrackTypeForValueTypeName: function( typeName ) {
switch( typeName.toLowerCase() ) {
case "scalar":
case "double":
case "float":
case "number":
case "integer":
return NumberKeyframeTrack;
case "vector":
case "vector2":
case "vector3":
case "vector4":
return VectorKeyframeTrack;
case "color":
return ColorKeyframeTrack;
case "quaternion":
return QuaternionKeyframeTrack;
case "bool":
case "boolean":
return BooleanKeyframeTrack;
case "string":
return StringKeyframeTrack;
}
throw new Error( "Unsupported typeName: " + typeName );
}
} );
/**
*
* Reusable set of Tracks that represent an animation.
*
* @author Ben Houston / http://clara.io/
* @author David Sarno / http://lighthaus.us/
*/
function AnimationClip( name, duration, tracks ) {
this.name = name;
this.tracks = tracks;
this.duration = ( duration !== undefined ) ? duration : - 1;
this.uuid = _Math.generateUUID();
// this means it should figure out its duration by scanning the tracks
if ( this.duration < 0 ) {
this.resetDuration();
}
this.optimize();
}
Object.assign( AnimationClip, {
parse: function ( json ) {
var tracks = [],
jsonTracks = json.tracks,
frameTime = 1.0 / ( json.fps || 1.0 );
for ( var i = 0, n = jsonTracks.length; i !== n; ++ i ) {
tracks.push( KeyframeTrack.parse( jsonTracks[ i ] ).scale( frameTime ) );
}
return new AnimationClip( json.name, json.duration, tracks );
},
toJSON: function ( clip ) {
var tracks = [],
clipTracks = clip.tracks;
var json = {
'name': clip.name,
'duration': clip.duration,
'tracks': tracks
};
for ( var i = 0, n = clipTracks.length; i !== n; ++ i ) {
tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) );
}
return json;
},
CreateFromMorphTargetSequence: function ( name, morphTargetSequence, fps, noLoop ) {
var numMorphTargets = morphTargetSequence.length;
var tracks = [];
for ( var i = 0; i < numMorphTargets; i ++ ) {
var times = [];
var values = [];
times.push(
( i + numMorphTargets - 1 ) % numMorphTargets,
i,
( i + 1 ) % numMorphTargets );
values.push( 0, 1, 0 );
var order = AnimationUtils.getKeyframeOrder( times );
times = AnimationUtils.sortedArray( times, 1, order );
values = AnimationUtils.sortedArray( values, 1, order );
// if there is a key at the first frame, duplicate it as the
// last frame as well for perfect loop.
if ( ! noLoop && times[ 0 ] === 0 ) {
times.push( numMorphTargets );
values.push( values[ 0 ] );
}
tracks.push(
new NumberKeyframeTrack(
'.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']',
times, values
).scale( 1.0 / fps ) );
}
return new AnimationClip( name, - 1, tracks );
},
findByName: function ( objectOrClipArray, name ) {
var clipArray = objectOrClipArray;
if ( ! Array.isArray( objectOrClipArray ) ) {
var o = objectOrClipArray;
clipArray = o.geometry && o.geometry.animations || o.animations;
}
for ( var i = 0; i < clipArray.length; i ++ ) {
if ( clipArray[ i ].name === name ) {
return clipArray[ i ];
}
}
return null;
},
CreateClipsFromMorphTargetSequences: function ( morphTargets, fps, noLoop ) {
var animationToMorphTargets = {};
// tested with https://regex101.com/ on trick sequences
// such flamingo_flyA_003, flamingo_run1_003, crdeath0059
var pattern = /^([\w-]*?)([\d]+)$/;
// sort morph target names into animation groups based
// patterns like Walk_001, Walk_002, Run_001, Run_002
for ( var i = 0, il = morphTargets.length; i < il; i ++ ) {
var morphTarget = morphTargets[ i ];
var parts = morphTarget.name.match( pattern );
if ( parts && parts.length > 1 ) {
var name = parts[ 1 ];
var animationMorphTargets = animationToMorphTargets[ name ];
if ( ! animationMorphTargets ) {
animationToMorphTargets[ name ] = animationMorphTargets = [];
}
animationMorphTargets.push( morphTarget );
}
}
var clips = [];
for ( var name in animationToMorphTargets ) {
clips.push( AnimationClip.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) );
}
return clips;
},
// parse the animation.hierarchy format
parseAnimation: function ( animation, bones ) {
if ( ! animation ) {
console.error( 'THREE.AnimationClip: No animation in JSONLoader data.' );
return null;
}
var addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) {
// only return track if there are actually keys.
if ( animationKeys.length !== 0 ) {
var times = [];
var values = [];
AnimationUtils.flattenJSON( animationKeys, times, values, propertyName );
// empty keys are filtered out, so check again
if ( times.length !== 0 ) {
destTracks.push( new trackType( trackName, times, values ) );
}
}
};
var tracks = [];
var clipName = animation.name || 'default';
// automatic length determination in AnimationClip.
var duration = animation.length || - 1;
var fps = animation.fps || 30;
var hierarchyTracks = animation.hierarchy || [];
for ( var h = 0; h < hierarchyTracks.length; h ++ ) {
var animationKeys = hierarchyTracks[ h ].keys;
// skip empty tracks
if ( ! animationKeys || animationKeys.length === 0 ) continue;
// process morph targets
if ( animationKeys[ 0 ].morphTargets ) {
// figure out all morph targets used in this track
var morphTargetNames = {};
for ( var k = 0; k < animationKeys.length; k ++ ) {
if ( animationKeys[ k ].morphTargets ) {
for ( var m = 0; m < animationKeys[ k ].morphTargets.length; m ++ ) {
morphTargetNames[ animationKeys[ k ].morphTargets[ m ] ] = - 1;
}
}
}
// create a track for each morph target with all zero
// morphTargetInfluences except for the keys in which
// the morphTarget is named.
for ( var morphTargetName in morphTargetNames ) {
var times = [];
var values = [];
for ( var m = 0; m !== animationKeys[ k ].morphTargets.length; ++ m ) {
var animationKey = animationKeys[ k ];
times.push( animationKey.time );
values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 );
}
tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) );
}
duration = morphTargetNames.length * ( fps || 1.0 );
} else {
// ...assume skeletal animation
var boneName = '.bones[' + bones[ h ].name + ']';
addNonemptyTrack(
VectorKeyframeTrack, boneName + '.position',
animationKeys, 'pos', tracks );
addNonemptyTrack(
QuaternionKeyframeTrack, boneName + '.quaternion',
animationKeys, 'rot', tracks );
addNonemptyTrack(
VectorKeyframeTrack, boneName + '.scale',
animationKeys, 'scl', tracks );
}
}
if ( tracks.length === 0 ) {
return null;
}
var clip = new AnimationClip( clipName, duration, tracks );
return clip;
}
} );
Object.assign( AnimationClip.prototype, {
resetDuration: function () {
var tracks = this.tracks, duration = 0;
for ( var i = 0, n = tracks.length; i !== n; ++ i ) {
var track = this.tracks[ i ];
duration = Math.max( duration, track.times[ track.times.length - 1 ] );
}
this.duration = duration;
},
trim: function () {
for ( var i = 0; i < this.tracks.length; i ++ ) {
this.tracks[ i ].trim( 0, this.duration );
}
return this;
},
optimize: function () {
for ( var i = 0; i < this.tracks.length; i ++ ) {
this.tracks[ i ].optimize();
}
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
function JSONLoader( manager ) {
if ( typeof manager === 'boolean' ) {
console.warn( 'THREE.JSONLoader: showStatus parameter has been removed from constructor.' );
manager = undefined;
}
this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
this.withCredentials = false;
}
Object.assign( JSONLoader.prototype, {
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var texturePath = this.texturePath && ( typeof this.texturePath === "string" ) ? this.texturePath : Loader.prototype.extractUrlBase( url );
var loader = new FileLoader( this.manager );
loader.setWithCredentials( this.withCredentials );
loader.load( url, function ( text ) {
var json = JSON.parse( text );
var metadata = json.metadata;
if ( metadata !== undefined ) {
var type = metadata.type;
if ( type !== undefined ) {
if ( type.toLowerCase() === 'object' ) {
console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.ObjectLoader instead.' );
return;
}
if ( type.toLowerCase() === 'scene' ) {
console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.SceneLoader instead.' );
return;
}
}
}
var object = scope.parse( json, texturePath );
onLoad( object.geometry, object.materials );
}, onProgress, onError );
},
setTexturePath: function ( value ) {
this.texturePath = value;
},
parse: ( function () {
function parseModel( json, geometry ) {
function isBitSet( value, position ) {
return value & ( 1 << position );
}
var i, j, fi,
offset, zLength,
colorIndex, normalIndex, uvIndex, materialIndex,
type,
isQuad,
hasMaterial,
hasFaceVertexUv,
hasFaceNormal, hasFaceVertexNormal,
hasFaceColor, hasFaceVertexColor,
vertex, face, faceA, faceB, hex, normal,
uvLayer, uv, u, v,
faces = json.faces,
vertices = json.vertices,
normals = json.normals,
colors = json.colors,
scale = json.scale,
nUvLayers = 0;
if ( json.uvs !== undefined ) {
// disregard empty arrays
for ( i = 0; i < json.uvs.length; i ++ ) {
if ( json.uvs[ i ].length ) nUvLayers ++;
}
for ( i = 0; i < nUvLayers; i ++ ) {
geometry.faceVertexUvs[ i ] = [];
}
}
offset = 0;
zLength = vertices.length;
while ( offset < zLength ) {
vertex = new Vector3();
vertex.x = vertices[ offset ++ ] * scale;
vertex.y = vertices[ offset ++ ] * scale;
vertex.z = vertices[ offset ++ ] * scale;
geometry.vertices.push( vertex );
}
offset = 0;
zLength = faces.length;
while ( offset < zLength ) {
type = faces[ offset ++ ];
isQuad = isBitSet( type, 0 );
hasMaterial = isBitSet( type, 1 );
hasFaceVertexUv = isBitSet( type, 3 );
hasFaceNormal = isBitSet( type, 4 );
hasFaceVertexNormal = isBitSet( type, 5 );
hasFaceColor = isBitSet( type, 6 );
hasFaceVertexColor = isBitSet( type, 7 );
// console.log("type", type, "bits", isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor);
if ( isQuad ) {
faceA = new Face3();
faceA.a = faces[ offset ];
faceA.b = faces[ offset + 1 ];
faceA.c = faces[ offset + 3 ];
faceB = new Face3();
faceB.a = faces[ offset + 1 ];
faceB.b = faces[ offset + 2 ];
faceB.c = faces[ offset + 3 ];
offset += 4;
if ( hasMaterial ) {
materialIndex = faces[ offset ++ ];
faceA.materialIndex = materialIndex;
faceB.materialIndex = materialIndex;
}
// to get face <=> uv index correspondence
fi = geometry.faces.length;
if ( hasFaceVertexUv ) {
for ( i = 0; i < nUvLayers; i ++ ) {
uvLayer = json.uvs[ i ];
geometry.faceVertexUvs[ i ][ fi ] = [];
geometry.faceVertexUvs[ i ][ fi + 1 ] = [];
for ( j = 0; j < 4; j ++ ) {
uvIndex = faces[ offset ++ ];
u = uvLayer[ uvIndex * 2 ];
v = uvLayer[ uvIndex * 2 + 1 ];
uv = new Vector2( u, v );
if ( j !== 2 ) geometry.faceVertexUvs[ i ][ fi ].push( uv );
if ( j !== 0 ) geometry.faceVertexUvs[ i ][ fi + 1 ].push( uv );
}
}
}
if ( hasFaceNormal ) {
normalIndex = faces[ offset ++ ] * 3;
faceA.normal.set(
normals[ normalIndex ++ ],
normals[ normalIndex ++ ],
normals[ normalIndex ]
);
faceB.normal.copy( faceA.normal );
}
if ( hasFaceVertexNormal ) {
for ( i = 0; i < 4; i ++ ) {
normalIndex = faces[ offset ++ ] * 3;
normal = new Vector3(
normals[ normalIndex ++ ],
normals[ normalIndex ++ ],
normals[ normalIndex ]
);
if ( i !== 2 ) faceA.vertexNormals.push( normal );
if ( i !== 0 ) faceB.vertexNormals.push( normal );
}
}
if ( hasFaceColor ) {
colorIndex = faces[ offset ++ ];
hex = colors[ colorIndex ];
faceA.color.setHex( hex );
faceB.color.setHex( hex );
}
if ( hasFaceVertexColor ) {
for ( i = 0; i < 4; i ++ ) {
colorIndex = faces[ offset ++ ];
hex = colors[ colorIndex ];
if ( i !== 2 ) faceA.vertexColors.push( new Color( hex ) );
if ( i !== 0 ) faceB.vertexColors.push( new Color( hex ) );
}
}
geometry.faces.push( faceA );
geometry.faces.push( faceB );
} else {
face = new Face3();
face.a = faces[ offset ++ ];
face.b = faces[ offset ++ ];
face.c = faces[ offset ++ ];
if ( hasMaterial ) {
materialIndex = faces[ offset ++ ];
face.materialIndex = materialIndex;
}
// to get face <=> uv index correspondence
fi = geometry.faces.length;
if ( hasFaceVertexUv ) {
for ( i = 0; i < nUvLayers; i ++ ) {
uvLayer = json.uvs[ i ];
geometry.faceVertexUvs[ i ][ fi ] = [];
for ( j = 0; j < 3; j ++ ) {
uvIndex = faces[ offset ++ ];
u = uvLayer[ uvIndex * 2 ];
v = uvLayer[ uvIndex * 2 + 1 ];
uv = new Vector2( u, v );
geometry.faceVertexUvs[ i ][ fi ].push( uv );
}
}
}
if ( hasFaceNormal ) {
normalIndex = faces[ offset ++ ] * 3;
face.normal.set(
normals[ normalIndex ++ ],
normals[ normalIndex ++ ],
normals[ normalIndex ]
);
}
if ( hasFaceVertexNormal ) {
for ( i = 0; i < 3; i ++ ) {
normalIndex = faces[ offset ++ ] * 3;
normal = new Vector3(
normals[ normalIndex ++ ],
normals[ normalIndex ++ ],
normals[ normalIndex ]
);
face.vertexNormals.push( normal );
}
}
if ( hasFaceColor ) {
colorIndex = faces[ offset ++ ];
face.color.setHex( colors[ colorIndex ] );
}
if ( hasFaceVertexColor ) {
for ( i = 0; i < 3; i ++ ) {
colorIndex = faces[ offset ++ ];
face.vertexColors.push( new Color( colors[ colorIndex ] ) );
}
}
geometry.faces.push( face );
}
}
}
function parseSkin( json, geometry ) {
var influencesPerVertex = ( json.influencesPerVertex !== undefined ) ? json.influencesPerVertex : 2;
if ( json.skinWeights ) {
for ( var i = 0, l = json.skinWeights.length; i < l; i += influencesPerVertex ) {
var x = json.skinWeights[ i ];
var y = ( influencesPerVertex > 1 ) ? json.skinWeights[ i + 1 ] : 0;
var z = ( influencesPerVertex > 2 ) ? json.skinWeights[ i + 2 ] : 0;
var w = ( influencesPerVertex > 3 ) ? json.skinWeights[ i + 3 ] : 0;
geometry.skinWeights.push( new Vector4( x, y, z, w ) );
}
}
if ( json.skinIndices ) {
for ( var i = 0, l = json.skinIndices.length; i < l; i += influencesPerVertex ) {
var a = json.skinIndices[ i ];
var b = ( influencesPerVertex > 1 ) ? json.skinIndices[ i + 1 ] : 0;
var c = ( influencesPerVertex > 2 ) ? json.skinIndices[ i + 2 ] : 0;
var d = ( influencesPerVertex > 3 ) ? json.skinIndices[ i + 3 ] : 0;
geometry.skinIndices.push( new Vector4( a, b, c, d ) );
}
}
geometry.bones = json.bones;
if ( geometry.bones && geometry.bones.length > 0 && ( geometry.skinWeights.length !== geometry.skinIndices.length || geometry.skinIndices.length !== geometry.vertices.length ) ) {
console.warn( 'When skinning, number of vertices (' + geometry.vertices.length + '), skinIndices (' +
geometry.skinIndices.length + '), and skinWeights (' + geometry.skinWeights.length + ') should match.' );
}
}
function parseMorphing( json, geometry ) {
var scale = json.scale;
if ( json.morphTargets !== undefined ) {
for ( var i = 0, l = json.morphTargets.length; i < l; i ++ ) {
geometry.morphTargets[ i ] = {};
geometry.morphTargets[ i ].name = json.morphTargets[ i ].name;
geometry.morphTargets[ i ].vertices = [];
var dstVertices = geometry.morphTargets[ i ].vertices;
var srcVertices = json.morphTargets[ i ].vertices;
for ( var v = 0, vl = srcVertices.length; v < vl; v += 3 ) {
var vertex = new Vector3();
vertex.x = srcVertices[ v ] * scale;
vertex.y = srcVertices[ v + 1 ] * scale;
vertex.z = srcVertices[ v + 2 ] * scale;
dstVertices.push( vertex );
}
}
}
if ( json.morphColors !== undefined && json.morphColors.length > 0 ) {
console.warn( 'THREE.JSONLoader: "morphColors" no longer supported. Using them as face colors.' );
var faces = geometry.faces;
var morphColors = json.morphColors[ 0 ].colors;
for ( var i = 0, l = faces.length; i < l; i ++ ) {
faces[ i ].color.fromArray( morphColors, i * 3 );
}
}
}
function parseAnimations( json, geometry ) {
var outputAnimations = [];
// parse old style Bone/Hierarchy animations
var animations = [];
if ( json.animation !== undefined ) {
animations.push( json.animation );
}
if ( json.animations !== undefined ) {
if ( json.animations.length ) {
animations = animations.concat( json.animations );
} else {
animations.push( json.animations );
}
}
for ( var i = 0; i < animations.length; i ++ ) {
var clip = AnimationClip.parseAnimation( animations[ i ], geometry.bones );
if ( clip ) outputAnimations.push( clip );
}
// parse implicit morph animations
if ( geometry.morphTargets ) {
// TODO: Figure out what an appropraite FPS is for morph target animations -- defaulting to 10, but really it is completely arbitrary.
var morphAnimationClips = AnimationClip.CreateClipsFromMorphTargetSequences( geometry.morphTargets, 10 );
outputAnimations = outputAnimations.concat( morphAnimationClips );
}
if ( outputAnimations.length > 0 ) geometry.animations = outputAnimations;
}
return function ( json, texturePath ) {
if ( json.data !== undefined ) {
// Geometry 4.0 spec
json = json.data;
}
if ( json.scale !== undefined ) {
json.scale = 1.0 / json.scale;
} else {
json.scale = 1.0;
}
var geometry = new Geometry();
parseModel( json, geometry );
parseSkin( json, geometry );
parseMorphing( json, geometry );
parseAnimations( json, geometry );
geometry.computeFaceNormals();
geometry.computeBoundingSphere();
if ( json.materials === undefined || json.materials.length === 0 ) {
return { geometry: geometry };
} else {
var materials = Loader.prototype.initMaterials( json.materials, texturePath, this.crossOrigin );
return { geometry: geometry, materials: materials };
}
};
} )()
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
function Light( color, intensity ) {
Object3D.call( this );
this.type = 'Light';
this.color = new Color( color );
this.intensity = intensity !== undefined ? intensity : 1;
this.receiveShadow = undefined;
}
Light.prototype = Object.assign( Object.create( Object3D.prototype ), {
constructor: Light,
isLight: true,
copy: function ( source ) {
Object3D.prototype.copy.call( this, source );
this.color.copy( source.color );
this.intensity = source.intensity;
return this;
},
toJSON: function ( meta ) {
var data = Object3D.prototype.toJSON.call( this, meta );
data.object.color = this.color.getHex();
data.object.intensity = this.intensity;
if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex();
if ( this.distance !== undefined ) data.object.distance = this.distance;
if ( this.angle !== undefined ) data.object.angle = this.angle;
if ( this.decay !== undefined ) data.object.decay = this.decay;
if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra;
if ( this.shadow !== undefined ) data.object.shadow = this.shadow.toJSON();
return data;
}
} );
/**
* @author alteredq / http://alteredqualia.com/
*/
function HemisphereLight( skyColor, groundColor, intensity ) {
Light.call( this, skyColor, intensity );
this.type = 'HemisphereLight';
this.castShadow = undefined;
this.position.copy( Object3D.DefaultUp );
this.updateMatrix();
this.groundColor = new Color( groundColor );
}
HemisphereLight.prototype = Object.assign( Object.create( Light.prototype ), {
constructor: HemisphereLight,
isHemisphereLight: true,
copy: function ( source ) {
Light.prototype.copy.call( this, source );
this.groundColor.copy( source.groundColor );
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function LightShadow( camera ) {
this.camera = camera;
this.bias = 0;
this.radius = 1;
this.mapSize = new Vector2( 512, 512 );
this.map = null;
this.matrix = new Matrix4();
}
Object.assign( LightShadow.prototype, {
copy: function ( source ) {
this.camera = source.camera.clone();
this.bias = source.bias;
this.radius = source.radius;
this.mapSize.copy( source.mapSize );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
toJSON: function () {
var object = {};
if ( this.bias !== 0 ) object.bias = this.bias;
if ( this.radius !== 1 ) object.radius = this.radius;
if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) object.mapSize = this.mapSize.toArray();
object.camera = this.camera.toJSON( false ).object;
delete object.camera.matrix;
return object;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function DirectionalLightShadow( ) {
LightShadow.call( this, new OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) );
}
DirectionalLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {
constructor: DirectionalLightShadow
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
*/
function DirectionalLight( color, intensity ) {
Light.call( this, color, intensity );
this.type = 'DirectionalLight';
this.position.copy( Object3D.DefaultUp );
this.updateMatrix();
this.target = new Object3D();
this.shadow = new DirectionalLightShadow();
}
DirectionalLight.prototype = Object.assign( Object.create( Light.prototype ), {
constructor: DirectionalLight,
isDirectionalLight: true,
copy: function ( source ) {
Light.prototype.copy.call( this, source );
this.target = source.target.clone();
this.shadow = source.shadow.clone();
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function AmbientLight( color, intensity ) {
Light.call( this, color, intensity );
this.type = 'AmbientLight';
this.castShadow = undefined;
}
AmbientLight.prototype = Object.assign( Object.create( Light.prototype ), {
constructor: AmbientLight,
isAmbientLight: true
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
function StereoCamera() {
this.type = 'StereoCamera';
this.aspect = 1;
this.eyeSep = 0.064;
this.cameraL = new PerspectiveCamera();
this.cameraL.layers.enable( 1 );
this.cameraL.matrixAutoUpdate = false;
this.cameraR = new PerspectiveCamera();
this.cameraR.layers.enable( 2 );
this.cameraR.matrixAutoUpdate = false;
}
Object.assign( StereoCamera.prototype, {
update: ( function () {
var instance, focus, fov, aspect, near, far, zoom, eyeSep;
var eyeRight = new Matrix4();
var eyeLeft = new Matrix4();
return function update( camera ) {
var needsUpdate = instance !== this || focus !== camera.focus || fov !== camera.fov ||
aspect !== camera.aspect * this.aspect || near !== camera.near ||
far !== camera.far || zoom !== camera.zoom || eyeSep !== this.eyeSep;
if ( needsUpdate ) {
instance = this;
focus = camera.focus;
fov = camera.fov;
aspect = camera.aspect * this.aspect;
near = camera.near;
far = camera.far;
zoom = camera.zoom;
// Off-axis stereoscopic effect based on
// http://paulbourke.net/stereographics/stereorender/
var projectionMatrix = camera.projectionMatrix.clone();
eyeSep = this.eyeSep / 2;
var eyeSepOnProjection = eyeSep * near / focus;
var ymax = ( near * Math.tan( _Math.DEG2RAD * fov * 0.5 ) ) / zoom;
var xmin, xmax;
// translate xOffset
eyeLeft.elements[ 12 ] = - eyeSep;
eyeRight.elements[ 12 ] = eyeSep;
// for left eye
xmin = - ymax * aspect + eyeSepOnProjection;
xmax = ymax * aspect + eyeSepOnProjection;
projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin );
projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );
this.cameraL.projectionMatrix.copy( projectionMatrix );
// for right eye
xmin = - ymax * aspect - eyeSepOnProjection;
xmax = ymax * aspect - eyeSepOnProjection;
projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin );
projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );
this.cameraR.projectionMatrix.copy( projectionMatrix );
}
this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( eyeLeft );
this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( eyeRight );
};
} )()
} );
/**
* @author mrdoob / http://mrdoob.com/
*/
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
function InstancedBufferGeometry() {
BufferGeometry.call( this );
this.type = 'InstancedBufferGeometry';
this.maxInstancedCount = undefined;
}
InstancedBufferGeometry.prototype = Object.assign( Object.create( BufferGeometry.prototype ), {
constructor: InstancedBufferGeometry,
isInstancedBufferGeometry: true,
addGroup: function ( start, count, materialIndex ) {
this.groups.push( {
start: start,
count: count,
materialIndex: materialIndex
} );
},
copy: function ( source ) {
var index = source.index;
if ( index !== null ) {
this.setIndex( index.clone() );
}
var attributes = source.attributes;
for ( var name in attributes ) {
var attribute = attributes[ name ];
this.addAttribute( name, attribute.clone() );
}
var groups = source.groups;
for ( var i = 0, l = groups.length; i < l; i ++ ) {
var group = groups[ i ];
this.addGroup( group.start, group.count, group.materialIndex );
}
return this;
}
} );
/**
* @author benaadams / https://twitter.com/ben_a_adams
*/
function InstancedBufferAttribute( array, itemSize, meshPerAttribute ) {
BufferAttribute.call( this, array, itemSize );
this.meshPerAttribute = meshPerAttribute || 1;
}
InstancedBufferAttribute.prototype = Object.assign( Object.create( BufferAttribute.prototype ), {
constructor: InstancedBufferAttribute,
isInstancedBufferAttribute: true,
copy: function ( source ) {
BufferAttribute.prototype.copy.call( this, source );
this.meshPerAttribute = source.meshPerAttribute;
return this;
}
} );
/**
* @author mrdoob / http://mrdoob.com/
* @author bhouston / http://clara.io/
* @author stephomi / http://stephaneginier.com/
*/
function Raycaster( origin, direction, near, far ) {
this.ray = new Ray( origin, direction );
// direction is assumed to be normalized (for accurate distance calculations)
this.near = near || 0;
this.far = far || Infinity;
this.params = {
Mesh: {},
Line: {},
LOD: {},
Points: { threshold: 1 },
Sprite: {}
};
Object.defineProperties( this.params, {
PointCloud: {
get: function () {
console.warn( 'THREE.Raycaster: params.PointCloud has been renamed to params.Points.' );
return this.Points;
}
}
} );
}
function ascSort( a, b ) {
return a.distance - b.distance;
}
function intersectObject( object, raycaster, intersects, recursive ) {
if ( object.visible === false ) return;
object.raycast( raycaster, intersects );
if ( recursive === true ) {
var children = object.children;
for ( var i = 0, l = children.length; i < l; i ++ ) {
intersectObject( children[ i ], raycaster, intersects, true );
}
}
}
Object.assign( Raycaster.prototype, {
linePrecision: 1,
set: function ( origin, direction ) {
// direction is assumed to be normalized (for accurate distance calculations)
this.ray.set( origin, direction );
},
setFromCamera: function ( coords, camera ) {
if ( ( camera && camera.isPerspectiveCamera ) ) {
this.ray.origin.setFromMatrixPosition( camera.matrixWorld );
this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize();
} else if ( ( camera && camera.isOrthographicCamera ) ) {
this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera
this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld );
} else {
console.error( 'THREE.Raycaster: Unsupported camera type.' );
}
},
intersectObject: function ( object, recursive ) {
var intersects = [];
intersectObject( object, this, intersects, recursive );
intersects.sort( ascSort );
return intersects;
},
intersectObjects: function ( objects, recursive ) {
var intersects = [];
if ( Array.isArray( objects ) === false ) {
console.warn( 'THREE.Raycaster.intersectObjects: objects is not an Array.' );
return intersects;
}
for ( var i = 0, l = objects.length; i < l; i ++ ) {
intersectObject( objects[ i ], this, intersects, recursive );
}
intersects.sort( ascSort );
return intersects;
}
} );
/**
* @author alteredq / http://alteredqualia.com/
*/
function Clock( autoStart ) {
this.autoStart = ( autoStart !== undefined ) ? autoStart : true;
this.startTime = 0;
this.oldTime = 0;
this.elapsedTime = 0;
this.running = false;
}
Object.assign( Clock.prototype, {
start: function () {
this.startTime = ( typeof performance === 'undefined' ? Date : performance ).now(); // see #10732
this.oldTime = this.startTime;
this.elapsedTime = 0;
this.running = true;
},
stop: function () {
this.getElapsedTime();
this.running = false;
this.autoStart = false;
},
getElapsedTime: function () {
this.getDelta();
return this.elapsedTime;
},
getDelta: function () {
var diff = 0;
if ( this.autoStart && ! this.running ) {
this.start();
return 0;
}
if ( this.running ) {
var newTime = ( typeof performance === 'undefined' ? Date : performance ).now();
diff = ( newTime - this.oldTime ) / 1000;
this.oldTime = newTime;
this.elapsedTime += diff;
}
return diff;
}
} );
/**
* @author bhouston / http://clara.io
* @author WestLangley / http://github.com/WestLangley
*
* Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system
*
* The poles (phi) are at the positive and negative y axis.
* The equator starts at positive z.
*/
function Spherical( radius, phi, theta ) {
this.radius = ( radius !== undefined ) ? radius : 1.0;
this.phi = ( phi !== undefined ) ? phi : 0; // up / down towards top and bottom pole
this.theta = ( theta !== undefined ) ? theta : 0; // around the equator of the sphere
return this;
}
Object.assign( Spherical.prototype, {
set: function ( radius, phi, theta ) {
this.radius = radius;
this.phi = phi;
this.theta = theta;
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( other ) {
this.radius = other.radius;
this.phi = other.phi;
this.theta = other.theta;
return this;
},
// restrict phi to be betwee EPS and PI-EPS
makeSafe: function() {
var EPS = 0.000001;
this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) );
return this;
},
setFromVector3: function( vec3 ) {
this.radius = vec3.length();
if ( this.radius === 0 ) {
this.theta = 0;
this.phi = 0;
} else {
this.theta = Math.atan2( vec3.x, vec3.z ); // equator angle around y-up axis
this.phi = Math.acos( _Math.clamp( vec3.y / this.radius, - 1, 1 ) ); // polar angle
}
return this;
}
} );
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
* Extensible curve object
*
* Some common of curve methods:
* .getPoint(t), getTangent(t)
* .getPointAt(u), getTangentAt(u)
* .getPoints(), .getSpacedPoints()
* .getLength()
* .updateArcLengths()
*
* This following curves inherit from THREE.Curve:
*
* -- 2D curves --
* THREE.ArcCurve
* THREE.CubicBezierCurve
* THREE.EllipseCurve
* THREE.LineCurve
* THREE.QuadraticBezierCurve
* THREE.SplineCurve
*
* -- 3D curves --
* THREE.CatmullRomCurve3
* THREE.CubicBezierCurve3
* THREE.LineCurve3
* THREE.QuadraticBezierCurve3
*
* A series of curves can be represented as a THREE.CurvePath.
*
**/
/**************************************************************
* Abstract Curve base class
**************************************************************/
function Curve() {
this.arcLengthDivisions = 200;
}
Object.assign( Curve.prototype, {
// Virtual base class method to overwrite and implement in subclasses
// - t [0 .. 1]
getPoint: function () {
console.warn( 'THREE.Curve: .getPoint() not implemented.' );
return null;
},
// Get point at relative position in curve according to arc length
// - u [0 .. 1]
getPointAt: function ( u ) {
var t = this.getUtoTmapping( u );
return this.getPoint( t );
},
// Get sequence of points using getPoint( t )
getPoints: function ( divisions ) {
if ( divisions === undefined ) divisions = 5;
var points = [];
for ( var d = 0; d <= divisions; d ++ ) {
points.push( this.getPoint( d / divisions ) );
}
return points;
},
// Get sequence of points using getPointAt( u )
getSpacedPoints: function ( divisions ) {
if ( divisions === undefined ) divisions = 5;
var points = [];
for ( var d = 0; d <= divisions; d ++ ) {
points.push( this.getPointAt( d / divisions ) );
}
return points;
},
// Get total curve arc length
getLength: function () {
var lengths = this.getLengths();
return lengths[ lengths.length - 1 ];
},
// Get list of cumulative segment lengths
getLengths: function ( divisions ) {
if ( divisions === undefined ) divisions = this.arcLengthDivisions;
if ( this.cacheArcLengths &&
( this.cacheArcLengths.length === divisions + 1 ) &&
! this.needsUpdate ) {
return this.cacheArcLengths;
}
this.needsUpdate = false;
var cache = [];
var current, last = this.getPoint( 0 );
var p, sum = 0;
cache.push( 0 );
for ( p = 1; p <= divisions; p ++ ) {
current = this.getPoint( p / divisions );
sum += current.distanceTo( last );
cache.push( sum );
last = current;
}
this.cacheArcLengths = cache;
return cache; // { sums: cache, sum: sum }; Sum is in the last element.
},
updateArcLengths: function () {
this.needsUpdate = true;
this.getLengths();
},
// Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant
getUtoTmapping: function ( u, distance ) {
var arcLengths = this.getLengths();
var i = 0, il = arcLengths.length;
var targetArcLength; // The targeted u distance value to get
if ( distance ) {
targetArcLength = distance;
} else {
targetArcLength = u * arcLengths[ il - 1 ];
}
// binary search for the index with largest value smaller than target u distance
var low = 0, high = il - 1, comparison;
while ( low <= high ) {
i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
comparison = arcLengths[ i ] - targetArcLength;
if ( comparison < 0 ) {
low = i + 1;
} else if ( comparison > 0 ) {
high = i - 1;
} else {
high = i;
break;
// DONE
}
}
i = high;
if ( arcLengths[ i ] === targetArcLength ) {
return i / ( il - 1 );
}
// we could get finer grain at lengths, or use simple interpolation between two points
var lengthBefore = arcLengths[ i ];
var lengthAfter = arcLengths[ i + 1 ];
var segmentLength = lengthAfter - lengthBefore;
// determine where we are between the 'before' and 'after' points
var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;
// add that fractional amount to t
var t = ( i + segmentFraction ) / ( il - 1 );
return t;
},
// Returns a unit vector tangent at t
// In case any sub curve does not implement its tangent derivation,
// 2 points a small delta apart will be used to find its gradient
// which seems to give a reasonable approximation
getTangent: function ( t ) {
var delta = 0.0001;
var t1 = t - delta;
var t2 = t + delta;
// Capping in case of danger
if ( t1 < 0 ) t1 = 0;
if ( t2 > 1 ) t2 = 1;
var pt1 = this.getPoint( t1 );
var pt2 = this.getPoint( t2 );
var vec = pt2.clone().sub( pt1 );
return vec.normalize();
},
getTangentAt: function ( u ) {
var t = this.getUtoTmapping( u );
return this.getTangent( t );
},
computeFrenetFrames: function ( segments, closed ) {
// see http://www.cs.indiana.edu/pub/techreports/TR425.pdf
var normal = new Vector3();
var tangents = [];
var normals = [];
var binormals = [];
var vec = new Vector3();
var mat = new Matrix4();
var i, u, theta;
// compute the tangent vectors for each segment on the curve
for ( i = 0; i <= segments; i ++ ) {
u = i / segments;
tangents[ i ] = this.getTangentAt( u );
tangents[ i ].normalize();
}
// select an initial normal vector perpendicular to the first tangent vector,
// and in the direction of the minimum tangent xyz component
normals[ 0 ] = new Vector3();
binormals[ 0 ] = new Vector3();
var min = Number.MAX_VALUE;
var tx = Math.abs( tangents[ 0 ].x );
var ty = Math.abs( tangents[ 0 ].y );
var tz = Math.abs( tangents[ 0 ].z );
if ( tx <= min ) {
min = tx;
normal.set( 1, 0, 0 );
}
if ( ty <= min ) {
min = ty;
normal.set( 0, 1, 0 );
}
if ( tz <= min ) {
normal.set( 0, 0, 1 );
}
vec.crossVectors( tangents[ 0 ], normal ).normalize();
normals[ 0 ].crossVectors( tangents[ 0 ], vec );
binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] );
// compute the slowly-varying normal and binormal vectors for each segment on the curve
for ( i = 1; i <= segments; i ++ ) {
normals[ i ] = normals[ i - 1 ].clone();
binormals[ i ] = binormals[ i - 1 ].clone();
vec.crossVectors( tangents[ i - 1 ], tangents[ i ] );
if ( vec.length() > Number.EPSILON ) {
vec.normalize();
theta = Math.acos( _Math.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors
normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) );
}
binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
}
// if the curve is closed, postprocess the vectors so the first and last normal vectors are the same
if ( closed === true ) {
theta = Math.acos( _Math.clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) );
theta /= segments;
if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) {
theta = - theta;
}
for ( i = 1; i <= segments; i ++ ) {
// twist a little...
normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) );
binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
}
}
return {
tangents: tangents,
normals: normals,
binormals: binormals
};
}
} );
/**
* @author zz85 / http://www.lab4games.net/zz85/blog
*
* Bezier Curves formulas obtained from
* http://en.wikipedia.org/wiki/Bézier_curve
*/
//export * from './Three.Legacy.js';
function CaveLoader ( callback, progress ) {
if ( ! callback ) {
alert( 'No callback specified' );
}
this.callback = callback;
this.progress = progress;
this.dataResponse = null;
this.metadataResponse = null;
this.taskCount = 0;
}
CaveLoader.prototype.constructor = CaveLoader;
CaveLoader.prototype.parseName = function ( name ) {
var type;
var rev = name.split( '.' ).reverse();
this.extention = rev.shift();
this.basename = rev.reverse().join( '.' );
switch ( this.extention ) {
case '3d':
type = 'arraybuffer';
break;
case 'lox':
type = 'arraybuffer';
break;
case 'reg':
case 'json':
type = 'json';
break;
default:
console.log( 'Cave: unknown response extension [', self.extention, ']' );
}
return type;
};
CaveLoader.prototype.loadURL = function ( fileName ) {
var self = this;
var prefix = getEnvironmentValue( 'surveyDirectory', '' );
// parse file name
var type = this.parseName( fileName );
if ( ! type ) {
alert( 'Cave: unknown file extension [', self.extention, ']' );
return false;
}
this.doneCount = 0;
this.taskCount = type === 'json' ? 1 : 2;
var loader = new FileLoader().setPath( prefix );
loader.setResponseType( type ).load( fileName, _dataLoaded, _progress, _error );
// request metadata file if not a region (ie json file)
if ( type !== 'json' ) {
loader.setResponseType( 'json' ).load( replaceExtension( fileName, 'json' ), _metadataLoaded, undefined, _error );
}
return true;
function _dataLoaded ( result ) {
self.doneCount++;
self.dataResponse = result;
if ( self.doneCount === self.taskCount ) self.callHandler( fileName );
}
function _metadataLoaded ( result ) {
self.doneCount++;
self.metadataResponse = result;
if ( self.doneCount === self.taskCount ) self.callHandler( fileName );
}
function _progress ( e ) {
if ( self.progress) self.progress( Math.round( 100 * e.loaded / e.total ) );
}
function _error ( event ) {
self.doneCount++;
if ( event.currentTarget.responseType !== 'json' ) console.log( ' error event', event );
if ( self.doneCount === self.taskCount ) self.callHandler( fileName );
}
};
CaveLoader.prototype.loadFile = function ( file ) {
var self = this;
var fileName = file.name;
var type = this.parseName( fileName );
if ( ! type ) {
alert( 'Cave: unknown file extension [', self.extention, ']' );
return false;
}
var fLoader = new FileReader();
fLoader.addEventListener( 'load', _loaded );
fLoader.addEventListener( 'progress', _progress );
switch ( type ) {
case 'arraybuffer':
fLoader.readAsArrayBuffer( file );
break;
/*case 'arraybuffer':
fLoader.readAsArrayText( file );
break;*/
default:
alert( 'unknown file data type' );
return false;
}
return true;
function _loaded () {
self.dataResponse = fLoader.result;
self.callHandler( fileName );
}
function _progress ( e ) {
if ( self.progress ) self.progress( Math.round( 100 * e.loaded / e.total ) );
}
};
CaveLoader.prototype.callHandler = function ( fileName ) {
if ( this.dataResponse === null ) {
this.callback( false );
return;
}
var handler;
var data = this.dataResponse;
var metadata = this.metadataResponse;
switch ( this.extention ) {
case '3d':
handler = new Svx3dHandler( fileName, data, metadata );
break;
case 'lox':
handler = new loxHandler( fileName, data, metadata );
break;
case 'reg':
handler = new RegionHandler( fileName, data );
break;
default:
alert( 'Cave: unknown response extension [', this.extention, ']' );
handler = false;
}
this.dataResponse = null;
this.metadataResponse = null;
this.callback( handler );
};
// EOF
onmessage = onMessage;
function onMessage ( event ) {
var file = event.data;
var loader = new CaveLoader( _caveLoaded );
loader.loadURL( file );
function _caveLoaded( cave ) {
postMessage( { status: 'ok', survey: cave.getSurvey() } );
}
}
})));